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It is well known that water management practices can have a significant impact on the climate and hydrology of
a region. As a rule, the average flow downstream decreases due to the construction of new hydropower plants
and the operation of new dams, as evaporation increases in the upstream dams. However, this is not the case in
every situation. This study shows that dams in humid areas such as Brazil can help to increase river flow. This
phenomenon occurs due to the high humidity and low wind conditions in the region, which leads to low
evaporation in the reservoirs. At the same time, full reservoirs help to maintain high humidity around the res-
ervoirs, which increases precipitation in the catchment. To test this hypothesis, water storage and hydropower
generation data from Brazilian catchments in the Southeast region were used. Reservoir data are compared with
future hydropower generation to investigate the correlation between the two variables. We find that the oper-
ation of reservoirs has a significant impact on Brazilian river flows. On average, the annual hydropower potential
of a catchment with a full reservoir is 111 % higher than with empty reservoirs. To increase the flow of the river,
the study proposes solutions to fill the reservoirs after an energy crisis and keep the reservoirs at full capacity.

average temperature in the region. Therefore, some experts propose a
regional climate change adaptation strategy (Hirsch et al., 2017) to
address this relationship between land and water management and
climate (Li et al., 2018).

Considering the war in Ukraine and the global rise in natural gas
prices, renewable energy generation in the form of hydropower is

1. Introduction

Land and water management can have a significant impact on the
climate and precipitation in a region. These effects can vary greatly.

Regional climate is influenced by changes in land use and water con-
sumption, which affect evapotranspiration in a region (Zou et al., 2018;
Liu et al., 2018; Hunt and Leal Filho, 2018). The effects of agricultural
Irrigation on local temperatures and precipitation have attracted much
attention in specific research areas (Kueppers et al., 2007; Chen and
Dirmeyer, 2019; Chen and Jeong, 2018; Thiery et al., 2017). Agricul-
tural irrigation increases soil and air moisture. Since evaporation re-
quires the removal of heat from the atmosphere by water, it lowers the

attracting a lot of attention, particularly due to its high operational
flexibility and low CO, emissions. In this sense, the International Energy
Agency (IEA) has recognized that hydropower will play a pivotal role in
the future of electricity generation (IEA, 2021). Future hydropower
projects should be planned to reduce significant environmental impacts
and help to better cope with climate change-related vulnerabilities such
as droughts and floods (Kuriqi et al., 2020, 2021).
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Nomenclature

ANE Affluent Natural Energy

IEA International Energy Agency
R2? Coefficient of determination of a linear regression
SPHS Seasonal Pumped Storage Hydropower Plants
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fact that the average humidity between November and April, during the
rainy season in southeastern Brazil, is around 70 %. The average wind
speed is low, consequently leading to little evaporation (INPE, 2019).
Any additional evaporation helps to increase rainfall in the region,
which in turn increases the runoff from the reservoir. The flooded area
and soil moisture around reservoirs increase as they fill. This increases
the rate of evaporation, which increases humidity and lowers the tem-
perature of the local climate. When a warm, humid weather front ap-
proaches these reservoirs in an environment with higher humidity and

Full reservoirs

Warm and humid front

———y

Empty reservoirs

Warm and humid front

———y

Fig. 1. Diagram illustrating how hydroelectric reservoir levels affect local precipitation.

Water evaporation is a natural phenomenon in hydropower plants
that can reduce downstream flow (Zhang et al., 2015; Lopez-Moreno
et al., 2014; Beilfuss, 2010; Digna et al., 2018). For example, a recent
study has shown that the construction of the Keban dam in Turkey had
little effect on precipitation patterns and reduced river flow downstream
of the dam due to high evaporation in the reservoir, among other reasons
(Downing et al., 2006). This makes hydropower optimization a critical
matter in such regions (Coban and SAUHATS, 2022). However, this is
not the case in very humid regions, such as southeastern Brazil. In this
region, there are two distinct seasons. One is a dry season in which the
relative humidity drops sharply. This occurs when the water levels of the
rivers and reservoirs reach their lowest point between May and October
(Althoff et al., 2020).

