
Carlos Paternina-Arboleda
Stefan Voß (Eds.)

LN
CS

 1
17

56

10th International Conference, ICCL 2019
Barranquilla, Colombia, September 30 – October 2, 2019
Proceedings

Computational
Logistics

Lecture Notes in Computer Science 11756

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

A Greedy Heuristic for the Vehicle Routing
Problem with Time Windows, Synchronization

Constraints and Heterogeneous Fleet

Luísa Brandão Cavalcanti(&) and André Bergsten Mendes

Departamento de Engenharia Naval e Oceânica, Universidade de São Paulo,
Av Prof. Mello Moraes 2231, Sao Paulo, SP 05508-030, Brazil

luisa.cavalcanti@usp.br

Abstract. This paper focuses on a new variant of the Vehicle Routing Problem
with Time Windows and Synchronization constraints (VRPTWSyn), inspired by
a routing problem faced by the oil & gas industry. Here, a heterogeneous fleet of
Anchor Handling Tug Supply vessels (AHTS) must be assigned to perform
tasks at offshore platforms, and most tasks require the simultaneous action of
more than two tugs. Instances are proposed, as well as a greedy randomized
heuristic that generates feasible solutions to the problem. As shown by the
computational experiments reported here, although the complexity of the
AHTS-routing problem is higher than the VRPTWSyn, the proposed method
could produce a diverse set of feasible solutions, which in the future may be
improved by a meta-heuristic-based algorithm.

Keywords: Anchor Handling Tug Supply � Vehicle Routing Problem �
Synchronization � Greedy heuristic � Oil & gas

1 Introduction

Recent literature has shed a light on the Vehicle Routing Problem with Time Windows
and Synchronization constraints (VRPTWSyn), applied to various contexts [1–3]. This
proven NP-hard problem [4] consists of scheduling the execution of tasks at geo-
graphically spread clients that may demand the simultaneous presence of two or more
vehicles and that must be started within a given time window [5]. For instance, vehicles
may represent caregivers performing health related activities at patients’ homes, as in
[2, 4–8], or employees that provide different types of services at their clients’ locations,
such as installing electronic equipment and furniture [1, 9, 10].

The VRPTWSyn may also be applied to create routes for Anchor Handling Tug
Supply vessels (AHTS) that must execute activities at offshore oil platforms, as
described in [11, 12]. These include towing and anchoring drilling rigs at production
units, performing maintenance and installation of underwater equipment, pulling
shuttle tankers during offloading operations in order to avoid collision, amongst others
(for a general overview of offshore logistics problems, we refer to [13]). In such
context, differences amongst the available tugs must be considered when assigning
them to tasks, since some tasks may demand vessels of higher potency, whereas other

© Springer Nature Switzerland AG 2019
C. Paternina-Arboleda and S. Voß (Eds.): ICCL 2019, LNCS 11756, pp. 265–280, 2019.
https://doi.org/10.1007/978-3-030-31140-7_17

may be accomplished by simpler, cheaper tugs. Moreover, tasks usually must be
executed simultaneously by more than two tugs, which has not been successfully
covered in the literature, as instances of the VRPTWSyn found in previous works are
restricted to at most two vehicles per client, and the percentage of clients with syn-
chronization requirements is low (while most papers adopt 10% [1, 2, 4, 5, 8], [14] uses
20%, [7] uses 30% and [10] proposes instances with up to 50% synchronized visits).
These intrinsic characteristics of the oil industry problem add an extra layer of com-
plexity to the VRPTWSyn, resulting in a new variant of the mathematical model that,
to the best of the authors’ knowledge, has not been discussed in the literature yet,
except for previous works of the authors themselves, as in [12].

In this paper, we address the hereby called Vehicle Routing Problem with Time
Windows, Synchronization constraints and Heterogeneous fleet (VRPTWSyn-Het), by
introducing its optimization model and presenting a greedy heuristic that produces
feasible solutions to the problem. To evaluate our solution method’s performance, the
heuristic is applied to 3 sets of 12 instances with 10, 20 and 30 tasks, and its results are
compared with the ones produced by the Gurobi optimization package. It is important
to note that the main goal of the proposed procedure is to produce feasible solutions
that may be used as a start to local search procedures and meta-heuristics, so
methodologies for improving the solution quality are left for future work. Although this
may sound like an easy target, our computational experiments show that Gurobi had
major difficulties in finding feasible solutions for instances with 20 and 30 tasks, which
justifies the need of building an efficient algorithm to find feasible tug schedules, as
well as it illustrates how the VRPTWSyn-Het differs from the VRPTWSyn, which has
had instances of up to 50 clients solved to optimality by [14].

The structure of this paper is as follows: in Sect. 2, the VRPTWSyn-Het is properly
defined and its mathematical optimization model is introduced; then, a greedy heuristic
for solving the VRPTWSyn-Het is documented in Sect. 3; and its performance is
attested in Sect. 4. Lastly, in Sect. 5, conclusions and recommendations for future work
are presented.

