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ABSTRACT Optical sensors, such as the RGB cameras embedded in smartphones, often fail to accurately
capture the full spectrum of skin tones. As a result, individuals with darker skin may experience reduced
performance in machine vision-based security systems. Insufficient attention to human diversity, including
variations in skin tone, can contribute to biased training data and, subsequently, to disparities in AI systems,
especially in biometric recognition. This paper highlights the need for more consistent and objective
approaches to assessing skin tone, which are often treated subjectively or applied inconsistently. We address
this issue by analyzing RGB finger photo data using colorimetric techniques to support the development of
more inclusive machine vision systems.

INDEX TERMS Biometrics, cybersecurity, digital devices, individual typology angle, reflectance, skin tone.

I. INTRODUCTION
Technology-driven discrimination occurs when AI-powered
optical sensors fail to accurately capture key human char-
acteristics, resulting in biased outcomes that dispropor-
tionately affect certain populations [1]. These disparities
raise critical concerns about equity, systemic bias, and
the broader consequences of deploying such technologies
at scale. Current optical sensors (e.g., smartphone RGB
cameras) are limited in their ability to interpret variations
in skin tone features, primarily due to light absorption,
which reduces the reflectance signal required for image
formation. This limitation is linked to the optical properties
of the human skin, which influence how light is absorbed,
reflected, and transmitted through the tissue. These prop-
erties can vary widely based on factors such as ethnicity,
chromophore concentration, age, gender, body size, skin
conditions, and sun exposure, making it challenging to
achieve consistent and equitable skin tone representation
in imaging systems [2]. Despite advances in smartphone
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camera technology aimed at better capturing darker skin
tones [3], [4], significant challenges remain. Some contact-
less biometric systems—though deployed in high-security
applications—have not been thoroughly evaluated for skin
tone bias and often exhibit reduced accuracy for individuals
with darker skin. These limitations can result in dispro-
portionate error rates, raising concerns about fairness and
reliability.

In the domain of contactless fingertip-based biometrics,
there remains a lack of systematic evaluation concern-
ing the influence of skin tone on image quality and
algorithmic performance [5], [6]. This gap is particularly
significant given that fingertip coloration varies considerably
across individuals due to physiological and environmental
factors, including ethnicity, melanin concentration, blood
perfusion, skin thickness, temperature, and exposure to
external conditions. Fingertip pulse oximeters, although
widely used and cost-effective, often exhibit unregulated
performance, particularly for darker skin tones, which affects
diagnostic accuracy [7]. AI models that do not account
for this variability risk biased performance, particularly in
applications such as contactless palm or finger imaging.
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This highlights the need to investigate the underexplored
impact of skin tone in RGB-based finger photo analysis
and emphasizes the importance of designing inclusive
identity verification systems that perform equitably across all
demographics [8].

In the visible range, the primary absorbing molecule is
melanin, located in the superficial layers of the skin, which
determines an individual’s skin tone and the amount of
hemoglobin in the blood. Melanin absorption is higher in the
visible range, resulting in a lower reflectance intensity for
skin with a higher melanin concentration. In the near-infrared
region, water absorption becomes significant near 970 nm [9].
The concentrations of these absorbing molecules vary across
different body regions, influencing light absorption and
reflection. These characteristics impact the imaging systems.
Several early vision systems assume homogeneous skin
reflectance in RGB fingertip images, overlooking variability
from differing melanin levels. This can bias feature extraction
and reduce recognition accuracy, particularly for darker skin
tones [10].

Increasing evidence suggests that noninvasive assessment
tools, such as pulse oximeters, temperature probes, and
AI dermatology benchmarks, can exhibit reduced accuracy
when used on individuals with darker skin tones [11].
Although the Food and Drug Administration (FDA) is
exploring strategies to improve device performance in
diverse skin tones by incorporating skin tone criteria,
there is still no consensus on standardized methods to
assess skin tone bias in prospective studies [12]. Available
tools, including visual scales (e.g., Fitzpatrick Skin Type,
Monk Skin Tone) and color measurement instruments
(e.g., colorimeters, spectrophotometers, cameras), have yet
to be consistently validated across various domains, such
as medical. Inconsistent skin tone measurement, affected
by lighting and individual conditions, complicates accu-
rate device performance assessments, particularly in AI
dermatology, security, and non-invasive diagnostics. The
subjectivity inherent in traditional skin tone evaluation,
shaped by personal biases and environmental factors, intro-
duces significant bias, especially in skin lesion segmentation
models, which underperform in individuals with darker
skin tones. While subjective estimation of skin tone, often
based on human perception or non-standardized visual
assessments influenced by lighting, cultural biases, camera
settings, and environmental factors, can be inconsistent or
inaccurate, more objective approaches using digital color
analysis and spectrophotometry can be explored to quantify
skin tone using measurable properties such as reflectance
spectra.

