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a b s t r a c t 

EM Gaussian beams are the most celebrated and used kind of laser beams. Their description beyond 

paraxial regimes has a long and venerable history, culminating may be with the building of a scheme of 

approximations which can be named the Davis scheme of approximations whose convergence has been 

considered as granted. Strange as it may be, a paper by Wang and Webb demonstrated that, actually, 

the Davis scheme is divergent. This quite unexpected result has been dramatically overlooked. This is the 

motivation for the present paper which reviews diverging and converging schemes of approximations to 

describe fundamental EM Gaussian beams. One of the new results obtained in the present framework is 

that a scheme of approximations known as the improved standard scheme, introduced more than two 

decades ago, is diverging as well. These divergences are the result of the behavior of asymptotic series 

similar to the ones encountered in quantum electrodynamics. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Since its advent in 1960, thanks to both Théodore Maiman and 

 ruby crystal, the laser beam has become a very popular tool for 

arious investigations, particularly using its most simple and ubiq- 

itous version celebrated under the name of Gaussian beam. Such 

eams have been used in the field of light scattering. In partic- 

lar, the GLMT which describes the interaction between arbitrary 

haped beams and homogeneous spheres characterized by their di- 

meter and their complex refractive index has originally been fo- 

used on the use of Gaussian beams, e.g. [1,2] although it is actu- 

lly valid for any kind of laser beams [3,4] . Review papers devoted 

o GLMT, and more generally to T-matrix methods [5–8] , allow one 

o gather a huge number of examples in which Gaussian beams 

ave been used, e.g. [9–12] and references therein. Although it is 

ot possible any more to extensively quote all papers dealing with 

aussian beams, let us however take the risk to name only a few 

apers associated with only a few topics, without explicitly taking 

nto account the fact that some papers may pertain to several top- 

cs, with apologies to authors who should feel that they are unduly 

mitted. 
∗ Corresponding author. 

E-mail address: gouesbet@coria.fr (G. Gouesbet) . 
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A way to make an objective selection among the huge num- 

er of references available is, in order to limit the size of the 

oom devoted to a review, to only retain those which use the 

ord “Gaussian” in their title (except for a few motivated excep- 

ions). We may then mention the issue of light scattering by par- 

icles of various shapes and morphologies, including homogeneous 

pheres [1,13–29] , coated and multilayered spheres [30–34] , parti- 

les with anisotropy properties [35–40] , or with chiral properties 

41,42] , infinite cylinders of circular [43–63] , and elliptical cross- 

ections [64,65] , spheroids [66–76] , assemblies of spheres and ag- 

regates [77–82] , various particles with various kinds of inclusions 

83–89] , slabs [90–92] , or the case of a particle over a plane sur-

ace [93] , see as well [94–96] for reviews, [97–99] for algorithmic 

iscussions, [100] for the case of large particles, and [101–103] for 

iscellaneous cases. 

Another important issue is the one devoted to the mechanical 

ffects of light, made famous by Ashkin’s work [104] , with a re- 

ent review devoted to GLMTs [105] . They concern in particular the 

valuation and the use of optical forces [106–112] , and/or torques 

113–119] , optical levitation, traps and optical tweezers [120–127] , 

inding phenomena [128,129] , and stretching, stressing and de- 

orming particles [130,131] . Another important field is the one of 

ptical particle characterization using different measurement tech- 

iques such as velocimetry laser [132] and phase-Doppler tech- 

iques [133–136] , microscopy [137] , rainbow refractometry (corre- 

https://doi.org/10.1016/j.jqsrt.2022.108344
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2022.108344&domain=pdf
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Fig. 1. Coordinate systems. 
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ated with rainbow analysis) [138–145] , holography [146,147] , ex- 

inction techniques (correlated with extinction analysis) [148–150] , 

r others such as in [151] . Other issues concern the study of res-

nances (Fano resonances, whispering gallery modes/morphology- 

ependent resonances) [106,152–156] , photonic nanojets [157–

59] , and the validity of the optical theorem [160,161] . 

The above sample only provides a tiny amount of quotations 

f papers devoted to the description or to the use of Gaussian 

eams which are indeed the most popular kind of beams used. 

 good theoretical description of a fundamental Gaussian beam 

mode T EM 00 ) is therefore of interest. It is only in 1979 that Davis

roposed a scheme of approximations which would allow one to 

each a description of Gaussian beams which, for a long time, 

as been supposed to be perfect [162] , and therefore have indeed 

een used, in a form or in another, in several papers such as in

86,95,126,163–174] . The reader may be surprised by the large de- 

ay between the time of publication (1979) of the Davis scheme 

nd the date (2012) of the first paper in the previous list. This is 

ainly due to an increasing interest with numerical techniques to 

olve Maxwell’s equations in which the incident fields may be ex- 

ressed in terms of coordinates. This should not obscure the fact 

hat the Davis scheme has however been used in GLMT, in which 

he incident field is described in terms of beam shape coefficients 

BSCs), as soon as 1985 [1] . It has furthermore be the source of

he definition of standard beams (Sections Section 3, 4 and 5 ) and 

llowed a justification of the localized approximations to the eval- 

ation of BSCs, associated with localized beam models ( Section 4 

nd 5 ). It should be however noted that, whatever the refinement 

n the theoretical description of a beam, the experimental imple- 

entation of the intended beam may be far from being perfect, 

.g. [19] , a fact which has been a motivation for studying the pos- 

ibility to measure the BSCs in the laboratory [175–178] . 

After all the successful implementations of the Davis scheme of 

pproximations to the description of fundamental Gaussian beams, 

t is a huge unexpected result which told us that this scheme is 

ctually divergent, as demonstrated in a much overlooked paper 

ated 2008 [179] . This result is the motivation for the present pa- 

er. After a short review on Gaussian beams provided above, we 

hall now discuss divergent and convergent schemes of description 

f Gaussian beams. 

The paper is organized as follows. Section 2 deals with the 

avis scheme and its divergence. Section 3 introduces a divergent 

ersion of what is known as standard beams. Section 4 deals with 

n improved standard scheme whose convergence seems to be 

uaranteed (an expectation later to be deceived), and with the con- 

ergent localized approximations (associated with localized beam 

odels). Section 5 deals with numerical results, comparing inten- 

ity profiles obtained in the framework of GLMT, with BSCs ex- 

ressed either by using a localized approximation or by using the 

mproved standard beam description, and leading to the conclusion 

hat the improved standard scheme is indeed divergent. These pro- 

les are compared as well with the one of an ideal intended Gaus- 

ian beam profile. Section 6 deals with a complementary discus- 

ion, particularly concerning the fact that the divergent schemes 

iscussed in the paper are the result of asymptotic series behav- 

or made famous in the framework of quantum electrodynamics 

QED), while Section 7 is a conclusion. 

. The Davis scheme and its divergence 

.1. The Davis scheme 

To introduce the Davis scheme of approximations [162] , com- 

leted by Barton and Alexander [180] , Schaub et al. [181] , let us

onsider a Gaussian beam with a time-dependence of the form 

xp (iωt) which propagates along the axis z ′ from negative to pos- 
2 
tive z ′ , e.g. Fig. 1 reproduced from Gouesbet et al. [182] . Two par-

llel Cartesian coordinate systems, namely (x ′ , y ′ , z ′ ) and (x, y, z) ,

re used to describe the configuration in hand, with (x ′ , y ′ , z ′ ) at-

ached to the Gaussian beam and (x, y, z) used to describe the par-

ial wave expansion of the beam. The origin of the beam system 

x ′ , y ′ , z ′ ) is located at the center of the beam waist, and has a co-

rdinate z 0 with respect to (x, y, z) . 