2 Problem Definition and Model Formulation

The VRPTWSyn-Het consists of routing a heterogeneous fleet of non-capacitated
vehicles (AHTS) to perform activities at geographically spread locations. The fleet is
subdivided into classes according to their potency, such that the vehicles from a class
c have lower power levels than vehicles of class c + 1. The higher the potency, the
higher the fuel consumption of the tug, so variable transportation costs are also higher.
Each activity demands a minimum number of vehicles of each class and must be started
within a time window, defined by a lower and an upper time limitation. Vehicles of the
same class are interchangeable between one another and vehicles of any given class can
execute all the tasks that can be performed by vehicles of a lower class. In other words,
a vehicle of class c that can execute a task i may be replaced by any vehicle of class
c + 1, even though the resulting variable costs will probably be higher. Tasks may start
and end at different locations, as they include transportation of equipment from one
platform to another. A task will only be started after all demanded vehicles arrive at its

266 L. B. Cavalcanti and A. B. Mendes

starting point and, once it is started, all vehicles assigned will be released to perform
other tasks just after its conclusion. Each tug r is associated with a class cr and a release
date sr.

The following mathematical formulation of the VRPTWSyn-Het is based on pre-
vious works that addressed the VRPTWSyn, with some changes to accommodate the
specificities of the AHTS routing problem. The VRPTWSyn-Het is formulated as a
directed graph G = (V, A) composed by a set V of vertices and a set A of arcs. Each
task j is represented by a unique node, being the set of task nodes denoted by J. There
are two vertices in V for each tug r 2 M to represent the start and end of its route, Oþ

r
and O�

r , but the former represents an actual location, whereas the latter is a dummy
node used to avoid sub cycles. The set of arcs A comprises all pairwise connections
between nodes of J, plus arcs connecting each Oþ

r to all nodes of J [O�
r , and all the

nodes of J to the nodes O�
r . Each arc (i, j) 2 A represents the movement of a tug from a

task/origin node i to a task/origin node j, so a cost crij for vehicle r to transverse arc (i, j)
is also defined for each pair of tug and arc. To execute all demanded tasks, a fleet of
m tugs, subdivided into l classes, is available. The set of all tugs is denoted by M, the
subset of tugs of class c is Mc � M and the set of all classes is C.

Each task j must be started at any time within its time window [aj, bj], i.e. no earlier
than a date aj and no later than bj. However, if it is initiated after a given
b̂j ðaj � b̂j � bjÞ, which is the actual desired day for starting the task, a daily financial
penalty wj applies. The duration pj of task j includes the eventual transportation time
from its start to its end location. Finally, the basic mode for executing j is represented
by a demand vector Dj ¼ fd1j ; d2j . . .d1j g:

Finally, a solution S to the VRPTWSyn-Het must assign a value to each of the
following decision variables: xrij, binary that equals one if tug r is assigned to execute
task j right after finishing task i; srj , continuous variable that equals the date of arrival of
tug r at the starting location of task j; ŝj, another continuous variable that indicates the
starting time of task j, when all assigned tugs are available at their starting location; and
Tj, the resulting delay of task j, measured from its desired starting time b̂j and within its
time window. The objective function z(S) is:

min z Sð Þ ¼
X

j2J Tjwj þ
X

i2N
X

jj i;jð Þ2A
X

r2M xrijc
r
ij ð1Þ

Subject to:
X

j2J [O�
k

xrOþ
r j ¼ 1 8r 2 M ð2Þ

X
j2J [Oþ

r
xrjO�

r
¼ 1 8r 2 M ð3Þ

X
r2Mjcr � c

X
i;jð Þ2A x

r
ij � dcj 8j 2 J; 8c 2 C ð4Þ

X
r2M

X
i;jð Þ2A x

r
ij �

X
c2C d

c
j 8j 2 J ð5Þ

A Greedy Heuristic for the Vehicle Routing Problem 267

X
i;jð Þ2A x

r
ij ¼

X
j;kð Þ2A x

r
jk 8r 2 M; j 2 J ð6Þ

srj � sr þ trOþ
r j � 1� xrOþ

r j

� �
K 8r 2 M; 8 Oþ

r ; j
� � 2 A ð7Þ

srj � ŝi þ pi þ trij � 1� xrij
� �

K 8r 2 M; 8 i; jð Þji 2 J; j 2 J; i 6¼ j ð8Þ

ŝj � srj 8j 2 J; 8r 2 M ð9Þ

ŝj � aj 8j 2 J ð10Þ

ŝj � bj 8j 2 J ð11Þ

Tj � ŝj � b̂j 8j 2 J ð12Þ

xrij 2 0; 1f g 8 i; jð Þ 2 A; r 2 M ð13Þ

ŝj; Tj 2 Rĵsj; Tj � 0 8j 2 J ð14Þ

srj 2 Rjsrj � 0 8j 2 J; r 2 M ð15Þ

In Eq. (1), the first part of z(s) is the total penalty costs of delayed tasks, whereas
the second part is the total transportation costs of all arcs traveled by the tug fleet.
Constraints (2) state that for each tug, a single arc leaving from its origin Oþ

r must be
selected, similarly to constraints (3), which restrict the selection of a single arc ending
at its final destination O�

r (note that this arc may be from Oþ
r to O�

r for both cases).
Inequalities set by (4) and (5) guarantee the fulfillment of each task’s demand

vector, by assuring that for each class c and task j, the number of designated tugs of this
class and above is greater or equal to the demanded dcj tugs; and that for each task the
total number of designated tugs is equal to the total amount of demanded tugs,
regardless of their classes. Constraints (6) state that all the vessels that travel to a task
node j must leave it. The inequalities (7)–(9) force the starting time of each task to be
greater or equal to the arrival time of each of the vessels assigned to perform it, whereas
constraints (10) and (11) guarantee tasks will be started within their time windows.
Constraints (12) calculate the penalized delay of all tasks, and the domain of all
decision variables is stablished by expressions (13), (14) and (15).

