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In classical thermodynamics, heat must spontaneously flow from hot to cold systems. In quantum ther-
modynamics, the same law applies when considering multipartite product thermal states evolving unitarily.
If initial correlations are present, anomalous heat flow can happen, temporarily making cold thermal states
colder and hot thermal states hotter. Such an effect can happen due to entanglement but also because of
classical randomness, hence lacking a direct connection with nonclassicality. In this work, we introduce
scenarios in which anomalous heat flow does have a direct link to nonclassicality, defined as the failure
of noncontextual models to explain experimental data. We start by extending known noncontextuality
inequalities to a setup in which sequential transformations are considered. We then show a class of quan-
tum prepare-transform-measure protocols, characterized by a time interval (0, t.) for a given critical time
7., where anomalous heat flow happens only if a noncontextuality inequality is violated. We also analyze
a recent experiment from Micadei ef al. [Nat. Commun. 10, 2456 (2019)] and find the critical time z.
based on the authors’ experimental parameters. We conclude by investigating heat flow in the evolution

of two-qudit systems, showing that our findings are not an artifact of using two-qubit systems.

DOI: 10.1103/f68k-cjx4

L. INTRODUCTION

The second law of thermodynamics forbids heat to flow
from a colder system to a warmer system without consum-
ing any resource, assuming that the systems are isolated
[1,2]. The direction of heat flow suggests the notion of an
“arrow of time” [3]. If one takes the heat-flow direction
and the arrow of time as equivalent phenomena, given two
initially correlated interacting systems, a local observer of
one of these two systems could have their arrow of time
deceived [4,5]. For instance, the heat exchanged (in the
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absence of work) between these two systems can initially
have a “backflow,” i.e., heat can flow from the colder to
the warmer system. Such heat flows are said to be anoma-
lous [6]. Crucially, this is not a violation of Clausius’s
formulation of the second law of thermodynamics, since
correlations are consumed for such anomalies to happen.
Their consumption is responsible for the possibility of a
reversal in the heat flow.

An attempt to visualize what is happening is to imagine
a “Maxwell demon” [7-9] that has knowledge about the
correlations between two physical systems and somehow
wants to use this information to perform a thermodynamic
task. The demon can use these correlations to make heat
flow from the cold to the hot system. This thought experi-
ment was first discussed by Lloyd [10] and then concretely
investigated for the case of pure quantum states by Partovi
[11], and refined by others [4,12—19]. Recently, the pre-
diction of heat-flow anomaly in quantum theory has been
tested [20].

Interestingly, there is no no-go result forbidding the
demon (possessing knowledge of initial correlations)
to cause anomalous heat flow in microscopic models

Published by the American Physical Society
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described by classical statistical mechanics. Indeed, as
shown in Ref. [15], one can construct examples of
heat-flow reversals caused by correlations without quan-
tum coherence with respect to the local energy basis.
Notwithstanding, there is a bound on the amount of heat-
flow anomaly that can be caused by classical correlations.
In such cases, it is possible to surpass this bound only in the
presence of entanglement between the initial states [4], this
being known as strong heat backflow. These results show
that, in general, anomalous heat flow alone cannot indi-
cate a departure from classical explanations, in which case
quantifying the anomaly is necessary to separate classical
and nonclassical heat transfer.

In this work, we show that experimental scenarios exist
in which any anomalous heat flow does indicate the fail-
ure of a classical explanation. Our working definition of
classicality will be the existence of a generalized non-
contextual model capable of reproducing the observed
data [21]. This notion of classicality is well-motivated
conceptually [22]: it emerges under quantum Darwinist
dynamics [23] and subsumes other notions of classical-
ity such as Kochen-Specker noncontextuality [24—26],
ordinary classical mechanics [27, Sup. Mat. A], or non-
negative quasiprobability representations [28—30]. The
failure of noncontextual models to explain data can be
robustly analyzed [31-34], experimentally tested [35-37],
and quantified [38—40].

One of the most useful aspects of generalized non-
contextuality is that, even though noncontextual models
provide an intuitive classical understanding of (fragments
of) physical theories, they can reproduce counterintu-
itive phenomena such as no-cloning [41], teleportation
[41,42], the impossibility of discriminating nonorthogonal
states [41], and some single-photon Mach-Zehnder coher-
ent interference patterns [43]. Even rich subtheories of
quantum theory can be framed in terms of noncontex-
tual models such as Gaussian quantum mechanics [44] or
odd-dimensional (single or multisystem) stabilizer subthe-
ories [45]. The failure of generalized noncontextuality can
therefore be considered a stringent criterion for nonclas-
sicality. This failure is a strong and rigorous indicator that
the system exhibits nonclassical behavior. Moreover, this
criterion is considered stringent because contextuality is a
clear, broadly applicable, and robust property of models,
strongly distinctive from classical behavior.

In this work, we show that anomalous heat flow implies
a violation of a generalized noncontextuality inequality
in an important class of experimentally meaningful sce-
narios. This is an indication that contextuality can be
further explored as a resource for quantum thermodynam-
ics [46—54]. In our scenario (see Fig. 1), initial bipartite
two-qubit states p, interacting via an (energy-preserving)
unitary U(f) = e~ during a time interval 0 < ¢ < 7., can
cause heat backflow (or increase the normal heat flow) only
when generalized noncontextual models cannot explain the
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FIG. 1. A sketch of our main result. A “hot” qubit is at tem-
perature 74 and a “cold” qubit is at temperature T, i.e., Ty > Tp.
Each system individually has an associated Hamiltonian, H4 and
Hpg. We find that for energy-preserving two-qubit interactions
Ui (1), i.e., satisfying [U; (1), Hy + Hg] = 0, any anomalous heat
flow within a certain interval 0 < ¢ < 7, leads to generalized con-
textuality. Our results are not restricted to this simplest case of
qubit systems, as we also show.

statistics witnessing this property. We call 7. the critical
time. For times ¢ > 7. outside such intervals, the anomaly
does not necessarily imply the failure of generalized non-
contextual models to reproduce the data.

To showcase the practical relevance of our findings, we
apply our results to the experiment performed in Ref. [20].
We also demonstrate similar results for the partial SWAP
interaction between two qudits with dimension d > 2,
showcasing that our findings do not depend on the specific
Hilbert-space dimension of the physical systems.

Central for demonstrating our results is the work of
Ref. [27]. We extend the authors’ findings from a spe-
cific transformation process 7 to one in which sequentially
composed transformation processes 7"’ o T are considered.
We then find that noncontextual models, restricted to obey
certain operational equivalences, must be bounded by a
noncontextuality inequality that we construct. Our inequal-
ity recovers the one found in Ref. [27] as a special case. We
believe that our analysis of a concrete sequential scenario
will have independent interest in the program of finding
noncontextuality inequalities that take into consideration
the role of transformation contextuality.

This work is structured as follows. In Secs. II A and II B,
we describe the relevant quantum thermodynamic quan-
tities that we investigate and the possibility of reversing
the usual direction of heat flow caused by initial correla-
tions. In Sec. I1 C, we review the concept of generalized
noncontextuality and the methods developed by Ref. [27]
that are important to us. We present our main results in
Sec. III. We start by presenting our Theorem 2, in which
the method of Ref. [27] is extended to consider the com-
position of transformations. In Sec. Il A, we show that
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noncontextuality inequalities apply to a broad scenario of
two interacting qubits (Theorem 3) and that any anomalous
heat flow, for dynamical evolutions inside a critical interval
0 < t < 7., witnesses quantum contextuality. We then use
our results to analyze the experiment of Ref. [20] and find
an approximate value of 7, for that experiment using avail-
able parameters. In Sec. III B, we consider an interaction
given by a partial SWAP unitary and observe the violation
of the noncontextuality inequalities for the example of heat
flow between two-qudit systems. In Sec. IV, we review
our results and make our final remarks. Unless stated oth-
erwise, the dynamics will be evaluated in the interaction
picture.

II. BACKGROUND

A. Average heat of local systems during an
energy-conserving interaction

Consider a quantum model described by the total Hamil-
tonian

H=H,®1z+1,®Hg+ Hj, (1)

where H, and Hp denote the local Hamiltonian operators
for quantum systems H 4 and H g, respectively, whereas H;
is the interaction Hamiltonian operator governing the inter-
action between the two systems. When it is clear from our
discussion, we write Hy = H; ® 15 and Hgp = 1, Q Hp.
Additionally, we suppose that the sum of the average of
the free Hamiltonians is conserved during the evolution of
the system [55]. Therefore,

[Ui(0), H4 + Hp] = 0, 2)

where U;(?) is the unitary time-evolution operator in the
interaction picture and thus is given by U;(f) = e "1,
setting h = 1.

We will only consider initially correlated quantum sys-
tems H 4 and H3p, in a global state p € D(H,4 ® Hp), such
that each local state p; (i = 4, B) is a thermal state (aka
Gibbs states). Here, D(H) denotes the set of all positive
trace-1 bounded operators acting on . This means that

e PiHi

/.

pi =Ty {p} = P;h =

)

where H; is the local Hamiltonian of i = 4, B, 8; = 1/T; is
the inverse temperature of i with Boltzmann constant kz =
1, and Z; is the partition function of each thermal state,
Z; ="Tr {e‘ﬂin}.

With the above assumptions, where the Hamiltonian of
the joint system is time independent, we can define the
average heat flow of the quantum system H 4 as the total
energy that it exchanges during the evolution (for the use

of this definition, see Refs. [4,12—17,20,56])

(Q4) = (U'(OH,U(t) — Hy)
=Tr{p(U (0H,U(t) — Hp)} . 4)

Note that, with this definition, a positive (Q,) means
that H 4 receives heat. Similarly, we can define the aver-
age heat (Qp) of the quantum system, Hp. From energy
conservation [Eq. (2)], we must have (Q,) = —(Qjp).

