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Abstract—A comprehensive theory for the stability boundaries
and the stability regions of a general class of nonlinear discrete
dynamical systems is developed in this paper. This general class of
systems is modeled by diffeomorphisms and admits as limits sets
only fixed points and periodic orbits. Topological and dynamical
characterizations of stability boundaries are developed. Necessary
and sufficient conditions for fixed points and periodic orbits to
lie on the stability boundary are derived. Numerical examples,
including applications to associative neural-networks, illustrating
the theoretical developments are presented.

Index Terms—Nonlinear Discrete Dynamical Systems, Stability
Region, Stability Boundary, Periodic Orbits.

I. INTRODUCTION

D ISCRETE dynamical systems may exhibit very complex
behavior, such as periodic orbits and chaos. Deriving a

characterization of the stability region (region of attraction)
and stability boundary (the boundary of stability region) of
these dynamical systems is a very difficult task. Up to now,
only a characterization of stability boundary of a particular
class of systems admitting only hyperbolic fixed points on the
stability boundary was developed [1]. In this paper, we give
a step further in the process of understanding the stability
boundary of these systems by extending this characterization
to systems that admit both fixed and periodic hyperbolic points
on the stability boundary.

The knowledge of stability region is important in many
practical discrete dynamical systems, including ecosystems [2]
and economic models [3], power systems [4] and sample-
data systems [5], [6]. Many practical discrete systems ex-
hibit periodic orbits, including recurrent iterated-map neural
networks [7], [8] and dynamics defined on complex number
spaces [9]. The concept of stability region is also important
in applications of control of discrete systems [10], including
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studies of networked control systems [11], [12] and control
of engines with fuel injection [13]. Hence, determining or
estimating stability regions of nonlinear discrete dynamical
systems is relevant in many applications.

There has been significant work on analyzing the stability
and asymptotic behavior of discrete-time dynamical systems,
providing estimates of the stability region. An invariance
principle for discrete-time systems was proven by LaSalle in
[14], [15] and an extension of this principle was independently
derived in [16] and [17]. A survey on the theory of positively
invariant sets in the analysis and control of discrete-time
nonlinear dynamical systems was provided in [18]. Recent
advances on the stability theory of these systems can be
found in [19]–[21]. In spite of the enormous amount of work
done in the analysis of asymptotic behavior of solutions of
discrete-time nonlinear dynamical systems, the problem of
characterizing and estimating the stability region of these
systems is still an open problem.

Significant progress has been made in the development
of theory and estimation of stability regions of nonlinear
continuous dynamical systems [22]–[24]. In addition, method-
ologies for optimally estimating stability regions of nonlinear
continuous dynamical systems were derived in [25]. These
developments led to several advances and practical methods
to estimate stability regions of large-scale nonlinear dynam-
ical systems on the order of 40,000 dimensions [26]. These
developments have also attracted great interest from power
industries [27] and nonlinear optimization technologies [1].

Compared with nonlinear continuous dynamical systems,
few analytical results on the characterization of stability re-
gions of nonlinear discrete dynamical systems exist.

The main contribution of this paper is extending the theory
of stability regions for a general class of nonlinear discrete
dynamical systems. This theory parallels the ones developed
for continuous system in [22] and extends the results of
stability regions developed in [1] for a larger class of discrete
dynamical systems by admitting not only fixed points but
also periodic orbits on the stability boundary. This extension
is achieved by studying the characterization of hyperbolic
periodic orbits on the boundary of stability regions.

Specifically, this paper develops, for the class of nonlinear
discrete dynamical systems modeled by diffeomorphisms:

• necessary and sufficient conditions for hyperbolic p-
periodic orbits belonging to the boundary of the stability
region.
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• a complete characterization of the boundary of the stabil-
ity region admitting, in the limit set, only hyperbolic fixed
points and hyperbolic p-periodic orbits on the stability
boundary.

These characterizations are useful to understand the compo-
sition of the boundary of the stability region and to develop
algorithms for optimally estimating it.

II. DISCRETE DYNAMICAL SYSTEMS

Consider the autonomous nonlinear time-discrete dynamical
systems:

xk+1 = f(xk) (1)

where k ∈ Z and f : Rn → Rn is a diffeomorphism, i.e. f
is continuos, differentiable, invertible and its inverse is also
continuous and differentiable. A consequence of f being a
dipheomorphism is that solutions are well defined for forward
and backward times.

