Journal of Quantitative Spectroscopy & Radiative Transfer 291 (2022) 108344

journal homepage: www.elsevier.com/locate/jqsrt

Contents lists available at ScienceDirect

Journal of Quantitative Spectroscopy & Radiative Transfer |

ournal of
uantitative

pectroscopy &
adiative

Diverging and converging schemes of approximations to describe n

Check for

fundamental EM Gaussian beams beyond the paraxial approximation

Gérard Gouesbet®*, Jiangi Shen®, Leonardo A. Ambrosio®©

2 CORIA-UMR 6614- Normandie Université CNRS-Université et INSA de Rouen Campus Universitaire du Madrillet 76800, Saint-Etienne-du Rouvray, France
b College of Science, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China
¢ Department of Electrical and Computer Engineering Sdo Carlos School of Engineering, University of Sdo Paulo, 400 Trabalhador sdo-carlense Ave., Sdo

Paulo, SP 13566-590, Brazil

ARTICLE INFO ABSTRACT

Article history:

Received 20 March 2022
Revised 21 July 2022

Accepted 14 August 2022
Available online 18 August 2022

Keywords:

Gaussian beams

Davis scheme of approximations
Standard beams

Localized approximations

Light scattering

Asymptotic series

Quantum electrodynamics

EM Gaussian beams are the most celebrated and used kind of laser beams. Their description beyond
paraxial regimes has a long and venerable history, culminating may be with the building of a scheme of
approximations which can be named the Davis scheme of approximations whose convergence has been
considered as granted. Strange as it may be, a paper by Wang and Webb demonstrated that, actually,
the Davis scheme is divergent. This quite unexpected result has been dramatically overlooked. This is the
motivation for the present paper which reviews diverging and converging schemes of approximations to
describe fundamental EM Gaussian beams. One of the new results obtained in the present framework is
that a scheme of approximations known as the improved standard scheme, introduced more than two
decades ago, is diverging as well. These divergences are the result of the behavior of asymptotic series
similar to the ones encountered in quantum electrodynamics.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Since its advent in 1960, thanks to both Théodore Maiman and
a ruby crystal, the laser beam has become a very popular tool for
various investigations, particularly using its most simple and ubig-
uitous version celebrated under the name of Gaussian beam. Such
beams have been used in the field of light scattering. In partic-
ular, the GLMT which describes the interaction between arbitrary
shaped beams and homogeneous spheres characterized by their di-
ameter and their complex refractive index has originally been fo-
cused on the use of Gaussian beams, e.g. [1,2] although it is actu-
ally valid for any kind of laser beams [3,4]. Review papers devoted
to GLMT, and more generally to T-matrix methods [5-8], allow one
to gather a huge number of examples in which Gaussian beams
have been used, e.g. [9-12] and references therein. Although it is
not possible any more to extensively quote all papers dealing with
Gaussian beams, let us however take the risk to name only a few
papers associated with only a few topics, without explicitly taking
into account the fact that some papers may pertain to several top-
ics, with apologies to authors who should feel that they are unduly
omitted.
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A way to make an objective selection among the huge num-
ber of references available is, in order to limit the size of the
room devoted to a review, to only retain those which use the
word “Gaussian” in their title (except for a few motivated excep-
tions). We may then mention the issue of light scattering by par-
ticles of various shapes and morphologies, including homogeneous
spheres [1,13-29], coated and multilayered spheres [30-34], parti-
cles with anisotropy properties [35-40], or with chiral properties
[41,42], infinite cylinders of circular [43-63], and elliptical cross-
sections [64,65], spheroids [66-76], assemblies of spheres and ag-
gregates [77-82], various particles with various kinds of inclusions
[83-89], slabs [90-92], or the case of a particle over a plane sur-
face [93], see as well [94-96] for reviews, [97-99] for algorithmic
discussions, [100] for the case of large particles, and [101-103] for
miscellaneous cases.

Another important issue is the one devoted to the mechanical
effects of light, made famous by Ashkin’s work [104], with a re-
cent review devoted to GLMTs [105]. They concern in particular the
evaluation and the use of optical forces [106-112], and/or torques
[113-119], optical levitation, traps and optical tweezers [120-127],
binding phenomena [128,129], and stretching, stressing and de-
forming particles [130,131]. Another important field is the one of
optical particle characterization using different measurement tech-
niques such as velocimetry laser [132] and phase-Doppler tech-
niques [133-136], microscopy [137], rainbow refractometry (corre-
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lated with rainbow analysis) [138-145], holography [146,147], ex-
tinction techniques (correlated with extinction analysis) [148-150],
or others such as in [151]. Other issues concern the study of res-
onances (Fano resonances, whispering gallery modes/morphology-
dependent resonances) [106,152-156], photonic nanojets [157-
159], and the validity of the optical theorem [160,161].

The above sample only provides a tiny amount of quotations
of papers devoted to the description or to the use of Gaussian
beams which are indeed the most popular kind of beams used.
A good theoretical description of a fundamental Gaussian beam
(mode TEMyy) is therefore of interest. It is only in 1979 that Davis
proposed a scheme of approximations which would allow one to
reach a description of Gaussian beams which, for a long time,
has been supposed to be perfect [162], and therefore have indeed
been used, in a form or in another, in several papers such as in
[86,95,126,163-174]. The reader may be surprised by the large de-
lay between the time of publication (1979) of the Davis scheme
and the date (2012) of the first paper in the previous list. This is
mainly due to an increasing interest with numerical techniques to
solve Maxwell’s equations in which the incident fields may be ex-
pressed in terms of coordinates. This should not obscure the fact
that the Davis scheme has however been used in GLMT, in which
the incident field is described in terms of beam shape coefficients
(BSCs), as soon as 1985 [1]. It has furthermore be the source of
the definition of standard beams (Sections Section 3, 4 and 5) and
allowed a justification of the localized approximations to the eval-
uation of BSCs, associated with localized beam models (Section 4
and 5). It should be however noted that, whatever the refinement
in the theoretical description of a beam, the experimental imple-
mentation of the intended beam may be far from being perfect,
e.g. [19], a fact which has been a motivation for studying the pos-
sibility to measure the BSCs in the laboratory [175-178].

After all the successful implementations of the Davis scheme of
approximations to the description of fundamental Gaussian beams,
it is a huge unexpected result which told us that this scheme is
actually divergent, as demonstrated in a much overlooked paper
dated 2008 [179]. This result is the motivation for the present pa-
per. After a short review on Gaussian beams provided above, we
shall now discuss divergent and convergent schemes of description
of Gaussian beams.