B. A modified Clausius inequality

The dynamics described above imply that the possible
average heat flow must satisfy certain inequalities, given
the initial state p € D(H, ® Hp). If there are no initial
correlations between the systems H 4 and H3, so that p =
pﬁlh ® p, an immediate consequence is that (see, e.g., Ref.

[56, Eq. (15)])
(B4 — BB)(Q4) =0, (5)

which is equivalent to Clausius’s statement of the second
law [1,56-58] for the scenario that we are considering.
Equation (5) holds because, for such a case, the left-hand
side equals the entropy production, which must always be
non-negative.

However, if there are initial correlations between the
systems, they can be consumed for thermodynamic tasks.
Consequently, the above inequality must be modified [4,
13,15]. For the kind of dynamics in which we are inter-
ested, just introduced in Sec. II A, the inequality becomes

(B4 — Bp)(Qa) = AZ(4: B), (6)
where
AZ(A:B) =Zy,yi(Ad:B)—Z1,(4:B) (7
is the variation of the mutual information

Zy(4 : B) = S(pa) + S(pp) — S(p), ®

before and after the evolution, and now p € D(H, ® Hp)
is any state for which the local states p; = p}h are Gibbs
states. Albeit a well-known fact, we present a detailed
derivation of the above in Appendix A.

The inequality in Eq. (5) can be derived from that in
Eq. (6) where the parties are initially uncorrelated, since
AZ(A : B) is always non-negative in this case. Therefore,
as for the heat-flow direction, both inequalities have the
same meaning. For the case in which the quantum sys-
tem H 4 is colder than quantum system Hp, we must have
(Q4) > 0 and heat flows from the hot system to the cold
system, as ordinarily expected. However, for initially cor-
related systems, the variation of the mutual information
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can decrease AZ(4 : B) < 0, allowing for the possibility
of anomalous heat flow (Q 4) < 0. This “modified Clau-
sius inequality” includes the consumption of correlations
causing heat-flow inversion and still respects the second
law of thermodynamics [4,13,15] (something that becomes
evident when written in terms of entropy production [56]).
Note that if we had assumed quantum system 7, to be
hotter, then the standard heat flow would be described by
(Q4) < 0,1.e., system H, would lose heat and the anomaly
would be characterized by (Q,4) > 0, indicating that sys-
tem H 4 was receiving heat even though it was the hotter
system (this will be the case considered in Sec. III A 3).

C. Generalized noncontextuality

Generalized noncontextuality is a constraint on onto-
logical models [59] that attempt to explain empirical data
predicted by an operational probabilistic theory (or frag-
ments thereof) [21,29,60]. Empirical data is obtained by
acting on some system with a preparation procedure P, fol-
lowed by a transformation 7" and measurement M. Given
that an outcome k& is obtained, the data are described
statistically by some conditional probability distribution
p(k|M,T,P). Each procedure, P, M, and T, is defined
by a set of laboratory instructions to be performed. They
follow a causal order (given two procedures 7 and T,
composed in sequence, denoted by 75 o 71, only the first
can causally influence the second) and they respect certain
laws with regard to which procedures should be applied to
which systems (if a transformation 7, transforms a system
A to some other system A’ and a transformation 7, trans-
forms a system B to some other system B’, they cannot be
sequentially composed as 7> o 77 unless A’ = B; the the-
ory needs to set rules to account for physical systems of
different types) [29,61].

Different procedures are associated with different lab-
oratory prescriptions, but they can still yield the same
data regardless of any possible operation in that theory.
If this happens, these procedures lead to the same possi-
ble inferences that can be taken from the data. We then
say that the two procedures are operationally equivalent
[21] or also inferentially equivalent [33,61]. Formally, this
defines an equivalence relation on the set of procedures
in the theory: take any two transformation procedures
T\,T, € 7 from the set of all possible transformations
T . These are said to be equivalent, and denoted Ty >~ T
if, for all conceivable preparation procedures P € P and
all conceivable measurements procedures M € M having
outcomes k € I,

We term each pair k| M to be a measurement effect. Sim-

ilar definitions hold for equivalent preparation procedures
P, >~ P, and equivalent effects k) | M| >~ k, | M>.

An ontological model [59] of an operational probabilis-
tic theory attempts to explain the predictions of that theory
in the following way. Such a model prescribes a (mea-
surable) space A of physical variables A € A and assigns
probability measures wp(A) for each preparation proce-
dure, stochastic matrices I'7(A" | A) for each transformation
procedure, and response functions & (1) for each mea-
surement effect k£ | M such that they recover the empirical
predictions of the operational theory from

p(klM,T,P)=//SMM()»’)TT(?»’I?»)dMP(k)- (10)
A JA

An ontological model of an operational theory is said
to satisfy the principle of generalized noncontextuality if
it explains the operational indistinguishability of differ-
ent procedures 77 >~ T, by formally imposing that their
counterparts in the model I'7, and I'z, are equal, i.e.,

>~ = FT1=FT2, (11)

and similarly for preparation procedures and measurement
effects. When there exists no generalized noncontextual
model that can reproduce the data from an operational
probabilistic theory, we will refer to this theory as con-
textual. Quantum theory, viewed as an operational theory,
is contextual. This can be shown from no-go theorems
[21,62] or in a quantifiable manner via the violation of
generalized noncontextuality inequalities [63—65].

In quantum theory, any quantum channel [66,67] & :
B(H) — B(H) defines an equivalence class of all possi-
ble physically implementable operational procedures that
are described by the channel £. B(H) denotes the bounded
operators acting on H. We write this as £ = [T¢] to repre-
sent the fact that there can exist many different laboratory
procedures 7 described in quantum theory by the same
channel £ such that 7'~ T¢, implying that T € [T¢]. Two
operationally equivalent procedures then satisfy the fact
that

') = &£ =6&6 (12)

and the converse holds as well, but now for every ele-
ment of the class represented by the quantum mechanical
operators

51 = 52 == TI1'>~T,, VT|e [Tgl], T, € [ng]. (13)
Noncontextuality inequalities can be used to bound the
ability of a noncontextual model to explain experimental
tasks of interest, success rates of a given protocol, or other
figures of merit. Commonly, such bounds are investigated
in a prepare-and-measure setup, where the role of trans-
formations is either not considered [68—72] or is merely
used to define novel preparation procedures [23,73,74]. In
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other words, most scenarios that do consider the role of
transformations do so by using transformations to define
novel preparations, in the sense that if we have prepara-
tions P € P and a finite set of transformations 771, ..., Ty,
then we only analyze the contextuality of the preparation
procedures defined by new preparations 7;(P), or some
compositions 7; o T; (P), and so on. The role that trans-
formation contextuality can play in a scenario without
viewing these as defining novel preparations has so far
been considered only in a handful of scenarios: to investi-
gate the nonclassicality of stabilizer subtheory [45,75], of
weak values resulting from weak measurements [76,77],
and also of quantum thermodynamics of linear response
[27].

1. Noncontextuality inequalities for the average of
theory-independent observables

In any operational theory, there is a specific transfor-
mation procedure denoted Tiq that denotes the “identity”
transformation. Its action is operationally characterized by

p(k|IM,Tig, P) = p(k|M,P) (14)

for all possible preparation procedures P € P and all
possible measurement effects k | M € IC x M.

In a theory-independent setup, we estimate an observ-
able A by assigning some values a; to outcomes k obtained
once a measurement M has been performed. We will then
define a theory-independent observable

A= {(a, k| M)} (15)

to be the finite family of pairs of values a; and effects
k| M, for a given measurement procedure M. Hence, we
can define the expectation value at an initial instant (where
we have not transformed the system of interest) given any
fixed preparation P € P via

(A©0) =) awp (k| M,P) (16)
k

and the expectation value once a transformation has taken
place as

(AW®) = apk|M, T, P). (17)
k

Here, ¢ is merely a (suggestive) label for the transforma-
tion procedure 7;. Also, in all the discussion that follows,
we consider, without loss of generality, that a; > 0 for
all k. The expectation for the variation between A(0) and
A(?), given that preparation P has been performed and that

transformation 7; has preceded it, is then given by

(AA)p, =Y ar(p(k|M,T,,P) —p(k|M,P)). (18)
k

When it is clear which P and 7; are being considered,
we simplify the notation (AA)p, = (AA). In Ref. [27],
it has been shown that generalized noncontextual models
that attempt to reproduce the (theory-independent) aver-
ages of observables defined by Eq. (18) must satisfy certain
inequalities that can be violated by quantum dynamics
approximated by linear-response perturbation theory. To
be more specific, by linear response we mean that the
evolution (in the interaction picture) is generated by a
Hamiltonian interaction Hj(¢') with a weak strength param-
eter g, given in Eq. (19) below, i.e., satisfying g < 1. In
this way, the unitary evolution will have the form

U(Hh=1- ig/ H;(!)d! + 0(g?). (19)
0

In quantum theory, the term “observable” is usually used
to denote Hermitian matrices or, more generally, self-
adjoint operators 4 = A" in B(H). In this case, the theory-
dependent quantum mechanical averages are given by (in
the interaction picture)

(A4) = Tr{ADp (1)) — Tr{AD)p), (20)
with respect to some initial state p € D(H) and where, if
we are focusing on the linear-response regime, the inter-
action unitary is taken to be given by Eq. (19). Note that
in quantum theory, the values a; are the eigenvalues of the
observable 4.

An ontological model should explain the statistics of
Eq. (18) via Eq. (10), i.e.,

(AA) =) a [ / / & DTV | 2)dpp(0)
k A JA

—/ ékM(X)dMP()»)]- (21)
A

In Ref. [27], a bound has been proved for averages
described in terms of Eq. (21), when the ontological mod-
els are generalized noncontextual, that we improve upon
slightly in the following.