To address the research question—‘‘Can we minimize
subjectivity in evaluating skin tone using objective colori-
metric analysis?’’—this paper emphasizes the urgent need
for standardized data-driven techniques in dermatological
imaging to reduce bias and improve consistency. A key
parameter for objectively assessing human skin color is
the Individual Typology Angle (ITA). ITA is a quantitative

measure used to classify skin tone through colorimetric
analysis. This spectroscopic method correlates directly with
skin pigmentation and is linearly proportional to melanin
concentrations [13]. The ITA has not been widely adopted
in AI security [14]. Originating from dermatology and
cosmetic science, ITA is a quantitative and objective metric
derived from the CIE Lab* color space, commonly used
for skin phototype classification. In AI fairness research,
skin tone is typically categorized using subjective scales,
such as Fitzpatrick or basic RGB groupings, which lack
the precision of ITA. While some recent work has explored
colorimetric approaches for skin tone assessment, ITA
remains absent mainly from standard biometric benchmark-
ing protocols [14]. This article advocates for the adoption
of standardized evaluation methods to reduce inconsisten-
cies and enhance the reliability of skin tone assessments
in imaging through colorimetric analysis, an objective
approach. Experiments are conducted on finger photo RGB
data to address the complex variations in individual skin
tones.

The paper is structured as follows: Section II reviews the
literature on AI fairness, focusing on variations in skin tone
in security. Section III outlines the proposed colorimetric
analysis method. Section IV discusses experimental results.
Section V concludes with findings and future research
directions.

II. LITERATURE REVIEW
A. HUMAN SKIN MODELS
Researchers have previously studied the interaction of light
with human tissue to understand tissue spectral properties
and how skin color is influenced by both environmental
factors and genetics [15], [16], [17], [18]. The epidermal and
dermal layers of human skin form a scattering medium that
contains several pigments, including melanin, hemoglobin,
bilirubin, and beta-carotene. Small changes in the distribution
of these pigments induce significant changes in the skin’s
spectral reflectance [19], [20], [21], [22]. Melanin is a key
factor in determining skin color in individuals with darker
skin, providing pigmentation and influencing tonal qualities
such as lightness and yellowness. Variations in melanin levels
lead to a diverse spectrum of skin tones within populations
with darker skin [9]. In contrast, lighter-skinned individuals
often have skin tones influenced more by hemoglobin, which
circulates in blood vessels and is associated with reddish
undertones. In 2018, Howard et al. explored the effects
of relative skin reflectance on biometric performance by
spending efforts to measure its impact on recognition [23].
Relative skin reflectance was expressed in terms of RGB
color values. Subjects belonging to the African-American
subset were found to be inversely associated with skin
reflectance values. Lower reflectance was found for people
who self-identified as African American compared to those
who self-identified as white, while it was higher in women
than in men. This trend was also confirmed in later
studies [24].
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B. SKIN TONE BIAS IN AI
Recent research has examined demographic differences in
biometric systems [7], with a primary focus on gender, age,
and ethnicity. However, the role of skin tone in AI-driven
security applications remains underexplored [4], [25].
Krishnapriya et al. investigate how variations in skin tone
influence the accuracy and fairness of face recognition
algorithms, revealing that darker-skinned individuals expe-
rience higher False Match Rates (FMR) and False Non-
Match Rates (FNMR) when categorized using the Fitzpatrick
scale [26], [27]. Using datasets annotated with skin tone
measures, including the ITA [28], their findings underscore
improved dataset diversity, algorithmic refinements, and
fairness-aware training strategies to reduce bias in biometric
security [29], [30], [31], [32]. A recent study examines
biases in AI models related to skin tone, particularly
in facial recognition and image classification systems.
It highlights how current methods, especially in albedo
estimation for virtual facial avatars, tend to favor lighter
skin tones due to biased priors and unresolved ambiguities
between albedo and lighting. The study proposes a solution
through the FAIR dataset, which balances skin tones, and
the TRUST algorithm, which addresses these biases by
leveraging facial and surrounding lighting information. This
work is connected to broader research on the impact of
skin tone in AI, to reduce biases in image classifica-
tion and improve fairness in AI applications in diverse
populations [33].