3 Solution Procedure

To generate feasible solutions to the VRPTWSyn-Het, a greedy heuristic with ran-
domized steps was developed. Before presenting the algorithm of the Constructive
Heuristic for the VRPTWSyn-Het (VRPTWSyn-Het_CH), it is important to define a
couple of terms that are used throughout this paper.

268 L. B. Cavalcanti and A. B. Mendes

As any task with synchronization constraints that requires low class tugs may be
executed by tugs of higher classes, when one lists all subsets of tugs that are compatible
with such tasks, the number of vessels of each class will not be the same in all subsets
(although the total amount of tugs must be the same). For instance, if task i requires two
class-1 tugs and one of class 2, subsets of compatible tugs may have: (i) 2 class-1 tugs
and 1 class-2; (ii) 1 of class 1 and 2 of class 2; (iii) none of class 1 and 3 class-2 tugs.
To distinguish subsets with different numbers of tugs of each class, we borrow the term
mode from the scheduling literature, more specifically from the multi-processor
scheduling problems [15, 16]. Here, a mode is a combination of the number of tugs
from each available class, such that, in the previous example, there are three modes for
executing task i. We also name the basic mode as the combination that uses the least
higher-class tugs, which in the previous example is the first enumerated mode (2,1).

Another useful term we borrow from scheduling literature is the slack time of a
task. In this problem, however, we define the slack time of a task as the amount of time
it may be postponed (from its current starting time) without breaking any of the routed
tasks’ time windows, including its own. The use of slack times is crucial to the viability
of the proposed heuristic, because it spares the method from having to check time
windows of all tasks that may be affected by the insertion of a new task every time an
insertion option is evaluated. As stated elsewhere [14], synchronizations constraints
generate complex interconnections between tasks, making routing problems extremely
difficult to solve, so to find a way of smoothing calculations related to route changes is
an important gap to bridge in this field.

A Greedy Heuristic for the Vehicle Routing Problem 269

VRPTWSyn-Het_CH(, ,):
 Initialize and
 While no solution has been found AND :

sorted tasks of set
 While is not empty:

select_task_from()

all_modes_compatible_with()

 For each in :
 set will all subsets of tugs type

 For each tug subset :
 For combination of insertion positions in :

insert()

 If feasible:

 End loop that exhaustively checks
 End loop that exhaustively checks
 If is not empty, exit loop
 End loop that iterates through
 If is empty: exit while loop
 Else: select_option_from()
 End loop that removes task by task from

 End while loop
 Return Routes
End

Algorithm 1. VRPTWSyn-Het_CH algorithm

The VRPTWSyn-Het_CH algorithm, presented by Algorithm 1, starts by initial-
izing a set Routes of m vectors router, with r varying from 1 to m, and each router is
initialized with two elements: the initial and final depot nodes. Then, it performs the
following procedure until a solution has been found or the maximum number of restarts
is reached.

At the beginning of an iteration, demanded tasks are sorted according to relevant
characteristics of each task, and stored in set S. As later described, we have tested 8
different sorting rules and selected the one with the best performance. Next, the
algorithm removes a task from S, by randomly picking one of the first jPos of
S (method select_task_from), and then checks possibilities of inserting the task into the
routes of vessels that are compatible with the task. However, instead of exhaustively
testing all the insertion possibilities in all compatible subsets of tugs, the algorithm
starts with the basic mode for fulfilling the task and, if there is at least one feasible
partial solution that can be generated using such mode, it will not look any further. In
case none of the tug subsets for the basic mode may have the task added to their routes,
the algorithm will exhaustively check the insertion possibilities for the next mode
(second lowest amount of high class vessels used), and so on, until a feasible partial
solution can be generated or all modes have been tested.

270 L. B. Cavalcanti and A. B. Mendes

Hence, when testing a mode, all the vessel subsets of such mode are considered
and, for each subset, all the combinations of insertion positions from each route are also
checked. To expedite this exhaustive procedure, we recalculate the slack times of all
routed tasks every time the set of routes is updated (i.e. have a task added to one or
more vessels’ routes), so when trying to add a task i before j at a tug’s route r, we
calculate the new starting time of task j after such insertion and only accept the
insertion if the difference from j’s current starting time is equal or smaller than j’s
current slack time. Not only does this guarantee that task j will have its time window
respected, but also that all other impacted tasks will have their time windows preserved.
One should also note that, since the starting time of any task depends on the arrival of
all assigned tugs, it is possible that the insertion of i into r will not impact any of the
following tasks, in case tug r was originally waiting for the arrival of another tug to
start task j and had enough idle time to accommodate i.