The paper is organized as follows. Section 2 deals with the
Davis scheme and its divergence. Section 3 introduces a divergent
version of what is known as standard beams. Section 4 deals with
an improved standard scheme whose convergence seems to be
guaranteed (an expectation later to be deceived), and with the con-
vergent localized approximations (associated with localized beam
models). Section 5 deals with numerical results, comparing inten-
sity profiles obtained in the framework of GLMT, with BSCs ex-
pressed either by using a localized approximation or by using the
improved standard beam description, and leading to the conclusion
that the improved standard scheme is indeed divergent. These pro-
files are compared as well with the one of an ideal intended Gaus-
sian beam profile. Section 6 deals with a complementary discus-
sion, particularly concerning the fact that the divergent schemes
discussed in the paper are the result of asymptotic series behav-
ior made famous in the framework of quantum electrodynamics
(QED), while Section 7 is a conclusion.

2. The Davis scheme and its divergence
2.1. The Davis scheme

To introduce the Davis scheme of approximations [162], com-
pleted by Barton and Alexander [180], Schaub et al. [181], let us

consider a Gaussian beam with a time-dependence of the form
exp(iwt) which propagates along the axis z' from negative to pos-
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Fig. 1. Coordinate systems.

itive 7/, e.g. Fig. 1 reproduced from Gouesbet et al. [182]. Two par-
allel Cartesian coordinate systems, namely (x’,y’,z’) and (x.y.z),
are used to describe the configuration in hand, with (x',y’,7') at-
tached to the Gaussian beam and (x, y, z) used to describe the par-
tial wave expansion of the beam. The origin of the beam system
(x',y’,Z') is located at the center of the beam waist, and has a co-
ordinate zy with respect to (x,y, z).

The story may then start with what is known as the solving
paradox discussed by Lax et al. [183]. This paradox arises when
we express the electric field of a Gaussian beam in the polarized
form E = (E,/,0,0) and assume that E,, is coordinate dependent.
Maxwell’s equation divE =0 then implies dE, /dx’ = 0 which is in
contradiction with the fact that we might have expected a Gaus-
sian function to describe the functional dependence of E,, versus
x. Conversely, if we assume a Gaussian dependence of E,, versus
X/, then Maxwell’s equations are not satisfied. To deal with this
paradox, Lax et al. [183] examined a paraxial approximation and
developed a perturbation procedure to systematically introduce
higher-order corrections. Solutions of Maxwell’s equations describ-
ing Gaussian beams are then expressed using expansions over suc-
cessive powers of a small dimensionless parameter s which may be
called the beam confinement factor (or beam shape factor) and is
defined as:

s=wp/l = 1/(kwp) (1)

in which wy is the beam waist radius and [ is known as the diffrac-
tion length. Relying on this work and on an angular spectrum de-
composition, Agrawal and Pattanyak [184] developed a somewhat
similar approach, but restricted to solutions of the scalar (not vec-
tor) wave equation, and criticized by Seshadri [185] on the ground
that their (m = 1)- first-order nonparaxial approximation does not
have a correct asymptotic state. Rather than the approach by Lax
et al., we shall expound an equivalent formulation due to Davis
[162], see as well [182], which we favour because the introduction
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of a transversely polarized vector potential leads to a theory which
is simpler and more appealing.
The potential vector is then written as:

A= (A.0,0) (2)
in which the non-zero component Ay is written as:
Ax =¥ (x,y,2) exp(~ikz) (3)

in which k is the wavenumber of the beam, and i a function
which is not related to the Ricatti-Bessel function v, of Eq. (99).
The transverse coordinates x and y scale with a small transverse
characteristic length, namely wg, while the longitudinal coordinate
z scales with a large longitudinal characteristic length, namely I.
We then introduce rescaled coordinates according to:

y z
o C=1 (4)

so that the derivatives d1r/0&, dv//dn and 0v/0¢ now possess
the same order of magnitude.

Within the Lorenz gauge, the vector potential A satisfies the
Helmholtz equation:

ViA+KkA=0 (5)

Inserting Eq. (3) into Eq. (5), we obtain a differential equa-
tion for i reading as:

2 9% .0 92
<a$2+a’72—2:a§+528§2>¢:o (6)

The function 1 is then expanded in powers of s? according to:

X
s:w—o'nz

W=i52"%n=lﬂo +8° Y+ M+ (7)

n=0
The lowest-order term 1 represents the fundamental mode of
the Gaussian beam, and is called the first-order Davis beam. As can
be checked by use of Eq. (6), this mode reads as:

Yo = iQ exp[—iQ (&2 + n?)] (8)
1
Q= it2C 9

in which we have conveniently set zy =0, so that (x',y’,7) is
changed to (x,y,z). Afterward, from 1y, we may recursively de-
termine the higher-order modes for n > 1 using Eq. (6). Only vy,
named the third order mode, and 14, named the fifth order mode,
have been explicitly known thanks to [180], to be completed by a
symmetric seventh order mode in 2002 [186] and by a symmetric
ninth order mode in 2013 [126]. However, once an approximation
to ¢ is known, we may derive the corresponding expressions for
the electric and magnetic fields from the potential vector by using
usual expressions. We do not need in the present paper to repro-
duce explicitly the expressions of the third- and fifth-order modes
(or Davis-Barton higher modes), on which our analysis will rely but
see [180]. Let us nevertheless mention that electric and magnetic
field expressions are found to be expanded as, e.g. Egs. (4.16)-
(4.21) in [4],

Ey=E, _wo + 5 (wz + 382 ;/;0) +.. ] exp(—ikz) (10)
E, = EO 2 g;gg st g ;gz } exp(—ikz) (11)
E, = Eo f:s— —is3 +zg;‘gg) } exp(—ikz) (12)
Hy=0 _ (13)
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Hy = Ho|:1//o +82 (Y +i 81/;0) +.. ] exp(—ikz) (14)
H, = H, |:—15w0 - 53% +. } exp(—ikz) (15)

For further use, let us note, by comparing the expressions for
the electric and magnetic fields, that the Davis-Barton scheme is
not symmetric, a point to which we shall return later. Neglecting
all terms with powers with respect to s greater than 1, and using
Eqgs. (8)-(9), we obtain explicitly what is the lowest order approxi-
mation in the Davis scheme, reading as:

E,=Hy=0 (16)
Ex = Eqvg exp(—ikz) (17)
B = 2%, (18)
Hy = Horo exp(—ikz) (19)
H =2V, (20)

e

These expressions define what has been called the order L of
approximation, e.g. [4], p.100. Higher-order approximations are dis-
cussed in [180,181,187-189]. Conversely, we may use still simpler
approximations. We indeed observe that longitudinal components
are not zero in Eqs. (16)-(20), so that the fields do not describe
a pure transverse wave, in contrast with the case of plane waves.
Then, neglecting these components, we obtain a pure transverse
wave, corresponding to what has been called the order L~ of ap-
proximation, reading as, e.g. [4], pp.101-102:

Ey=Hy=E,=H,=0 (21)
(1’%) - (5?)) Vo exp(—ikz) (22)

This is actually the structure of the celebrated Kogelnik’s model
[190-192] as discussed in [4], pp.102-103. A still cruder ap-
proximation is the “tube-like” version in which the fields are
transversely modulated by a Gaussian envelope of the form
exp(—p?/p2) in which p is a cylindrical coordinate and p. a char-
acteristic transverse length related to the transverse “width” of the
beam. Such a crude approximation may be sufficient in various sit-
uations, for instance to design an approximate theory of interaction
between a Gaussian beam and a cylinder, e.g. [193], or to demon-
strate that the laser light propagates slower than the speed of light,
even in vacuum [194].

2.2. Divergence of the Davis scheme

The beam confinement factor s is a small parameter. It is ex-
actly O for a plane wave (wWg — oo). In the usual case of a com-
monly encountered Gaussian beam with a wavelength A = 0.5 pm
and wy =75 um, we have s ~ 10-3. The largest value is obtained
when the beam is strongly focused down to wy ~ A, leading to
s~ 1/(2m) ~ 1/6. It has then been always believed that the se-
ries of Eq. (7) is convergent. We might then state that (i) none of
the finite Davis-Barton modes is Maxwellian (they do not satisfy
Maxwell’s equations) but that (ii) Maxwell's equations are satisfied
in the limit of the infinite Davis-Barton beam which (iii) gener-
ate an ideal finite solution to Maxwell’s equations. This statement
has been invalidated by Wang and Webb [179] who demonstrated
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that the Davis scheme of approximations is actually divergent. The
demonstration of this fact is provided below departing however at
a certain step from the original way used by Wang and Webb.

We begin by rewriting Eq. (6) using rescaled cylindrical coordi-
nates p and ¢ leading to:

RE 0 0 RE
— 21— 2 - =
(8/)2 +pap za§ +5s 8;2)w 0
in which we have used p? = £2 + n2. Rather than p and ¢, we now

use two other independent variables q (which identifies with Q de-
fined in Eq. (9)) and x = p2q, and we rewrite v as:

(23)

_ N —p%2(142i2)
¥ = f(q, x)exp(~ix) = f(q, x) exp [1+4§2 } (24)
After lengthy computations, Eq. (23) leads to:
[i+s*xq(x +2D)]1f - lig+ 25*¢* (1 —ix)1fq
-(1-ix)(1+ 252XQ)fx - 252Xq2fxq - qu3qu
-x( +52XQ)fxx
=0 (25)

in which the subscripts to f indicate derivatives in the usual way.
We then look for a solution of the form:

(01 #0  Am=0,1
Qo2 ap az Qoo
- —_ m=>
do1 dop '
do3 ars ax3 as3 Q43 o 3
- P — P m=>4,
do1 Qo3 do3 do3
Qo4 (14 Qx4 Q34 Q44 Qs4 Qg4 Aroa
- - - - - - m>0,
do1 Qo4 Qo4 doa Qo4 Qo4
aos s 25 ass [ [ ] azs
do1 dos Qos dos dos Qos Qos

f@x)=Y aumx™q"=)_q"> amx™ =) q"fa(x) (26)
n=0 m=0 n=0

m,n=0

in which we therefore introduced:

() = Zamn)(m

m=0

(27)

Inserting Eq. (26) into Eq. (25), we obtain a “recurrence-like”
equation for the expansion coefficients am, reading as:

Ao +A252 =0

in which:

(28)
Ao = [(M+1)(M+2)apnian — I(M+ D)1l x ™' q" (29)
+i(n+ Va1 x ™"

+[(m+ 1)amp1.0 — iGma] x™q"

m+2 ,n+1

q
+ [2(m+ 1)+ 1)t ne1 — 200 + D i X" g"
+ [2(m + Dagmi1.0 — 2iama | x ™ g™

+ (M4 1) (N +2)ay 2 x ™"

+2(n+ D p x ™"

Ay = [(m + 1) (M4 2)apy.0 — 20(M 4+ a0 — amn]x

(30)
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Let us isolate in Eqgs. (29)-(30) the terms corresponding to x9q°,
x%q" and x1q° We respectively obtain:

ayo —idpo =0 (31)
ay +iag; —iag; =0 (32)
4(120 — 2ia10 =0 (33)

in which the sign (—) was misprinted to (+) in [179], while the
other y™g"-terms imply:

(m+ 1)zam-¢—l.z1 —i(m—n+1)am,
+ 2 [(m+n—1)(M+n)am a1
- Zi(m +n-— l)am—l,n—l - am—2,n—2]

=0 (34)

The recurrence rules are then found to be complete and co-
herent if we demand both a;, =0 and am, =0 for m > 2n. The
condition a;, =0 implies in particular that a;g =0 which, by
virtue of Eq. (31), implies as well that agg = 0. Furthermore, from
Eq. (32) we have aq; = 0 as well which is in agreement with the
first recurrence rule. The recurrence rules also imply both a;g =0
and ayy = 0 so that Eq. (33) is satisfied. Departing from Wang and
Webb’s exposition, we may now arrange the expansion coefficients
in a matrix having the following form M reading as:

(35)
ags
o5 am=8,5
with values given by:
an #0 0
(is)2! 0 % 0
B ST T
a0 5 2w 0
(@750 0 3 3 F 3 720 10 30 O
(36)

Let us note that we may argue that agg =0, in a way inde-
pendent from the recurrence rules. Indeed the corresponding x-
component Agg of the x-polarized potential vector Agg = (Agg, 0, 0)
may be written as, see Eqs. (3), (24), (26):

) . —i(x% 4+ y?
Aoo = oo exp [—i(x + kz)] = ago exp(—ikz) exp %
wg (i + n?

(37)
In the far-field, we then have:

—ik(x% +y?)