Theorem 1. Suppose that the following operational
equivalence is satisfied:
ali+ (1 =) = (1 —pa)Tia +paT,  (22)

where 7;, T}, and 7" are transformation procedures, T4
is the identity procedure, and 0 <p; < 1,0 <o < 1. Let
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A be an observable. Then, any noncontextual ontological
model for the variation of its average, defined by Eq. (18)
where a; > 0 for all &, must satisfy

AmaxPd
o?

< (AA) Spdamax‘
o

(23)

Above, amax := max{a}; is the largest value associated
with the observable A.

The proof follows the same reasoning as given in
Ref. [27], which we will present in detail for the proof of
Theorem 2, and recovers the results from Ref. [27] for the
case @ = 1/2. The condition defined by Eq. (22) is called
the stochastic reversibility and can be understood as toss-
ing a coin to decide if we transform the system using 7
(with probability ) or 77 (with probability 1 — ). After
many realizations, the effective transformation obtained is
operationally indistinguishable from doing nothing with
the system with some probability 1 — p,; and doing some
other operation with probability p;. The probability p, is
interpreted as a “probability of disturbance” from the ideal
stochastic reversibility with p; = 0. For example, if we
consider 77 as inverse evolution and o = 1/2, stochastic
reversibility means that the average evolution after mak-
ing an equal ensemble of forward and backward evolutions
is very close to not having any evolution in the system.
We note that T;, 7, and T" are in principle any triplet
of transformations satisfying the operational constraint of
stochastic reversibility. We assume no other constraint
on such transformations. We also note that each trans-
formation separately (at this operational level) plays no
fundamental role and that it is only the relation between
these three operations (together with 7iy) that is of rele-
vance for the characterization of the scenario. Interestingly,
in Ref. [27], a method has been suggested to certify if a
linear response unitary satisfies

1 1
Ui+ Euf=<1 — pa)id 4 paC, (24)

where U (-) := U(t)(-)U(®), with U(#) given by Eq. (19),
id(X) = X is the identity channel, and C is some quantum
channel.

As a final remark, we would like to note that the inequal-
ity in Eq. (23) is valid for any fragment of an operational
probabilistic theory having preparation procedures {P;}; <
P, effects {k| M}y € M x K and at least the transfor-
mations {7}, T}, T}, Tia}; © 7, where the transformations
satisfy Eq. (22). Here, ¢ is merely a label for the trans-
formations in this fragment. In any such fragment, for
each choice of 7, and P, the inequality —pyamax/a® <
(AA)ps < paamax/a is a valid noncontextuality inequality.

III. RESULTS

We start our results by generalizing the main theorem of
Ref. [27] (Theorem 1, for « = 1/2) to the case in which we
have two sequential transformations 77 and 75, and under
the assumption that both satisfy operational equivalences.
Our main goal is to obtain a characterization of a scenario
in which the presence of contextuality is due to anomalous
heat flow. It is to that end that we make the aforementioned
generalization, stated below in Theorem 2.

Theorem 2. Let T; be a sequential transformation given
in terms of other two transformation procedures 7;, and
Ti,, i.e., T; = T;, o T;,. Moreover, let T; satisfy the opera-
tional equivalences

1 1
T, +

ST+ 5T = (A =pa)Ty+paTi  (29)

where 0 < py, < 1, and also

T =~ (1 = pa,) Tia + pa, T, (26)

where 0 < p;, < 1. Then, any noncontextual ontological
model for the average of an observable A must be bounded
by

_4amaxb—§(A-’4> < 2amaxb, (27)

where b_ :=pg, +3pa, —3pa,pa, and by :=pg, +2pa, —
2pa,Pa,> and amayx = max{a;}; is the largest value associ-
ated with the observable A.

We prove this theorem in Appendix B. Note that
b_,by > 0forall 0 < py ,ps, < 1.Itis worth noting that
this result is not limited to discrete systems; as demon-
strated in Appendix B, our framework extends to scenar-
ios involving a continuous set of ontic states, opening
up avenues for future application in continuous-variable
systems. Consequently, this could be a theme for future
research. This theorem will be instrumental for cases in
which the transformation describing the evolution of the
system is not capable of satisfying Eq. (22) but can be
described as a composition of transformations satisfying
this equation. Note that we recover the theorem of Ref. [27]
(or Theorem 1, for @ = 1/2) when py, = 0 and also when
T, ~ T;‘z ~ Tiq. Also, when convenient, we can write
the inequality in Eq. (27) more compactly as [{(AA)| <
4amaxb_, since b_ > b, . Relevantly, 7 can be any label ¢ =
(t1, 1) for which (A(t)) =), axp(k| M, T;, o T, P) and
we do not assume operational equivalences to be satisfied
by T;,.

Similarly to Theorem 1, our Theorem 2 does not depend
on the fact that the operations 73, 7} are the inverses of
one another; they work for any set of transformations sat-
isfying these operational equivalences. Also, this result is
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not only valid under thermodynamic considerations: it will
hold for any observable from which its theory-independent
average can be described by an equation of the form given
in Eq. (18).

A. Two interacting qubits

Let us consider Zeeman Hamiltonians to be the class
of single-qubit Hamiltonians defined as linear combina-
tions of the identity operator 1 and the Pauli matrix o.
We now show that an interesting class of quantum inter-
actions between two-qubit systems must satisfy the opera-
tional equivalences defined by stochastic reversibility. The
following theorem is made to obtain a practical noncontex-
tuality inequality between any two qubits that interact via
a unitary evolution preserving their total energy, and hence
can be useful and a large range of applications. Here, we
shall use this for our main question, which is the influence
of contextuality in the heat-flow inversion.

Theorem 3. Let H = C?> ® C? be the Hilbert space
describing a two-qubit system. Consider the evolution
U(t) = e”™ | with H given by Eq. (1), with H, and Hp
being Zeeman Hamiltonians. Suppose also that the inter-
action preserves energy, i.e., [H;,Hy ® 1+ 1, ® Hg] =
0. Assuming an interaction-picture representation of the
dynamics, for every fixed instant #:

(1) Nonresonant case (Hy # Hp). There exists a quan-
tum channel C such that

1 1 -
Eul + Eul' =(1 — pa)id + paC, (28)

where U;(-) = Uy () (U (0T, Up(f) = e ™, and
0<ps=<1.

(2) Resonant case (H4 = Hp). The unitary evolution
U;(¢) can be written as a composition of two other
unitaries U;(f) = U, o U; and there exist quantum
channels C;, C; such that

T T ,
Eul + Eul :(1 _pdl)ld +pd1C17 (29)
1 1 .
EUZ + §U2T=(1 —pa)id +pa,Ca,  (30)

where Uy(-) = Uy()U,and 0 < pg, < 1fori = 1,2.

We prove this result in Appendix C. We now comment
on some aspects of this result that can be relevant. First,
we do not need to assume a linear-response regime for
the validity of the stochastic reversibility equations. The
values of pg, pa,, and py, and the quantum channels C,
Cy, and C, always exist. This immediately implies that
such a dynamical evolution always satisfies the operational
assumptions necessary for Theorems 1 and 2.

We can use Theorem 3, together with Theorems 1 and 2,
to draw the following conclusion. Let H = C> ® C? and
Ut) = e ™ = Uy(H U; (¢), where Uy(f) = e~ "HatHB) and
U;(t) = e ™I are as described in Theorem 3. Then, any
noncontextual ontological model for a fragment of quan-
tum theory (viewed as an operational theory) described
by states {p} € D(H), POVM elements {Ey()}ir, =
{Uo(t)TEka(t)}k,, C B(H)* and unitary transformations

{U;(0}; € U(H), such that

Ade =Y ar (Tr{Ur (0 pUr(0) Ex(0) — Tr{pEx(1).
k

must satisfy the inequality
_4amaxb7 = AANC = 2amaxb+a (3 1)

where b_ = pg, + 3pa, — 3pa,pa, and by = pg, + 2pa, —
2pa,pa,, for some 0 < py,,pqs, <1 fixed by the transfor-
mation U(#) and where {a;} € R* is any finite set of
real positive numbers having an,, := max{a;}. Note that
Eq. (31) is an inequality for when we assume the validity of
quantum theory, while Eq. (27) is valid for any operational
theory. The average (AA(#)) predicted by quantum theory
for a positive observable 4 is recovered when we let £, :=
IT¢ correspond to the projections onto the eigenspace of 4,
associated with eigenvalue a;.

To show why the inequality in Eq. (31) holds, for the
nonresonant case, we use Eq. (28) as the quantum theoret-
ical version of the operational equivalence from Theorem
1, from which we obtain Eq. (31) with pz, = 0. As for the
resonant case, we can apply U, to both sides of Eq. (29)
and obtain a quantum theoretical version of the operational
equivalence from Theorem 2, since U, is linear. This is an
important use of Theorem 2, which can be applied in a
broad scope of different situations. Indeed, given any non-
contextual ontological model for a fragment of quantum
theory, if two unitary transformations, {/; and U4, in this
fragment, satisfy Egs. (29) and (30), respectively, then the
above procedure can be carried out to obtain the inequality
in Eq. (31).

Let us make a clarification regarding the interaction pic-
ture and the results in Theorems 1 and 2. Note that in the
interaction picture, when assuming the validity of quantum
theory, it is sufficient that the unitary evolution satisfying
Eq. (22) is the one related to the interaction Hamiltonian
(regardless of energy preservation) and one simply evolves
the observable with the noninteracting evolution, hence
considering E(¢) instead of Ej. In the theory-independent
setting, one can simply define the average observable to be
estimated with respect to a new set of measurements k; | M;
and values g, for a fixed label ¢. This is, however, not
necessary for the conclusions following from Theorems 1
and 2 and it is a feature of applying these findings when
assuming quantum theory as an operational theory.
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Therefore, we have the average
(Ad(D) =

Y (Tr{U,pUjUgnyj Uo} — Tr{pUl T} UO})
k

= Tr(U; () pUr(t) A(2)) — Tr(pA(t))

= Tr(p(DA(0) — Tr(pA(D)). (32)

We can see why the inequality in Eq. (31) bounds non-
contextual explanations for such fragments of quantum
theory. In any such fragment, the dynamics characteriz-
ing any transformation procedure represented in quantum
theory by the interaction unitary U; as in Theorem 3 sat-
isfy the operational equivalences from Theorem 2. These
equivalences are the requirements for the noncontextuality
inequality from Theorem 2 to hold for theory-independent
observables given by Eq. (18). When applied to any frag-
ment of quantum theory respecting these equivalences,
such observables take the form described by the inequal-
ity in Eq. (31). As a final remark, note that in general,
Pd» Pa;» and pg, will depend on the parameters (and the
time parameter f) describing the interaction Hamiltonian
Hj. Their exact dependence is given in Appendix C.