Conversely, the relative humidity is particularly high during the
rainy season. Evaporation in the reservoirs helps to maintain the high
humidity and increases regional rainfall (Hunt et al., 2020a, 2022). It
has been shown that the construction of reservoirs in southeastern Brazil
has helped to increase the river flow of the Itaipt reservoir in the Parana
basin by an average of 30 % (Hunt et al., 2020a). The operation of these
reservoirs also has a decisive influence on the average flow of the river
upstream of the dam (Hunt et al., 2022). The hypothesis that water
levels in reservoirs increase rainfall frequency, consequently, the runoff
in the southeastern region of Brazil is less intuitive. Still, it has been
confirmed in a few studies (Degu et al., 2011; Duerinck et al., 2016;
Lathuilliere et al., 2016), focusing particularly on the Brazilian Sao
Francisco River (Santana et al., 2020; Barreto et al., 2017, 2019).

The effects of reservoirs in humid climates can be explained by the
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lower temperatures, the likelihood of precipitation increases (Hunt
et al., 2022).

Conversely, the flooded area and the surrounding soil moisture are
lower when the useful volume of the reservoir is empty. This reduces the
evaporation rate, which lowers the humidity and warms the local
climate. The likelihood of precipitation decreases as the atmosphere
becomes warmer and less humid when a warm, humid front approaches
these reservoirs; Fig. 1 illustrates this phenomenon in a simplified way.

To the best of our knowledge, this study aims to show, for the first
time, the impact of reservoir storage levels on the average total hydro-
power generation of the respective catchments in the southeastern re-
gion of Brazil. This study identifies the possible reasons for these effects.
The research gap consists of extending the method presented in (Hunt
et al., 2022), that investigates the impact of reservoirs on the river flow,
improving it and applying it to entire basins instead of individual hy-
dropower plants, and comparing hydropower generation instead of river
flow. This article brings a new look to the existing literature in the
following areas: (i) impact of land use and water management in
regional climate, (ii) land, water and energy nexus, (iii) climate
vulnerability and (iv) climate change adaptation. The study consists of
five sections. The methods used in this paper are presented in Chapter 2.
Chapter 3 describes the results of experimental research along with their
interpretation. Chapter 4 discusses the findings from this study and
policy implications, indicating their limitations, practical application
and future work. Chapter 5 presents the final conclusions of the
research.
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Fig. 2. Flow chart describing the technique used in the study, showing a) the historical levels of the reservoirs and rivers, b) the data used for the analysis, and c¢) a

comparison of the levels of the reservoirs and rivers.
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Fig. 3. Comparison between ANE and hydropower generation in the Parana
River in 2022.

2. Methodology

The methodology used in this work is described in Fig. 2 and consists
of the following steps. In step 1, historical data on the water storage
volume and the inflowing natural energy of the analyzed catchments are
collected (Fig. 2a). The reservoir storage volume and the inflow of
natural energy (ANE) data were taken directly from (Brazilian National
Electric System Operator, 2021) without any further processing. The
ANE estimates the hydropower potential that could be extracted from
the river course with existing hydropower plants, no water is withdrawn
from the river, no water is stored in the reservoir, and no evaporation
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occurs in the reservoirs. It is assumed that the reservoirs operate as
run-of-river power plants, i.e., that the water inflow is always equal to
the water outflow. ANE is a variable calculated by the Brazilian gov-
ernment to estimate the hydropower potential of a catchment area so
that the national hydrological models can optimize the operation of
hydropower plants in the Brazilian power grid. For reasons of conven-
tion in Brazilian legislation, the ANE calculation assumes that the
existing dams generate electricity when their reservoirs are 65 % full
(Silveira et al., 2016). This fixed value is used to intentionally disregard
possible effects of the operation of the dams when estimating ANE. It is
also assumed that all the water flowing through the dams in the catch-
ment is used to generate electricity, even if there are not enough turbines
installed in the dams to generate electricity from the water (da Silva
et al., 2021). To illustrate the difference between the ANE and the actual
electricity generation from hydropower, look at Fig. 3.

