

Campinas, SP, Brazil

Z-Scan Analytical Description for On-Axis Approximation Ricardo E. Samad and Nilson Dias Vieira Jr197
Thermal Lens Measurements in Nd ⁺³ Doped Solids S.M. Lima, T. Catunda, R. Lebullenger, A.C. Hernandes, J.A. Sampaio, M.L. Baesso, and S. Gama201
Nonlinear Refractive Indices of Mixed Langmuir-Blodgett (LB) Films of Disperse Red-13 Dye Derivatized Methacrylic Homopolymer (HPDR13) and Cadmium Stearate C.R. Mendonça, L. Misoguti, A. Dhanabala, D.T. Balogh, A. Riul Jr., C.J.L. Constantino, J.A. Giacometti, O.N Oliveira Jr., and S.C. Zilio
OPTICAL COMMUNICATONS
Systems Impact of Fiber Nonlinearities (INVITED) Andrew Chraplyvy
All-Optical Ultrafast Switching Devices and Communication Systems (INVITED) A.S.B. Sombra
2 × 2.5 Gbit/s Repeaterless WDM Transmission over 250 km of Dispersion-shifted Fiber for Undersea Festoons J.S. Pereira, R.Y. Nakamura, S. Celaschi, J.B. Rosolem, A.C.G.B. Rego, C.A. Évora, A.C.P. Netto, F.A.S. Pereira, J.F.C. Cavalcanti, and H.L. Fragnito
Effects of 1 st and 2 nd order PMD in 2.48 Gb/s IM/DD Lightwave systems A. O. Dal Forno, R. Passy, and J. P.von der Weid
Power Limits at 2.5 Gbit/s Unrepeatered Transmission without Dispersion Compensation A. Paradisi, S. Celaschi, J.S. Pereira, and J.T. Jesus
Optical Digital Access Networks Felipe Rudge Barbosa, F. Borin, and I. F. Faria Jr
Modulation Instability Effects on WDM Optical Communication Systems D.F. Grosz, W.A. Arellano, and H.L. Fragnito
Spectral Analysis of Gain and Noise Dynamic Behavior of EDFA Claudio Mazzali and H.L. Fragnito
Analysis of a Proposed Dropping Filter for WDM Systems C.A. De Francisco and M.A. Romero
Distributed-Gain Measurements in Erbium Doped Fibres with Coherent Reflectometry (POSTDEADLINE) J. P. von der Weid, R. Passy, B. Huttner, O. Guinard, and N. Gisin
An Optical Distributing Network for Dataflow Computer Architecture João E. M. Perea Martins, and A. Garcia Neto
OPTICAL MATERIALS
Poling of Glass Systems and Applications (INVITED) Walter Margulis
Optosynography (INVITED) F. Horowitz
Low Temperature Optical Absorption in CdTe-Doped-Glasses Ana M. de Paula, W.A. Arellano, L.C. Barbosa, C.L. Cesar
Effect of Nanocrystallinity and Energy Transfer between the Doped Eu ³⁺ and Codoped Sm ³⁺ Ions on the Flourescence Properties in Y ₂ O ₃ Pramod K. Sharma, R. Naß, and H. Schmidt
Thermal Diffusity of BaLiF ₃ Crystals at Low Temperature L. Sawada, S.L. Baldochi, S.P. Morato, and M.M. F. Vieira

ANALYSIS OF A PROPOSED DROPPING FILTER FOR WDM SYSTEMS

3 8180

C.A. De Francisco and M.A. Romero Universidade de Sao Paulo

Escola de Engenharia de Sao Carlos - Departamento de Engenharia Eletrica Av. Dr. Carlos Botelho 1465 - Caixa Postal 359 - Sao Carlos - SP Electronic address: Muriloa@sel.eesc.sc.usp.br

ABSTRACT

In this paper, the modeling and optimization trade-offs of a three channel dropping filter are discussed by using the transfer matrix approach. The device is intended for use on dense WDM optical networks and may easily incorporate more channels. Its structure is composed of two asynchronous exchange-coupled waveguides, with coupling being achieved by a rectangular Bragg gratings. A systematic study of the effect of the filter parameters on crosstalk, optical bandwidth and optical loss is carried out.