1. Generalized contextuality without measurement
incompatibility

The above calculations allow us to draw a simple yet
remarkable conclusion. We can consider a fragment of
quantum theory that has: (i) unitary evolutions U(¢) and
U(t)", together with the identity map and some other chan-
nel C, for a fixed time ; (ii) a single measurement protocol,
characterized by the effects {I1;(¢)};; and (iii) a tomograph-
ically complete set of states p for . Even though such
a fragment obviously has no measurement incompatibility
(as there is, in fact, a single measurement), such a frag-
ment may lead to a violation of the above inequality (as
we will show later). Indeed, that proofs of the failure of
generalized noncontextuality can be found with a single
measurement is a theoretical prediction from Ref. [78].
Our construction provides a concrete fragment of quantum
mechanics in which this can be verified by the violation of
a noncontextuality inequality, obtained from Theorem 2.

2. Contextuality as a necessary condition for anomalous
heat flow

We will now show that contextuality allows for anoma-
lous quantum heat transfer beyond what any noncontextual
model is capable of. Using Theorem 3, we now study
violations of the generalized noncontextuality obtained
when there is heat exchanged between two qubits, Hy =
C? = Hjp. They are described locally in terms of Zeeman
Hamiltonians, which, without loss of generality, we choose
to be Hy = wy/2(1 — 0,) and Hg = wg/2(1 — 0,), and

they interact via an energy-preserving unitary. From the
definition of Eq. (4), we see that if we choose 4 := Hy ®
13, then

(Qu) = (A1) — A(0)) = (Hs ® 1p(t) — Hs ® 15) (33)

and we can investigate the average heat flow from quantum
system Hp to system H, (or vice versa). From Theorem
3, the noncontextuality inequalities (Eqs. (23) and (27))
bound the heat received by 4 explainable by noncontextual
models. The inequality in Eq. (23) bounds the nonresonant
case, while that in Eq. (27) bounds the resonant case.

For the nonresonant case wy # wg, the study is trivial,
since no heat is transferred. This happens because by a
direct calculation, for all times,

(Qa) =0. (34)

It is simple to see that this holds because the most general

nonresonant interaction Hamiltonian H;,, in this case that

is capable of satisfying [H;,,., H4 + Hp] = 0 must have the

form H,, = g(|01)(01] 4 |10)(10]) (see Appendix C).
For the resonant case wy = wg = w and

Hy = %(11 — . (35)

We now consider the most general case of an initial
two-qubit density matrix (in the eigenbasis of 0 ® o %),
written as

Poo Vi VE‘E v*
_ Vi pOl. 7731 V;: 36
Y V) 7’)@715 Do UAT s ( )

14 V3 V4  pu

where 0 < pgo, po1, P10, p11 < 1, 1, and & are real num-
bers and the remaining parameters are complex numbers,
constrained to satisfy the fact that p is positive semidef-
inite and poo + po1 + p1o + p11 = 1. Note that we choose
a commonly used basis representation to make our calcu-
lations but our results are basis-independent, as is usually
true for proofs of the failure of noncontextuality [64]. Here,
v* denotes the complex conjugate of the complex number
v. The most general energy-conserving unitary interaction
for the resonant case is given by Uy, (f) = e Hn! where H;
is a Hamiltonian given by

0 0 0 O
0 a €% 0

H[r =& O e*ie a 0 5 (37)
0 0 0 O
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where g >0 and 0 <6 <27x. As demonstrated in
Appendix C in the proof of Theorem 3, we find that U; =
U, o U; and that the unitary evolutions characterized by
such Hamiltonians satisfy the operational equivalences
shown in Theorem 3 for pg = sin’[(a — 1)gt/2] and
Pa, = sin®(g?). Note that in both cases py, = O(g*#*) when
gt L.

For this situation, a direct computation of the average
heat [Eq. (4)] results in

(Q4) = [ (po1 —p1o) sin*(gf) + n sin(2g?) sin(€ —0)] .
(38)

This equation asserts that, for the case of resonant qubits,
transformation contextuality happens for sufficiently small
gt if and only if the presence of coherence in the initial
density matrix has some effect on the heat flow. This is
because, using Theorems 3 and 2 with 4 := H; ® 13, the
absolute value of the heat must be bounded by a quantity
of order O(g?#?), to allow for a noncontextual explanation
of the dynamics (the inequality in Eq. (27)). However, the
heat contribution caused by coherence, namely, the term
n sin(2g?) sin(8 + &), is O(gf), which can always violate
the noncontextual bound for small enough gt. In Ref. [27],
this has been called the contextuality of quantum linear
response.

For small enough gt, whenever the variation of the
observable (in this case, the energy) is O(gf), a quantum
violation of the noncontextuality inequality will always
exist. More concretely, we can find the range for values
gt in which an anomaly must imply quantum contextu-
ality. Since, in an experimental setup, g is normally a
fixed parameter, this means that we are interested in find-
ing the interval 0 < ¢ < 7., for some critical time t. such
that any anomalous heat flow cannot be explained by non-
contextual models. Note that in general, t = 0 starts with
no heat flow and we let t = t. be the regime in which
we lose a violation of the noncontextuality inequality in
Eq. (27).

While our main focus has been on the earliest crit-
ical time 7, at which contextuality due to anomalous
heat flow ceases to be guaranteed, this is by no means
the only interval in which noncontextuality inequali-
ties can be violated. In the most general setting, our
results imply that, for certain evolutions, multiple disjoint
time windows exist in which a violation of the non-
contextuality inequality signals anomalous heat flow. For
concreteness—and to facilitate comparison with experi-
mental data—we then concentrate on this specific first time
interval.

If we impose for the initial state p that the local states are
thermal with inverse temperatures 84 and S (see Eq. (3)),

then the most general global state p will have the form

Vo v} vy p*
1 )
Vi — — 1 ne’s —vJ
Zy .
P=1v, ne® — —y —v} ’
Zp
o—wba—oPs _ |
-V -V ———— +tv
14 2 1 7. 75 0
(39

where vy is a real number and Z; = 1 + e *fi, i = 4, B.
This is the case considered in Sec. 11 A, with two-qubit
systems. The average heat [Eq. (38)], after some manip-
ulations, becomes

N wfa\ wPs
(QA)_w{zsm (g9 |:tanh(7> tanh( > )i|

+7 sin(2g?) sin(§ — 0)}. (40)

The term (w/2) sin®(g?) [tanh (wB,/2) —tanh (wBz/2)] in
the above equation is of order O(g?#) and is responsi-
ble for the standard heat flow in the absence of correla-
tions. For instance, if Ty < Tg,then 84 = 1/T4 > 1/Tp =
Bp and therefore tanh (wB,/2) > tanh (wBp/2), meaning
that quantum system H,—in this case, the colder sys-
tem—receives heat as expected.

Concurrently, the term wn sin(2g?) sin(§ — 6) has sign
and magnitude depending only on the coherence term ne’
and the interaction parameters g, 6. This allows the lat-
ter term to be capable of causing anomalous heat flow or
to increase the standard heat flow depending on the type
of coherence and interactions. Importantly, this last term
is of order O(gt), which (from Theorem 3) implies that,
whenever this term is nonzero, there will be a contextual-
ity witness for small enough gt or, equivalently, for some
interval of time 0 < ¢ < t.. Since any heat-flow inversion
is possible only due to this last term, we conclude that the
following holds.

Corollary 1. For any two qubits (having local Zeeman
Hamiltonians and associated Gibbs states) interacting via
an energy-preserving unitary, anomalous heat flow is pos-
sible for 0 < ¢ < 7. only if noncontextual models fail to
explain the data.

This corollary is our main result. It shows a contextuality
signature for a fairly broad class of thermodynamic scenar-
i0s. It is also important to note that the term v in Eq. (39)
carries all the information about the incoherent correlations
in the initial density matrix of the two qubits. However,
this term has no role in the heat exchanged [Eq. (40)].
This leads us to conclude that only coherent correla-
tions and entanglement are responsible for the anomalous

030359-9



NAIM E. COMAR et al.

PRX QUANTUM 6, 030359 (2025)

heat flow, for the interacting two-qubit case. This relation
between heat-flow anomaly and the aforementioned quan-
tum resources is already known from Ref. [14]. We add
the statement that it is both these resources, together with
the dependency on gt and the validity of the operational
equivalences that we investigate, that make these correla-
tions inexplicable by means of noncontextual ontological
models.

In addition, we can point out a relation between the vio-
lation of the standard Clausius inequality [Eq. (5)] and
the presence of contextuality when gt <« 1. That is, for
short times, the same heat-flow term contributing to the
anomaly, and hence to the violation to the noncon- textual-
ity inequality, is responsible for the initial negativity of the
mutual information change in Eq. (6) (see Appendix D).
This suggests a direct relationship between contextuality
and the emergence of correlation effects in the second law
of thermodynamics.

3. Connection with experimental results

We have claimed that for fixed values of g, there are crit-
ical times 7. that can be found, such that, for any 0 < ¢ <
7., the noncontextual inequality is violated for this class of
two-qubit interactions that we have just studied. Small gt
bounds the amount of time in which this contextuality wit-
ness happens in real experiments and we wish this time
interval to be experimentally accessible. Therefore, we
now estimate such a critical time 7. using the parameters
from the recent experimental result of Ref. [20].