The story may then start with what is known as the solving 

aradox discussed by Lax et al. [183] . This paradox arises when 

e express the electric field of a Gaussian beam in the polarized 

orm E = (E x ′ , 0 , 0) and assume that E x ′ is coordinate dependent.

axwell’s equation div E = 0 then implies ∂ E x ′ /∂ x ′ = 0 which is in

ontradiction with the fact that we might have expected a Gaus- 

ian function to describe the functional dependence of E x ′ versus 

 

′ . Conversely, if we assume a Gaussian dependence of E x ′ versus 

 

′ , then Maxwell’s equations are not satisfied. To deal with this 

aradox, Lax et al. [183] examined a paraxial approximation and 

eveloped a perturbation procedure to systematically introduce 

igher-order corrections. Solutions of Maxwell’s equations describ- 

ng Gaussian beams are then expressed using expansions over suc- 

essive powers of a small dimensionless parameter s which may be 

alled the beam confinement factor (or beam shape factor) and is 

efined as: 

 = w 0 /l = 1 / (kw 0 ) (1) 

n which w 0 is the beam waist radius and l is known as the diffrac-

ion length. Relying on this work and on an angular spectrum de- 

omposition, Agrawal and Pattanyak [184] developed a somewhat 

imilar approach, but restricted to solutions of the scalar (not vec- 

or) wave equation, and criticized by Seshadri [185] on the ground 

hat their (m = 1) - first-order nonparaxial approximation does not 

ave a correct asymptotic state. Rather than the approach by Lax 

t al., we shall expound an equivalent formulation due to Davis 

162] , see as well [182] , which we favour because the introduction 
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f a transversely polarized vector potential leads to a theory which 

s simpler and more appealing. 

The potential vector is then written as: 

 = (A x , 0 , 0) (2) 

n which the non-zero component A x is written as: 

 x = ψ(x, y, z) exp (−ikz) (3) 

n which k is the wavenumber of the beam, and ψ a function 

hich is not related to the Ricatti-Bessel function ψ n of Eq. (99) . 

he transverse coordinates x and y scale with a small transverse 

haracteristic length, namely w 0 , while the longitudinal coordinate 

scales with a large longitudinal characteristic length, namely l. 

e then introduce rescaled coordinates according to: 

= 

x 

w 0 

, η = 

y 

w 0 

, ζ = 

z 

l 
(4) 

o that the derivatives ∂ ψ/∂ ξ , ∂ ψ/∂ η and ∂ ψ/∂ ζ now possess

he same order of magnitude. 

Within the Lorenz gauge, the vector potential A satisfies the 

elmholtz equation: 

 

2 A + k 2 A = 0 (5) 

Inserting Eq. (3) into Eq. (5) , we obtain a differential equa- 

ion for ψ reading as: 

∂ 2 

∂ξ 2 
+ 

∂ 2 

∂η2 
− 2 i 

∂ 

∂ζ
+ s 2 

∂ 2 

∂ζ 2 

)
ψ = 0 (6) 

The function ψ is then expanded in powers of s 2 according to: 

 = 

∞ ∑ 

n =0 

s 2 n ψ 2 n = ψ 0 + s 2 ψ 2 + s 4 ψ 4 + . . . (7)

The lowest-order term ψ 0 represents the fundamental mode of 

he Gaussian beam, and is called the first-order Davis beam. As can 

e checked by use of Eq. (6) , this mode reads as: 

 0 = iQ exp [ −iQ(ξ 2 + η2 )] (8) 

 = 

1 

i + 2 ζ
(9) 

n which we have conveniently set z 0 = 0 , so that (x ′ , y ′ , z ′ ) is

hanged to (x, y, z) . Afterward, from ψ 0 , we may recursively de-

ermine the higher-order modes for n � 1 using Eq. (6) . Only ψ 2 ,

amed the third order mode, and ψ 4 , named the fifth order mode, 

ave been explicitly known thanks to [180] , to be completed by a 

ymmetric seventh order mode in 2002 [186] and by a symmetric 

inth order mode in 2013 [126] . However, once an approximation 

o ψ is known, we may derive the corresponding expressions for 

he electric and magnetic fields from the potential vector by using 

sual expressions. We do not need in the present paper to repro- 

uce explicitly the expressions of the third- and fifth-order modes 

or Davis-Barton higher modes), on which our analysis will rely but 

ee [180] . Let us nevertheless mention that electric and magnetic 

eld expressions are found to be expanded as, e.g. Eqs. (4.16)–

4.21) in [4] , 

 x = E 0 

[
ψ 0 + s 2 

(
ψ 2 + 

∂ 2 ψ 0 

∂ξ 2 

)
+ . . . 

]
exp (−ikz) (10) 

 y = E 0 

[
s 2 

∂ 2 ψ 0 

∂ ξ∂ η
+ s 4 

∂ 2 ψ 2 

∂ ξ∂ η
+ . . . 

]
exp (−ikz) (11) 

 z = E 0 

[
−is 

∂ψ 0 

∂ξ
− is 3 

(
∂ψ 2 

∂ξ
+ i 

∂ 2 ψ 0 

∂ ξ∂ ζ

)
. . . 

]
exp (−ikz) (12) 

 x = 0 (13) 
3 
 y = H 0 

[
ψ 0 + s 2 (ψ 2 + i 

∂ψ 0 

∂ζ
) + . . . 

]
exp (−ikz) (14) 

 z = H 0 

[
−is 

∂ψ 0 

∂η
− is 3 

∂ψ 2 

∂η
+ . . . 

]
exp (−ikz) (15) 

For further use, let us note, by comparing the expressions for 

he electric and magnetic fields, that the Davis-Barton scheme is 

ot symmetric, a point to which we shall return later. Neglecting 

ll terms with powers with respect to s greater than 1, and using 

qs. (8) - (9) , we obtain explicitly what is the lowest order approxi-

ation in the Davis scheme, reading as: 

 y = H x = 0 (16) 

 x = E 0 ψ 0 exp (−ikz) (17) 

 z = −2 Qx 

l 
E x (18) 

 y = H 0 ψ 0 exp (−ikz) (19) 

 z = −2 Qy 

l 
H y (20) 

These expressions define what has been called the order L of 

pproximation, e.g. [4] , p.100. Higher-order approximations are dis- 

ussed in [180,181,187–189] . Conversely, we may use still simpler 

pproximations. We indeed observe that longitudinal components 

re not zero in Eqs. (16) –(20) , so that the fields do not describe

 pure transverse wave, in contrast with the case of plane waves. 

hen, neglecting these components, we obtain a pure transverse 

ave, corresponding to what has been called the order L − of ap- 

roximation, reading as, e.g. [4] , pp.101-102: 

 y = H x = E z = H z = 0 (21) 

E x 
H y 

)
= 

(
E 0 
H 0 

)
ψ 0 exp (−ikz) (22) 

This is actually the structure of the celebrated Kogelnik’s model 

190–192] as discussed in [4] , pp.102–103. A still cruder ap- 

roximation is the “tube-like” version in which the fields are 

ransversely modulated by a Gaussian envelope of the form 

xp (−ρ2 /ρ2 
c ) in which ρ is a cylindrical coordinate and ρc a char- 

cteristic transverse length related to the transverse “width” of the 

eam. Such a crude approximation may be sufficient in various sit- 

ations, for instance to design an approximate theory of interaction 

etween a Gaussian beam and a cylinder, e.g. [193] , or to demon- 

trate that the laser light propagates slower than the speed of light, 

ven in vacuum [194] . 

.2. Divergence of the Davis scheme 

The beam confinement factor s is a small parameter. It is ex- 

ctly 0 for a plane wave ( w 0 → ∞ ). In the usual case of a com-

only encountered Gaussian beam with a wavelength λ = 0 . 5 μm 

nd w 0 = 75 μm, we have s ≈ 10 −3 . The largest value is obtained

hen the beam is strongly focused down to w 0 ≈ λ, leading to 

 ≈ 1 / (2 π) ≈ 1 / 6 . It has then been always believed that the se-

ies of Eq. (7) is convergent. We might then state that (i) none of 

he finite Davis-Barton modes is Maxwellian (they do not satisfy 

axwell’s equations) but that (ii) Maxwell’s equations are satisfied 

n the limit of the infinite Davis-Barton beam which (iii) gener- 

te an ideal finite solution to Maxwell’s equations. This statement 

as been invalidated by Wang and Webb [179] who demonstrated 
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hat the Davis scheme of approximations is actually divergent. The 

emonstration of this fact is provided below departing however at 

 certain step from the original way used by Wang and Webb. 