INTRODUCTION

Channel dropping filters are of key importance in WDM communication networks due to the need of extracting single wavelengths from the optical bus of multiplexed optical carriers, for routing and/or photodetection. In the literature, filters using ARROW structures were already demonstrated [1], but these devices detect the optical signal in the filter structure itself, degrading the optical response. On the other hand, the structure proposed by Haus and demonstrated in [2] uses a quarter-wave shifted distributed Bragg reflector on a codirectional coupler, but couples only 50% of incident power and provides limited bandwidth. Another proposition, studied in [3] employs a codirectional filter integrated with a photodetector. However, as the detector is built in-line with the filter, there is a mode overlap of the undesired channel with the detector element, causing a degradation on the filter response, due to excess crosstalk. In contrast, the device proposed here uses an exchange-Bragg coupler to filter the desired wavelength and corner mirrors [4] in order to avoid waveguide bend losses and a non-desirable field interaction with the detector element.

DEVICE STRUCTURE AND OPERATING PRINCIPLE

A longitudinal cross-section view of one block of the structure is presented in Fig. 1 where d_1 and d_2 represent the core diameters of waveguides 1 and 2, respectively, s is the separation between the waveguides, h is the grating depth and Λ is the grating period. The periodic structure may be positioned at any interface, but our simulations have shown that the upper interface of guide 2 is the best location since the overlap integral of the odd and even modes is maximum there.

The principle of operation is as follows: light launched in guide 1 is coupled counterdirectionally to guide 2 through exchange-Bragg coupling. The grating period in each section is chosen in such way that the Bragg condition is satisfied only for the selected wavelength. This selected optical carrier is reflected through a 45 degree mirror and guided to a photodetector, which

950624

SYSNO 950624 PROD 003093

3,30.52.00-3

may be of evanescent or the butt-coupled types It should be stressed that the photodetector is far away from the input waveguide. Thus, an extremely low overlap of the undesired fields on the detector element is expected. A top view of the complete structure is depicted in Figure 2.

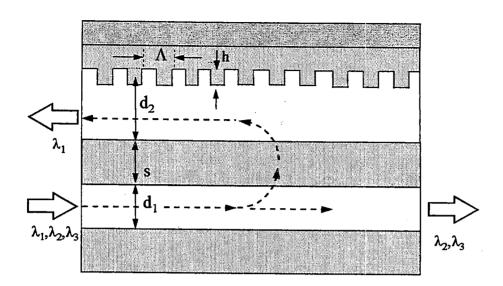


Fig. 1 Cross sectional view of one block of complete filter structure.

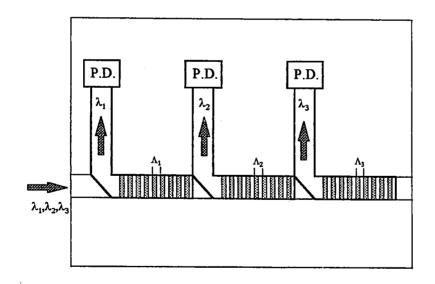


Fig.2 Top view of structure.

SIMULATION RESULTS

The filter response is presented in Fig. 3. The calculations where made employing the transmission matrix formalism described in [5]. The InGaAsP core and InP cladding refractive indexes and material losses were included according to data reported in the literature [6-7]. Solid lines represent the transmittance of the first filter, while the dashed lines represent the second filter

transmittance and the short-dashed one refers to the transmittance in the third output. As light transmitted to the second output has passed through the first filter and light in the third output passed through the first and second filters, the response of the optical channels is affected by the interaction with the Bragg structures. Specifically, the transmittance sidelobes of the first filter will introduce an undesirable crosstalk of channels 2 and 3 into optical carrier 1. On the other hand, the second section sidelobes will affect the third wavelength but not the first one. In summary, this overall interaction may introduce a serious crosstalk and lack of flatness on the channel response.