Understanding human attributes, particularly skin tone,
is crucial for enhancing the accuracy across various AI
systems, ranging from computer vision to multimodal
models. Skin tone annotation is subjective and influenced
by technical factors, such as lighting, and social factors
shaped by an annotator’s background. This study exam-
ines the subjectivity of skin tone annotation using the
Monk Skin Tone (MST) scale and introduces the Monk
Skin Tone Examples (MSTE) dataset to improve training
for annotators. The findings show that, while annotators
can reliably annotate skin tone, regional differences in
interpretation lead to systematic variations. These results
highlight the importance of using diverse annotators and
multiple replications in skin tone annotation, underscor-
ing the need for fairness in AI systems, where biased
skin tone data can affect the precision and inclusivity of
image classification models [34]. In a 2024 study, Marin
Bencevic and colleagues explored skin tone bias in deep
learning-based skin lesion segmentation. The research aimed
to investigate the impact of skin tone on the accuracy
and fairness of deep neural network models used in
dermatology. Through extensive analysis, the study found
significant performance discrepancies between lighter and
darker skin tones, with models showing a consistent bias
towards lighter skin. The findings underscore the importance
of considering skin tone during dataset collection and
model training to ensure equitable healthcare outcomes.
The study also highlighted the limitations of current

bias mitigation techniques, urging further improvements in
dataset diversity and model development to address these
disparities [35].

A recent study by Overbye-Thompson et al. exam-
ines the impact of skin tone bias in image recogni-
tion algorithms on user adoption and usage [1]. The
study, conducted in two investigations, found that peo-
ple with darker skin tones, despite facing more bias
in these technologies, used them more frequently than
those with lighter skin tones. The researchers applied
a diffusion of innovations framework to explore percep-
tions of compatibility, complexity, observability, relative
advantage, and reinvention. The findings indicated that
darker-skinned individuals perceived image recognition algo-
rithms as more compatible and advantageous, engaging in
higher levels of reinvention to adapt to algorithmic biases.
Although allowing better usage, this adaptation process
highlights the disproportionate burden on users with darker
skin and underscores the need for more equitable AI
technologies [1].

C. SKIN TONE MODELING
In most cases, racial bias in biometric systems has been
primarily attributed to the underrepresentation of black
individuals in training datasets, which is a correct statement.
While increasing dataset diversity is necessary, it is not
a sufficient solution, so a more nuanced understanding
of the sources of error is essential. One major flaw lies
in the oversimplified classification of individuals based
solely on ethnic or racial groups. Although grouping
individuals by ethnicity may appear valid—since people
within a group may share similar phenotypic traits—
this method fails to account for the rich genetic and
phenotypic diversity within populations [36]. For example,
Brazil’s population is characterized by a high degree of
admixture between African and European ancestry (pri-
marily Portuguese). Still, there are also Asian (notably
Japanese), indigenous peoples, and immigrants from all over
the globe. In a globalized world, categorizing individuals
strictly by ethnicity is increasingly inadequate. Furthermore,
from a photometric perspective, skin reflectance properties
(i.e., light absorption and scattering) are determined by
melanin concentration and are not influenced by geographic
or cultural origin.

Another commonly used classification system is the
Fitzpatrick skin type scale, initially developed in dermatology
to assess susceptibility to UV-induced skin damage [26].
While it categorizes skin tones into six types (I to VI),
its application in biometric research presents challenges.
The scale is subjective and often relies on visual assess-
ment or self-reported questionnaires [37]. Although der-
matologists may achieve high inter-rater reliability, this
accuracy is not easily replicable by non-experts [38], [39].
Moreover, each Fitzpatrick type encompasses a wide range
of skin tones, leading to coarse and sometimes mislead-
ing classifications. A more objective and reproducible
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alternative is the use of spectrophotometric techniques,
particularly those based on the CIELAB color space [40].
This color model accounts for human visual percep-
tion, allowing for a more precise quantification of skin
tone. From CIELAB values, the ITA can be calculated,
a parameter shown to strongly correlate with melanin
concentration [9], [13], [41], [42], [43]. The ITA thus
provides a reproducible biological metric for skin tone
classification.