We begin by rewriting Eq. (6) using rescaled cylindrical coordi- 

ates ρ and ζ leading to: 

∂ 2 

∂ρ2 
+ 

∂ 

ρ∂ρ
− 2 i 

∂ 

∂ζ
+ s 2 

∂ 2 

∂ζ 2 

)
ψ = 0 (23) 

n which we have used ρ2 = ξ 2 + η2 . Rather than ρ and ζ , we now

se two other independent variables q (which identifies with Q de- 

ned in Eq. (9) ) and χ = ρ2 q , and we rewrite ψ as: 

 = f (q, χ) exp (−iχ) = f (q, χ) exp 

[
−ρ2 (1 + 2 iζ ) 

1 + 4 ζ 2 

]
(24) 

After lengthy computations, Eq. (23) leads to: 

[ i + s 2 χq (χ + 2 i )] f − [ iq + 2 s 2 q 2 (1 − iχ)] f q 

−(1 − iχ)(1 + 2 s 2 χq ) f χ − 2 s 2 χq 2 f χq − s 2 q 3 f qq 

−χ(1 + s 2 χq ) f χχ

= 0 (25) 

n which the subscripts to f indicate derivatives in the usual way. 

e then look for a solution of the form: 

f (q, χ) = 

∞ ∑ 

m,n =0 

a mn χ
m q n = 

∞ ∑ 

n =0 

q n 
∞ ∑ 

m =0 

a mn χ
m = 

∞ ∑ 

n =0 

q n f n (χ ) (26) 

n which we therefore introduced: 

f n (χ ) = 

∞ ∑ 

m =0 

a mn χ
m (27) 

Inserting Eq. (26) into Eq. (25) , we obtain a “recurrence-like”

quation for the expansion coefficients a mn reading as: 

 0 + A 2 s 
2 = 0 (28) 

n which: 

 0 = [(m + 1)(m + 2) a m +2 ,n − i (m + 1) a m +1 ,n ] χ
m +1 q n (29) 

+ i (n + 1) a m,n +1 χ
m q n +1 

+[(m + 1) a m +1 ,n − ia mn ] χ
m q n 

 2 = 

[
( m + 1 ) ( m + 2 ) a m +2 ,n − 2 i ( m + 1 ) a m +1 ,n − a mn 

]
χm +2 q n +1 

+ 

[
2 ( m + 1 ) ( n + 1 ) a m +1 ,n +1 − 2 i ( n + 1 ) a m,n +1 

]
χm +1 q n +2 

+ 

[
2 ( m + 1 ) a m +1 ,n − 2 ia mn 

]
χm +1 q n +1 

+ ( n + 1 ) ( n + 2 ) a m,n +2 χ
m q n +3 

+ 2 ( n + 1 ) a m,n +1 χ
m q n +2 (30) 

 

 

 

 

 

 

 

 

 

 

 

a 01 � = 0 a m> 0 , 1 
a 02 

a 01 

a 12 
a 22 

a 02 

a m> 2 , 2 

a 03 

a 01 

a 13 
a 23 

a 03 

a 33 

a 03 

a 43 

a 03 

a m> 4 , 3 

a 04 

a 01 

a 14 
a 24 

a 04 

a 34 

a 04 

a 44 

a 04 

a 54 

a 04 

a 64 

a 04 

a m> 6 ,

a 05 

a 01 

a 15 
a 25 

a 05 

a 35 

a 05 

a 45 

a 05 

a 55 

a 05 

a 65 

a 05 

a 75 

a 05 
. . . 
4 
Let us isolate in Eqs. (29) - (30) the terms corresponding to χ0 q 0 ,
0 q 1 and χ1 q 0 We respectively obtain: 

 10 − ia 00 = 0 (31) 

 11 + ia 01 − ia 01 = 0 (32) 

 a 20 − 2 ia 10 = 0 (33) 

n which the sign (−) was misprinted to (+) in [179] , while the

ther χm q n -terms imply: 

(m + 1) 2 a m +1 ,n − i (m − n + 1) a mn 

+ s 2 [(m + n − 1)(m + n ) a m,n −1 

− 2 i (m + n − 1) a m −1 ,n −1 − a m −2 ,n −2 ] 

= 0 (34) 

The recurrence rules are then found to be complete and co- 

erent if we demand both a 1 n = 0 and a mn = 0 for m > 2 n . The

ondition a 1 n = 0 implies in particular that a 10 = 0 which, by 

irtue of Eq. (31) , implies as well that a 00 = 0 . Furthermore, from

q. (32) we have a 11 = 0 as well which is in agreement with the

rst recurrence rule. The recurrence rules also imply both a 10 = 0 

nd a 20 = 0 so that Eq. (33) is satisfied. Departing from Wang and

ebb’s exposition, we may now arrange the expansion coefficients 

n a matrix having the following form M reading as: 

 85 

 05 

a m> 8 , 5 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(35) 

with values given by: 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

a 01 � = 0 0 

(is 2 )2! 0 

1 
2 

0 

(is 2 ) 2 3! 0 

1 
2 

i 
3 

1 
12 

0 

(is 2 ) 3 4! 0 

1 
2 

i 
3 

−1 
8 

i 
12 

1 
144 

0 

(is 2 ) 4 5! 0 

1 
2 

i 
3 

−1 
8 

−i 
30 

−37 
720 

i 
120 

1 
2880 

0 

. . . 

⎤
⎥⎥⎥⎥⎦

(36) 

Let us note that we may argue that a 00 = 0 , in a way inde-

endent from the recurrence rules. Indeed the corresponding x - 

omponent A 00 of the x -polarized potential vector A 00 = (A 00 , 0 , 0)

ay be written as, see Eqs. (3) , (24), (26) : 

 00 = a 00 exp [ −i (χ + kz) ] = a 00 exp (−ikz) exp 

[ 

−i (x 2 + y 2 ) 

w 

2 
0 
(i + 

2 z 
kw 

2 
0 

) 

] 

(37) 

In the far-field, we then have: 

 00 → A 

f f 
00 

= a 00 exp (−ikz) exp 

[
−ik (x 2 + y 2 ) 

2 z 

]
≈ a 00 exp (−ikz) 

≈ a 00 exp (−ik 
√ 

x 2 + y 2 + z 2 ) = a 00 exp (−ikr) (38) 

From A 

f f 
00 

= (A 

f f 
00 

, 0 , 0) , we may evaluate a far-field electric field

eading as, in the Lorenz gauge, e.g. Eq. (1.121) of [4] : 

 

f f 
00 

= (E f f 
00 

, 0 , 0) = 

−ic 

kn p 
grad div A 

f f 
00 

− iωA 

f f 
00 

(39) 
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From Eq. (38) , we have div A 

f f 
00 

≈ a 00 ∂ exp (−ikz) /∂x ≈ 0 , so

hat E 
f f 
00 

exhibits the same behavior as A 

f f 
00 

, with E 
f f 
00 

≈ −iωA 

f f 
00 

≈
iωa 00 exp (−ikr) . This would be an admissible behavior in the far- 

eld if we had a 00 ∼ 1 /r in order to generate a spherical wave 

therefore satisfying the law of conservation of energy). This would 

owever conflicts with the fact that a 00 must be a constant ex- 

epted if we set a 00 = 0 . 