The solution of (1), starting from x0 ∈ Rn at k = 0, denoted
by φ(· , x0) : Z→ Rn, is called an orbit (or trajectory) of (1),
i.e., xk = φ(k, x0) = fk(x0), where function fk stands for
the k-fold composition of f .

A set M is said positively invariant with respect to the
discrete system (1) if f(M) ⊂ M , which implies that every
orbit xk starting in M remains in M for all k ≥ 0. A set
M is negatively invariant if f−1(M) ⊂ M . A set M is said
invariant if f(M) = M , see [10].

A point z is said to be in the ω-limit set (or α-limit set) of x0
if there is a sequence ki ∈ Z with ki → +∞ (or ki → −∞)
as i → ∞ such that z = limi→∞xki [28]. The ω-limit set
ω(x) is closed and invariant. If, in addition, the forward orbit
{fk(x0), k ≥ 0} is bounded, then the ω-limit set is nonempty,
compact, invariant, and invariantly connected1 [1]. Moreover,
the solution approaches the limit set as k →∞, i.e.,

xk = fk(x)→ ω(x0) as k →∞.

A point x∗ ∈ Rn is a periodic point of period p of system
(1) if fp(x∗) = x∗ and fk(x∗) 6= x∗ for all k = 1, 2, . . . , p−1.
Let x∗ be a periodic point of period p of system (1). The
sequence γ =

{
x∗, f(x∗), . . . , fp−1(x∗)

}
is a periodic orbit

of period p of system (1). In the above definition, if p = 1,
i.e., f(x∗) = x∗, then x∗ is a fixed point of system (1). We
denote by P the set of all periodic-points and fixed points of
(1).

We say a fixed point x∗ is hyperbolic if the Jacobian of the
function f at x∗, Df(x∗), has no eigenvalues with modulus
equal to 1. Moreover, if all eigenvalues of Df(x∗) have
modulus less than 1, then x∗ is an asymptotically stable fixed
point of system (1). Similarly, x0 is a source or repelling fixed
point if all eingenvalues of Df(x∗) have modulus greater than
1.

If f is a Cr-diffeomorphism with r ≥ 1, and xs is a
hyperbolic fixed point, there are unique manifolds W s(x∗) and
Wu(x∗), respectively called stable and unstable manifolds, of
class Cr, that are invariant with respect to (1) [29], [30]. Every

1A closed and invariant set M is invariantly connected if it is not the union
of two non-empty disjoint closed invariant sets [15].

orbit xk starting in W s(x∗) tends to x∗ as k → +∞, whereas
every orbit starting in Wu(x∗) tends to x∗ as k → −∞.

Let q be a point in Rn and let M and N be differentiable
manifolds in Rn; then M and N satisfy the transversality
condition at q if: (1) q /∈ M ∩N or (2) if q ∈ M ∩N , then
TqM+TqN = Rn [31]. If M and N satisfy the transversality
condition at every point q ∈ Rn, then M and N satisfy the
transversality condition. 2

III. PERIODIC ORBITS AND THE p-ITERATED SYSTEM

To investigate p-periodic orbits on the stability boundary
of an asymptotically stable fixed point of a discrete system
(1), we will explore the relationship between the discrete
system (1) and an auxiliary associated p-iterated system. One
advantage of this approach is the fact that if p is a multiple of
the period of all periodic orbits of system (1), then all of the
periodic points of system (1) become fixed points of system
(2). The characterization of stability regions for systems that
admit only fixed points on the stability boundary has already
been developed in the literature [1] and can be applied to
system (2).

For an integer p greater than or equal to 1, the p-iterated
system associated with system (1) is given by:

xm+1 = fp(xm). (2)

.
Fixed points and periodic points of the discrete dynamical

system (1) have a close correspondence with fixed points of
the p-iterated system (2).

If xs ∈ Rn is a (hyperbolic) fixed point of (1), then xs

is also a (hyperbolic) fixed point of (2) [32]. In particular, if
xs ∈ Rn is an asymptotically stable fixed point of (1), then
xs is an asymptotically stable fixed point of (2). If x∗ is a
periodic point of period p of system (1), then x∗ is a fixed
point of system (2). Indeed, if x∗ is a fixed point of system
(2), then either x∗ is a fixed point or a periodic point of system
(1).