Despite its advantages, spectrophotometry also has lim-
itations — the most notable is the need for calibrated
light sources and access to specialized equipment. One
approach could be converting RGB images into the CIELAB
color space to estimate ITA, enabling real-time, objec-
tive skin tone classification using consumer-grade devices.
This could help identify where and how biometric sys-
tems fail, particularly for darker skin tones. However,
no previous colorimetric analysis has been conducted on
finger photo data, as the ITA primarily focuses on the
palm region. This gap highlights the need for further
exploration of colorimetric methods in the context of
finger-based biometric data. Through intricate physical
modeling of light propagation and reflectance in skin
tissues, a deeper understanding and resolution of the reduced
sensitivity of image biometric systems for darker skin can
be achieved [44]. By accounting for melanin’s absorptive
properties and the complexities of light scattering, such
models enable a quantitative assessment of the reflected
light captured by sensors. This analytical framework can
strategically inform the design of advanced acquisition
devices and adaptive algorithms, ultimately guaranteeing
equitable performance across all skin tones and promoting
meaningful social inclusion in the deployment of biometric
technologies.

In biometric research, variability in lighting and device-
specific sensor characteristics can introduce uncontrolled
bias in skin tone estimation [45]. To assess the relia-
bility of image-based skin tone metrics, recent studies
have analyzed Face Area Lightness Measures (FALMs)—
automated lightness estimates derived from facial images—
and compared them against ground-truth skin color readings
obtained with calibrated colorimeters [45]. The results
revealed substantial variability in FALMs across multi-
ple images of the same individual, even under similar
conditions, underscoring the sensitivity of these measures
to acquisition parameters. In particular, only standard-
ized image capture settings—such as fixed cameras, con-
sistent lighting, and neutral backgrounds—reduced this
variability [45]. Furthermore, ground-truth FALMs showed
minimal differentiation across FST categories and cor-
related more closely with self-reported race than with
actual skin pigmentation. These findings highlight the
limitations of FST as a reliable proxy for skin tone in
computer vision and reinforce the need for calibrated,
device-independent colorimetric approaches in biometric
applications.

III. COLORIMETRIC ANALYSIS OF RGB BIOMETRIC DATA
A. PRELIMINARIES
Biological tissues, such as skin, muscles, and tendons,
exhibit anisotropic properties, i.e., their optical characteristics
depend on the direction of incident light and its interaction
with the medium. The propagation of light in the tissue can
be modeled using the Radiative Transport Equation (RTE),
as expressed in Eqn.1 [46].

dL(r, ŝ)
ds

= −µtL(r, ŝ)+ µs


p(s, ŝ)L(r, ŝ)dω′ (1)

In Eqn.1, L(r, ŝ) is the light radiance (quantity used to
describe the propagation of photon energy in a medium),
p(s, ŝ) is the scattering phase function, and dω′ is the
infinitesimal solid angle in the ŝ light propagation direction.
By definition,

µt = µa + µs (2)

The transport coefficient is the sum of the absorption
coefficient µa and the scattering coefficient µs. In biological
tissue, light propagation occurs in a forward direction, but
this direction is strongly dependent on the scattering patterns.
A measure of the degree of anisotropy in scattering is the
anisotropy factor g, which represents the average of the
scattering angle θ . If only forward scattering occurs, g = 1,
the total backward scattering corresponds to g = −1, and an
isotropic medium has g = 0 (it scatters the light equally in
any direction). For reference, on human skin, g = 090 on
average, which means that light propagates mainly in the
direction of the depth of the skin.Mathematically, g is defined
according to Eqn.3.

g =

p(s, ŝ)(ŝ · ŝ′)dω

p(s, ŝ′)dω
= ⟨cos(θ )⟩ (3)

The Henvey-Greenstein equation is typically used to estimate
the scattering direction, as shown in Eq.4.

p(s, ŝ) = 1
4π

1− g2

1− 2g cos θ + g2

32 (4)

B. SKIN TONE AND LIGHT REFLECTANCE
When light interacts with the skin, there are two main
light attenuations: absorption and scattering. Melanin and
hemoglobin are the main chromophores (molecules that
absorb light at a particular wavelength and reflect color).
People with dark skin tones typically have higher con-
centrations of melanin, which significantly increases light
absorption and reduces the response of the optical sensor [41],
[43], [47]. Melanin absorption occurs across the visible
spectrum, with its effect being more pronounced at lower
wavelengths. Hemoglobin has two main absorption patterns:
when bound to oxygen in the blood (Oxy-hemoglobin,
HbO2), with two leading bands in the visible light spectrum,
the first at 534 nm and the second at 575 nm. On the
other hand, deoxyhemoglobin (Hb) exhibits a single band
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centered at 540 nm. The absorption band shift is often used to
estimate blood oxygen saturation (SpO2) by using isosbestic
points. When light interacts with biological tissues, part of it
is absorbed, part is scattered (either forward or backward),
transmitted, and a fraction is reflected (remission). The
remitted light can be detected by optical devices, such as
cameras or detectors. In this sense, studying the reflected
light allows for a better understanding of the characteristics,
composition, and structure of the tissue. A mathematical
model that describes light reflection in diffuse media is
given by Rd [46], [48], which represents the amount of light
reflected on the tissue surface, given by Eqn 5.