Ago — A(f)é = dgg exp(—ikz) exp [ 2

] ~ Qg exp(—ikz)

~ dgo exp(—iky/x% +y2 + z%) = agp exp(—ikr) (38)

From A(’;(f) = (A(fjg ,0,0), we may evaluate a far-field electric field

reading as, in the Lorenz gauge, e.g. Eq. (1.121) of [4]:

Eff = (Eff

00 = (39)

—ic . .
00+ 0.0) = E grad leA{;g - 1a)A(f)£
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From Eq. (38), we have divA({g%aooé) exp(—ikz)/0x ~ 0, so

that Egg exhibits the same behavior as Agg, with E(’;g ~ —iwAgg ~
—iwagg exp(—ikr). This would be an admissible behavior in the far-
field if we had agy ~ 1/r in order to generate a spherical wave
(therefore satisfying the law of conservation of energy). This would
however conflicts with the fact that agg must be a constant ex-
cepted if we set agg = 0.

Returning to Eq. (36), of particular interest is its first column
which may be obtained from Eq. (34) for m = 0. Indeed, for m =0
and n =0, we recover dgg =0. For m=0 and n=1, we recover
ay; = 0. But, for m=0 and n > 1, we obtain:

g = ins?dg n_1 (40)

that is to say:

aon/Go1 = (is®)"'n! (41)
Let us now introduce, from Eq. (26):

2(q,0) =q" ) amp®"q" (42)

m=0

in which we recalled that x = p2q. We then readily obtain that
20(q, p) = ago = 0 and that g;(q, p) = qag;. This term corresponds
to a lowest-approximation reading as, from Eqs. (24)-(26):

ll/lowest =doq exp(—iq,oz) (43)

which, comparing with the corresponding lowest-order g of
Eq. (8), implies that ag; =i, and that g;(q, p) = iq. Furthermore,
substituting Eqs. (35)-(36) into Eq. (42), we have:

&(6.p) =ia[(99)'21(1+ 3¢ | (44)

. 1 i 1
g(q.p) = lq[(lszq)23! (1 +50' + %quE‘ + up8q4>] (45)
[0 3 1 4,
84(q,p) = lq[(ls )] 4!<1 +50%

1
8

i

6,3 1 g4 1 495 les)
+3074 pq+12pq+144pq] (46)

1 i 1 i
—i ic2 145 442 b 6.3 1 8.4 " 10,5
g5(q, p) lq[(zs q) 5.<1+2pq T3P0 — P q — 5P

_%plzqe n ﬁpm(f n 28180'016(]8)} (47)
These equations contain a leading primary term reading as:
P, = (is*q)" 'n! (48)
satisfying the recurrence relation:
P, = is’qnP,_, (49)
leading to:

In the large n limit, the ratio |P,/P,_1| becomes larger than 1
indicating the divergence of the Davis scheme. This is confirmed
by using Eq. (40) which leads to:

(51)
as confirmed by the first column of Eq. (36). The turning critical
point is for nc = s72,/1 +4¢2 which, for z = 0, is simply n. = 1/s2.

For a plane wave (s — 0), we have n. — oo, independently of
z. For z=0, and a reasonable value of s equal to 10~3, we have

aon = (is?)"'nlag
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ne = 108, while for the largest limit s ~ 1/6, we have n. ~ 40, these
values increasing when z increases. In any case, these values con-
firm the validity of the Davis approximations used in the liter-
ature, up to the seventh order beam. It is likely that other ex-
pansion approaches, similar to the Davis one, might be divergent
as well although unnoticed. For instance, elaborating on the work
by Agrawal and Pattanayak already quoted [184] and on an angu-
lar spectrum decomposition, Chen et al. [195], in 2002, expressed
solutions to Maxwell’s equations in terms of series with respect
to powers of s (e.g. 7). Although they limited their analysis to
first few terms of the expansion (as made explicitly in the Davis
scheme), they however noticed a rapid divergence of higher-order
terms which, although not explicitly demonstrated (as has been
done above for the Davis scheme), certainly indicates that their
scheme is certainly genuinely divergent in agreement with their
statement (p 410) that, at some point, “the series expansion ap-
proach becomes invalid”. It is worthwhile to note here that the
angular spectrum decomposition has been of wide use in GLMT,
e.g. a review in Section 3 of [196], and a recent paper devoted to
the issue.

Our statement concerning Davis series is however stronger and
more explicit because we claim that this expansion approach is al-
ways invalid beyond a certain critical nc ~ 1/s2. Another example,
worth to be revisited, is by Seshadri, in 2008 [185] who used an
expansion similar to the one of Eq. (7) to solve a Helmholtz equa-
tion, e.g. compare their Eq. (12) and (23) above.

3. The standard beam scheme and its divergence

The standard beam has been introduced in [187] as the conse-
quence of a comprehensive investigation of the Davis scheme of
approximations, aiming to a justification of a localized approxima-
tion (which will be discussed in Sections 4 and 5). It is expressed
in terms of BSCs in the framework of GLMT. We therefore begin by
recalling a small but necessary background concerning GLMT.

3.1. GLMT-background

In this subsection, we follow the convention and notations of
[187] which expressed the GLMT in terms of electric field E and
magnetic field B, instead of the more usual electric field E and
magnetic field H (B =wH). The incident field is then encoded by
two sets of BSCs denoted as g'ry, and gi';; with TM standing for
“Transverse magnetic”, TE for “Transverse electric”, with n ranging
from 1 to oo, and m ranging from (—n) to (+n). These BSCs may be
evaluated by double quadratures or triple quadratures [197,198] in
which g’mm and g';; depend on the radial components of the
electric E; and magnetic B; fields respectively. The double quadra-
ture formulation may be written as [187]:

—-@" R (n—|m)!

S = " Ju(R) (ot )] 52
x[ﬂ sinfdf /zn dpPi™ (cos6)
0 0
exp(—imq&)iEr(R’ 0.¢)
Eo
_(jn-1 —_
gy = @' R (n—|m]! (53)

4m  ja(R) (n+ |m|)!

b4 2
><f sinGde dpPi™ (cos )
0 0

CBF(R’ 0’ d))

exp(—img) nEo
p

in which R = kr, (1,6, ¢) are spherical coordinates, P,Lml(cos«9) are
associated Legendre functions in the Hobson’s notation [199], j; (R)
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are spherical Bessel functions of the first kind, Ey is the elec-
tric field strength and np is the refractive index. If the electric
and magnetic fields exactly satisfy Maxwell's equations, the R-
dependent prefactors will eventually disappear - as we shall ob-
serve - because the integrals 6 and ¢ are proportional to j;(R)/R
(this is compulsory because the coherence of the GLMT framework
implies that the BSCs are constant complex numbers which do not
depend on the coordinates).