A subindex p will be used to differentiate the manifolds
of fixed points with respect to the p-iterated system (2) from
those with respect to the system (1). For a hyperbolic fixed
point x∗, for example, the stable and unstable manifolds with
respect to the p-iterated system will be respectively denoted
W s
p (x∗) and Wu

p (x∗).
A periodic orbit γ with period p of system (1) is hyperbolic

if and only if every point of the periodic orbit γ is a hyperbolic
fixed point for system (2) [32]. For a hyperbolic periodic orbit
γ =

{
x∗, f(x∗), . . . , fp−1(x∗)

}
, where x∗ is a periodic point

with period p of system (1), we define the stable manifold and
the unstable manifold of γ, respectively, as

W s(γ) = {x ∈ Rn;ω(x) ⊂ γ}

Wu(γ) = {x ∈ Rn;α(x) ⊂ γ} .

The next lemma establishes a relationship between the
invariant manifolds of a periodic orbit γ of period p of the

2TqM and TqN denote the tangent spaces of M and N at point q.
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discrete dynamical system (1) with the invariant manifolds of
the points belonging to the periodic orbit with respect to the
p-iterated system (2).

Lemma 1. Let γ =
{
x∗, f(x∗), . . . , fp−1(x∗)

}
be a hyper-

bolic periodic orbit of period p of system (1) where function
f is a diffeomorphism. Then,

W s(γ) = W s
p (x∗) ∪W s

p (f(x∗)) ∪ . . . ∪W s
p (fp−1(x∗))

Wu(γ) = Wu
p (x∗) ∪Wu

p (f(x∗)) ∪ . . . ∪Wu
p (fp−1(x∗)).

The validity of the above Lemma 1 can be verified by means
of the Proposition 9.1 demonstrated in [32] and exploring the
fact that the stable and unstable manifolds of the Definition
6.1 of [32] coincide with the stable and unstable manifolds
of the fixed points f i(x∗), i = 0, ..., p − 1 of the p-iterated
system (2), respectively.

IV. STABILITY REGIONS

Suppose that xs is an asymptotically stable fixed point of
system (1). The Stability Region of xs is the set of initial
conditions whose trajectories tend to the fixed point xs, i.e.,

A(xs) =

{
x ∈ Rn; lim

k→∞
fk(x) = xs

}
.

Stability Region is also called Region of Attraction and
its topological boundary, called Stability Boundary , will be
denoted by ∂A(xs).

Several topological characterizations of stability regions of
nonlinear discrete dynamical systems were studied in [1]. The
stability region A(xs) is: (i) open, (ii) positively and negatively
invariant, (iii) invariant, and (iv) path connected; and the
stability boundary ∂A(xs) is: (i) closed and (ii) invariant. See
[1], [33].

An asymptotically stable fixed point xs of the discrete
dynamical system (1) is also an asymptotically stable fixed
point of the p-iterated system (2). Consequently, the stability
region of xs with respect to the p-iterated system can be
defined as:

Ap(x
s) =

{
x ∈ Rn; lim

k→∞
fpk(x) = xs

}
and its topological boundary is denoted as ∂Ap(xs).

Theorem 1 establishes a relationship between the stability
region of system (1) and the stability region of the associated
p-iterated system (2).

Theorem 1. If xs is an asymptotically stable fixed point of
system (1), then A(xs) = Ap(x

s) for all p ∈ Z+.

Proof. First, suppose that x ∈ A(xs), i.e. fk(x)→ xs as k →
∞. In particular, fkp(x) → xs as k → ∞, thus x ∈ Ap(xs)
and A(xs) ⊂ Ap(xs).

Suppose now that x ∈ Ap(xs) for some p, i.e. fkp(x)→ xs

as k →∞. We must prove that fn(x)→ xs as n→∞. More
precisely, we must prove that, for a given ε > 0, there exists
an integer N such that ||fn(x) − xs|| < ε for all n > N .
The fixed point xs is an asymptotically stable fixed point of

(1). Then, for a given ε > 0, there exists δ > 0 such that
||x − xs|| < δ ⇒ ||fn(x) − xs|| < ε for all n > 0 and
fn(x) → xs as n → ∞. Since x belongs to the stability
region of the p-iterated system (2), there is a number k∗ such
that ||fk∗p(x) − xs|| < δ. Then ||fn(x) − xs|| < ε for all
n > k∗p and fn(x)→ xs as n→∞. Thus Ap(xs) ⊂ A(xs).
This concludes the proof.

Theorem 1 shows that the stability region of any asymptoti-
cally stable fixed point of the discrete dynamical system (1) is
equal to the stability region of this same point in the associated
p-iterated system (2). Consequently, we can study the stability
region of the original system by studying the stability region
of the associated p-iterated system.

Since A(xs) = Ap(x
s) and ∂A(xs) = ∂Ap(x

s) for all
p = 1, 2, . . ., then all of the topological properties of stability
regions and stability boundaries discussed in section IV also
hold for the p-iterated system (2).