Every time an insertion check leads to a feasible solution, the partial routes generated
by such insertion are added to a set Options, sorted according to the cost increment
caused by the insertion. Once a mode with feasible solutions has been found and
exhaustively examined, the algorithm randomly chooses amongst the first oPos partial
solutions stored inOptions and updates Routes accordingly. Otherwise, if a task may not
be inserted in any of the compatible tug subsets (considering all possible modes), the
loop that removes task by task from S is finished earlier and the whole procedure is
restarted, provided that the maximum number of restarts has not been reached yet.

The constructive heuristic is finished when a complete solution is found (all tasks
have been successfully added to the routes of compatible tugs and their time windows
are respected) or the maximum number of restarts has been reached. However, as the
purpose of the heuristic is to find a feasible solution to all instances, the maximum
number of restarts was only used for tuning experiments, with which the values for
jPos and oPos were determined, as explained in the next section.

It is worth mentioning that in previous versions of the heuristic, at the step of
checking the insertion possibilities for a task, the heuristic looked for all modes and
picked the cheapest option. However, this final version, which restricts the search to the
first viable mode, outperformed the original algorithm in terms of quality and com-
putational time.

4 Computational Experiments

Computational experiments conducted on the VRPTWSyn-Het_CH included the def-
inition of sorting rule, parameter-tuning tests, efficiency evaluation and assertion of
solution quality and diversity. More specifically:

• Definition of sorting rule: eight sorting rules, based on classical scheduling
approaches for minimizing total tardiness (see [17] for more details), were tested
using the VRPTWSyn-Het_CH with both jPos and oPos equal to one (which is
equivalent to a non-randomized version of the heuristic, as the first job of the sorted
test is always selected as the next job to insert into routes of the partial solution, as
well as the insertion positions yielding the cheapest partial solution).

A Greedy Heuristic for the Vehicle Routing Problem 271

• Parameter-tuning tests: to calibrate jPos, the value of oPos was fixed as one and the
heuristic was tested with jPos set from one to ten. With nExp reduced to one
hundred restarts, the heuristic was executed ten times for each value of jPos, then
medium performances were compared with each other. Similarly, the heuristic was
executed ten times to calibrate the value of oPos, which varied from one to twenty-
one whereas jPos and nExp were fixed at one and one hundred, respectively. Such
value ranges were obtained with preliminary tests on randomly picked instances.

• Efficiency evaluation: once jPos and oPos were tuned, the resulting algorithm was
run with nExp equal to ten thousand restarts, to enable finding a solution to all
proposed instances. Again, ten executions were performed for each instance, to
evaluate the robustness of the method. The computational time spent to generate a
feasible solution was compared to the time Gurobi needed to find a single solution.

• Assertion of solution quality and diversity: even though the main goal of the
constructive heuristic was to find feasible solutions to difficult instances of the
VRPTWSyn-Het, we also tested it as a way of producing good solutions to the
problem. In these tests, the algorithm was applied with just one stop criterium, the
maximum number of restarts. Here, two thousand restarts were allowed and,
although the best solution found was retrieved by the method, all feasible solutions
were also stored, which allowed us to check how diverse the set of produced
solutions is. As we intend to apply GRASP to the VRPTWSyn-Het, having a
diverse set of initial solutions may be useful to future developments of this research.

All tests reported here were conducted on a PC notebook with Intel Core i7-6500U
CPU, 2.50–2.59 GHz and 8 GB RAM, using Microsoft Visual Studio 2015 and Gurobi
version 8.1.0. Next, a description of the instances is provided, along with the test results.

4.1 Instances for the VRPTWSyn-Het

Three sets of 12 instances each are proposed for the VRPTWSyn-Het, with 10, 20 and
30 tasks. These instances were derived from [11], with a reduction of the fleet’s size
and homogenization of the tug characteristics within each tug class. All instances have
two classes of tugs and their planning horizon is a month (starting dates of the tasks are
within 30 days).

Table 1 shows the main characteristics that describe an instance: number of
demanded tasks; number of tasks with synchronization needs; average time length of
the tasks; fleet’s size and distribution across classes; number of vehicles required per
task (on average and the maximum value). Dashed lines mark the transition between
the three sets of instances, according to their sizes (total number of demanded tasks).

It should be noted that for each instance a task requires, on average, the simulta-
neous action of at least 2.4 vessels, but for some of them this figure can go up to 2.8. At
most, five tugs are required per task, but most instances have no tasks demanding more
than four tugs. The mean percentage of tasks with synchronized needs is 86% across all
instances, but in four of them, all tasks have synchronized requirements. Instance 11
has the smallest number of synchronized tasks, with only seven of them (or 70% of the
total) requiring more than one tug.