Returning to Eq. (36) , of particular interest is its first column 

hich may be obtained from Eq. (34) for m = 0 . Indeed, for m = 0

nd n = 0 , we recover a 00 = 0 . For m = 0 and n = 1 , we recover

 11 = 0 . But, for m = 0 and n > 1 , we obtain: 

 0 n = ins 2 a 0 ,n −1 (40) 

hat is to say: 

 0 n /a 01 = (is 2 ) n −1 n ! (41) 

Let us now introduce, from Eq. (26) : 

 n (q, ρ) = q n 
∞ ∑ 

m =0 

a mn ρ
2 m q m (42) 

n which we recalled that χ = ρ2 q . We then readily obtain that 

 0 (q, ρ) = a 00 = 0 and that g 1 (q, ρ) = qa 01 . This term corresponds

o a lowest-approximation reading as, from Eqs. (24) –(26) : 

 lowest = a 01 q exp (−iqρ2 ) (43) 

hich, comparing with the corresponding lowest-order ψ 0 of 

q. (8) , implies that a 01 = i , and that g 1 (q, ρ) = iq . Furthermore,

ubstituting Eqs. (35) - (36) into Eq. (42) , we have: 

 2 (q, ρ) = iq 

[ 
(is 2 q ) 1 2! 

(
1 + 

1 

2 

ρ4 q 2 
)] 

(44) 

 3 (q, ρ) = iq 

[
(is 2 q ) 2 3! 

(
1 + 

1 

2 

ρ4 q 2 + 

i 

3 

ρ6 q 3 + 

1 

12 

ρ8 q 4 
)]

(45) 

 4 (q, ρ) = iq 

[ 
(is 2 q ) 3 4! 

(
1 + 

1 

2 

ρ4 q 2 

+ 

i 

3 

ρ6 q 3 − 1 

8 

ρ8 q 4 + 

i 

12 

ρ10 q 5 + 

1 

144 

ρ12 q 6 
)]

(46) 

 5 (q, ρ) = iq 

[
(is 2 q ) 4 5! 

(
1 + 

1 

2 

ρ4 q 2 + 

i 

3 

ρ6 q 3 − 1 

8 

ρ8 q 4 − i 

30 

ρ10 q 5

− 37 

720 

ρ12 q 6 + 

i 

120 

ρ14 q 7 + 

1 

2880 

ρ16 q 8 
)]

(47

These equations contain a leading primary term reading as: 

 n = (is 2 q ) n −1 n ! (48) 

atisfying the recurrence relation: 

 n = is 2 qnP n −1 (49) 

eading to: 

P n 

P n −1 

∣∣∣ = s 2 | q | n = 

ns 2 √ 

1 + 4 ζ 2 
(50) 

In the large n limit, the ratio | P n /P n −1 | becomes larger than 1 

ndicating the divergence of the Davis scheme. This is confirmed 

y using Eq. (40) which leads to: 

 0 n = (is 2 ) n −1 n ! a 01 (51) 

s confirmed by the first column of Eq. (36) . The turning critical 

oint is for n c = s −2 
√ 

1 + 4 ζ 2 which, for z = 0 , is simply n c = 1 /s 2 .

For a plane wave ( s → 0 ), we have n c → ∞ , independently of

. For z = 0 , and a reasonable value of s equal to 10 −3 , we have
5 
 c = 10 6 , while for the largest limit s ∼ 1 / 6 , we have n c ∼ 40 , these

alues increasing when z increases. In any case, these values con- 

rm the validity of the Davis approximations used in the liter- 

ture, up to the seventh order beam. It is likely that other ex- 

ansion approaches, similar to the Davis one, might be divergent 

s well although unnoticed. For instance, elaborating on the work 

y Agrawal and Pattanayak already quoted [184] and on an angu- 

ar spectrum decomposition, Chen et al. [195] , in 2002, expressed 

olutions to Maxwell’s equations in terms of series with respect 

o powers of s (e.g. 7 ). Although they limited their analysis to 

rst few terms of the expansion (as made explicitly in the Davis 

cheme), they however noticed a rapid divergence of higher-order 

erms which, although not explicitly demonstrated (as has been 

one above for the Davis scheme), certainly indicates that their 

cheme is certainly genuinely divergent in agreement with their 

tatement (p 410) that, at some point, “the series expansion ap- 

roach becomes invalid”. It is worthwhile to note here that the 

ngular spectrum decomposition has been of wide use in GLMT, 

.g. a review in Section 3 of [196] , and a recent paper devoted to

he issue. 

Our statement concerning Davis series is however stronger and 

ore explicit because we claim that this expansion approach is al- 

ays invalid beyond a certain critical n c ≈ 1 /s 2 . Another example, 

orth to be revisited, is by Seshadri, in 2008 [185] who used an 

xpansion similar to the one of Eq. (7) to solve a Helmholtz equa- 

ion, e.g. compare their Eq. (12) and (23) above. 

. The standard beam scheme and its divergence 

The standard beam has been introduced in [187] as the conse- 

uence of a comprehensive investigation of the Davis scheme of 

pproximations, aiming to a justification of a localized approxima- 

ion (which will be discussed in Sections 4 and 5 ). It is expressed

n terms of BSCs in the framework of GLMT. We therefore begin by 

ecalling a small but necessary background concerning GLMT. 

.1. GLMT-background 

In this subsection, we follow the convention and notations of 

187] which expressed the GLMT in terms of electric field E and 

agnetic field B , instead of the more usual electric field E and 

agnetic field H ( B = μH ). The incident field is then encoded by 

wo sets of BSCs denoted as g m 

n,T M 

and g m 

n,T E 
with T M standing for 

Transverse magnetic”, T E for “Transverse electric”, with n ranging 

rom 1 to ∞ , and m ranging from (−n ) to (+ n ) . These BSCs may be

valuated by double quadratures or triple quadratures [197,198] in 

hich g m 

n,T M 

and g m 

n,T E 
depend on the radial components of the 

lectric E r and magnetic B r fields respectively. The double quadra- 

ure formulation may be written as [187] : 

 

m 

n,T M 

= 

−(i n −1 ) 

4 π

R 

j n (R ) 

(n − | m | )! 

(n + | m | )! 
(52) 

×
∫ π

0 

sin θd θ

∫ 2 π

0 

d φP 
| m | 
n ( cos θ ) 

exp (−imφ) 
E r (R, θ, φ) 

E 0 

 

m 

n,T E = 

−(i n −1 ) 

4 π

R 

j n (R ) 

(n − | m | )! 

(n + | m | )! 
(53) 

×
∫ π

0 

sin θd θ

∫ 2 π

0 

d φP 
| m | 
n ( cos θ ) 

exp (−imφ) 
cB r (R, θ, φ) 

n p E 0 

n which R = kr, (r, θ, φ) are spherical coordinates, P 
| m | 
n ( cos θ ) are

ssociated Legendre functions in the Hobson’s notation [199] , j n (R ) 
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re spherical Bessel functions of the first kind, E 0 is the elec- 

ric field strength and n p is the refractive index. If the electric 

nd magnetic fields exactly satisfy Maxwell’s equations, the R - 

ependent prefactors will eventually disappear – as we shall ob- 

erve – because the integrals θ and φ are proportional to j n (R ) /R 

this is compulsory because the coherence of the GLMT framework 

mplies that the BSCs are constant complex numbers which do not 

epend on the coordinates). 