Rd = α′

1+ 2k(1− α′)+ (1+ 2k
3 )(

√
3(1− α′))

(5)

were, α′ is the reduced albedo given by α′ = µ′
s

µ′
s+µa

, and

k = 1+rid
1−rid

is the partial reflection on the interface of the air-

tissue which,

rid = −1440 n−2
rel + 0710 n−1

rel + 0668+ 00636 nrel (6)

and nrel = nair
ntissue

is the relative refractive index between the
air-to-tissue interface. The diffuse reflectance is given in [W].

The light source is a core in image acquisition and directly
influences the accuracy and reproduction of color measure-
ments. Factors such as the spectral distribution, intensity,
directionality, and polarization state of the illumination affect
how light interacts with the skin and how the imaging
system captures it. For instance, broad-spectrum or natural
daylight sources provide more uniform spectral coverage,
reducing color bias, while narrowband or artificial sources
may introduce spectral distortions. Uncontrolled lighting
conditions can cause variations in shading, highlights, and
specular reflections, which can alter perceived skin tone
and interfere with quantitative color analysis. The absence
of standardized lighting also hinders reproducibility across
datasets. In this study, image acquisitionwas performed under
ambient lighting conditions, without polarization or spectral
calibration. Although this reflects real-world usage scenarios,
it also introduces limitations in terms of precision.

Most of the light reflected from a turbid medium is the
result of light scattering, providing valuable information
about the composition of the tissue. When light interacts
with the tissue, part of the incident photons are absorbed
at specific wavelengths, influenced by chromophores within
the analyzed region. For a more precise measurement of
a person’s skin tone, it is recommended to use reflectance
spectroscopy methods, which consider the amount of light
reflected after interaction with the tissue, rather than relying
solely on visual inspection and classification into groups,
as proposed by the Fitzpatrick scale. In this context, color
scales such as RGB and CIELAB are highly relevant for
classifying skin tones. The CIELAB scale, in particular,
takes into account the human eye’s perception when
classifying colors, serving as a correction factor for light
reflection from various objects. It categorizes colors in three

dimensions (axis): L∗: Lightness (or brightness), ranging
from 0 (black) to 100 (white). a∗: Variations between
green (−128) and red (+128). b∗: Variations between blue
(−128) and yellow (+128). Recent colorimetric studies
have established a correlation between tristimulus values
and the main chromophores present in the skin [40]. The
L and b∗ components are primarily associated with overall
melanin concentration and light attenuation, which include
both eumelanin and pheomelanin, and therefore are relevant
for the evaluation of skin pigmentation. In contrast, the
a∗ axis is mainly influenced by hemoglobin content and
vascularization; however, pheomelanin can also enhance the
reflectance in the red spectrum.

Using the L and b∗ CIELAB parameters, usually measured
with a colorimeter, the ITA can be calculated through Eqn 7,
which establishes a numerical correlation between skin tone
and its light reflection response.

ITA = 180
π

· arctan

L∗ − 50

b∗


(7)

The ITA categorization of the skin follows the sequence:
very light > 55◦ > light > 41◦ > intermediate > 28◦ >

tan > 10◦ > brown > −30◦ > dark [41]. Although this
categorization does not directly enhance recognition accu-
racy, it approximates the melanin concentration, which is
known to affect the optical system response.