Of special interest in this paper is now to consider an incident
Gaussian beam in the configuration of Fig. 1 which is called an on-
axis configuration. In such a configuration, the radial components
of the incident fields reduce to:

E/(R,0,¢) = Eyexp(—iRcosO)F.(R, 0) sinf cos ¢ (54)

B/(R.6.¢) = (55)

with By = npEp/c. The quadratures in Egs. (52) and (53) may then
be performed analytically. It is then found that only the (m = £1)
BSCs are non-zero and that these non-zero BSCs allow one to in-
troduce reduced uni-index BSCs g, according to:

B exp(—iR cos O)F, (R, 0) sinf sin ¢

1
gtTTM = ign,e(gm,il (56)
gire=TF5 gnbémil (57)

in which:
_ R ﬂsinz OF.(R, 9) exp(—iRcos @)P! (cos0)do

BT T ame ) Jo M TR EPE "
(58)
_l‘n—l R T 2

Eup = sin” 0F, (R, 0) exp(—iR cos )P} (cos 0)do

2 ja(R)yn(n+1) Jo
(59)

3.2. Return to Davis scheme

The solution to Eq. (6), limited to a few first terms (before
reaching the diverging critical turning point), may be written as a
series in powers of s according to Davis [162], Barton and Alexan-
der [180], Lock and Gouesbet [187]:

¥ = Do exp(—p*Do)[1 +s*(2Dy — p*D3)

1
+5*(6D3 —3p*D§ — 2p°D5 + 5 °DF) + 0(s°)] (60)
in which:
1 .
DO = m = lQ (61)

The Davis first-order, third-order and fifth order Davis beams
are obtained from Eq. (60) by only retaining some truncations in
the equation, namely up to O(s?), O(s2) and O(s*) respectively.
Using respectively the superscripts D1,D3 and D5 to identify the
various beams, we then have:

¥P! = Do exp(—p*Do) (62)
WP3 = Dyexp(—p?Do)[1 + s (2D — p*D})] (63)
¥ = Dy exp (—p?Do)[1 +5*(2Dg — p*D3)
1
+5%(6DF — 30"D§ — 20°D5 + 5 °D})] (64)
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Eqgs. (62)-(64) then provide three successive approximations of
the potential vector of Eq. (3), from which we may deduce three
successive approximations of the electric E and magnetic B fields,
and therefore three successive approximations of the radial com-
ponents E, and B, which allow one to evaluate the BSCs g, . and
gn.p from Egs. (58)-(59). The electric and magnetic fields obtained
however contain additional dependences with respect to s. We
may then develop different approaches depending on the way to
deal with the s -dependent additional terms. These approaches are
called (i) the mathematical conservative version which corresponds
to truncations of the fields at O(s'), 0(s3) and O(s°) for the suc-
cessive approximations, (ii) the L -version in the sense given to this
terminology in [1,4,200-202], e.g. Eqs. (16)-(20) for the first-order
beam and (iii) the symmetrized Davis-Barton version.

Indeed, we already observed from Eqs. (10)-(15) that the Davis
scheme lacks of symmetry. Although this lack of symmetry does
not occur in Egs. (16)-(20) of the first order beam, it would oc-
cur for higher-order beams. The origin of this lack of symme-
try is simple. Indeed, we started from a potential vector which
was polarized in the x-direction. The relation B =V x A then im-
plies that the x-component of B vanishes, as we can see from
Eq. (13), in contrast with Eq. (10). The symmetry is restored when
we add a potential vector which is formally identical to the pre-
vious x-polarized one, but which is polarized in the y-direction,
leading to the symmetrized Davis-Barton version. After a consider-
able amount of computations, we then find that:

E.(R,0) = Dy exp(—s*R2Dy sin® ) h.(R, 6) (65)
F,(R,0) = Dy exp(—s*R2Dy sin® ), (R, 0) (66)
with:

hDB] — heDBl — hlB')Bl — DO (67)

hDB3 hDB3 hDBB

Do (1 + 3s*D3R?sin” @ — s°D3R* sin" 0) (68)

hDBS hDBS hDBS

Do(1 + 35*DZR? sin? @ — s°D3R* sin* 6
12DSR8 sin® 0)
(69)

for the first-order, third-order and fifth-order respectively, with
the immediate consequences that the double set of BSCs g, . and
&, p Teduces to a single set of coefficients gn = gn.e = & p-

+ 10s®DgR* sin* @ — 5s'°D3R® sin® 0 + %s

3.3. Beam shape coefficients

Inserting Eqgs. (67)-(69) into Eqs. (65)-66, thereafter into either
Egs. (58) or (59), we obtain integrals which, after a bit of effort,
can be integrated analytically, leading to:

g2 =1 —s*(n—1)(n+2) + NCTPH! (70)

@ccc@gl®? = ghBl 4 %S“(an)(n— H(n+2)(n+3)
—%56(”—3)(77—2)(71—1)(n+2)(n+3)+NCTDB3 (71)
€ = g 4 S (- ) - 3) (-2~ D(n+2)(n+3)(n+5)
1
—msm(n—S)(n 4)(n-3)(n—-2)(n—1)

x (n+2)(n+3)(n+5)(n+6) + NCTPB (72)
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These expressions exhibit (i) terms which depend only on n
and s, but which do not depend on any coordinate and (ii) non-
constant terms (abbreviated as NCT) which depend on n and s, but
depend as well on the coordinate R. These NCTs are O(s*), O(s®)
and O(s'2) for DB1, DB3 and DB5 respectively. They are the conse-
quence of the fact that none of the Davis beams of limited order
is Maxwellian. It is worthwhile to insist on the beauty of these re-
sults, particularly when the amount of computations required to
reach them is taken into account. They emphasize indeed a beau-
tiful amount of unexpected symmetries which leads the researcher
to the idea that something deep has indeed been reached by the
procedure, and that we may rely on it for further investigations.

In [187], these results have been summarized under the form:

k
o (=D (n—1)!
_p;) p! (n—-1-p)!

which is valid for k= 1,3 and 5. This expression, although “cor-
rect”, may be found dangerous as far as (n—1 - p)! may appar-
ently have no meaning. For instance, for n =1, it leads to (—1)!...

(n+1+p)!