272 L. B. Cavalcanti and A. B. Mendes

Table 1. Main characteristics of the proposed instances

ID #
tasks
(n)

#
sync.
tasks

Avg.
pj
[days]

Fleet’s size Tugs per task
Class-1
tugs

Class-2
tugs

Total
(m)

Avg
#tugs/task

Max.
#tugs/task

1 10 8 9.9 8 4 12 2.4 4
2 10 10 9.9 8 4 12 2.6 4
3 10 9 10.1 9 4 13 2.8 4
4 10 9 11.9 8 5 13 2.4 4
5 10 9 12.1 8 4 12 2.6 4
6 10 9 12.0 11 5 16 2.8 4
7 10 10 10.1 8 3 11 2.4 4
8 10 8 9.9 8 4 12 2.6 4
9 10 9 10.1 9 4 13 2.8 4
10 10 8 12.0 8 4 12 2.4 4
11 10 7 12.0 10 4 14 2.6 4
12 10 10 12.0 10 5 15 2.8 4

13 20 15 9.9 16 6 22 2.4 5
14 20 17 9.9 11 9 20 2.6 4
15 20 19 9.9 14 9 23 2.8 4
16 20 15 12.0 20 7 27 2.4 4
17 20 17 12.0 22 7 29 2.6 4
18 20 18 12.1 20 7 27 2.8 4
19 20 16 10.0 11 6 17 2.4 4
20 20 18 9.5 11 5 16 2.6 5
21 20 20 9.1 20 7 27 2.8 4
22 20 15 12.0 14 7 21 2.4 4
23 20 17 12.1 16 6 22 2.6 4
24 20 19 12.0 18 8 26 2.8 4

25 30 24 9.9 14 6 20 2.4 5
26 30 25 10.1 14 7 21 2.6 4
27 30 27 10.1 15 8 23 2.8 4
28 30 26 12.0 15 9 24 2.4 4
29 30 26 12.0 16 9 25 2.6 4
30 30 28 12.1 17 9 26 2.8 4
31 30 24 10.0 14 7 21 2.4 4
32 30 24 10.0 16 6 22 2.6 4
33 30 25 10.0 16 8 24 2.8 4
34 30 24 12.1 16 8 24 2.4 4
35 30 26 12.0 19 9 28 2.6 4
36 30 27 12.0 19 10 29 2.8 4

A Greedy Heuristic for the Vehicle Routing Problem 273

4.2 Tuning Experiments

The following sorting rules were tested on instances with 10 and 20 tasks, using a non-
randomized version of the VRPTWSyn-Het_CH:

1. Non-decreasingly by aj (lower limit of the task’s time window), or by bj (its upper
limit) whenever there is a tie;

2. Non-increasingly by total amount of vessels demanded, or non-decreasingly by the
demand of upper-class vessels in case of a tie;

3. Non-decreasingly by bj, or non-increasingly by pj (task’s duration) for ties;
4. Non-decreasingly by bj, or non-decreasingly by the demand of upper-class vessels

for ties;
5. Non-decreasingly by bj, or non-increasingly by total amount of vessels demanded;
6. Non-increasingly by total demanded (in number of tugs required) multiplied by pj,

untied by bj (non-decreasingly)
7. Non-increasingly by compatibility degree, untie by duration of time window

(bj − aj);
8. Non-increasingly by compatibility degree, untie by total demand;

Rules 7 and 8 use the concept of compatibility degree of a task, defined next. As a way
of measuring how difficult it is to fit a given task into a tug’s route, we checked if such
task is able to share a tug with each one of the remaining n − 1 tasks of J, considering
their time windows and the travel time needed, using the speed of the fastest tug
available. The compatibility degree of a task is then equal to the number of tasks it can
share a route with.

Table 2 shows the average number of backlogged tasks for each instance set and
sorting rule, as well as the number of solved instances by each rule. It can be noted that
the 7th rule outperformed the others and, therefore, was chosen for the next tests.

Themain results of the parameter tuning experiments are presented byTables 3 and 4.
Table 3 presents the number of solved instances for each value of jPos, showing how it
varied on each execution performed, whereas Table 4 shows the heuristic’s performance
for each value of oPos. Based on these results, the values of jPos and oPos were set to 3
and 16, respectively, as these values yielded the biggest number of solved instances, on
average (for the ten executions).

Table 2. Results of experiments to define the sorting rule

Result Instance set (# of tasks) Sorting rule
1 2 3 4 5 6 7 8

Solved instances n = 10 10 6 9 9 11 10 8 9
n = 20 5 2 6 6 7 4 6 7

Avg. backlogged tasks n = 10 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0
n = 20 2.1 2.5 1.8 2.5 1.4 1.8 1.7 2.0

274 L. B. Cavalcanti and A. B. Mendes

4.3 VRPTWSyn-Het_CH Efficiency Tests

Once the VRPTWSyn-Het_CH was tuned, it was executed with the aim of solving 36
proposed instances. As the heuristic has two randomized steps, each instance was

Table 3. Calibration of jPos

jPos Avg. unsolved
instances

Avg. Restarts needed for
solved instances

Avg. Restarts needed
considering all instances

1 10.0 0.0 35.6
2 2.8 1.9 11.8
3 2.3 2.6 10.7
4 2.4 2.9 11.3
5 2.6 3.9 12.8
6 3.0 4.1 14.4
7 2.7 5.0 14.1
8 3.3 4.6 15.8
9 3.5 5.3 17.0
10 3.7 5.0 17.4
11 3.9 6.3 19.2