C. CORRECTION FOR INSTRUMENTAL LIGHT EFFECTS
In biometric image processing, the light source signal is
often considered insignificant and not considered [49], [50].
However, a white reference, or color checker, plays a
crucial role in colorimetry measurements as it carries the
light source signal necessary for spectral correction [51].
Spectral correction refers to the adjustment of recorded data
to compensate for distortions caused by the measurement
system, including variations in light source, sensor character-
istics, and background noise interference. By incorporating
knowledge of the light source and prior information about
the imaging system, environmental conditions, and material
properties, spectral correction improves the precision of
RGB biometric data [52]. This process minimizes distor-
tions that could compromise data reliability by accounting
for factors such as illumination variations, sensor-specific
spectral sensitivity, and the inherent reflectance properties of
biometric traits. For instance, the spectral distribution of a
given light source influences how a sensor perceives colors
and materials. Spectral correction compensates for these
variations, producing more accurate and consistent results.
Normalization must be applied pixel-by-pixel to account for
spatial variations in light distribution and enhance precision.
Eqn. 8 describes the processing step that enables the signal to
become independent of the light source, thus improving the
consistency between measurements.

Reflectance(λ) = RSample(λ)
RReference(λ)

(8)
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However, for accurate results, the integration time must be
identical for both images; if this condition is not met, an addi-
tional correction is necessary. A reference material, such as
a spectrum, is commonly employed to capture the reflection
spectrum of the light source or ambient illumination, as it
reflects all wavelengths in the visible spectrum, facilitating
precise recovery of the source spectrum.

D. COLORIMETRY: CONVERTING RGB TO CIELAB
This study used the XYZ conversion matrix to estimate the
L*, a*, and b* of the CIELAB color space from the RGB
images. Eqn. 9 presents the conversion matrix from RGB to
XYZ color space, which is used to compute the corresponding
values of L, a*, and b* through Eqn. 10 to Eqn. 12. This
matrix is based on the standard D65 illuminant [53], [54], and
the values adhere to the definitions provided by the OpenCV
library for this illuminant.



X
Y
Z


 =



0412453 0212671 0019334
0357580 0180423 0715160
0072169 0119193 0950227


 ·



R
G
B


 (9)

L∗ =

116 · Y 13 − 16, for Y > 0008856
9033 · Y , for Y ≤ 0008856

(10)

a∗ = 500 · (f (X )− f (Y )) (11)

b∗ = 200 · (f (Y )− f (Z )) (12)

where

f (t) =

t13, for t > 0008856
7787 · t + 16116, for t ≤ 0008856

(13)

and

δ =

128, for 8-bit images
0, for floating-point images

(14)

with X ← X
Xn
, where Xn = 0950456 and Z ← Z

Zn
, where

Zn = 1088754. The ITAwas calculated using L∗ and b∗ from
the converted images and then applied to Eqn 7.

Device-specific spectral sensitivity introduces substan-
tial variability in RGB values, even for identical scenes.
Consumer-grade cameras, including smartphones, utilize
CMOS or CCD sensors with proprietary Bayer filters and
processing pipelines, resulting in inconsistent RGB outputs
across devices [55], [56], [57]. Accurate conversion to
device-independent color spaces (CIEXYZ, then CIELAB)
requires camera-specific calibration. Without it, colorimetric
estimates, such as ITA, become unreliable [51], [53].
Uncalibrated RGB-to-CIELAB conversions have been shown
to cause significant color estimation errors, particularly under
variable lighting [58]. Therefore, smartphone-based ITA
estimation should be interpreted with caution. Future work
must incorporate device calibration and standardized imaging
protocols to improve consistency in skin tone analysis.

FIGURE 1. ITA of the fingertips from Mason data, categorized by their
typology.

FIGURE 2. Asian and Asian American groups ITA gradients,
in (A) ITA = −65◦, (B) ITA = 11◦, (C) ITA = 48◦, and (D) ITA = 90◦.

IV. EXPERIMENTAL RESULTS
The dataset used in the experiments was collected at
George Mason University and consists of finger photo
RGB images of 100 subjects. These images were captured
with an iPhone 13 Pro under various indoor and outdoor
lighting conditions to ensure variability and robustness in
the analysis [59]. Initially, the data was converted from the
RGB color space to the CIELAB color space using the
equations described in the previous section. Fig. 1 shows
the distribution of the ITA, in degrees, for 100 individuals
classified by ethnic group. On the x-axis, individuals are
arranged in ascending order of ITA. The data show that
individuals classified as Asian or Asian American exhibit a
wide range of ITA values, from very light to dark skin tones.
This broad variation highlights the considerable diversity in
skin pigmentation within a single ethnic group, as illustrated
in Fig. 2.

Although ethnicity categorization is not the primary focus
of this analysis, we include it to provide context and
highlight that ethnicity does not reliably predict skin tone.
Our findings indicate that ethnic demographic labels alone
are insufficient; accurate skin tone measurement is crucial to
conduct meaningful and equitable analysis.