CES + NCTPBk (73)

(=5)! for I =1...5. In the present paper, we shall prefer to write

a somewhat more explicit expression reading as:

goBk — Z s NCTO (74)
=0 p!

in which:

Npo = 1 (75)

Npp=(m—-p)(n—p+1)...(n-2)(n—-1)
n+2)(n+3)...(n+p+1),p>0 (76)

Although not used in the previous literature, it is worthwhile to
note that the symbol Np, may be expressed, in two ways, in terms
of the Pochhammer’s symbol reading as:

(a)o=1 (77)

(@y=a(@+1)...(x+k-1) (78)

so that Eq. (74) may be rewritten in two ways as:

g = Z - 1; 7 (n = p)p(n-+2), + NCTO (79)
p=0
_ Zk: (—1)Ps2p (nn—(’flz(lp;l) 1 NCTDBK

In the sequel, we shall go on using the more concise symbol
Npp, but when it is useful to proceed otherwise. These computa-
tions may be generalized to the case when z; # 0. One then ob-
tains, after much algebra [187]:

Jj+2p=2k+1

. z J 1)Ps2p + !
DBk — exp(ikzp) 2{; Z( 2is (;) %(p]!p{) Ny + NCTPBK
=0 p=0

(80)

3.4. Standard beams: Divergence for the case zy # 0
Standard beams are then introduced as the infinite generaliza-
tion of Eqs. (74) and (80), reading as [182,187]:
2, (~1)Ps?P

gn:Z p!

p=0

Npp (81)
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J(=1)Ps? (p+ j)!
&n = k 2is— ) —~————=""N, 82
= exp(i ZO),EOPEO( is ) ol Tip! p (82)

for zg = 0 and zg # 0 respectively, the last one being as well avail-
able as:

L e 20\ (=1)Ps?? (p+j)! (n—1)!(n+1+p)!
g”zeXp('kZO)gg(fzww*D pl jipl (a—1-pl+1)!

(83)

which define beams which are exactly Maxwellian (i.e. which ex-
actly satisfy Maxwell’s equations) and are proposed as providing
an exact definition of Gaussian beams, hence the name of standard
beams. It was conjectured that such beams would be the limit of a
complete Davis procedure if it were achieved. We now know that
the Davis procedure is divergent, as demonstrated in Section 2, but
leaves open the question to know whether the standard beam pro-
cedure is divergent as well.

A first step to the answer is to remember that, when dealing
with the applications of standard beams to the evaluation of radi-
ation pressure forces, it has been observed that Eq. (82) possesses
a finite radius of convergence [203]. To understand this feature, it
will be sufficient to discuss the issue for n = 1. We then have (for
n =1, it is more expedient to use Eq. (83) and the fact that facto-
rials of negative integers are not defined):

. i . 20 j
g1 = exp(ikzp) ;(—ZISW—O) (84)
For further use, note that N, does not appear any more for
this case. We then introduce the change of variables A =2szy/wg =
2z/1, and use the four-valued periodicity of i (m=0,1...) to
rewrite Eq. (84) as a summation of four partial series reading as:

.
=

4
g=>_5 (85)
i=1
in which S; is the limit when q — oo of S? reading as:
sd 1
s —iA
= exp(ikzo) (1 + A% + A% + ... 4+ A%
¥ o | explika )
s A3
1
—iA . 1 — A%@+D
=|_p exp(lkzo)W (86)
iA3
leading to:
1 - A l) . 2 . 3
g = llm exp(lkzo)ifﬂ(l —iA— A" +iA°) (87)
wh1ch may be rewritten as:
i iz 1— A%@+D 38
&1 = qLHC}CEXP(l 0)14-71)4 (88)

The convergence of g; then depends on the value of A accord-
ing to the following rules:

(i) When |A| is smaller than 1, i.e. |zg| <[/2, then the term
A%@+D in Eq. (88) tends to 0 and g; is well defined.

(ii) Otherwise, i.e. | A| > 1, then g; diverges.

Therefore, the standard expression for g; exhibits a finite ra-
dius of convergence. This can easily be generalized to g, by re-
taining only the term p = 0 in Eq. (83). This feature explains why
computations of optical forces were only possible in a small neigh-
borhood of the beam waist center in [106]. Hence, the standard
scheme had to be improved as described in the next section.
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4. Improved standard beams and localized beam models
4.1. Improved standard beams

Since we have to deal with the case zg # 0, detailed compu-
tations would be heavy to report and we shall therefore be con-
tent with a sketch of the procedure. Let us consider Eqs. (65)-(66),
which imply that, for the symmetrized Davis-Barton version, we
may write (with obvious superscripts):

FK(R,0) = E¥(R,0) = F¥(R, ) = Dy exp(—s*R*Dy sin® §)hPP* (R, )
(89)

which is valid for zyg = 0. For zy # 0, Dy must be replaced by D
reading as [187]:

1
D= T2 +ia (90)
so that we now have:

F*(R,0) = Dexp(—s*R2Dsin® 0)hPEX(R, 0) (91)

in which the hPB¥’s have to be generalized as well to the case zg #
0. In contrast with the procedure for the standard beams in which
FK(R,0) was Taylor expanded with respect to s, we now expand
them with respect to cosd, which leads to the occurrence of an
exponential term reading as:

—s%R?
1+iA
which is itself Taylor expanded but now with respect to R2. Inte-
grals required to obtain the BSCs are again analytically evaluated as
we have done for zg = 0, non constant terms are again removed,

and the expressions obtained for the first-, third- and fifth-order
symmetrized Davis-Barton beams are generalized to obtain [203]:

exp( ) (92)

_exp(ikzp) 1 (=1)Ps2p
&n=19a g(umy’ P!

Npp (93)

which is to be compared with Eq. (83). We see that the summation
over j which was at the origin of the divergence of the standard
beam scheme has been cancelled out. The convergence of the im-
proved standard beam scheme (when calculating the BSCs) is en-
sured by the fact that the terms Npp of Eq. (93) all vanish as soon
as n = p (see Eq. (76)) so that the series of Eq. (93) is actually a fi-
nite series when n is finite. This is in practice always the case since
computations are made with numerical truncations. This does not
imply however (i) that the converged values of the BSCs have con-
verged to a correct value nor that (ii) the series used to evaluate
the fields are indeed convergent. These questions will be answered
in Section 5.

4.2. Localized approximations and localized beam models

When numerically integrating Eqgs. (52)-(53) for Gaussian
beams, the computational costs and times were prohibitive, ex-
cept for very small particles, this being particularly true if we
remember that such computations have been carried out in the
eighties. Two approaches have been found to solve the problem
(i) the development of finite series [204,205]| and (ii) the develop-
ment of so-called localized approximations which may be viewed
as well, in the case of Gaussian beams, as the development of lo-
calized beam models. These localized beam models indeed gener-
ate Maxwellian Gaussian beams although they are built on paraxial
non-Maxwellian Gaussian beams. We say that localized approxima-
tions (beam models) for Gaussian beams amount to a remodeling
of the original descriptions, from non-Maxwellian descriptions to
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Maxwellian descriptions. These models have originally been devel-
oped in a somewhat heuristic way, relying on the van de Hulst
localization principle [206,207] without any firm mathematical ba-
sis, and justified in an empirical way, e.g. [201,208]. This technique
is reviewed in [209], to be completed with [210,211], and by warn-
ings concerning the use of localized approximations for beams ex-
hibiting axicon angles, e.g. [212,213] and/or topological charges, e.g.
[214,215]. The localized procedure may be summarized as follows
[216].