As you can see, hydropower generation at the beginning of 2022 was
significantly lower than the ANE. This is because the reservoirs of the
Parana Basin were very low, and it rained a lot in the Parana Basin. The
difference between the ANE and the actual generation primarily shows
the amount of energy that was stored in the Parana Basin at the begin-
ning of the year. The Parand River consists of the Itaipd, Porto Prima-
vera, Jupid, and Ilha Solteira dams.

In step 2 (Fig. 2b), the month with the lowest water level in the basin
is determined, which varies from August to December. The minimum
reservoir level is compared with the average ANE for the following 12
months (i.e., from November to October of the following year) to
determine the impact of the reservoir level on the river flow. This data is
then plotted on a graph, and a linear regression is developed. It is as if
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Table 1
Basins considered in this study and their respective reservoirs.

Basins Reservoir dams

Sao Francisco Queimados, Retiro Baixo, Trés Marias, Sobradinho, Itaparica

Paranaiba Nova Ponte, Serra do Facao, Batalha, Sao Simao, Emborcagao,
Itumbiara, Miranda, Corumbd, Corumba III, Corumba IV, Cacu,
Barra dos Coqueiros, Espora

Grande Camargos, Furnas, Mascarenhas de Moraes, Marimbondo, Agua
Vermelha, Caconde

Tieté Billings, Guarapiranga, Ponte Nova, Barra Bonita, Promissao, Trés
Irmaos

Paranapanema Jurumurim, Chavantes, Capirava, Maud

Paraiba do Sul Paraibuna, Santa Branca, Jaguani, Funil

the level of the reservoirs can predict the future hydropower potential of
the catchment. The following criteria were used to select these dams:
catchments with large reservoirs at the headwaters of the main river and
highly seasonal runoff, with the lowest reservoir level reached at the end
of the southeastern dry season. Table 1 shows the catchment areas
considered in this study and their respective reservoirs. In summary, the
methodology consists of a simple regression analysis comparing the
minimum level of the reservoir at the end of the dry period with the
average hydropower generation for the next 12 months, using data from
the last 23 years of the selected basins.

3. Results

Results from Step 2 are displayed in Fig. 4 and Table 2. Fig. 4 com-
pares the average ANE in the Sao Francisco, Paranaiba, Grande, Tieté,
Paranapanema, and Paraiba do Sul basins (i.e., from November to the
following October) with the reservoir minimum reservoir level at the
end of the dry period (i.e., August to January). As seen in all basins, the
higher the reservoir levels just before the wet period begins, the higher
the ANE of the following year. The basin power generation potential is

Sao Francisco basin
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closely related to the basin inflow and the regulation capacity of cascade
reservoirs. For a certain level year, the overall regulation capacity of the
basin’s reservoirs is the main reason for increasing the power generation
potential.

Table 2 shows that the ANE of the Southeast region would increase
by 110 % on average when comparing the reservoirs full or empty at the
end of the dry season. The Sao Francisco catchment causes a 230 %
increase in ANE, making it the catchment with the largest increase in
ANE when the reservoir is full. The Paraiba do Sul catchment, with a
31.7 increase in flow, is the catchment where the reservoir level has the
least impact on hydropower. This could be due to its proximity to the
ocean. To determine the extent to which the reservoir affects the typical
river flow during the rainy season, the coefficient of determination (R?)
is calculated. The R? without anomalous data is also estimated after
eliminating standard residuals greater than 1 or less than —1.

The outliers were set to 1 because this removes unusual climate
patterns, such as strong El Nino and La Nina years, from the data. Sao

Table 2
River flow increases with overall reservoir level change and regression line
constants.