In this experiment, the two qubits are realized by spin-
1/2 systems in a nuclear magnetic resonance (NMR)
setup and are resonant with local Hamiltonians in the
form of Eq. (35) with @ = hvey,, where h ~ 4.135 x
10-1%5 eV.Hz™! is the Planck constant and Vexp = 1 kHz.
The interaction is set by the following effective interaction
Hamiltonian:

(41)

J
Hi="2!®a -l @ab),

where J = 215.1 Hz. The initial temperature (in units
of energy) of the qubit H, is Ty = 4.3 peV and of the
qubit Hp is Ty = 3.66 peV (recalling that 7; = /Si_l). Note,
therefore, that in the experiment of Ref. [20], H, is the
hotter system, so any anomalous heat flow happens when
this system receives heat, which in our convention is
characterized by (Q,4) > 0.

Additionally, the experiment considers the initial state in
the form of Eq. 39) withy =& = vy =v; = v, =0, and
n = —0.19. This situation corresponds to the resonant case
with heat given by Eq. (40) and an interaction Hamiltonian
having parameters g = Jrw,a = 0,and 6 = 7 /2.

0.25}

0.20
—_ I (Q ) - Bnc
-
& 015}
=
Q
T 0.10¢

0.05 |

0.05 0.10 0.15 T. 0.20

Interaction time (ms)

FIG. 2. Ananomalous heat flow with 0 < ¢ < 7. implies a vio-
lation of a noncontextuality inequality. The average heat flow
predicted by quantum theory (red line) and the noncontextual-
ity bound (blue curve). The noncontextuality bound is given by
the inequality in Eq. (27). The region above the curve (orange)
corresponds to the values in which the heat transfer cannot
be described by a noncontextual model. Any anomalous heat
flow violates the noncontextuality inequality for 0 < ¢ < 7. =
1.85 x 10~* s. In this interval, heat averages predicted by quan-
tum theory are greater than those achievable by noncontextual
models. The interaction Hamiltonian is given by Eq. (41) and
the initial quantum state is given by Eq. (39). The parame-
ters are as follows: J = 215.1 Hz, o = 4.135 x 107 % eV, T, =
43 peV, Tp =3.66peV,y =E=vy=v=1n=0,g=Jm,
a=0,0 =m/2,and n = —0.19, taken from Ref. [20].

Theorem 2 implies that the absolute value of the heat
received by the qubit H 4 must be bounded by the function

By : = 2amaxby =2amax (Pay + 2Pay — 2Pa\Pay)
= 2hvo[sin* (U t) + 2sin*(Jt/2)
— 2sin*(Jrf) sin® (J7t/2)]
= 2hvo[1 — cos® (Jrh)], (42)

defining the noncontextual bound. In Fig. 2, we see the
region where the heat flow predicted by quantum theory
(red curve), given by Eq. (40) with the parameters of the
experiment of Ref. [20], violates such a bound for small ¢
(the anomalous heat flow here is positive since Ty > T3;
a standard heat flow would be negative). Therefore, we
obtain the approximate value for critical time to be 7. ~
1.85 x 107*s.

As mentioned previously, during the reversal of heat
flow, the initial correlations are “consumed” and, as a
result, the variation of mutual information AZ(4 : B) is
negative. A clear image for this consumption is presented
in Micadei et al. [20, Fig. 2] for this experimental case. As
we show in Appendix D, this consumption has a negative
slope boosted by the same heat-flow term that violates the
noncontextuality inequality.
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We can also see that, from Fig. 2, when ¢ > 7., anoma-
lous heat flow can happen, yet without the violation of the
noncontextuality inequality (it is important to stress that
respecting this noncontextuality inequality is a necessary
but not a sufficient condition for noncontextuality). We
can also comment that the plot in Fig. 2 is enlarged, so
that the values of (Q,) appear to be a line when they are
described by a periodic function. This implies that, in fact,
there are various critical time intervals At; = (t/, ) in
which the reversal of heat flow witnesses quantum contex-
tuality. Finally, while we have focused on the linear regime
due to the experimental parameters, in principle differ-
ent choices of parameters could allow for the anomaly to
witness contextuality beyond a linear-response regime.

B. Two-interacting-qudit systems: The partial SWAP as
a case study

Our main theoretical result from Theorem 2 is not
dependent on the dimensionality of the physical system
considered. To highlight this fact, we explore similar con-
clusions as in the two-qubit case, using the methods of
Theorems 1 or 2, by finding interactions that respect
the stochastic reversibility condition [Eq. (22)] valid to
any bipartite system C¢ ® C for some dimension d. In
what follows, we make statements that are valid for any
Hilbert space H and specify to the case of dynamics
governed by the partial SWAP acting on H = C? @ C.
For concreteness, we conclude with an analysis of the
case d = 3.

1. A simple family of unitary evolutions satisfying
stochastic reversibility

We say that a Hermitian operator K = K is also invo-
lutory when K? = 1. From Stone’s theorem, any family
of unitary operators {U(#)}; can be written as U = e K
for some self-adjoint K and for the cases in which K is
also involutory, we can show that it satisfies stochastic
reversibility.

Proposition 1. Let H be any Hilbert space. Let K
be an involutory self-adjoint operator from B(H) and
Uk (f) := e K Then, Uy (-) := Ux () (-)Ux ()" satisfies
the stochastic reversibility condition given in Eq. (22),
with C(-) = K()K, @ = 1/2, and p; = sin*(g?).

Proof. Note that C(X) = KXK' and KTK = KK =1
and hence C is in a Kraus representation form, and there-
fore it is a quantum channel. The validity of stochastic
reversibility with this specific p,; follows from Taylor
expansion, since K is bounded and involutory. |

Examples of Hermitian involutory matrices are the SWAP
operator, the Pauli matrices, the identity matrix, controlled-
NOT (CNOT) gates, conjugations [79], and the Hadamard
matrix.

2. Partial SWAP
A unitary that satisfies this condition and energy conser-
vation [Eq. (2)] is the partial SWAP, defined as
Ups(1t) := '8, (43)
where S is the SWAP operator [66] and g > 0. Since the
SWAP operator is described by an involutory matrix, i.e.,
S? = 1, Proposition 1 applies to e "¢’ where

Ups(t) = cos(gt)1 — isin(gr)S. (44)

By direct calculation, we have
1 L 2( oh)i )
EUPS + EUPS: cos”(gn)id + sin”(g#)Cs, (45)

where Ups[X] := Ups()XUlg(t) and U [X ] = Ups(dTX T
Ups(t), pa = sinz(gt), and the quantum channel Cs[X] =
SXS. Note that the partial SWAP dynamics are valid for any
S acting on C? ® C“. In what follows, we investigate heat
flow in this general case.

3. Heat flow during a partial SWAP of two qudits

The partial SWAP unitary can be useful to obtain non-
contextuality inequalities for higher-dimensional systems,
since it satisfies the stochastic reversibility condition in any
dimension in which S is well defined. An example that may
find fruitful applications is any two qudits interacting via a
partial SWAP. For these cases, we find conclusions similar
to the two interacting qubits of Sec. Il A.

Consider two single-qudit quantum systems H 4 and Hp,
each with a Hilbert space of dimension d > 2. The qudit
‘H 4 has a local Hamiltonian

d—1

Hy ="y lk) (kly,
k=0

(46)

where the wy, are positive numbers (the so-called Bohr fre-
quencies) and the |k), are the eigenvectors of H,. If the
global state of the composite Hilbert space H,y ® Hp is
initially

P = Z Pnmpn’ |n, Wl) <n’,m’ > (47)

nmn’ .m'

where py, . are the density-matrix elements with
respect to p > 0 and tr{p} = 1, with marginals pfn/ =

> Puma.m and pﬁ’m, =Y Pnmanm- Note that we have
defined |n,m) := |n), ® |m)p, where |n), is an eigenvec-
tor of H, with eigenvalue w, and |m)jy is an eigenvector
of the local Hamiltonian acting on the Hilbert space of B.

Given these conditions, we show (see Appendix E) that the
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heat received by H 4, after interacting with H via a partial
SWAP (given by Eq. (44)) is

(QA) = Sinz(gt) (Zprﬁ,mwm - Zp;tq,nw”)

— sin(2g0) > M@ mn)0n. (48)

n,m

This equation maintains the same characteristics as the
heat exchanged between any two qubits [Eq. (38)] and,
consistently, it is equivalent to Eq. (38) for d =2 and
6 = 0. The following three aspects are of main importance.
First, the first term of the right-hand side of the above
equation, namely, sin’(gf) > D@m= Yy Pia@n)s
which depends only on the diagonal terms of the global
density matrix (and, more specifically, only on the diago-
nal terms of the reduced density matrices), is responsible
for the standard heat flow. For instance, if the local states
are thermal p, = (e P14 /7,) and pp = (e P818 / Z;), for
B4 inverse temperatures, Zyp) partition functions, and
the local Hamiltonians Hyp) = ZZ;(I) i 16) 48y (klaz)»
with w; = kAw > 0 (equally spaced Bohr frequencies),
this first term will be

w

)
smz(gﬁ [coth(BzAw/2) — d coth(dBpAw/2)

— (coth(B4Aw/2) — dcoth(dBsAw/2))],  (49)

which is always positive for 84 > B, meaning that it con-
tributes positively to the heat received by H, when the
quantum system H, is locally in a colder state than the
quantum system Hjp. Clearly, this term is also consistent
with the case of two qubits (for d = 2 and 6 = 0, this gives
the first term on the right-hand side of Eq. (40)).

Second, the second term on the right-hand side of
Eq. (48), namely, —sin(2g?) Y, ,, Im@ymmn)@n, is the
term responsible for the possibflity of anomalous heat
flow and depends only on the coherent terms of the initial
density matrix (in the energy eigenbasis).