Using Equation (5), with reference data set of absorption
coefficient and scattering coefficient [9], it is possible to
estimate the skin reflectance on a camera sensor under
different conditions. Fig. 3 shows the reflectance of a light
skin (ITA = 327), and brown skin (ITA = −136o) under
normal, higher, and poor illumination;
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FIGURE 3. (Left) Light skin tone, ITA = 32.7o, and (right) brown skin tone,
ITA = 13.6o. In black is the sample’s reflectance under standard
illumination, red is the same sample under high illumination (20% more),
and blue is a poor illumination condition (50% less), simulating a digital
camera sensor under different conditions.

As shown in Fig. 3, with higher illumination, a light skin
may saturate the sensor in some spectral regions, whereas a
brown skin would have reflectance similar to that of a light
skin. However, poor illumination can hinder the skin’s tone,
and light skin may appear darker. Both conditions may lead
to an incorrect classification by several methods.

ITA values typically do not exceed 80 degrees, which
may indicate a saturation effect in some images within
the dataset. Saturation can occur due to automatic camera
adjustments, excessive lighting, or limitations in converting
RGB to the CIELAB color space. When lighting is too
intense, pixels may reach their maximum brightness limit,
leading to artificially high ITA values. This issue underscores
the importance of strict standardization in image acquisition
conditions to avoid artifacts that could distort the analysis.
Conversely, extremely low ITA values are often more related
to shadows in the images than actual skin pigmentation.
Inadequate lighting reduces the intensity of reflected light,
resulting in inaccurate color measurements that tend to skew
toward darker tones. Shadowsmay result from the positioning
of the light source, nearby objects, or the finger’s positioning
during image capture. This highlights the critical need for
rigorous lighting control to ensure precise and reliable
colorimetric measurements. The scientific literature suggests
that palms tend to be naturally lighter in color than other
areas of the skin due to the presence of DKK1 (Dickkopf-
related protein 1). This molecule inhibits melanocyte growth
in the palmar epidermis [60]. This biological factor explains
why palms generally exhibit higher ITA values, even in
individuals with darker non-palmar skin. Consequently, very
low ITA values in palm images may suggest experimental
errors during image acquisition, such as improper lighting or
incorrect camera settings.

The standard deviation observed in Fig. 1 reflects the color
variation within the same Region of Interest (ROI). High
deviations may be caused by factors such as dirt, cream
residues, skin oiliness, and variations in surface texture.
These irregularities disrupt the uniformity of the color and
can compromise the accuracy of ITA measurements. Similar
effects can be observed in images of very light skin, where
subtle lighting differences can result in significant variations

in color measurement. Errors in skin color measurement can
directly impact biometric acquisition, reducing the quality of
captured images and complicating the processing of recogni-
tion algorithms. Image-based biometrics are based on well-
defined visual characteristics, and artificial variations in skin
color can interfere with segmentation, contour detection, and
pattern extraction. Inconsistent lighting, dirt, and unwanted
reflections can cause recognition system failures, leading
to higher error rates. Therefore, a standardized capture
environment and control of the experimental conditions are
essential to ensure the robustness and reliability of biometric
analysis.

Genetic Variations in melanin expression contribute
significantly to the diversity observed in human pigmen-
tation [61]. Research has identified multiple genes that
influence skin, hair, and eye color, with distinct alleles
prevalent in different populations due to evolutionary pres-
sures. These genetic differences, shaped by natural selection,
account for the range of pigmentation observed between
human groups. As a result, ethnicity-based classification may
not be the most accurate approach to represent the skin color
distribution; therefore, quantitative measurements, such as
ITA, could be a more reliable alternative.

The Equipment used for image capture can introduce
inherent inaccuracies due to the technical limitations of the
sensors, improper calibration, or degradation of components
over time. These inaccuracies can lead to variations in the
recorded colorimetric values, compromising the reliability of
the results. Different camera models can further exacerbate
inconsistencies, as each sensor has unique characteristics for
color capture, white balance, and spectral response. These
differences make it difficult to compare images taken directly
with different devices.