V. CHARACTERIZATION OF STABILITY BOUNDARY

A characterization of stability boundaries of a class of
discrete nonlinear dynamical systems will be developed in this
section. We first derive a local characterization for a fixed
point and a periodic orbit to lie on the stability boundary
∂Ap(x

s) of the p-iterated system. Next, additional conditions
are imposed on the discrete dynamical system and the results
are further sharpened. Finally, we develop a characterization
of the stability boundary as the union of the invariant stable
manifolds of critical elements on the stability boundary.

Theorem 2 offers necessary and sufficient conditions for
a periodic orbit lying on the stability boundary ∂A(xs) of
system (1).

Theorem 2 (Characterization of periodic orbits on the
stability boundary). Let A(xs) be the stability region of
an asymptotically stable fixed point xs of system (1). Let
γ = {x∗, f(x∗), . . . , fp−1(x∗)} be a hyperbolic periodic orbit
with period p of system (1) and suppose f is a diffeomorphism.
Then,

(i) if γ ⊆ ∂A(xs), then
{
Wu
p (x̂)− {x̂}

}
∩Ap(xs) 6= ∅

for all x̂ ∈ {x∗, f(x∗), . . . , fp−1(x∗)};
(ii) if x̂ ∈ {x∗, f(x∗), . . . , fp−1(x∗)} and{

Wu
p (x̂)− {x̂})

}
∩Ap(xs) 6= ∅, then γ ⊂ ∂A(xs);

(iii) if γ ⊆ ∂A(xs) and x̂ is not a source of sys-
tem (2) for all x̂ ∈ {x∗, f(x∗), . . . , fp−1(x∗)},
then

{
W s
p (x̂)− {x̂}

}
∩ ∂Ap(xs) 6= ∅ for all x̂ ∈

{x∗, f(x∗), . . . , fp−1(x∗)};
(iv) if x̂ ∈ {x∗, f(x∗), . . . , fp−1(x∗)} is not a source of

system (2) and
{
W s
p (x̂)− {x̂}

}
∩∂Ap(xs) 6= ∅, then

γ ⊆ ∂A(xs);

Theorem 2 was proved in [1] for p = 1. The proof for
p > 1 is very similar to the ones of theorems 9-8 and 9-9
in [1] and will be omitted. Theorem 2 indicates that we can
check, from a computational point of view, whether a periodic
orbit γ lies on the stability boundary ∂A(xs) of the original
system (1) by checking that only one of its periodic points
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lies on the stability boundary ∂Ap(x
s) of the associated p-

iterated system (2). This verification can be numerically made
by checking the existence of a point on the unstable manifold
Wu
p (x∗) of the periodic point x∗ with a forward trajectory of

system (2) converging to the asymptotically stable fixed point
xs.

Theorem 2 can be sharpened by imposing the following
conditions on the map of system (1):

(B1) All the fixed points and periodic orbits on ∂A(xs)
are hyperbolic;

(B2) The stable and unstable manifolds of fixed points and
periodic orbits on ∂A(xs) satisfy the transversality
condition;

(B3) Every trajectory xk on ∂A(xs) approaches one of
the fixed points or periodic orbits as k →∞.

The next lemma establishes a relation between the assump-
tions (B1), (B2) and, (B3) of the map of system (1) with the
following assumptions (A1), (A2), and (A3) of the map of the
p-iterated system (2):

(A1) All the fixed points on ∂Ap(xs) are hyperbolic;
(A2) The stable and unstable manifolds of fixed points on

∂Ap(x
s) satisfy the transversality condition;

(A3) Every orbit xk on ∂Ap(x
s) approaches one of the

fixed points as k →∞.
Particularly, it shows that assumptions (B1), (B2), and (B3)

on system (1) imply assumptions (A1), (A2), and (A3) on
system (2).

Lemma 2. If (B1), (B2), and (B3) are valid for the discrete
dynamical system (1) and p ∈ N is a multiple of all periods of
the periodic orbits on ∂A(xs), then assumptions (A1), (A2),
and (A3) hold for the p-iterated system (2).

Proof. (B1) ⇒ (A1)

Let x∗ ∈ ∂Ap(x
s) be a fixed point of system (2). Then

either x∗ is a fixed point or a periodic point of system (1). If
x∗ is a fixed point of system (1), then it is hyperbolic due to
assumption (B1). Consequently, x∗ is also a hyperbolic fixed
point of system (2) [32]. If x∗ is a periodic point of system
(1), the periodic orbit containing x∗ is hyperbolic due to
(B1). Then x∗ is a hyperbolic fixed point of (2). Thus (A1)
holds.