Table 4. Calibration of oPos

oPos Avg. unsolved
instances

Avg. Restarts needed for
solved instances

Avg. Restarts needed
considering all instances

1 13.0 0.0 35.8
2 5.1 2.0 15.8
3 5.3 2.1 16.3
4 5.7 1.9 17.3
5 4.7 4.1 16.6
6 4.1 3.0 13.9
7 3.6 3.7 13.3
8 3.9 3.8 14.1
9 3.8 2.5 12.7
10 3.7 2.4 12.3
11 3.5 3.3 12.6
12 3.9 2.5 12.9
13 3.6 3.0 12.6
14 3.5 2.9 12.3
15 3.7 2.9 12.8
16 3.4 3.0 12.1
17 3.5 2.7 12.0
18 3.6 2.7 12.3
19 3.9 2.4 12.8

A Greedy Heuristic for the Vehicle Routing Problem 275

solved 10 times, with the aim of checking the method’s robustness. Also, to grasp the
difficulty level of these instances, Gurobi was run with a time limitation of 24 h and a
solution count limit of one, enabling the measurement of how long it took to find a
single feasible solution.

Table 5 shows the main results obtained by the constructive heuristic (denoted as
CH), in terms of solution quality and execution time, along with Gurobi’s results. For
each instance, bold results within the Gurobi column indicate that the optimization
package outperformed the heuristic; whereas within CH’s column indicate otherwise.

These results indicate that the heuristic produces feasible solutions much faster than
Gurobi for instances with 20 to 30 tasks, and the methods performed similarly on small
instances of 10 tasks. Also, the VRPTHSyn-Het_HC successfully solved all instances,
whereas there were two cases for which Gurobi could not provide a solution within
24 h, one of which was solved by the heuristic in less than 8 min and the other in about
9 s (on average). The worst performance obtained by the VRPTHSyn-Het_HC, con-
sidering its ten executions on all 36 instances, was 17.5 min. On the other hand, the
average solution quality delivered by the non-optimizing method was worse than the
first solution provided by Gurobi, as expected. Also, comparing its performance over
ten executions, one can conclude that the solution’s quality varies significantly from
one execution to the other, which is reflected both on the standard deviation of z(s) and
on the difference between best and average solutions’ costs.

4.4 Capability of Generating a Diverse Set of Feasible Solutions

These final experiments on the VRPTWSyn-Het_CH aimed at checking if the heuristic
was able to find a heterogeneous set of feasible solutions. To this end, nExp was fixed
at 2,000 restarts and the method was not stopped when a feasible solution was found.
Instead, all generated solutions were stored, so the results’ cost range could be
evaluated.

Table 6 shows the number of solutions generated after 2,000 restarts of the pro-
cedure and the iteration that yielded the best solution. The minimum and maximum
objective function values amongst the produced solutions are presented, as well as the
total time spent and the average time per generated solution. Bold figures indicate better
performance as compared to Gurobi’s first solution.

These results show that the method could generate a heterogeneous solution set, as
the total cost of the schedules varied greatly amongst them. The iteration yielding the
best solution varied from one instance to the other and was close to the stop criterium in
several cases, which could mean the method would deliver even better solutions if
nExp was higher. Even though the aim of the CH was to get a feasible solution in short
time, it created relatively good solutions (as compared to Gurobi’s results) faster than
Gurobi, at least for instances of 20 and 30 tasks. However, to prove or discard these
hypotheses, more experiments are necessary.

276 L. B. Cavalcanti and A. B. Mendes

Table 5. Results obtained by the heuristic and comparison with Gurobi’s first solution

ID Solution quality (z(s)) [$] Computational time [s]

CH Gurobi CH Gurobi

Best z sð Þ Mean z(s) Std.dev. z sGð Þ Avg. Std.dev. Exec.time

1 1,018,849 1,153,235 75,692 397,100 0.26 0.10 0.29
2 634,117 1,320,615 471,689 789,297 0.17 0.06 0.45
3 293,853 1,383,961 936,821 1,071,380 0.20 0.09 0.16
4 941,325 1,589,366 432,722 2,273,560 0.28 0.14 0.16
5 1,655,450 1,965,072 279,732 2,506,470 0.52 0.29 0.16
6 835,080 2,167,923 717,704 2,604,400 0.27 0.15 0.12
7 2,894,217 4,004,370 942,723 3,381,290 0.13 0.04 2.49
8 2,262,165 3,915,317 1,017,668 2,608,060 0.25 0.13 3.03
9 1,247,058 2,496,697 952,264 3,366,270 0.16 0.06 1.49
10 1,595,904 5,356,688 2,504,757 2,091,850 0.15 0.05 0.79
11 1,067,153 3,995,589 1,441,217 5,615,650 0.28 0.10 0.23
12 3,935,391 5,161,747 874,394 4,685,390 0.27 0.11 0.16