Third, this second term on the right-hand side of Eq. (48)
is of type O(gt) for small values of gz, while the first term
(responsible for the standard heat flow) is of type O(g?#).
Therefore, this second coherent term is always capable of
violating a noncontextuality inequality for a sufficiently
small gz. This follows directly from Proposition 1 (which
is valid for the partial SWAP unitary) and Theorem 1.

Hence, we have shown that the density-matrix coher-
ence terms can cause an effect on the heat flow exchanged
between two qudits, interacting via a partial SWAP, if and
only if a noncontextuality inequality can be violated.
Also, for this case, the anomalous heat flow happens

only if a noncontextuality inequality can be violated.
These facts happen in complete analogy with the heat
exchanged between two qubits of Sec. 111 A and show that
the same conclusions can be extended for a case of higher
dimension.

Let us investigate the violation of the noncontextual-
ity inequality (Theorem 1) using Eq. (48). Let wmax =
max{wi}r—04—1. Then, we can find the critical times
!, ¥, assuming that wp,y, g are all fixed parameters and

c’ e

Zn,m Im(pnm,m,n)wn ?é 0, given by

.[1/ —_ l Cot*l 2a)max - (Zmpilng,mwm - an;;l’nwn)
‘ g 2 Zn,m I @y ) Wn ’

(50)
1 —4®max — m rimwm - ;;Inw"
/ C0t71 ( 4 (Z p 5 an § ) ,

T = —
2 Zn,m Im(pn,m,m,n)a)n

c

1)

where above we have considered t/ the critical time asso-
ciated with the noncontextuality inequality upper bound,
and t! for the lower bound. These bounds can be used to
directly infer the relationship between contextuality and
anomalous heat flow. For a concrete example, we will
focus on d = 3 in what follows.

4. Exemplification: Heat flow during a partial SWAP of
two qutrits

The partial SWAP unitary can be useful to obtain non-
contextuality inequalities for higher-dimensional systems
since it satisfies the stochastic reversibility condition in any
dimension in which § is well defined. An intriguing model
for examination involves the interplay between two qutrits
mediated by a SWAP gate. This framework finds utility
in elucidating experimental implementations of quantum
gates and quantum engines, while concurrently facilitating
extensions to qudit systems [80—82]. Each qutrit manifests
solely three perfectly distinguishable states, denoted as |0),
[1), and |2), which we write as the canonical basis

1
o], m=1[(1], and 2) (52)
0 0

I
=R~

It is ensured that the composite state of the system adheres
to the form |i) ® |j) (i,j =0,1,2). Consequently, the
SWAP operator S3 is characterized by the conditions

Sy @) =) ®li), S5=1. (53)
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Thus, the SWAP operator assumes the form

S3 = (54)

SO OO OO O~
SO DO O, OO O
SO~ OO O
S oo oo o —~O
S o oo~ OO OO
=k R eleleleNoNel =
SO oo oo, OO
S OO~ OO OO O
— O OO oo oo

J

and the unitary operator governing the dynamics of the
system arising from this interaction is expressed as (see

Eq. (44))

Us(f) = e ¥ = cos(gf)1 — isin(gn)S;.  (55)
As before, g denotes the strength of the interaction. The
local Hamiltonian governing a single-qutrit system is
expressed as

Hy = w0 |0) (0] + o1 [1) (1] + 02 |2) (2], (56)

where w; € R™ denotes the energy associated with eigenstate i), this Hamiltonian being the realization of the qudit Hamil-
tonian of Eq. (46). Also, we consider both local Hamiltonians to be equal, i.e., H4 = Hp. Consequently, a density matrix,
with thermal local states [Eq. (3)], describing the composite system while conserving energy, is generically represented as

‘Do 0 0 0
0 Pi 0 N3
0 0 )22 0
0 n e~ 031 0 D3
pes=|0 0 0 0
0 0 0 0
0 0 néze_i662 0
0 0 0 0
0 0 0 0

where the off-diagonal elements denote correlations
between the qutrits (note that the nonzero terms are those
relevant to the heat received by system H,, accord-
ing to Eq. (48)) and the diagonal elements, denoted as
{pi};, form a classical probability distribution contingent
upon the inverse temperatures B8, and fp of qutrits H,
and H3, respectively (for their specific formulations, see
Appendix F). Note that the parameters 131, 162, 1175, 631,
Os2, and 675 are not free and must be such that p3g3 is pos-
itive semidefinite, together with the fact that {pi}fzo must
define a probability distribution. The heat content of qutrit
H,4, expressed as (Q,), can be evaluated directly from
Eq. (4) or using Eq. (48):

(Q4) = Tr | p3o3 (Us(OHy ® 15U () — Hy @ 1)}
= ¢ sin’(gf) + & sin(gr) cos(gn),

= ¢ sin’(gf) + % sin(2g?), (58)

where ¢ is equivalent to the sum Y, p2 ww — 3, pil @n
of Eq. (48) and depends on the inverse temperatures S;
and energies w; of the qutrits, while £ is equivalent to

0 0 0 0 0
0 0 0 0 0
0 0 n62€i962 0 0
0 0 0 0 0
P4 0 0 o o], (57)
0 Ds 0 n75€%5 0
0 0 D6 0 0
0 1mrse s 0 7 0
0 0 0 0 ps
[
the sum Zn,m Im@pmmn)wn/2 of Eq. (48) and encapsu-

lates the correlations 7;; and phases 6; (for details, see
Appendix F). Exemplifying our discussion on qudits, the
term ¢ is responsible for the standard heat flow (meaning
that B4 < Bz implies that ¢ > 0), while & is the term that
makes the heat-flow inversion possible. For small values
of gt, contextual effects are assured for non-null values of
&. It is noteworthy that while & can be utilized to reverse
the heat flux, such inversion is not a prerequisite for con-
textuality, since this term can also cause an increase in
the standard heat flow. Let us investigate the violation of
the noncontextuality inequality (found in Ref. [27]) using
Eq. (58). Let wmax = max{wy, w;,w,}. Then, we can find
the critical times 7/, T assuming that ¢, &, wmay, and g are

¢’ 7c

all fixed parameters and & # 0, given by

T = é cot™! <—2“’m§ — ';> , (59)
= gcot_l <$) , (60)

where above we have considered 7/ as the critical time
associated with the noncontextuality inequality upper
bound, and 7! for the lower bound. These bounds can be
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used to directly infer the relationship between contextual-
ity and anomalous heat flow.

Moreover, the change of the mutual information in this
situation has an analogous result as in the two-qubit case.
Again, the heat term responsible for the anomalous heat
flow and the violation of our noncontextuality inequality is
the same one that causes the change of the mutual informa-
tion to be negative for gt < 1 (for details, see Appendix F).
Hence, the effects of correlations on the Clausius inequality
also have a direct connection with contextuality certifica-
tion in this case, which can indicate the same pattern in the
higher-dimensional case.

IV. SUMMARY AND OUTLOOK

In this paper, we have demonstrated that heat-flow
inversion, caused by initial correlations between two-qubit
unitary interactions that conserve total energy, cannot be
described by generalized noncontextual models when the
interaction happens in certain intervals of time 0 < ¢ <
7.. These results introduce the notion of critical times 7.
governing dynamical nonclassicality.

For the kind of qubit interactions that we have investi-
gated, a coherent effect in the heat flow (either reversing
the flow or increasing it in the standard direction) must
be present to allow for a violation of the noncontex-
tual inequalities that we have introduced. We also show
analogous results for two qudits, with any dimension d,
interacting via a partial SWAP, indicating that similar con-
clusions in higher-dimensional systems are true for a large
class of applicable interactions and can be further explored
for more general interactions.

As an application of our findings, we use the experimen-
tal parameters of Ref. [20] to show that the connection we
find between contextuality and reversal of the spontaneous
direction of heat flow can be tested by existing quantum
hardware and state-of-the-art manipulation of quantum
resources. For an experimental test, a robust account on
the critical time 7, could be found by extending Theorems
1, 2, and 3 to consider experimental imperfections.

It is worth pointing out that in Ref. [14], connec-
tions have been shown between the reversal of the direc-
tion of heat flow and another form of nonclassicality,
defined to be the negativity of the real part of Kirkwood-
Dirac quasiprobability distributions [83—87], known as
the Terletsky-Margenau-Hill quasiprobability distribution
[14,86,88,89]. As the authors have pointed out, negativity
in such distributions is a proxy for generalized contex-
tuality [28,29,45] but is known to not be sufficient for
contextuality in general [30].

Furthermore, one can also use the combination of The-
orems 2 and 3 to explore the violation of noncontextu-
ality inequalities for the variation of other observables,
rather than energy, for energy-conserving interactions
between qubits. For instance, one can study the population
inversion by choosing the observable 4 = o (for density

matrices in the eigenbasis of o,) and obtain noncontex-
tuality inequalities in this case. This scenario is useful
for certifying the presence of contextuality in open quan-
tum systems with the collisional-models approach [90-92],
where the models often involve two-qubit interactions (for
examples, see Refs. [92-97]).

Similarly to Ref. [4], which has shown that the occur-
rence of strong heat backflow is a signature of entan-
glement, our results argue that the presence of heat-flow
inversion caused by correlations—or, more generally, any
coherent correlation effect in the heat flow—in energy-
conserving two-qubit interactions, and partial SWAP inter-
actions between two qudits, imply a signature of general-
ized contextuality for a time interval between the begin-
ning of the interaction and a critical time t., with the value
of 7. depending on the parameters of the scenario. Similar
scenarios are ubiquitous in quantum thermodynamics [46—
52]. We believe that our results can be useful to certify
contextuality in a variety of models as well as to indi-
cate contextuality as a resource for genuinely nonclassical
phenomena in quantum thermodynamics.
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APPENDIX A: PROOF OF EQ. (6)

This proof follows the pedagogical compendium of
Ref. [56]. Assume the conditions presented in Sec. IT A.
Let p' = UpU' and p] := Tr\(3{p'}. The quantity

S = S(p4llpa) + S(ppllps) (A1)
is always non-negative, since it is a sum of relative
entropies S(p||lo) = Tr{plog(p) — plog(c)} = 0. Now,
we can rewrite

S(04llpa) = Tr{p}log(py) — pslog(pa)}
= S(p4) — S(plp) + Tr{palog(ps) — p log(pa)}
= —AS; + Tr{pslog(ps) — pjlog(ps)},

where we have used the definition of the von Neu-
mann entropy S(p) = —Tr{p log(p)} and defined AS, =
S(p) — S(pa).