(B2) ⇒ (A2)

Let x∗ and y∗ be fixed points on ∂Ap(x
s) of sys-

tem (2). Then, they are periodic points of system (1),
observing that we are not excluding the case they
are trivial periodic orbits, i.e. fixed points of system
(1). Let γ =

{
x∗, f(x∗), . . . , fp−1(x∗)

}
and β ={

y∗, f(y∗), . . . , fp−1(y∗)
}

be the periodic orbits with period
p on ∂A(xs) of system (1) containing the points x∗ and y∗.
Since (B1) and (B2) are satisfied, then γ and β are hyperbolic
and their manifolds satisfy the transversality condition.

From Lemma 1, one concludes that W s
p (f i(x∗)) and

Wu
p (f j(y∗)) satisfy the transversality condition for all

i, j ∈ {0, 1, . . . , p− 1}. Therefore, the invariant manifolds of

fixed points of system (2) satisfy the transversality condition
(A2).

(B3) ⇒ (A3)

For any y ∈ ∂Ap(x
s), we want to show that fnp(y)

approaches a fixed point on ∂Ap(x
s) as n → ∞. Since

∂Ap(xs) = ∂A(xs), y ∈ ∂A(xs) and, by assumption (B3),
trajectory fk(y) of system (1) approaches either a fixed point
or a periodic orbit as k →∞. Suppose that fk(y) approaches
a fixed point x∗ of system (1) as k →∞, then, in particular,
fkp(y)→ x∗ as k →∞ and the proof is complete.

Suppose now that fk(y) approaches a periodic orbit β, i.e.,
fk(y)→ β as k →∞, then fkp(y)→ β as k →∞. Since the
periodic orbit β =

{
y∗, f(y∗), . . . , fp−1(y∗)

}
is a finite set

of isolated points, then there exists a sub-sequence kj such
that fkjp(y) → f i(y∗), for some i ∈ {0, 1, . . . , p− 1}, as
kj →∞.

Without loosing generality, assume i = 0 to simplify our
notation. Then, fkjp(y)→ y∗ as kj →∞. From the continuity
of f and the p-periodicity of y∗, given δ > 0, there exists ε >
0, with ε < δ such that ‖x−y∗‖ < ε implies ‖fp(x)−y∗‖ < δ.
Notice that each f i(y∗) is a hyperbolic isolated fixed point
of the p-iterated system. Then, δ can be chosen sufficiently
small such that min1≤i≤p−1 dist(f

i(y∗), Bδ(y
∗)) > δ, where

Bδ(y
∗) is the ball with radius δ centered at y∗.

Now, for the chosen number ε, there exist natural numbers
N and M , with pN > M , such that dist(fk(y), β) < ε
for all k > M and dist(fkjp(y), y∗) < ε for all kj > N .
Consequently, for any kj > N , one has that ‖f (kj+1)p(y) −
y∗‖ < δ. But kj + 1 > N implies (kj + 1)p > M , which
implies that dist(f (kj+1)p(y), β) < ε < δ. Thus, necessarily
‖f (kj+1)p(y)− y∗‖ < ε and then ‖f (kj+r)p(y)− y∗‖ < ε for
any kj > N and any r ≥ 0. This implies that fkp(y) → y∗

as k →∞ and this concludes the proof.

Under assumptions (B1), (B2), and (B3), the next theorem
offers a local characterization of a periodic orbit on the
stability boundary of dynamical system (1), which is sharper
than the one derived in Theorem 2.

Theorem 3 (Periodic Orbits on the Stability boundary). Let
A(xs) be the stability region of an asymptotically stable fixed
point xs and γ =

{
x∗, f(x∗), . . . , fp−1(x∗)

}
be a hyperbolic

periodic orbit of period p of system (1) where function f is
a diffeomorphism. Suppose that assumptions (B1), (B2), and
(B3) are satisfied for system (1) and p ∈ N is a multiple of all
periods of the periodic orbits on ∂A(xs). Then, the following
characterizations hold:

(i) γ ⊆ ∂A(xs) if and only if Wu(γ) ∩A(xs) 6= ∅;
(ii) γ ⊆ ∂A(xs) if and only if W s(γ) ⊆ ∂A(xs).

The proof of this theorem is similar to the one of theorem
9-10 in [1] and will be omitted.