(i) Expand the radial component of the electric field in terms of
m -waves, proportional to exp(im¢), according to:

Mm=+00

Er= > E"

m=—o0

(94)

(ii) Extract the non-plane-wave contribution £™(R = kr,8) of
EM.

(iii) Then, the localized approximation gi';,, of the BSC gi'yy,
reads as:

G = ()" 7 /2) (95)

In the original localized approximation, R = L1/2, called the ra-
dial evaluation point, was taken to be equal to R= (n+1/2)
[205,217,218]. The justification of the procedure in the case of
Gaussian beams has been developed in [187] for on-axis beams
and in [188] for off-axis beams. In the case of on-axis beams to
which we currently restrict our analysis, the radial evaluation point
R is modified to \/(n —1)(n+2) and the localized approximation
is found to read as [187]:

oc _ €xp(ikzo) —s2(n-1)(n+2)

nE a4 0P 1+iA (96)
which, for zy = 0, leads to:
ge —exp[-s?(n—-1)(n+2)]=1-s*(n—1)(n+2)+... (97)

to be compared with Eq. (70). For a general demonstration adapted
to the case of off-axis “arbitrary shaped beams”, see [216].

5. Numerical illustrations

To complete numerical results and discussions available from
Gouesbet et al. [182], Lock and Gouesbet [187], Gouesbet and Lock
[188], Polaert et al. [203], Ren et al. [219], we now provide extra-
results concerning the schemes discussed above, namely localized
approximations and improved standard beams, being content to
discuss the on-axis case for zg = 0, either using Eq. (97) for the
improved localized approximation or Eq. (81) of the original stan-
dard beam which identifies with Eq. (93) of the improved standard
beam when zy = 0. We shall then display I = |E,</E0|2 in the xy
plane (i.e. for 8 = 7 /2) along the x-axis (i.e. for ¢ = 0), according
to:

I = |Ex/Eol* = |Er(6 = 7/2. ¢ = 0)/Eo[’ (98)
in which E; reads as, e.g. Egs. (3.3) and (3.39)-(3.45) in [4]:
> & 2n+1
— _qyn+1_ =T "
Er = Eogm;n( l) * n(n ¥ 1)g71rfTM[wn (kr)
+Yn (k)P (cos ) exp(img) (99)

in which ¥, (kr) denotes Ricatti-Bessel functions of the first kind.
In the present case in which Eq. (56) is valid with gn. = gn, Eq.
(99) leads to:

E(r0=m/2.¢=0)= % i(—i)““ (2n + 1)gnjn(kr)Py (0)  (100)

n=1
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Fig. 3. Standard beams, s = 10~2.

in which we have used:

1 k) + g ey = "D ke

(101)

Calculations have been carried out using the commercial soft-
ware Wolfram 12.1 Student Edition, and were run on a personal lap-
top [Intel(R) Core(TM) 17-3630QM CPU @ 2.40GHz, 16.0 GB]. The
figures are displayed for A = 0.5 wm and three values of s, namely
s =103 (corresponding to a loosely focused beam with wy ~ 80
pwm), s = 10~2 (corresponding to a more focused beam with wy ~ 8
pm), and s = (1/27) (corresponding to a very focused beam in the

limit wg = A).
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Fig. 4. Standard beams, s = 1/(2m).

Fig. 2 exhibits the intensity I versus x expressed in pm using
the standard (or improved) standard beam expression of Eq. (81),
in which the summation is carried from 0 to pmax, With four values
of pmax from 0 to (n—1). For pmax =0, the BSCs g, are all equal
to 1 and the intensity is found to be a constant. For pmax =1
and 2, the intensity begins to decrease like approaching a Gaus-
sian shape before blowing up. The maximal value of pmax is (n — 1)
since the BSCs become all 0 as soon as p reaches the value n. For
this value the intensity exhibits a Gaussian profile which cannot be
distinguished on the figure from the one given by exp(—2r2/w3).
Figures 3 and 4 correspond to s=10"2 and s=1/(2m) respec-
tively, with similar comments. Note however (i) that the increase
of s corresponds to a stronger focusing and therefore to a de-
crease of the lateral extension of the beam, from 150 for s = 103
to 1.0 for s =1/(2m) and (ii) that, even for the strongest focusing,
the intensity profile is still very close to an ideal Gaussian profile.
Remember, however, that the identification between the intensity
profile reconstructed using the BSCs and the one ideally defined by
exp(—2r2 /wg) needs not to be perfect since the former, built with
BSCs, perfectly satisfies Maxwell’s equations, in contrast with the
tube-like beam defined by an ideal profile.

In Fig. 5, we compare the intensities provided either by using
the improved standard scheme of Eq. (93) specified for zy =0, i.e.
Eq. (81), or the localized approximation of Eq. (97), for s =103,
showing very good agreement between the two approaches. The
ideal Gaussian profile is displayed as well, showing that the Gaus-
sian profile (corresponding to a non-Mawellian beam) agrees well
with the reconstructed profiles, based on BSCs g, (correspond-
ing to Maxwellian beams). Fig. 6. is the same as Fig. 5, but for
s =102, and would be commented in exactly the same way. Sim-
ilarly, Fig. 7. is for s = 1/(2m). The three profiles are slightly dif-
ferent, with the improved standard scheme being slightly better
than the profile corresponding to the localized approximation. The
price for this tiny improvement is however heavy: (i) the improved
standard scheme requires the use of infinite precision computa-
tions and (ii) it is much more demanding in terms of computa-
tional times. Indeed, the calculations with the localized approxi-
mation are in practice “instantaneous”, in contrast with the use of
the standard scheme which demanded about 2 s for s =1/(27),
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about 129 s for s = 10~2 and more than 14 h for s = 10-3. Besides,
we have to face to another impediment, namely that the improved
standard scheme is certainly divergent as we are going to discuss
in the next subsection.