Furthermore, using Eq. (3), we have log(py) =
—B4H,4 — log(Z4). Using this in the above equation, we
obtain

S(o4llpa) = —ASy + BaTr{(p) — pa)Hu}

= —ASy + B4(Qu4), (A2)

where in the last equation we have used Eq. (4). Analo-
gously, we have

S(ppllps) = —ASg + Bs{O5),

where ASp = S(pgz) — S(pB).

Given the mutual information Z,(4 : B) = —S(p) +
S(p4) + S(pp) between the systems H, and Hp, for a
unitary evolution, the variation of the mutual information
AZA:B)=T1y(4:B)—1,(4:B)willbe

(A3)

AZ(A:B) = AS4+ ASg,

since S(p) = S(p’). Therefore, by summing Egs. (A2)
and (A3) and using the above equation, we obtain

S = S(l1pa) + S(pgllps)

= Bu(Qu) + Bp(Qp) — AZ(4:B) >0, (A4)

which implies

(Bs — B5)(Q4) = AT(4 : B), (AS5)
where we have used energy conservation (Q4) = —(Qg).

Note that in order to deduce Eq. (6), we have only used
the fact that the unitary evolution does not change the
von Neumann entropy, energy conservation, and S > 0.
This points out that, to enunciate a second law, we may
only need to find a suitable always nondecreasing “irre-
versible” quantity, which, in this case, has been S. The fact
that this quantity is always non-negative is a mathemati-
cal fact. However, it implies some bounds on the physical
quantities, given the specific evolution studied.

APPENDIX B: PROOF OF THEOREM 2

In what follows, we simply write 7;, = Ty and 7;, = T»
for simplicity. We start by considering the operational
equivalence

1 1
ETZOTI +§T20TT >~ =ps)Tr+paTro Ty,

which we rewrite as

1 1
_T+ _TAI = (1 _pdl)TZ +pdl TAZ,

> 7 (B1)

where T=T,0Ty, Ty, =T,0Tf and Ty, = T, o T'. Our
proof will follow the exact same methodology as that of
Ref. [27, Theorem 1]. We divide the proof into two cases,
where we first consider ontological models in which A is a
finite set of ontic states and then, later, we consider a more
involved proof for the case in which A is a continuous
measurable set of ontic states.

1. Finite set A of ontic states

Consider the ontological-models description for the ave-
rage difference (A.A) in the observable A = {(ay, k| M)}
given by

(AA) =" a (p(k|M,T,P) — p(k| M, P))
k

=Y ar [ Y mpOITr( | MEM (K] 1)

k A

— > up(WEu (k| x)) ,
A

where the a; > 0 are the possible values assigned to
A from effects k| M, wp()) is the probability distribu-
tion associated by the model with the preparation pro-
cedure P, I'p()/|X) is the transition matrix representing

(B2)
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the probability that the ontic states will change from A to
A/, and &y (k| 2) is the response function associated with
k| M, which gives the probability distribution of obtain-
ing the outcome k, given that the ontic state was A and
that a measurement M has been performed. Without loss
of generality, we consider A = A’.

Since I'7(A'|A) < 1,VA, A" € A in the above equation,
we have

(AA) <D ar | Y mpITr [ WE (kI | . (B3)

k A£N

We now consider that the ontological models must respect
Eq. (B1), constraining the model to be noncontextual,
implying that for all A,1" € A,

1 1
=T\ |0 4+ T (V[ A
F TG 1) + 5T ] A)

= (1 _pdl)FTz()\'/|)") +pd1FA2()\'/|)")' (B4)
Moreover, the assumption of transformation noncontextu-
ality applied to Eq. (26) (stochastic reversibility for 75)
also requires that forall A, 1 € A,

1 4 l 4
SO/ 1) + ST/ 12

= (1 _pdz)(s)\’,l +pd2FC2()", | )")5 (BS)

where 8, v = ', (A | 1) is the transition-matrix represen-
tation of the identity transformation by the ontological
model. Using the above two equations, and the fact that

J

since  dmax > ar, Yk and ), p(k|M,T,P)=1,YT € T,P € P. The

the transition matrices are always non-negative, we obtain
L7 12 < 401 = pa) (1 — pay)di
+4(1 = pa)pa,Tey W 1 2) + 2pa, Tay W | 2).

Using this inequality in the one in Eq. (B3), we obtain

(AA) < ar [ D e (401 = pap)pa, ey, W 1 2)

k AN

+ 2pay Tay 3 10)) Ene (k| 1)

<Y a | D up() (40 = pa)pa,Te, 3 |0)

k A

+ 2Pd1 FA2 ()"/ | )")) SM(k | )"/) > (B6)

where in the last inequality, we have summed back the
terms A = A/, which are always non-negative.

We now note that the term }_, ;, up(A)T'c, (A [ M)én
(kIX)=p(k|M,Tc,, M) is just a probability distribution
of having an outcome & under a given evolution. Therefore,

D@y wpITe, O | M (k| 1)

k A
=Y ap(k|M,Tc,,M) < anax Y_ p(k| M, Tc,, M)
k k
= Omax, (B7)
same is also wvalid for the term

ZM/ wp(MT 4, M | M)EM (K| A) =p(k|M,T4,, M) and therefore, using these inequalities in the one in Eq. (B6),

we obtain

(AA) < (4(1 = pa)Pa, + 2Pay) Gmax = 2(Pay, + 2Pa, — 2Pa Py Amax.-

(BY)

To complete the proof for the finite-A case, we analyze the converse. From equation Eq. (B2), we have

—(AA) = —(AD — AO) = =D ar | Y pITr( [ MEMKIN) =D pp(W)En (k| )

k Y

A

Proceeding similarly as before, isolating 'z using Egs. (B4) and (B5) and substituting it in the definition of (A.A), we

obtain

—(AA) == a
k

WY

> 1pG =201 = pa)Try 3 1) = T G 12) +4(1 = pu) (1 = pa)by

+ 40 = pa)pa, Loy W 1A + 2pay Tay O | M) ] Ear (k| 1)) — Z mp(X)Ep (k| A))
A
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=D a | Yo mp) [200 = pa)Trg 3 1) + T G 13) = 4(1 = ) = pa)be |6 k1) + D e G (k1 2)

k AN

k A

x| ST mpOOT s W 10Ew k12 =7 pp()En k| 1)

vy A

| D e T W | 0)E (I X) =Y p ()& (k| )

A A

where in the inequality we have used the fact that the terms
— Yk s i OIAC = papa, Ty (| 1)y (k| 3) and
— Yk Y g (W Apa Ty (M | M)Ex (k| W) are  never
positive, and in the last equality we summed over the Kro-
necker delta and redistributed the terms. Now, note that the

term Yy ax (3, 0 p(MTa (V| W)€ (k[ X) — 325 jup (1)
&y (k| X)) is analogous to the right-hand side of Eq. (B2)
by exchanging T'r(A"|X) for I'y,(A'|1), and from
Egs. (B4) and (BS), we have that
gy 12) <40 = pa) (1 = pay) 80
+ 4(1 — Pd, )pdz FCZ ()"/ | )") + 2pd1 FAZ ()"/ | )")’

from which, analogous to the deduction of the inequality
in Eq. (B8), we obtain

D | D s | 0)E (k|2

k bWy

- Z :u’P()")%'M (k | )‘*)) = 2(pd1 + 2’pd2 - 2’pa'lpdz)al’l’lax~
A

(B10)

In a similar way, the term ) _, ay (ZA,N upM)Try (X [ X)éy
kIN) =3, mp(W)ér (k| k)) is also analogous to the
right-hand side of Eq. (B2), and from Eq. (B5), we obtain

T, 12) < 2(1 = pay)8irs + 2pa, T, (W [ 1),

from which, using the same arguments that lead to
Eq. (BS8), we obtain

D[ Y mpOOTr, W | M)&w (k| W)

k AN

- Z MPO\)SM (k | )V)) = 2pdzamax- (Bl 1)
A

A

=Y a [2<de + 204, = 2papar) Y, 1p(E (k| ) +2(1 = pay)

; (B9)

(

Using the inequalities in Eqgs. (B10) and (B11) in the
inequality in Eq. (B9), we have

_<A~’4> = 2(pd1 + Zpdz - zpdlpdz)
X Y ar Y wp()En (k| A) + 4(1 = pay)Paydima
k A

+ 2(pa, + 2Pa, — 2P, Pd, ) Amax.- (B12)

Finally, noting that the term ) , up(M)é&y(k|L) =
p(k|M,P),wehaveasbefore ), ar ), up(MEy (k| L) =
> pap (k| M,P) < amax. Using this in the inequality in
Eq. (B12), we obtain

- <AA> = 2(pd1 + 2pd2 - 2pd1pd2)amax
+ 4(1 _pdl )pdzamax + 2(pd1 + 2l7d2 - 2pd1pa'2)amax
= 4(pd1 + 3Pd2 - 3pd1pd2)amam (B13)

which completes the proof for the finite-A case.