From Theorem 2, the existence of a trajectory of system (2)
starting in Wu

p (x̂), for some x̂ ∈ γ, converging to the stable
fixed point xs is a sufficient condition to ensure γ ⊂ ∂A(xs).
Under assumptions (B1), (B2) and (B3), this condition is
also necessary. Consequently, the characterization of periodic
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orbits on the stability boundary derived in Theorem 3 is more
practical, from a computational viewpoint, than Theorem 2
to check if a periodic orbit lies on the stability boundary of
system (1).

Letting p = 1 in Theorem 3, one obtains Corollary 1, which
offers a local characterization of hyperbolic fixed points on
the stability boundary. This Corollary is a generalization of
the result proven in [1]. Corollary 1 is proven under the more
general assumptions (B1), (B2), and (B3), while the equivalent
result in [1] is proven under assumptions (A1), (A2), and (A3).

Corollary 1. Let A(xs) be the stability region of an asymp-
totically stable fixed point xs and let x̂ 6= xs be a hyperbolic
fixed point of system (1), where function f is a diffeomorphism.
Suppose that assumptions (B1), (B2) and (B3) are satisfied for
system (1) and p ∈ N is a multiple of all periods of the periodic
orbits on ∂A(xs). Then, the following characterization holds:

1) x̂ ∈ ∂A(xs) if and only if Wu(x̂) ∩A(xs) 6= ∅;
2) if x̂ is not a source, then x̂ ∈ ∂A(xs) if and only if

W s(x̂) ⊆ ∂A(xs).

Now we are in a position to develop a characterization of the
stability boundary of a class of nonlinear discrete systems that
admit fixed points and periodic orbits on the stability boundary.

Theorem 4 (Stability Boundary Characterization). Let
A(xs) be the stability region of an asymptotically stable fixed
point xs of the discrete system (1). Suppose that function f is
a diffeomorphism and satisfies assumptions (B1) and (B3).
Let xi, i = 1, 2, ..., be the unstable fixed points and γj ,
j = 1, 2, ..., be the periodic orbits on the stability boundary
∂A(xs). Suppose that p ∈ N is a multiple of all periods of
the periodic orbits. Then

∂A(xs) ⊆
⋃
i

W s(xi)
⋃
j

W s(γj).

Moreover, if assumption (B2) is also satisfied, then

∂A(xs) =
⋃
i

W s(xi)
⋃
j

W s(γj).

Proof. Suppose y ∈ ∂A(xs). From assumptions (B1) and
(B3), it follows that either y ∈ W s(xi) for some i = 1, 2, . . .
or y ∈ W s(γj) for some j = 1, 2, . . .. Thus, ∂A(xs) ⊆⋃
iW

s(xi)
⋃
jW

s(γj).
Corollary 1 implies that

⋃
iW

s(xi) ⊆ ∂A(xs) and
Theorem 3 implies that

⋃
jW

s(γj) ⊆ ∂A(xs). Thus,⋃
iW

s(xi)
⋃
jW

s(γj) ⊆ ∂A(xs). This completes the
proof.

As expected, the stability boundary characterization of
Theorem 4 is similar to the characterization of the stability
boundary for continuous dynamical systems with periodic
orbits on the stability boundary [22]. In other words, stability
boundary is composed of the union of the stable manifolds of
critical elements on the stability boundary.

Assumptions (B1), (B2) and (B3) are sufficient conditions
for the characterization of stability boundary in Theorem
4. Examples showing that the characterization of Theorem
4 fails when (B2) or (B3) do not hold are given in [1].

Assumption (B1) can be relaxed to accommodate some types
of nonhyperbolic fixed points on the stability boundary. This
relaxation has been already studied for continuous system [24],
[34]–[36].

The next example illustrates these analytical results.

Example 1. Consider the following two-dimensional nonlin-
ear discrete system:

xk+1 = −ax3k + bxk (3)
yk+1 = cy3k − dyk

where a = c = 1, b = 1
10 , and d = 1

8 . The function f(xk, yk)
is a diffeomorphism and system (3) possesses 3 fixed points:
(0,0), an asymptotically stable fixed point, and (0,1.0607),
(0,-1.0607), which are unstable fixed points. The system also
possesses 3 periodic orbits of period 2: {(-1.0488, 1.0607),
(1.0488, 1.0607)}, {(-1.0488, -1.0607), (1.0488, -1.0607)} and
{(1.0488, 0), (-1.0488, 0)}.