5.1. Divergence of the improved standard scheme

Although the improved standard scheme allows one to evaluate
BSCs without any divergence (since they are evaluated using finite
series), it unfortunately happens that, as a whole, it looks to be
divergent as we shall discuss in this subsection, so that the con-
jecture according to which it would provide a perfectly accurate
scheme is actually not satisfied (an unexpected result indeed). To
this purpose, let us consider Eq. (81) which, by using the Pochham-
mer’s symbol of Eqs. (77), (78), may be rewritten as, using a gen-

10
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Fig. 7. Comparisons between intensities, s = 1/27.

eralization of Eq. (79):

n—1 n-1
(—1)Ps2p 1
; Dl (M= Dpapsny = mg(—l)pxp

(102)

which provides a definition of X,. Furthermore, we have explicitly
taken into account the fact Npp is O for p > n, to insist on the fact
that, being evaluated by finite series, the values of the BSCs of the
improved standard scheme do indeed converge. It is however read-
ily shown that:

1
&n = nn+1)

Xp n+p+1

Xp-1

Eq. (103) implies that X, becomes greater than X,_; when
s2(n— p) becomes greater than 1. In a summation from p=0 to
p=n-—1, the most dangerous value is for p=0 which defines
a critical value of n given by ncs? ~ 1, i.e. nc ~ 1/s2. Let us note
that this critical value is the same as the one we evaluated for
the divergence of the Davis scheme, e.g. comment after Eq. (51).
Considering Eq. (100) in which BSCs are required for n =1 to oo,
there is then the risk that E.(r,6 = /2, ¢ = 0) might diverge so
that, eventually, the improved standard scheme would become a
divergent scheme under conditions similar to the ones of the Davis
scheme, and that correct results as obtained in the previous sub-
section would require a well chosen truncation of the series such
as the one of Eq. (100).

We now illustrate these results with complementary numerical
data obtained for a tighly focused beam with s =1/(2m), there-
fore limiting the critical value of n. to about 40 in order to limit
the computational time. Fig. 8 displays the value of the BSCs gy
versus n. After decreasing down to 0, we then indeed observe a
blowing-up for about the expected critical value of n. Remember
however, once again, that these BSCs are evaluated using finite se-
ries so that convergence is ensured, but the observed blowing-up
may have disastrous consequences when evaluating field compo-
nents. To illustrate this issue, let us consider E (1,60 =1 /2,¢ =0)
of Eq. (100), from which we extract:

=s*(n—p) >s*(n—p) (103)

By = | (<" @0+ g (k)R] 0) (104)
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Fig. 8. BSCs versus n. Improved standard scheme.

Fig. 9. then displays E, versus x/wq for various values of n. The
blowing-up of E, is well apparent if we look at the values of the
vertical scales, starting from about 1. for n = 1, decreasing to about
10-1 for n =35 and, after the critical value n = 40, increasing to
1073 for n =41, and reaching about 10%** for n = 75. The conse-
quence of such a blowing-up is illustrated in Fig. 10. which dis-
plays the intensity I versus x. We may distinguish (i) a first region

1.2x 1071}

Lx 107

-

6x 10"}
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Fig. 10. Intensity versus x, s = 1/(2m).

from x =0 to x = 4 where the intensity correctly agrees with the
ideal Gaussian profile followed by a second blowing-up region, in-
dicating a divergence of the scheme. This fact does not prevent to
obtain correct results, with the condition that the results obtained
have to be rejected after a certain critical value of x. As for the
Davis scheme, this is a typical behaviour of asymptotic series that
we shall discuss in the next section.
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® o (c)
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Fig. 9. E, versus x, for different values of n.

1
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6. Complementary discussion

This section is devoted to two complementary issues. For the
first one, let us note that localized approximations are valid for on-
axis and off-axis cases, although the focus was on on-axis cases
in the present paper. Conversely, standard beam expressions are
known only for on-axis cases. Off-axis cases can however be ob-
tained from on-axis cases by using addition theorems of vector
spherical wave functions under translations of coordinate systems,
an approach originally introduced by Doicu and Wriedt [220], see
as well Zhang and Han [221]. The most general case, i.e. when the
beams are described in a rotated coordinate system in the case of
“oblique” illumination is described in [222-228].

The second issue is the fact that the behavior of the diverg-
ing series, observed for both the Davis scheme and the improved
standard schemes, is reminiscent of asymptotic series in QED, see
Dyson [229] for an early notice. Such series are non-convergent se-
ries which however provide a correct result if we limit ourselves
to a first few terms. A paradigmatic example is the evaluation of
the electron g-factor which is a dimensionless magnetic moment.
It may be evaluated by a series reading as:

o a2 ayl

in which « is a small parameter (the fine structure constant) given
by o = 1/137.035... [230], from which we might have expected a
fast convergence of the series of Eq. (105). Such is not the case
however, and the calculation of the successive coefficients, relying
on the evaluation of an increasing number of integrals related to
Feynman diagrams, becomes more and more complicated. For in-
stance, the calculation of G5 requires the calculation of 72 integrals
while C4 requires the evaluation of 891 integrals [231]. In [232], the
theoretical value is found to be g/2 = 1.001 159 652 181 13 (84) to
be compared with an experimental value given by 1.001 159 652
180 73 (28) according to Hanneke et al. [230]. In such approaches,
correct results are obtained by dismissing an infinite number of
non-converging terms which is the case we have observed in the
present paper, for the Davis scheme where the third-order Davis-
Barton beam already provides a satisfactory description of Gaus-
sian beams although the series itself is eventually diverging, and
for the improved standard beam as well as illustrated in Fig. 10.

(105)

7. Conclusion

The overlooked discovery that the Davis scheme of approxima-
tions to the description of Gaussian beams is actually a divergent
scheme [179] has been the motivation of the present paper. Two
schemes have been nevertheless extracted from the Davis scheme
(i) localized approximations (localized beam models) which do not
rely on the evaluation of series and are therefore trivially conver-
gent and (ii) the improved standard scheme. The fields in this lat-
ter scheme are evaluated by using infinite series and, as for the
Davis scheme, it has been for a long time believed that this scheme
would be convergent. It has however been found that it is diver-
gent as well, with a critical value n. in the summations to the eval-
uation of the fields being the same as in the Davis scheme. The
situation encountered in the divergent Davis scheme and in the
divergent improved standard scheme is reminiscent of the prob-
lem of infinities in QED. In the last case, solutions have been pro-
posed in the framework of superstring theories and, even if su-
perstring theories are still not convincing enough in the mind of
some researchers, they provide at least solutions to the physical
understanding of the origin of the divergences. In contrast, it is
not known whether the infinities encountered in the present pa-
per are purely “accidental” or whether they are a clue for a deeper
understanding.
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