The Distance between the finger and the camera lens
can also impact color capture due to optical effects such
as perspective distortion and light dispersion. Variations
in lighting conditions, such as differences in color tem-
perature, shadows, and reflections, can significantly affect
the characterization of skin color. Therefore, standardizing
lighting is crucial to minimize bias in the data collection
process. Without a reference device, such as a colorimeter,
image calibration becomes challenging, which can lead to
deviations in the obtained color values. Utilizing estab-
lished color standards can help mitigate this issue, thereby
improving the reliability of results. Additionally, residues of
dirt, oil, or products on the skin can alter light reflectance
and absorption, interfering with the accuracy of color and
biometrics capture. To avoid such variations, standardiz-
ing hand cleaning before image capture is essential. The
small number of volunteers from groups Native/Hawaiian,
Hispanic, and Back/African American in the study can
reduce the representativeness of the results, limiting the
generalizability of the conclusions. Small datasets are
more prone to statistical bias and may lack robustness
in analyzing variations in skin color. Finally, categorizing
individuals based on ethnicity rather than skin melanin
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concentration can lead to inappropriate generalizations and
introduce bias into the results, as presented in the enor-
mous diversity of skin tones in the Asian/Asian American
group.

A. LIMITATIONS
Colorimetric analysis and ITA are widely used to assess
skin tones, but they face limitations, particularly concerning
variability in lighting conditions and skin tone diversity [62].
Research highlights the inconsistencies introduced by dif-
ferent light sources in skin tone estimation, emphasizing
the need for standardized lighting during measurement.
Similarly, studies indicate that ITA classifications may not
effectively differentiate between melanin and hemoglobin
influences, thereby limiting their accuracy in capturing the
diverse range of skin tones. Bias in measurement has also
been observed, where colorimetric methods show reduced
accuracy for darker skin tones, resulting in disparities in
applications such as skin lesion detection. Environmental
and physiological factors make skin tone assessment more
challenging, as sun exposure can cause slight changes in
skin color. Findings reveal that skin tone affects light
reflectance, influencing the accuracy of optical measure-
ments. These challenges underscore the need for enhanced
methodologies that account for lighting variations, diverse
pigmentation, and external factors to ensure more accurate
and equitable skin tone assessments [63]. Furthermore,
converting images from RGB to CIELAB can introduce
errors due to differences between color models. While RGB
is device-dependent and influenced by lighting, CIELAB is
designed to reflect human visual perception and depends on
illumination.

B. ENABLING FAIRNESS-ORIENTED GUIDELINES
Our empirical evaluation of ITA in biometric systems lays
a critical foundation for fairness-centered research and
system design. By objectively quantifying skin tone, ITA
provides a more robust alternative to subjective proxies,
such as FST or self-reported race, enabling precise bias
analysis across true skin tone groups. Our findings reveal
significant variability in image-derived ITA values due to
lighting, sensor inconsistencies, and acquisition settings—
underscoring the need for standardized capture protocols
and device calibration. This work positions ITA as a
diagnostic tool and fairness metric, guiding future efforts
in lighting control, color calibration, and balanced dataset
development across biometric modalities and operational
contexts. It also supports the integration of ITA-based
validation steps in algorithm development pipelines to
detect and mitigate disparities early. In ongoing work,
we aim to translate these insights into practical design
guidelines, standard procedures, and deployment checklists
aligned with fairness and regulatory goals. Using ITA
as a measurable way to capture skin tone helps identify
and reduce bias, turning fairness goals into real system
improvements.

V. CONCLUSION AND FUTURE DIRECTIONS
This work highlights the need for additional research on how
skin tone affects the performance of biometric systems based
on RGB-acquired data. It also highlights the importance
of developing effective mitigation strategies to address
potential biases or disparities in biometric recognition,
ultimately promoting fairness and accuracy across diverse
populations. This research contributes to advancing ethical
and responsible AI cybersecurity, with a focus on enhancing
inclusion without compromising security. Although various
models are being explored to reduce bias in training
processes, incorporating the biological response of light
tissue could provide deeper insights into the limitations of
these systems.

Our ongoing work leverages ITA as an objective metric
to assess and quantify skin tone in deep learning-based Pre-
sentation Attack Detection (PAD) algorithms for biometric
systems.We are developing a novel framework that integrates
multiple color spaces to address disparities identified through
ITA measures. In parallel, we are extending this research
into the hyperspectral domain, covering both the visible
and Near-Infrared (NIR) spectra—a direction that offers
richer spectral information and the potential to overcome
current limitations, beginning at the instrumentation level.
Further research is needed to expand these methods and
address skin tone variability, which differs even within ethnic
groups. Objective metrics like ITA offer more accurate
evaluation than categorical labels. Biometric systems using
RGB data should be assessed for skin tone bias, and
deep learning models retrained with diverse color spaces
to better capture features like tone, texture, and ridge
detail.
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