Fig. 1. The stability region of (0,0) and the invariant manifolds of the fixed
points of system (3)

Consider the corresponding 2-iterated system:

xm+1 = a4x9m − 3a3bx7m + 3a2b2x5m (4)
−ab3x3m − abx3m + b2xm

ym+1 = c4y9m + 3c3dy7m + 3c2d2y5m

+cd3y3m − dcy3m + d2ym

Function f2(xk, yk) is a diffeomorphism and system (4)
possesses 9 fixed points: (0,0), an asymptotically stable fixed
point, (0,1.0607), (0,-1.0607),(1.0488, 0), (-1.0488, 0), which
are unstable type-one fixed points; and (-1.0488, 1.0607),
(1.0488, 1.0607), (-1.0488, -1.0607), (1.0488, -1.0607), which
are type-2 fixed points.

Fig. 2. Stability region of system (4). Its stability boundary is composed of
the union of the stable manifolds of the 8 unstable fixed points lying on the
stability boundary.
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Fig. 3. Phase portrait of the 2-neuron network (5) with the activation
function (6) for a = 1.5. The origin is a repellor. The fixed points x+
and x− are asymptotically stable. The stable periodic orbit γs is formed by
the points in {(−0.8586, 0.8586), (0.8586,−0.8586)} while the 2-periodic
orbits γ+ and γ− are formed by the points {(0, 0.8586), (0.8586, 0)} and
{(−0.8586, 0), (0,−0.8586)}.

The stability regions of the asymptotically fixed point (0, 0)
of system (3), depicted in Fig. 1, and of system (4), depicted
in Fig. 2, are equal. The stability boundary ∂Ap(0, 0) of the
p-iterated system (4), depicted in Fig. 2 is composed of the
stable manifolds of all unstable fixed points on the stability
boundary of system (4). The stability boundary ∂A(0, 0) of
system (3), depicted in Fig. 1, is composed of the union of
the stable manifolds of the unstable fixed points and periodic
orbits on the stability boundary of system (3).

Example 2. Consider the following set of difference equa-
tions: (

xn+1

yn+1

)
= F

(
W

(
xn
yn

))
, (5)

where W = [ωij ]2×2 is a symmetric weight matrix, and which
models a class of 2-neuron symmetric time discrete analog
networks [8]. The nonlinear function F : R2 → R2 is defined

as F
(
u
v

)
=

(
f(u)
f(v)

)
, where f : R → R is the following

activation function:

f(z) = tanh (az), (6)

It was demonstrated in [8], for w11 = w22 = 0 and w12 =
w21 = 1, that the limit sets of the neural network (5) are only
fixed points and 2-periodic orbits.

For a > 1, system (5) has three fixed points and six 2-
periodic points. The origin is a repellor fixed point. For the
particular value a = 1.5, we can see, from Fig. 3, the other two
fixed points of system (5), namely, x+ = (0.8586, 0.8586) and
x− = (−0.8586,−0.8586). Theses points are asymptotically
stable fixed points of system (5). Furthermore, for a > 1,
system (5) exhibits one asymptotically stable 2-periodic orbit
and two unstable 2-periodic orbits. See Fig. 3 for a = 1.5.

Fig. 4 illustrates the dynamics of the 2-iterated system
associated with the 2-neuron network model (5). All of the
six 2-periodic points of system (5) are now fixed points of the
2-iterated system. The 2-iterated system has 4 asymptotically
stable equilibrium points and 5 unstable fixed points.

The stability region of the fixed point x+ of the 2-neuron
network is depicted at Fig. 4. Observe that the origin and the
periodic orbit γ+ are on the stability boundary A(x+) of the
fixed point x+ of the 2-neuron network (5) and the stability

Fig. 4. Phase portrait of the 2-iterated system associated with the 2-neuron
network (5) with the activation function (6) for a = 1.5. The origin is a
repellor. The fixed points x+ and x− are asymptotically stable. The 2-periodic
points of system (5) are now fixed points for the 2-iterated system.The gray
area represents the stability region of the fixed point x+.

boundary is composed of the union of their stable manifold as
indicated in the figure.

VI. SUFFICIENT CONDITIONS FOR ASSUMPTION (B3)
Assumptions (B1) and (B2) are generic conditions of dif-

feomorphisms, which means that they are satisfied for almost
all systems in the form of (1). On the contrary, assumption
(B3) is not generic, thus it is crucial to verify this assumption
in the application of the results of section V on the stability
boundary characterization. In this section, sufficient conditions
for assumption (B3) are derived.