Basins Increase in ANE  Regression line RZno R?
(%) (full vs in unusual
empty) Fig. 4 (Y = data > 1

aX+b)

a b
Sao Francisco 230.1 0.0643 3.3722 0.6116 0.2647
Paranaiba 112.5 0.0351  3.099 0.5277 0.2332
Grande 75.5 0.0245 3.2450 0.4952 0.2170
Tiete 40.6 0.0095 0.6757 0.1620 0.0433
Paranapanema  173.4 0.0152  0.8766  0.4906 0.1677
Paraiba do Sul 31.7 0.0023  0.7264  0.2709 0.1125
Average 110.6 - - 0.4263 0.1731
8 Grande basin
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Fig. 4. Comparison of the month with the lowest water level and the average ANE of the following 12 months in the Sao Francisco, Grande, Paranaiba, Para-

napanema, Tieté and Paraiba do Sul catchment areas.
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Fig. 5. Number of occurrences of the (a) month with minimum water storage level and (b) maximum ANE per basin.

Table 3
Description, evaluation, and reservoir filling sequence for a dam (ONS, 2013).

Basins Reservoir Reservoir area Basin Reservoir Reservoir Increase in generation  Increase in Reservoir
maximum surface  variation area storage: storage: capacity with full generation/storage filling order
area (km?) (km?) (km?) water (km®)  energy reservoir (GW) capacity (GW/TWh)

(TWh)

Sao Francisco 6164 4010 641,000 48.0 39.5 7.02 0.177638 1

Paranaiba 5437 3504 223,000 45.1 48.5 3.51 0.0724 4

Grande 2891 1669 143,000 31.3 40.1 2.45 0.061103 6

Tieté 1752 545 72,000 9.5 9.5 0.95 0.099628 3

Paranapanema 1509 506 100,800 12.6 9.4 1.52 0.162334 2

Paraiba do Sul 299 147 56,500 4.3 3.4 0.23 0.06813 5
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Fig. 6. Correlation between (a) the change in the catchment area (R2=0.8121), (b) total catchment area (R?=0.9831), (c) catchment water storage capacity
(R%=0.7147), (d) latitude of the largest catchment (R?=0.9954) and the increase in ANE.

Francisco and Tieté have the highest and lowest R? values with and
without atypical data at 0.62 and 0.26 and 0.16 and 0.04, respectively.
Fig. 5 shows the number of occurrences per month with minimum water
level and maximum ANE per basin. The driest month with the most
occurrences for Sao Francisco, Paranaiba, Grande, and Tieté was
November, for Paranapanema was December and for Paraiba do Sul was
October. The highest ANE months with the most occurrences for Sao
Francisco, Grande, and Parafba do Sul was January, for Paranaiba and
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Tiete was February, and for Paranapanema there are six occurrences in
January, February and June.

As shown in Table 3, Sao Francisco is the catchment with the greatest
variation in the reservoir area, i.e., maximum reservoir area minus
minimum reservoir area, catchment area, water storage capacity, and
increase in power generation when the reservoir is full (from Fig. 4). The
Paranaiba catchment is the catchment with the largest energy storage
capacity. The basin whose hydropower generation increased the most
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Table 4
Comparison between the impact of reservoir levels in the hydropower genera-
tion of a basin and the river flow of a reservoir.

Basin level Reservoir level (Hunt et al., 2022)

Basin Increasein  R2 Reservoir Increase in R?

ANE (%) river flow

(full vs (%) (full vs

empty) empty)
Paranapanema  173.4 0.1677  Jurumirim 213.1 0.301
Sao Francisco 230.1 0.2647  Trés Marias 144.7 0.224
Paranaiba 112.5 0.2332  Emborcacao  105.8 0.245
Grande 75.5 0.217 Furnas 90.3 0.221
Paraiba do Sul 31.7 0.1125  Paraibuna 47.1 0.113
Average 110.6 0.1731  Average 120.2 0.2208

with the filling level of the reservoir is Sao Francisco, with an average
increase of 7.02 GW. Paraiba do Sul is the dam with the smallest in-
crease in generation at 0.