Of special interest in this paper is now to consider an incident 

aussian beam in the configuration of Fig. 1 which is called an on- 

xis configuration. In such a configuration, the radial components 

f the incident fields reduce to: 

 r (R, θ, φ) = E 0 exp (−iR cos θ ) F e (R, θ ) sin θ cos φ (54) 

 r (R, θ, φ) = B 0 exp (−iR cos θ ) F b (R, θ ) sin θ sin φ (55) 

ith B 0 = n p E 0 /c. The quadratures in Eqs. (52) and (53) may then

e performed analytically. It is then found that only the (m = ±1) 

SCs are non-zero and that these non-zero BSCs allow one to in- 

roduce reduced uni-index BSCs g n according to: 

 

m 

n,T M 

= 

1 

2 

g n,e δm, ±1 (56) 

 

m 

n,T E = ∓ i 

2 

g n,b δm, ±1 (57) 

n which: 

 n,e = 

−i n −1 

2 

R 

j n (R ) 

1 

n (n + 1) 

∫ π
0 

sin 
2 θF e (R, θ ) exp (−iR cos θ ) P 1 n ( cos θ ) dθ

(58) 

 n,b = 

−i n −1 

2 

R 

j n (R ) 

1 

n (n + 1) 

∫ π
0 

sin 
2 θF b (R, θ ) exp (−iR cos θ ) P 1 n ( cos θ ) dθ

(59) 

.2. Return to Davis scheme 

The solution to Eq. (6) , limited to a few first terms (before 

eaching the diverging critical turning point), may be written as a 

eries in powers of s 2 according to Davis [162] , Barton and Alexan- 

er [180] , Lock and Gouesbet [187] : 

 = D 0 exp (−ρ2 D 0 )[1 + s 2 (2 D 0 − ρ4 D 

3 
0 ) 

+ s 4 (6 D 

2 
0 − 3 ρ4 D 

4 
0 − 2 ρ6 D 

5 
0 + 

1 

2 

ρ8 D 

6 
0 ) + O (s 6 )] (60) 

n which: 

 0 = 

1 

1 − 2 iζ
= iQ (61) 

The Davis first-order, third-order and fifth order Davis beams 

re obtained from Eq. (60) by only retaining some truncations in 

he equation, namely up to O (s 0 ) , O (s 2 ) and O (s 4 ) respectively.

sing respectively the superscripts D 1 , D 3 and D 5 to identify the

arious beams, we then have: 

 

D 1 = D 0 exp (−ρ2 D 0 ) (62) 

 

D 3 = D 0 exp (−ρ2 D 0 )[1 + s 2 (2 D 0 − ρ4 D 

3 
0 )] (63) 

 

D 5 = D 0 exp 

(
−ρ2 D 0 

)
[1 + s 2 (2 D 0 − ρ4 D 

3 
0 ) 

+ s 4 (6 D 

2 
0 − 3 ρ4 D 

4 
0 − 2 ρ6 D 

5 
0 + 

1 

2 

ρ8 D 

6 
0 )] (64) 
6 
Eqs. (62) –(64) then provide three successive approximations of 

he potential vector of Eq. (3) , from which we may deduce three 

uccessive approximations of the electric E and magnetic B fields, 

nd therefore three successive approximations of the radial com- 

onents E r and B r which allow one to evaluate the BSCs g n,e and 

 n,b from Eqs. (58) - (59) . The electric and magnetic fields obtained 

owever contain additional dependences with respect to s. We 

ay then develop different approaches depending on the way to 

eal with the s -dependent additional terms. These approaches are 

alled (i) the mathematical conservative version which corresponds 

o truncations of the fields at O (s 1 ) , O (s 3 ) and O (s 5 ) for the suc-

essive approximations, (ii) the L -version in the sense given to this 

erminology in [1,4,200–202] , e.g. Eqs. (16) –(20) for the first-order 

eam and (iii) the symmetrized Davis-Barton version. 

Indeed, we already observed from Eqs. (10) –(15) that the Davis 

cheme lacks of symmetry. Although this lack of symmetry does 

ot occur in Eqs. (16) –(20) of the first order beam, it would oc- 

ur for higher-order beams. The origin of this lack of symme- 

ry is simple. Indeed, we started from a potential vector which 

as polarized in the x -direction. The relation B = ∇ × A then im-

lies that the x -component of B vanishes, as we can see from 

q. (13) , in contrast with Eq. (10) . The symmetry is restored when

e add a potential vector which is formally identical to the pre- 

ious x -polarized one, but which is polarized in the y -direction, 

eading to the symmetrized Davis-Barton version. After a consider- 

ble amount of computations, we then find that: 

 e (R, θ ) = D 0 exp (−s 2 R 

2 D 0 sin 

2 θ ) h e (R, θ ) (65) 

 b (R, θ ) = D 0 exp (−s 2 R 

2 D 0 sin 

2 θ ) h b (R, θ ) (66) 

ith: 

 

DB 1 = h 

DB 1 
e = h 

DB 1 
b = D 0 (67) 

 

DB 3 = h 

DB 3 
e = h 

DB 3 
b = D 0 (1 + 3 s 4 D 

2 
0 R 

2 sin 

2 θ − s 6 D 

3 
0 R 

4 sin 

4 θ ) (68)

 

DB 5 = h 

DB 5 
e = h 

DB 5 
b = D 0 (1 + 3 s 4 D 

2 
0 R 

2 sin 

2 θ − s 6 D 

3 
0 R 

4 sin 

4 θ

+ 10 s 8 D 

4 
0 R 

4 sin 

4 θ − 5 s 10 D 

5 
0 R 

6 sin 

6 θ + 

1 

2 

s 12 D 

6 
0 R 

8 sin 

8 θ ) 

(69) 

or the first-order, third-order and fifth-order respectively, with 

he immediate consequences that the double set of BSCs g n,e and 

 n,b reduces to a single set of coefficients g n = g n,e = g n,b . 

.3. Beam shape coefficients 

Inserting Eqs. (67) –(69) into Eqs. (65) - 66 , thereafter into either 

qs. (58) or (59) , we obtain integrals which, after a bit of effort, 

an be integrated analytically, leading to: 

 

DB 1 
n = 1 − s 2 (n − 1)(n + 2) + NCT DB 1 (70) 

 ccc@ g DB 3 
n = g DB 1 

n + 

1 

2 
s 4 ( n − 2 ) ( n − 1 ) ( n + 2 ) ( n + 3 ) 

− 1 

6 
s 6 ( n − 3 ) ( n − 2 ) ( n − 1 ) ( n + 2 ) ( n + 3 ) + NC T DB 3 (71) 

 

DB 5 
n = g DB 3 

n + 

1 

24 
s 8 (n − 4)(n − 3)(n − 2)(n − 1)(n + 2)(n + 3)(n + 5) 

− 1 

120 
s 10 (n − 5)(n − 4)(n − 3)(n − 2)(n − 1) 

× (n + 2)(n + 3)(n + 5)(n + 6) + NCT DB 5 (72) 
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These expressions exhibit (i) terms which depend only on n 

nd s , but which do not depend on any coordinate and (ii) non-

onstant terms (abbreviated as NCT) which depend on n and s , but 

epend as well on the coordinate R . These NCTs are O (s 4 ) , O (s 8 )

nd O (s 12 ) for DB 1 , DB 3 and DB 5 respectively. They are the conse-

uence of the fact that none of the Davis beams of limited order 

s Maxwellian. It is worthwhile to insist on the beauty of these re- 

ults, particularly when the amount of computations required to 

each them is taken into account. They emphasize indeed a beau- 

iful amount of unexpected symmetries which leads the researcher 

o the idea that something deep has indeed been reached by the 

rocedure, and that we may rely on it for further investigations. 

In [187] , these results have been summarized under the form: 

 

DBk 
n = 

k ∑ 

p=0 

(−1) p s 2 p 

p! 

(n − 1)! 

(n − 1 − p)! 

(n + 1 + p)! 

(n + 1)! 
+ NCT DBk (73) 

hich is valid for k = 1 , 3 and 5. This expression, although “cor-

ect”, may be found dangerous as far as (n − 1 − p)! may appar- 

ntly have no meaning. For instance, for n = 1 , it leads to (−1)! ...