Theorem 5. Consider the nonlinear discrete system (1) and
the set P of fixed points and periodic points of system (1).
Suppose the existence of a continuous scalar function V :
Rn → R with the following properties:

(i) ∆V (x) = V (f(x))− V (x) < 0 for all x /∈ P ;
(ii) for each arbitrarily small ε > 0, there exists a num-

ber η > 0, depending on ε, such that ∆V (x) < −η
for all x /∈

⋃
p∈P Bε(p).

Then assumption (B3) holds.

Proof. First note that V (xs) is a bound from below for V on
∂A(xs). Suppose x ∈ ∂A(xs) and fk(x) does not approach
set P , the fixed and periodic points of (1), as k →∞. Then,
there exists ε > 0 such that for every N ∈ N, there exists m >
N such that dist(fm(x),P ) > ε. Equivalently, there exists an
increasing infinite sequence of natural numbers {mi}, with
mi → ∞, such that dist(fmi(x), P ) > ε. From assumptions
(i) and (ii), we conclude that V (fk(x)) becomes unbounded
from below, contradicting the fact that V is bounded from
below in ∂A(xs). Consequently, fk(x) approaches P for every
x ∈ ∂A(xs).

Corollary 2. Consider the nonlinear discrete system (1)
and suppose the existence of a continuous scalar function
V : Rn → R with the following properties:

(i) ∆V (x) = V (f(x))− V (x) < 0 for all x /∈ P ;
(ii) set P has a finite number of isolated points.

Then assumption (B3) holds.

Proof. From condition (ii) of the Corollary and continuity of
V and f , we can easily prove that condition (ii) of Theorem
5 is satisfied. This completes the proof.
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Fig. 5. The stability boundary of the recurrent neural network (7). There
are 3 fixed points on the stability boundary. The stability boundary is a 2-
dimensional surface composed of the unstable manifolds of these fixed points.

Example 3. Consider the following model of a recurrent
discrete neural network:

yi(k + 1) = σ

 3∑
j=1

µiωijyj(k) + µisi

 i = 1, 2, 3, (7)

where σ is a diffeomorphism called activation function of the
neural network. Matrix W = [ωij ]3×3 is an invertible matrix
called the synaptic weight matrix. The vectors s and µ are
respectively the input and activation gain of the network.

If σ is a diffeomorphism and matrix W is invertible, then the
map of the discrete model (7) is a diffeomorphism. Consider
the scalar function proposed in [7]:

V (y) = −1

2

3∑
i=1

3∑
j=1

ωijyiyj−
3∑
i=1

siyi+

3∑
i=1

1

µi

∫ yi

0

σ−1(τ)dτ.

(8)
It can be easily shown that ∆V (y) < 0 for all y /∈ P .
Thus, function v satisfies condition (i) of Theorem 5. Since
this system admits a finite number of fixed points on the
stability boundary, then all assumptions of Corollary 2 are
satisfied and assumption (B3) is true for system (7). Since
assumptions (B1) and (B2) are generically satisfied, then
the characterization of stability boundary proven in Theorem
4 applies to this system. To illustrate this characterization,
consider the activation function σ(z) = z

1
3 + 0.01z and the

following set of parameters, µ1 = µ2 = µ3 = 10, s1 = 0.5,
s2 = 0.2, s3 = 0.1. Consider also the following weight matrix:

W =

0.3 0.4 0.2
0.4 0.2 0.1
0.2 0.1 0.4

 .
For these parameters, the network has 2 stable fixed

points. They are xs1 = [3.62, 3.22, 3.12] and xs2 =
[−2.96,−2.82,−2.87]. These two stable fixed points share the
same stability boundary, which splits the space phase in 2
parts. The stability boundary of these fixed points is depicted
in Fig. 5. Three unstable fixed points lie on this boundary and
the boundary, according to Theorem 4, is composed of the
stable manifolds of these fixed points.

VII. CONCLUSION

The theory of stability regions of nonlinear autonomous
discrete dynamical systems has been extended in this paper
to consider the class of systems modeled by diffeomorphisms
admiting fixed and periodic points on the stability boundary.
A characterization of stability regions and stability boundaries
of this large class of nonlinear discrete dynamical systems was
derived. It was shown, for this class, that the stability boundary
is composed of the union of the stable manifolds of all fixed
points and periodic orbits that lie on the stability boundary.
These characterizations were developed exploring the close
relationship between the stability regions of the original dy-
namical systems and the stability regions of its associated p-
iterated system. Our further work includes the development
of effective schemes to numerically obtain estimates of the
stability regions by exploring the characterizations proven in
this paper.
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