13 3,735,207 5,303,278 1,028,693 1,953,910 0.84 0.44 159.28
14 3,887,022 4,874,806 467,879 4,199,490 2.47 1.06 422.24
15 4,295,783 5,142,315 764,492 5,003,350 10.71 3.79 143.68
16 3,464,147 4,736,351 755,393 4,319,430 0.85 0.39 1.75
17 2,268,634 3,582,896 772,067 5,484,430 1.05 0.48 7.66
18 2,515,237 3,581,634 711,066 3,467,740 5.02 3.18 115.11
19 8,074,180 8,964,541 767,770 6,403,480 0.96 0.59 74,306.70
20 6,599,834 7,446,873 476,774 – 440.16 257.03 86,400.00
21 914,391 2,001,079 604,243 3,257,070 4.90 2.30 517.16
22 6,581,820 8,349,962 1,311,610 6,508,570 1.46 0.84 648.08
23 5,541,485 6,984,207 983,566 – 9.03 3.26 86,400.00
24 3,723,538 5,262,822 1,048,945 2,468,210 1.20 0.60 330.05
25 3,682,847 4,882,373 850,877 4,845,650 442.52 302.44 211.34

26 5,704,137 6,740,694 860,348 6,316,010 337.23 191.34 633.43
27 3,397,119 6,426,697 1,536,478 6,217,920 5.59 2.67 1,812.00
28 6,021,856 7,285,937 719,566 8,996,560 4.20 2.54 1,579.26
29 2,927,804 4,883,168 808,302 3,112,020 3.09 1.52 2,652.72
30 5,760,690 7,205,681 901,976 5,273,030 2.89 1.22 232.31
31 8,687,666 10,597,010 1,405,808 7,780,720 0.62 0.26 311.05
32 6,247,951 9,029,322 1,724,166 6,969,420 1.58 0.79 3,804.42
33 5,726,122 8,349,493 1,176,210 6,029,180 2.14 1.40 3,183.62
34 4,266,441 8,318,461 1,611,908 3,174,490 0.73 0.32 680.31
35 8,283,730 11,103,458 1,518,805 8,631,800 2.40 1.32 1,032.58
36 9,498,005 12,633,478 1,929,291 10,591,500 2.11 1.08 145.13

A Greedy Heuristic for the Vehicle Routing Problem 277

Table 6. Diversity analysis of the solutions produced by the VRPTWSyn-Het_CH

ID Solution
count

Iteration of
best solution

Min. z(s) Max. z(s) Total
time [s]

Time per
solution [s]

1 1,326 1,456 227,380 2,968,402 44.98 0.03
2 1,468 53 468,712 4,098,323 38.78 0.03
3 1,513 1,832 238,643 4,365,893 44.31 0.03
4 1,534 636 435,742 2,311,310 39.19 0.03
5 232 1,457 1,129,223 2,591,399 39.32 0.17
6 1,843 151 211,671 4,036,078 60.64 0.03
7 1,632 862 1,317,689 7,345,716 38.25 0.02
8 1,683 1,573 1,252,225 8,278,343 52.30 0.03
9 1,926 817 324,914 9,820,846 52.39 0.03
10 1,935 301 815,982 10,198,051 38.46 0.02
11 1,117 543 1,065,496 8,650,128 59.93 0.05
12 1,876 1,612 1,748,199 9,891,738 77.95 0.04

13 1,429 665 2,986,270 8,297,097 289.81 0.20
14 264 98 3,122,831 6,752,361 136.99 0.52
15 82 1,989 3,067,867 7,311,398 177.27 2.16
16 1,901 1,041 2,627,635 6,636,653 442.46 0.23
17 1,943 429 2,130,372 7,981,841 646.17 0.33
18 308 1,150 2,337,985 5,849,192 372.65 1.21
19 485 740 6,066,304 13,588,533 89.68 0.18
20 1 1,494 6,921,631 6,921,631 325.55 325.55
21 2,000 933 684,117 5,913,543 2,910.14 1.46
22 401 46 5,770,438 11,792,608 131.70 0.33
23 147 507 4,746,371 9,277,908 224.87 1.53
24 1,930 1,704 2,948,047 9,883,758 378.72 0.20

25 4 464 5,044,479 6,764,789 155.19 38.80
26 2 658 7,246,379 7,758,663 69.49 34.74
27 221 755 3,688,258 11,625,163 380.06 1.72
28 151 858 5,889,585 10,606,733 275.24 1.82
29 486 237 2,683,374 7,156,007 346.72 0.71
30 745 628 4,137,186 10,754,740 476.56 0.64
31 1,854 660 5,716,261 16,678,259 309.06 0.17
32 1,121 1,123 4,663,924 15,986,095 555.77 0.50
33 1,466 1,382 3,611,944 13,158,217 965.32 0.66
34 1,974 709 4,433,396 15,840,437 341.10 0.17
35 1,637 1,389 6,615,046 17,090,015 818.78 0.50
36 1,811 1,290 7,086,348 19,640,345 1,330.34 0.73

278 L. B. Cavalcanti and A. B. Mendes

5 Conclusions

This paper discusses a variation of the VRPTWSyn, named VRPTWSyn-Het, in which
the available fleet is heterogeneous and there are several modes for fulfilling a task’s
demand. A constructive heuristic is presented and tested on three groups of instances
proposed for the problem, with the aim of generating a set of initial solutions for future
application of a meta-heuristic. Computational experiments using Gurobi illustrate the
complexity of the VRPTWSyn-Het, as the optimization package was not able to find a
feasible solution within reasonable time. On the other hand, the proposed solution
method could rapidly generate a feasible solution to all instances, and our tests indicate
it is able to get a heterogeneous solution set.