−5)! for l = 1 . . . 5 . In the present paper, we shall prefer to write

 somewhat more explicit expression reading as: 

 

DBk 
n = 

k ∑ 

p=0 

(−1) p s 2 p 

p! 
N np + NCT DBk (74) 

n which: 

 n 0 = 1 (75) 

 np = (n − p)(n − p + 1) . . . (n − 2)(n − 1) 

(n + 2)(n + 3) . . . (n + p + 1) , p > 0 (76) 

Although not used in the previous literature, it is worthwhile to 

ote that the symbol N np may be expressed, in two ways, in terms 

f the Pochhammer’s symbol reading as: 

α) 0 = 1 (77) 

α) k = α(α + 1) . . . (α + k − 1) (78) 

o that Eq. (74) may be rewritten in two ways as: 

 

DBk 
n = 

k ∑ 

p=0 

(−1) p s 2 p 

p! 
(n − p) p (n + 2) p + NCT DBk (79) 

= 

k ∑ 

p=0 

(−1) p s 2 p 

p! 

(n − p) 2(p+1) 

n (n + 1) 
+ NCT DBk 

In the sequel, we shall go on using the more concise symbol 

 np , but when it is useful to proceed otherwise. These computa- 

ions may be generalized to the case when z 0 � = 0 . One then ob-

ains, after much algebra [187] : 

 

DBk 
n = exp (ikz 0 ) 

j+2 p=2 k +1 ∑ 

j=0 

∑ 

p=0 

(
−2 is 

z 0 
w 0 

) j (−1) p s 2 p 

p! 

(p + j)! 

j! p! 
N np + NCT DBk 

(80) 

.4. Standard beams: Divergence for the case z 0 � = 0 

Standard beams are then introduced as the infinite generaliza- 

ion of Eqs. (74) and (80) , reading as [182,187] : 

 n = 

∞ ∑ 

p=0 

(−1) p s 2 p 

p! 
N np (81) 
7 
 n = exp (ikz 0 ) 
∞ ∑ 

j=0 

∞ ∑ 

p=0 

(
−2 is 

z 0 
w 0 

) j (−1) p s 2 p 

p! 

(p + j)! 

j! p! 
N np (82) 

or z 0 = 0 and z 0 � = 0 respectively, the last one being as well avail-

ble as: 

 n = exp (ikz 0 ) 
∞ ∑ 

j=0 

∞ ∑ 

p=0 

(
−2 is 

z 0 
w 0 

) j (−1) p s 2 p 

p! 

(p + j)! 

j! p! 

(n − 1)!(n + 1 + p)!

( n − 1 − p)!(n + 1)!

(83) 

hich define beams which are exactly Maxwellian (i.e. which ex- 

ctly satisfy Maxwell’s equations) and are proposed as providing 

n exact definition of Gaussian beams, hence the name of standard 

eams. It was conjectured that such beams would be the limit of a 

omplete Davis procedure if it were achieved. We now know that 

he Davis procedure is divergent, as demonstrated in Section 2, but 

eaves open the question to know whether the standard beam pro- 

edure is divergent as well. 

A first step to the answer is to remember that, when dealing 

ith the applications of standard beams to the evaluation of radi- 

tion pressure forces, it has been observed that Eq. (82) possesses 

 finite radius of convergence [203] . To understand this feature, it 

ill be sufficient to discuss the issue for n = 1 . We then have (for

 = 1 , it is more expedient to use Eq. (83) and the fact that facto-

ials of negative integers are not defined): 

 1 = exp (ikz 0 ) 
∞ ∑ 

j=0 

(−2 is 
z 0 
w 0 

) j (84) 

For further use, note that N np does not appear any more for 

his case. We then introduce the change of variables A = 2 sz 0 /w 0 = 

 z 0 /l, and use the four-valued periodicity of i m ( m = 0 , 1 . . . ) to

ewrite Eq. (84) as a summation of four partial series reading as: 

 1 = 

4 ∑ 

i =1 

S i (85) 

n which S i is the limit when q → ∞ of S 
q 
i 

reading as: 
 

 

 

 

S q 
1 

S q 
2 

S q 
3 

S q 
4 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

1 

−i A 

−A 

2 

i A 

3 

⎞ 

⎟ ⎟ ⎠ 

exp (ikz 0 )(1 + A 

4 + A 

8 + . . . + A 

4 q ) 

= 

⎛ 

⎜ ⎜ ⎝ 

1 

−i A 

−A 

2 

i A 

3 

⎞ 

⎟ ⎟ ⎠ 

exp (ikz 0 ) 
1 − A 

4(q +1) 

1 − A 

4 
(86) 

eading to: 

 1 = lim 

q →∞ 

exp (ikz 0 ) 
1 − A 

4(q +1) 

1 − A 

4 
( 1 − i A − A 

2 + i A 

3 ) (87) 

hich may be rewritten as: 

 1 = lim 

q →∞ 

exp (ikz 0 ) 
1 − A 

4(q +1) 

1 + i A 

(88) 

The convergence of g 1 then depends on the value of A accord- 

ng to the following rules: 

(i) When | A | is smaller than 1, i.e. | z 0 | < l/ 2 , then the term 

 

4(q +1) in Eq. (88) tends to 0 and g 1 is well defined. 

(ii) Otherwise, i.e. | A | > 1 , then g 1 diverges. 

Therefore, the standard expression for g 1 exhibits a finite ra- 

ius of convergence. This can easily be generalized to g n by re- 

aining only the term p = 0 in Eq. (83) . This feature explains why

omputations of optical forces were only possible in a small neigh- 

orhood of the beam waist center in [106] . Hence, the standard 

cheme had to be improved as described in the next section. 
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. Improved standard beams and localized beam models 

.1. Improved standard beams 

Since we have to deal with the case z 0 � = 0 , detailed compu-

ations would be heavy to report and we shall therefore be con- 

ent with a sketch of the procedure. Let us consider Eqs. (65) - (66) ,

hich imply that, for the symmetrized Davis-Barton version, we 

ay write (with obvious superscripts): 

 

k (R, θ ) = F k e (R, θ ) = F k b (R, θ ) = D 0 exp (−s 2 R 

2 D 0 sin 

2 θ ) h 

DBk (R, θ

(89) 

hich is valid for z 0 = 0 . For z 0 � = 0 , D 0 must be replaced by D

eading as [187] : 

 = 

1 

1 − 2 iζ + i A 

(90) 

o that we now have: 

 

k (R, θ ) = D exp (−s 2 R 

2 D sin 

2 θ ) h 

DBk (R, θ ) (91) 

n which the h DBk ’s have to be generalized as well to the case z 0 � =
 . In contrast with the procedure for the standard beams in which 

 

k (R, θ ) was Taylor expanded with respect to s , we now expand

hem with respect to cos θ , which leads to the occurrence of an 

xponential term reading as: 

xp ( 
−s 2 R 

2 

1 + i A 

) (92) 

hich is itself Taylor expanded but now with respect to R 2 . Inte- 

rals required to obtain the BSCs are again analytically evaluated as 

e have done for z 0 = 0 , non constant terms are again removed,

nd the expressions obtained for the first-, third- and fifth-order 

ymmetrized Davis-Barton beams are generalized to obtain [203] : 

 n = 

exp (ikz 0 ) 

1 + i A 

∞ ∑ 

p=0 

1 

(1 + i A ) 
p 

(−1) p s 2 p 

p! 
N np (93) 

hich is to be compared with Eq. (83) . We see that the summation

ver j which was at the origin of the divergence of the standard 

eam scheme has been cancelled out. The convergence of the im- 

roved standard beam scheme (when calculating the BSCs) is en- 

ured by the fact that the terms N np of Eq. (93) all vanish as soon

s n = p (see Eq. (76) ) so that the series of Eq. (93) is actually a fi-

ite series when n is finite. This is in practice always the case since

omputations are made with numerical truncations. This does not 

mply however (i) that the converged values of the BSCs have con- 

erged to a correct value nor that (ii) the series used to evaluate 

he fields are indeed convergent. These questions will be answered 

n Section 5 . 