The ability of dams to store energy is an important factor in deter-
mining the order in which reservoirs should be filled. The country’s
electricity supply must come from other sources, or electricity demand
must be curtailed when hydropower generation is reduced to allow the
reservoirs to refill. The Paranaiba basin has a maximum energy storage
capacity of 48.5 TWh. The Paraiba do Sul catchment area has the lowest
storage capacity at 3.4 TWh. The catchment area that increases hydro-
power generation the most and, at the same time, requires the least
energy storage capacity should be filled first. To determine this, the
columns “Generation increase with full reservoir (GW)” and “Reservoir
storage: Energy (TWh)” are mixed up. The priority for filling the reser-
voir increases as the values increase. Thus, the basins that should be
filled first are Sao Francisco, then Paranapanema, then Tieté, then
Paranaiba, Paraiba do Sul, then Grande.

Fig. 6 shows the relationship between the increase in ANE of all
basins analyzed, except for the Paranapanema basin. The Paranapanema
basin was excluded because it is located between the South and South-
east regions and has different climate dynamics than the other five re-
gions. Fig. 6 shows that the greater the variation in catchment area,
water storage capacity, and catchment latitude, the greater the impact of
water levels in the catchments. This means that (i) the larger the area
variation of the reservoirs in the basin, the greater the impact of reser-
voirs on climate and hydropower generation, (ii) the larger the total
reservoir area of the basin, the greater the impact of reservoirs on
climate and hydropower generation, (iii) the larger the total volume
storage capacity of the basin, the greater the impact of reservoirs on
climate and hydropower generation, and (iv) the higher the latitude of
the catchment, the greater the impact of reservoirs on climate and hy-
dropower generation, These correlations contribute to further highlight
the impact of that reservoirs have in the regional climate. It can also be
assumed that the construction of new reservoirs in the region would

Energy Reports 13 (2025) 856-864

increase the river flow of these basins.
4. Discussion

This paper examined the impact of several reservoirs in a catchment
on future hydropower generation in that catchment. In a recent study,
the impact of a reservoir on the discharge of its downstream reaches was
investigated (Hunt et al., 2022). Table 4 compares the catchment study
in this study with the study on individual reservoirs in (Hunt et al.,
2022). Fig. 7(a) shows that the increase in inflowing natural energy for
the catchment level is like the increase in river flow in the individual
reservoirs in the Paraiba do Sul, Grande, Paranaiba, and Paranapanema
catchments. However, it is clearly different in the Sao Francisco catch-
ment. This could be because the Sao Francisco basin has two large res-
ervoirs, Trés Marias and Sobradinho. Sobradinho is a larger reservoir
located in the northeastern region, while the Trés Marias reservoir is
located in the southeastern region.

Fig. 7b shows that the R? is similar in the basins of Paraiba do Sul,
Grande, Paranaiba, and Sao Francisco. However, it is significantly
different in the Paranapanema basin. This might be because the Para-
napanema basin has three other large reserves (i.e., Chavantes, Cap-
ivara, and Maua). Maua is also located in the South region, which has
different climate dynamics compared to the Southeast region.

The analysis of the basin linear regression indicator shows a weak
correlation between the variables, and the data points are rather small.
Thus, these results should be carefully analyzed. Filling the reservoirs is
a challenge. This is due to the feedback loop: low reservoirs lead to low
river flows. In addition, environmental flow is needed to maintain the
ecosystem between reservoirs. Therefore, any inflow higher than the
environmental flow should be used to fill the reservoirs. Once all Bra-
zilian reservoirs are filled to the maximum at the end of the rainy season,
the focus will be on operating the reservoirs to maximize river flow
while minimizing river losses due to overflow. The capacity of the
catchment to store more flow and reduce overflow losses increases with
low reservoir levels. However, this study shows that the natural flow of
the river is greatly reduced at a low reservoir level. The optimal mini-
mum reservoir level, which increases hydropower generation and min-
imizes runoff, varies from basin to basin and from year to year. However,
it can be assumed to be between 60 % and 70 % (Hunt et al., 2022). Each
reservoir should also always maintain a certain storage capacity for
flood control downstream of the dam. Once the reservoir is filled,
maintaining the ecological flow is no longer a challenge as water
availability in the catchment increases significantly.