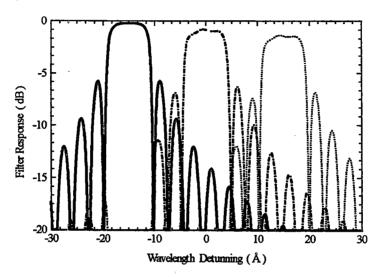


Fig. 3 Filter response. Solid lines represent the first section response, the dashed ones show the response of the second section and the dotted lines show the third filter response.

A systematic study was carried out to verify how the filter design parameters influence the optical response. Generally, an increase in length will yield lower crosstalk, narrower optical bandwidth but larger loss. On the other hand, by increasing the coupling coefficient (i.e., increasing the grating depth or decreasing the separation between the waveguides) one achieves opposite results. Thus, the product kL, coupling constant-device length may be used as parameter when analyzing design trade-offs. The above discussion is summarized in Figs. 4 and 5.

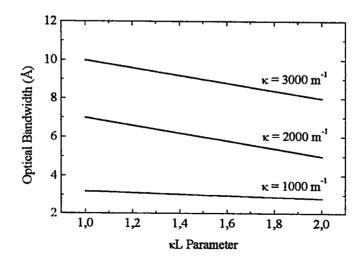


Fig. 4 - Optical filter bandwidth as a function of the KL parameter

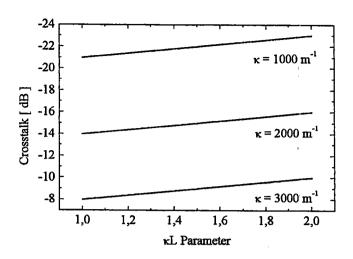


Fig. 5 - Calculated crosstalk plotted as a function of κL parameter. The indicated crosstalk refers only to the dominant next neighbor.

CONCLUSIONS

In conclusion, a three-channel optical dropping filter for use on dense WDM systems was proposed and some of the design trade-off were discussed. For future work, we will investigate the use of chirped gratings, yielding optical equalization while the signal is demultiplexed.

REFERENCES

- [1] T. L. Koch, P. J. Corvini, W. T. Tsang, U. Koren, and B. I. Miller. 'Wavelength selective interlayer directionally grating-coupled InP/InGaAsP waveguide photodetection' *Appl. Phys. Lett.* 51 (14), October 1987.
- [2] M. Levy, L. Eldada, R. Scarmozino, R. M. Osgood Jr., P. S. D. Lin, and F. Tong. 'Fabrication of Narrow-Band Channel-Droping Filters' *IEEE Photon*.. *Thechnol. Lett.*, vol 4, no 12, December 1992.
- [3] Hajime Sakata and Hideshi Kawasaki. 'Vertical forward coupler based channel-droping photodetector'. Appl. Physics Lett. 64 (10), March 1994.
- [4] E. Gini, G. Guekos, and H. Melchior, 'Low Loss Corner Mirrors with 45 degree Deflection Angle For Integrated Optics', *Electronics Letters*, February 1992 Vol. 28, No 5.
- [5] G. P. Agrawall and S. Radic, IEEE Photon. Technol. Lett., 6, 995, 1994.
- [6] C. H. Henry, L. F. Johnson, R. A. Logan, and D. P. Clarke, 'Determination of the refractive index of InGaAsP Epitaxial Layers by Mode Line Luminescence Spectroscopy', *IEEE J. Quantum Electron.*, 21, 1887, 1985.
- [7] F. Fiedler and A. Schlaetzki, Solid-State Electronics Vol. 30, No 1, pp. 73-83, 1987