.2. Localized approximations and localized beam models 

When numerically integrating Eqs. (52) - (53) for Gaussian 

eams, the computational costs and times were prohibitive, ex- 

ept for very small particles, this being particularly true if we 

emember that such computations have been carried out in the 

ighties. Two approaches have been found to solve the problem 

i) the development of finite series [204,205] and (ii) the develop- 

ent of so-called localized approximations which may be viewed 

s well, in the case of Gaussian beams, as the development of lo- 

alized beam models. These localized beam models indeed gener- 

te Maxwellian Gaussian beams although they are built on paraxial 

on-Maxwellian Gaussian beams. We say that localized approxima- 

ions (beam models) for Gaussian beams amount to a remodeling 

f the original descriptions, from non-Maxwellian descriptions to 
8

axwellian descriptions. These models have originally been devel- 

ped in a somewhat heuristic way, relying on the van de Hulst 

ocalization principle [206,207] without any firm mathematical ba- 

is, and justified in an empirical way, e.g. [201,208] . This technique 

s reviewed in [209] , to be completed with [210,211] , and by warn-

ngs concerning the use of localized approximations for beams ex- 

ibiting axicon angles, e.g. [212,213] and/or topological charges, e.g. 

214,215] . The localized procedure may be summarized as follows 

216] . 

(i) Expand the radial component of the electric field in terms of 

 -waves, proportional to exp (imφ) , according to: 

 r = 

m =+ ∞ ∑ 

m = −∞ 

E m 

r (94) 

(ii) Extract the non-plane-wave contribution E m 

r (R = kr, θ ) of 

 

m 

r . 

(iii) Then, the localized approximation g m 

n,T M 

of the BSC g m 

n,T M 

eads as: 

 

m 

n,T M 

= ( 
−i 

L 1 / 2 
) | m | −1 E m 

r (L 1 / 2 , π/ 2) (95) 

In the original localized approximation, R = L 1 / 2 , called the ra- 

ial evaluation point, was taken to be equal to R = (n + 1 / 2)

205,217,218] . The justification of the procedure in the case of 

aussian beams has been developed in [187] for on-axis beams 

nd in [188] for off-axis beams. In the case of on-axis beams to 

hich we currently restrict our analysis, the radial evaluation point 

 is modified to 
√ 

(n − 1)(n + 2) and the localized approximation 

s found to read as [187] : 

 

loc 
n = 

exp (ikz 0 ) 

1 + i A 

exp 

[
−s 2 (n − 1)(n + 2) 

1 + iA 

]
(96) 

hich, for z 0 = 0 , leads to: 

 

loc 
n = exp [ −s 2 (n − 1)(n + 2)] = 1 − s 2 (n − 1)(n + 2) + . . . (97)

o be compared with Eq. (70) . For a general demonstration adapted 

o the case of off-axis “arbitrary shaped beams”, see [216] . 

. Numerical illustrations 

To complete numerical results and discussions available from 

ouesbet et al. [182] , Lock and Gouesbet [187] , Gouesbet and Lock 

188] , Polaert et al. [203] , Ren et al. [219] , we now provide extra-

esults concerning the schemes discussed above, namely localized 

pproximations and improved standard beams, being content to 

iscuss the on-axis case for z 0 = 0 , either using Eq. (97) for the

mproved localized approximation or Eq. (81) of the original stan- 

ard beam which identifies with Eq. (93) of the improved standard 

eam when z 0 = 0 . We shall then display I = | E x /E 0 | 2 in the xy

lane (i.e. for θ = π/ 2 ) along the x -axis (i.e. for φ = 0 ), according

o: 

 = | E x /E 0 | 2 = | E r (θ = π/ 2 , φ = 0) /E 0 | 2 (98) 

n which E r reads as, e.g. Eqs. (3.3) and (3.39)–(3.45) in [4] : 

 r = E 0 

∞ ∑ 

n =1 

+ n ∑ 

m = −n 

(−i ) n +1 2 n + 1 

n ( n + 1) 
g m 

n,T M 

[ ψ 

′′ 
n ( kr) 

+ ψ n (kr)] P 
| m | 
n ( cos θ ) exp (imφ) (99) 

n which ψ n (kr) denotes Ricatti-Bessel functions of the first kind. 

n the present case in which Eq. (56) is valid with g n,e = g n , Eq.

99) leads to: 

 r (r, θ = π/ 2 , φ = 0) = 

E 0 
kr 

∞ ∑ 

n =1 

(−i ) n +1 (2 n + 1) g n j n (kr) P 1 n (0) (100)
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Fig. 2. Standard beams, s = 10 −3 . 

Fig. 3. Standard beams, s = 10 −2 . 
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n which we have used: 

 

′′ 
n (kr) + ψ n (kr) = 

n (n + 1) 

kr 
j n (kr) (101) 

Calculations have been carried out using the commercial soft- 

are Wolfram 12.1 Student Edition, and were run on a personal lap- 

op [Intel(R) Core(TM) 17-3630QM CPU @ 2.40GHz, 16.0 GB]. The 

gures are displayed for λ = 0 . 5 μm and three values of s , namely

 = 10 −3 (corresponding to a loosely focused beam with w 0 ≈ 80 

m), s = 10 −2 (corresponding to a more focused beam with w 0 ≈ 8 

m), and s = (1 / 2 π) (corresponding to a very focused beam in the

imit w = λ). 
0 

9 
Fig. 2 exhibits the intensity I versus x expressed in μm using 

he standard (or improved) standard beam expression of Eq. (81) , 

n which the summation is carried from 0 to p max , with four values

f p max from 0 to (n − 1) . For p max = 0 , the BSCs g n are all equal

o 1 and the intensity is found to be a constant. For p max = 1

nd 2, the intensity begins to decrease like approaching a Gaus- 

ian shape before blowing up. The maximal value of p max is (n − 1) 

ince the BSCs become all 0 as soon as p reaches the value n . For

his value the intensity exhibits a Gaussian profile which cannot be 

istinguished on the figure from the one given by exp (−2 r 2 /w 

2 
0 
) . 

igures 3 and 4 correspond to s = 10 −2 and s = 1 / (2 π) respec-

ively, with similar comments. Note however (i) that the increase 

f s corresponds to a stronger focusing and therefore to a de- 

rease of the lateral extension of the beam, from 150 for s = 10 −3 

o 1.0 for s = 1 / (2 π) and (ii) that, even for the strongest focusing,

he intensity profile is still very close to an ideal Gaussian profile. 

emember, however, that the identification between the intensity 

rofile reconstructed using the BSCs and the one ideally defined by 

xp (−2 r 2 /w 

2 
0 ) needs not to be perfect since the former, built with

SCs, perfectly satisfies Maxwell’s equations, in contrast with the 

ube-like beam defined by an ideal profile. 

In Fig. 5 , we compare the intensities provided either by using 

he improved standard scheme of Eq. (93) specified for z 0 = 0 , i.e.

q. (81) , or the localized approximation of Eq. (97) , for s = 10 −3 ,

howing very good agreement between the two approaches. The 

deal Gaussian profile is displayed as well, showing that the Gaus- 

ian profile (corresponding to a non-Mawellian beam) agrees well 

ith the reconstructed profiles, based on BSCs g n (correspond- 

ng to Maxwellian beams). Fig. 6 . is the same as Fig. 5 , but for

 = 10 −2 , and would be commented in exactly the same way. Sim- 

larly, Fig. 7 . is for s = 1 / (2 π) . The three profiles are slightly dif-

erent, with the improved standard scheme being slightly better 

han the profile corresponding to the localized approximation. The 

rice for this tiny improvement is however heavy: (i) the improved 

tandard scheme requires the use of infinite precision computa- 

ions and (ii) it is much more demanding in terms of computa- 

ional times. Indeed, the calculations with the localized approxi- 

ation are in practice “instantaneous”, in contrast with the use of 

he standard scheme which demanded about 2 s for s = 1 / (2 π) ,
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Fig. 5. Comparison between intensities, s = 10 −3 . 