One disadvantage of very high reservoir levels is that the increase in
precipitation will also increase the risk of flooding in the catchment
area. For example, 1981 was the only year in October when the reser-
voirs in the southeastern region of Brazil were almost 100 % full. This
was done to accelerate the filling of the Itaipti reservoir (i. e., Brazil’s
largest hydroelectric power plant) (Fernandes Franciscato et al., 2022).
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water and energy storage, and land use.

In the rainy season of 81-82, it rained so much that the annual average
ANE of the southeastern basins, including the Parand, exceeded 200 %,
and the reservoir filled up within six months. This rapid flooding made it
impossible for the animals to migrate out of the reservoir area and led to
their death. Therefore, measures and investments should be taken to
mitigate and adapt to floods to reduce the impact of floods in the
catchment area.

The increase in seasonal energy storage capacity of Brazil would
allow the existing reservoirs to be kept full and contribute to an increase
in precipitation in the main hydropower basins. This could be performed
with hydrogen production or with the construction of seasonal pumped
storage hydropower (SPHS) plants. The construction of SPHS plants
parallel to the main river increases the water and energy storage
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capacity of the basin and reduces spillage of the dams downstream the
SPHS plant (Fig. 8a,b) (Hunt et al., 2021). The Northeast Region SPHSs
can store additional seasonal power from wind turbines and augment
cascade hydropower generation and water supply for various purposes
(Hunt et al., 2017; Gonzalez-Salazar and Roger Poganietz, 2022). Due to
the significant water level variation of SPHS plants, little space is needed
to store a lot of water and energy (Fig. 8c (Hunt et al., 2018)). Several
SPHS facilities have been proposed for Brazilian river basins (Hunt et al.,
2017, 2020a; GESEL, 2021). In (Hunt et al., 2020b), many recently
proposed plants for SPHS are presented. Energy crop storage is another
way to store energy and water seasonally in parallel with a large river, as
seen in (Hunt et al., 2016).

The phenomena described in this paper, that hydropower reservoirs
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Fig. 9. Global relative humidity map (Center for Sustainability and the Global Environment, 2024), replacing locations with humidity higher than 70 % by wind

speeds (DTU, 2023).

can increase the downstream water flow, could potentially happen in
other basins with high humidity and low wind speeds. In basins with
high humidity and low wind speeds, little evaporation happens, but the
reservoir contributes to maintaining humidity in the basin high, which
increases the chances for precipitation. Fig. 9 presents the global relative
humidity map (Center for Sustainability and the Global Environment,
2024), replacing locations with humidity higher than 70 % by wind
speeds (DTU, 2023). In locations with relative humidity higher than
75 % and wind speeds lower than 5 m/s, the construction of reservoirs
could potentially contribute to increasing the flow of the river down-
stream of the dam. Future work will investigate how reservoir levels of
large dams in the areas indicated in Fig. 9 to investigate if the same
phenomena highlighted in this paper happen in other basins around the
world.

5. Conclusions

This study has shown that reservoir levels have a significant impact
on hydropower generation and river flow in the southeastern region of
Brazil. The average impact of the minimum reservoir levels can increase
the river flow in the catchment area by up to 110 % in the following 12
months. This aspect shows that the river inflow influences the reservoir
level on a weekly and monthly basis. In contrast, the water level of the
reservoirs determines the river flow in the catchment area on an annual
basis. To reduce the demand for thermal electricity and overcome an
energy crisis in Brazil, the reservoirs should be filled in the following
order: Sao Francisco, Paranapanema, Tieté, Paranaiba, Paraiba do Sul
and Grande. Brazil has considerable hydropower potential that has not
been fully exploited since the drought in 2014 and 2015. To increase
hydropower production with the existing dams, reduce electricity costs,
and reduce CO; emissions from thermal power sources, the country
should focus on generating electricity from other renewable sources
such as solar and wind energy and save energy so that the reservoirs in
the southeastern region are re-dammed and kept high.
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