For future work, we intend to apply a meta-heuristic-based method for improving
the initial solution produced by this greedy algorithm. Moreover, Gurobi or another
optimization package should be used to find optimal values of the instances, or at least
better lower bounds. Finally, the proposed methodology should be tested on instances
of the VRPTWSyn found in the literature.

Acknowledgments. This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

References

1. Parragh, S.N., Doerner, K.F.: Solving routing problems with pairwise synchronization
constraints. Cent. Eur. J. Oper. Res. 26, 443–464 (2018). https://doi.org/10.1007/s10100-
018-0520-4

2. Bredström, D., Rönnqvist, M.: Combined vehicle routing and scheduling with temporal
precedence and synchronization constraints. Eur. J. Oper. Res. 191, 19–31 (2008). https://
doi.org/10.1016/j.ejor.2007.07.033

3. Drexl, M.: Synchronization in vehicle routing–a survey of VRPs with multiple synchro-
nization constraints. Transp. Sci. 46, 297–316 (2012). https://doi.org/10.1287/trsc.1110.0400

4. Afifi, S., Dang, D.C., Moukrim, A.: Heuristic solutions for the vehicle routing problem with
time windows and synchronized visits. Optim. Lett. 10, 511–525 (2016). https://doi.org/10.
1007/s11590-015-0878-3

5. Afifi, S., Dang, D.-C., Moukrim, A.: A simulated annealing algorithm for the vehicle routing
problem with time windows and synchronization constraints. In: Nicosia, G., Pardalos,
P. (eds.) LION 2013. LNCS, vol. 7997, pp. 259–265. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-44973-4_27

6. Eveborn, P., Flisberg, P., Rönnqvist, M.: Laps Care-an operational system for staff planning
of home care. Eur. J. Oper. Res. 171, 962–976 (2006). https://doi.org/10.1016/j.ejor.2005.
01.011

7. Mankowska, D.S., Meisel, F., Bierwirth, C.: The home health care routing and scheduling
problem with interdependent services. Health Care Manag. Sci. 17, 15–30 (2014). https://
doi.org/10.1007/s10729-013-9243-1

8. Ait Haddadene, S.R., Labadie, N., Prodhon, C.: A GRASP � ILS for the vehicle routing
problem with time windows, synchronization and precedence constraints. Expert Syst. Appl.
66, 274–294 (2016). https://doi.org/10.1016/j.eswa.2016.09.002

A Greedy Heuristic for the Vehicle Routing Problem 279

9. Dohn, A., Kolind, E., Clausen, J.: The manpower allocation problem with time windows and
job-teaming constraints: a branch-and-price approach. Comput. Oper. Res. 36, 1145–1157
(2009). https://doi.org/10.1016/j.cor.2007.12.011

10. Hojabri, H., Gendreau, M., Potvin, J.Y., Rousseau, L.M.: Large neighborhood search with
constraint programming for a vehicle routing problem with synchronization constraints.
Comput. Oper. Res. 92, 87–97 (2018). https://doi.org/10.1016/j.cor.2017.11.011

11. Mendes, A.B.: Scheduling offshore support fleet under the requirement of multiple vessels
per task. PhD, University of Sao Paulo (2007). (in Portuguese). http://www.teses.usp.br/
teses/disponiveis/3/3135/tde-14012008-171216/en.php

12. Shyshou, A., Gribkovskaia, I., Barceló, J.: A simulation study of the fleet sizing problem
arising in offshore anchor handling operations. Eur. J. Oper. Res. 203, 230–240 (2010).
https://doi.org/10.1016/j.ejor.2009.07.012

13. Seixas, M.P., et al.: A heuristic approach to stowing general cargo into platform supply
vessels. J. Oper. Res. Soc. 67, 148–158 (2016). https://doi.org/10.1057/jors.2015.62

14. Liu, R., Tao, Y., Xie, X.: An adaptive large neighborhood search heuristic for the vehicle
routing problem with time windows and synchronized visits. Comput. Oper. Res. 101,
250–262 (2019). https://doi.org/10.1016/j.cor.2018.08.002

15. Artigues, C., Roubellat, F.: A polynomial activity insertion algorithm in a multi-resource
schedule with cumulative constraints and multiple modes. Eur. J. Oper. Res. 127, 297–316
(2000). https://doi.org/10.1016/S0377-2217(99)00496-8

16. Edis, E.B., Oguz, C., Ozkarahan, I.: Parallel machine scheduling with additional resources:
Notation, classification, models and solution methods. Eur. J. Oper. Res. 230, 449–463
(2013). https://doi.org/10.1016/j.ejor.2013.02.042

17. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, New York (2012).
https://doi.org/10.1007/978-1-4614-2361-4

280 L. B. Cavalcanti and A. B. Mendes