Fig. 6. Comparisons between intensities, s = 10 −2 . 

a  

w

s

i

5

B

s

d

j

s

t

m  

Fig. 7. Comparisons between intensities, s = 1 / 2 π . 
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bout 129 s for s = 10 −2 and more than 14 h for s = 10 −3 . Besides,

e have to face to another impediment, namely that the improved 

tandard scheme is certainly divergent as we are going to discuss 

n the next subsection. 

.1. Divergence of the improved standard scheme 

Although the improved standard scheme allows one to evaluate 

SCs without any divergence (since they are evaluated using finite 

eries), it unfortunately happens that, as a whole, it looks to be 

ivergent as we shall discuss in this subsection, so that the con- 

ecture according to which it would provide a perfectly accurate 

cheme is actually not satisfied (an unexpected result indeed). To 

his purpose, let us consider Eq. (81) which, by using the Pochham- 

er’s symbol of Eqs. (77) , (78) , may be rewritten as, using a gen-
10 
ralization of Eq. (79) : 

 n = 

1 

n (n + 1) 

n −1 ∑ 

p=0 

(−1) p s 2 p 

p! 
(n − p) 2(p+1) = 

1 

n (n + 1) 

n −1 ∑ 

p=0 

(−1) p X p 

(102) 

hich provides a definition of X p . Furthermore, we have explicitly 

aken into account the fact N np is 0 for p ≥ n , to insist on the fact

hat, being evaluated by finite series, the values of the BSCs of the 

mproved standard scheme do indeed converge. It is however read- 

ly shown that: 

X p 

X p−1 

= s 2 (n − p) 
n + p + 1 

p 
> s 2 (n − p) (103) 

Eq. (103) implies that X p becomes greater than X p−1 when 

 

2 (n − p) becomes greater than 1. In a summation from p = 0 to

p = n − 1 , the most dangerous value is for p = 0 which defines

 critical value of n given by n c s 
2 ≈ 1 , i.e. n c ≈ 1 /s 2 . Let us note

hat this critical value is the same as the one we evaluated for 

he divergence of the Davis scheme, e.g. comment after Eq. (51) . 

onsidering Eq. (100) in which BSCs are required for n = 1 to ∞ ,

here is then the risk that E r (r, θ = π/ 2 , φ = 0) might diverge so

hat, eventually, the improved standard scheme would become a 

ivergent scheme under conditions similar to the ones of the Davis 

cheme, and that correct results as obtained in the previous sub- 

ection would require a well chosen truncation of the series such 

s the one of Eq. (100) . 

We now illustrate these results with complementary numerical 

ata obtained for a tighly focused beam with s = 1 / (2 π) , there-

ore limiting the critical value of n c to about 40 in order to limit

he computational time. Fig. 8 displays the value of the BSCs g n 
ersus n . After decreasing down to 0, we then indeed observe a 

lowing-up for about the expected critical value of n. Remember 

owever, once again, that these BSCs are evaluated using finite se- 

ies so that convergence is ensured, but the observed blowing-up 

ay have disastrous consequences when evaluating field compo- 

ents. To illustrate this issue, let us consider E r (r, θ = π/ 2 , φ = 0)

f Eq. (100) , from which we extract: 

 n = 

∣∣∣ 1 

kr 
(−i ) n +1 (2 n + 1) g n j n (kr) P 1 n (0) 

∣∣∣ (104) 
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Fig. 8. BSCs versus n . Improved standard scheme. 
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Fig. 10. Intensity versus x , s = 1 / (2 π) . 
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Fig. 9 . then displays E n versus x/w 0 for various values of n . The

lowing-up of E n is well apparent if we look at the values of the

ertical scales, starting from about 1. for n = 1 , decreasing to about

0 −11 for n = 35 and, after the critical value n = 40 , increasing to

0 −3 for n = 41 , and reaching about 10 44 for n = 75 . The conse-

uence of such a blowing-up is illustrated in Fig. 10 . which dis- 

lays the intensity I versus x . We may distinguish (i) a first region 
Fig. 9. E n versus x , for di

11 
rom x = 0 to x = 4 where the intensity correctly agrees with the

deal Gaussian profile followed by a second blowing-up region, in- 

icating a divergence of the scheme. This fact does not prevent to 

btain correct results, with the condition that the results obtained 

ave to be rejected after a certain critical value of x . As for the

avis scheme, this is a typical behaviour of asymptotic series that 

e shall discuss in the next section. 
fferent values of n . 
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. Complementary discussion 

This section is devoted to two complementary issues. For the 

rst one, let us note that localized approximations are valid for on- 

xis and off-axis cases, although the focus was on on-axis cases 

n the present paper. Conversely, standard beam expressions are 

nown only for on-axis cases. Off-axis cases can however be ob- 

ained from on-axis cases by using addition theorems of vector 

pherical wave functions under translations of coordinate systems, 

n approach originally introduced by Doicu and Wriedt [220] , see 

s well Zhang and Han [221] . The most general case, i.e. when the

eams are described in a rotated coordinate system in the case of 

oblique” illumination is described in [222–228] . 

The second issue is the fact that the behavior of the diverg- 

ng series, observed for both the Davis scheme and the improved 

tandard schemes, is reminiscent of asymptotic series in QED, see 

yson [229] for an early notice. Such series are non-convergent se- 

ies which however provide a correct result if we limit ourselves 

o a first few terms. A paradigmatic example is the evaluation of 

he electron g-factor which is a dimensionless magnetic moment. 

t may be evaluated by a series reading as: 

/ 2 = 1 + C 1 

(
α

π

)
+ C 2 

(
α

π

)2 

+ C 3 

(
α

π

)3 

+ . . . (105) 

n which α is a small parameter (the fine structure constant) given 

y α = 1 / 137 . 035 . . . [230] , from which we might have expected a

ast convergence of the series of Eq. (105) . Such is not the case

owever, and the calculation of the successive coefficients, relying 

n the evaluation of an increasing number of integrals related to 

eynman diagrams, becomes more and more complicated. For in- 

tance, the calculation of C 3 requires the calculation of 72 integrals 

hile C 4 requires the evaluation of 891 integrals [231] . In [232] , the

heoretical value is found to be g/ 2 = 1 . 001 159 652 181 13 (84) to

e compared with an experimental value given by 1.001 159 652 

80 73 (28) according to Hanneke et al. [230] . In such approaches, 

orrect results are obtained by dismissing an infinite number of 

on-converging terms which is the case we have observed in the 

resent paper, for the Davis scheme where the third-order Davis- 

arton beam already provides a satisfactory description of Gaus- 

ian beams although the series itself is eventually diverging, and 

or the improved standard beam as well as illustrated in Fig. 10 . 

. Conclusion 

The overlooked discovery that the Davis scheme of approxima- 

ions to the description of Gaussian beams is actually a divergent 

cheme [179] has been the motivation of the present paper. Two 

chemes have been nevertheless extracted from the Davis scheme 

i) localized approximations (localized beam models) which do not 

ely on the evaluation of series and are therefore trivially conver- 

ent and (ii) the improved standard scheme. The fields in this lat- 

er scheme are evaluated by using infinite series and, as for the 

avis scheme, it has been for a long time believed that this scheme 

ould be convergent. It has however been found that it is diver- 

ent as well, with a critical value n c in the summations to the eval-

ation of the fields being the same as in the Davis scheme. The 

ituation encountered in the divergent Davis scheme and in the 

ivergent improved standard scheme is reminiscent of the prob- 

em of infinities in QED. In the last case, solutions have been pro- 

osed in the framework of superstring theories and, even if su- 

erstring theories are still not convincing enough in the mind of 

ome researchers, they provide at least solutions to the physical 

nderstanding of the origin of the divergences. In contrast, it is 

ot known whether the infinities encountered in the present pa- 

er are purely “accidental” or whether they are a clue for a deeper 

nderstanding. 
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