2. Continuous set A of ontic states

For an infinite (and possibly continuous) set A, we have
the following version of Eq. (B2):

(AA) = (A®) ~ AO)
=Yoo ([ @ [ anroorsoimawin)
& A A

- / i upmsM(km) , (B14)
A

where A is a measure space with measure A. The transition
matrices are probability densities defined on this space, and
the integrals are Lebesgue integrals. Moreover, general-
ized noncontextuality requirements (such as P >~ P’ —>
up = wp) are now defined up to sets of measure zero.
Then, we define the set

030359-17



NAIM E. COMAR et al. PRX QUANTUM 6, 030359 (2025)

Ay = [V 1EKIX) > E(k V], (B15)

for each outcome k and ontological state A. Additionally, we have /_\z(k) = A/Ar(L). Now, Eq. (B14) implies that

aA =Y a ( [ [ drun om0
: R A
+ / & f (DT 70 | e (k] 2) — / de(A)sMwm)
Acn) A A
=Y a ( / ! / dr OITT (X | W k] 2)
P A A

+ / & / i (OT 10! | W)En (k] 2) — f dwp<x>sM(km>, (B16)
€1 A A

where in the inequality we have used the fact that &, (k| A") < &y (k| A) for A € [\2(%).
Therefore,

aA) <Y a ( | [ dnnetora gt )
& A

Ar()

[ [ @ g - [ @ upmsM(km)
AL A A
=Y a ( / dy’ / di pp T 1 0) G (k[ 1)) = E (k| 2))
k A0 A

+ f i’ / di p (T | W) (k| 1) — f . upmsM(kM))
A A A
=Y« < | [ dnnnars (et ) —smkm)), (B17)
P MGy Ja

where the term ) _, a; f A dx f A dipp (M) 7(A" | M) (k| 1) has been summed and subtracted in the first equality above,

and in the last equality, we have used the fact that f AdVT(V | A) = 1.

At this point, we make the transformation-noncontextuality assumption in the operational equivalences of Egs. (26)
and (B1). This results in equations identical to Egs. (B4) and (B5), where the transition matrices are now probability
densities, and where §, ,/ is substituted by §(A — 1), which is a Dirac delta function. Using the combination of the
continuous form of Eqs. (B4) and (B5) and the fact that I'y, (A" | A) > 0, we have

Ar()

B <Y a ( / d / dhp () (41 = pa)(1 = pa )3 O — 1))
& A

+4(1 = pa)pa,Tey V1 1) + 2pay Tay W | 1)) Ene (k1 1) = Enr (k1)) - (BIg)

The term with the Dirac delta in the above inequality is null after performing the double integral, since the space A (1)
has only terms with A" =£ A. Additionally, since &y, (k| 1) > 0, we have

A <o ( [ [ e (400 = papaTen 1) + 200 T 1) sMUcM’))
P A A

<N« ( / dx / di pip(0) (A1 = pa)pa,Te, (W 13) + 2pa Ty (V' 1) sM(kM’)), (B19)
k A A
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where in the last inequality we have summed the term f/_\i(l) d\ fA dr up() ((1 —p)el’ (X [ A) + palc(M | A)) v

(k| A"), which is non-negative.
Noting that [, dA" [, diupTe, (W | MéEy (k| V) =p(k|M,Tc,, P) and [, d)' [, dippl 4, (M | Wéy (k| X)) =p (k| M,
T,,,P) are probabilities for obtaining outcome k, given a set of operational equivalences, we have

S [ di [ dhsurTesian @ 10612 = 3 ap k1 M. Teyi.P) < e (B20)
k A A k

Using the inequality in Eq. (B19), we obtain

(AA) < (4(1 — Pay )sz + 2pd1)amax = 2(pd| + 2Pd2 - 2pd1pd2)amax- (B21)

To prove the converse, we start again from Eq. (B14), which implies that

—(AA) = —(AD) — A0)) =) & (/ dipp(M)p (k| A) — / dk/ dX up(WT (| )»)SM(kl)»’)> :
A A A

k

We now make the transformation-noncontextuality assumption, using the infinite version of Egs. (B4) and (B5). Hence,
we obtain

—(Ad) =Y ( / dptp(W)En (k| 1) — / di / dXpp(3) [<201 = pa)Tr G/ 13) = Ty 3 [2)
& A A A

+4(1 = pa) (1 = pa)8 G = 1) + 41 = pa)pa, e, 31 2) + 2pay Ty A | 1)] Ena (k| K')) : (B22)

From the fact that —4(1 — pg,)pa, [, di [ AN up(MT e, € (k| X)) and —2pg, [, dA [, AN up(W)Tay (X | M)Er (k| )) are
never positive, we conclude that

—(AA) =Y ( / dpip ()Ew (k] 2) — / . [ dx pupG) (=201 = pa)Try W [2) = Ty 12)
A A A

k

+ 41 = pa))(1 = pa,)d (A — )»’)))

= Zak [2(Pd1 + 2pa, — 2Pd1pd2)/ dipp(M)En (k| 1)
k A

+2(1 = pa,) (/ d)»/ dX up(MTrs W 1 W&y (k| 1) — / drpp(M)Ey (k| ?»))
A A A
([ [ arntor a2 = [ asos x))} , (B23)
A A A
where in the last step we have only evaluated the integral over the §(A — A’) and reorganized the terms.
Moreover, the term >, ax (fA dx [, d)' pup(MTr, (V| W)Em (K |2) — [y drpp(W)ér (k| k)) is analogous to the right-
hand side of Eq. (B14) with the exchange of I'r7(A'|A) by I“TAI()\’M). Since these terms are symmetric in the

noncontextuality condition (the continuous version of Eq. (B4)), we can repeat the same arguments from Eq. (B14)
for the inequality in Eq. (B21) and conclude that

Zak (/ d)»/ dN up )T g (M | MEy (k| X)) — / dipp(M)éy (kl)»)> < 2(pay + 2pa, — 2pa,Pd;) Amax- (B24)
P A JIa A
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Similarly, the term ), ax (fA dx [, dN p(M T (W | )& (k| 1)) — [ drpp(M)Ey (k| A)) is also analogous to the right-

hand side of Eq. (B14), with the exchange of I'7(A' | 1) by FT;()J | A). Therefore, we repeat the same arguments from
Eq. (B14) to the inequality of Eq. (B17), to obtain

M a ( / di / AN pp(IT 3 (O | W)Ew (k| 1) — / dwpmsM(kM))
k A A A

<a ( | [ duscior, (x’M)(sM(kw)—sM(kM))). (B25)
k Ar() A

We now use the continuous version of the noncontextuality condition of Eq. (B5) and use the fact that I'z, (A" | 1) > 0 to
obtain

Y a ( / di / AN pp (T3 (O | 1w (k| 1) — / de(A)wm)
k A A A

<Y ( [ [ ) (201 = )~ 2+ 2T 100) a3 - sM(kM))) . (®26)
& A

Ar()

Again, the double integral over the §(A — A") will be null due to the integration over the space A(%) and we use the fact
that &3, (k| A) > 0 to obtain

Zak (/ d)»/ d)\/MP()»)Fq()»/M)gM(kM/) - / d)\MP()\)gM(k|)¥)>
k A A A
< 2pa, Zak (/ d)»// dr pp(MT ey, (X | M€ (K | N))
p Ay A

<24, Y a ( f dx f di up(x)rczu’u)sM(ku’)), (B27)
& A A

where in the last inequality we have used the fact that fl_\k()») ax' [ dr up(MTe, W | Mk XY < [ dX [, dh pup(W)T e, (W | Wy (k

Now, again we note that fA dx fA dr up(MTe, (X [ Néy (k| L) =p(k|M,Tc,, P) is a probability of obtaining the
outcome k. Hence, this quantity must satisfy an inequality similar to Eq. (B20), from which we obtain

Sa ( [ @ [ axuporr G i) - [ dwmsM(km) < Dy (B28)
k A A A

Finally, since f A dhiup(M)Ey (k| A) = p (k| M, P) is the probability distribution for obtaining the outcome k in the prepare-
and-measure case (P, M), it must also satisfy

S [ drur )6 th12) = 3 apk1M.P) < s
k A k

Using the above inequality and the inequalities in Eqgs. (B24) and (B28) in Eq. (B23), we obtain

_(AA) = 2(pd1 + 2pd2 - zpdlpdz)amax + 4(1 _pdl )pdzamax + 3(pd1 + 2pd2 - 2pd1pd2)amax =< 4(pd1 + 3pd2 - 3pd1pd2)s

which completes the proof for the inequality for infinite A.
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APPENDIX C: PROOF OF THEOREM 3

We start by showing that a general interaction Hamilto-
nian between two nonresonant qubits, which conserves the
total energy of the qubits, must be of the following form:

Hy,, =g

0 0 0
0 0 0
0 1 ol (€D
0 0 0

0
1
0
0
for a real number g. In the case of an interaction Hamil-

tonian between two resonant qubits, it must have the
following form:

0 0 0 O
0 a €7 0

H,=¢g 0 «® 4 o] (C2)
0 0 0 O

where a, g, and 6 are real parameters.

Note that the most general interaction Hamiltonian
between two qubits is the most general linear combination
of tensor products of Pauli matrices acting on the Hilbert
spaces H, = C? and Hz = C*:

A B A B A B
Hy=ay1l” ® 1° + ajj0; @0, + a120; ®o,
A B A B A B
+ 30, ® o, +a210y ® o, —}—ozzzoy ®0y
A B A B
+ 30, @0, +az0; Qo

+ a0 ® o) + a0l ®o?, (C3)
where all coefficients must be real numbers.

Furthermore, the assumption that the interaction Hamil-
tonian conserves the sum of the two local energies is
equivalent to

[H,Hi®1p+1,® Hp] =0, (C4)
where H is the local Hamiltonian of the system H, and
Hp is the local Hamiltonian of the system Hp.

We suppose that the qubits have local Hamiltonians Hy
and Hp described by what we refer to as Zeeman Hamil-
tonians. If the two qubits are nonresonant, without loss
of generality, we say that H; = w,/2(c;1? + czazA) and
Hp = 0)3/2(63:[13 + C4O’ZB), for wy # wp and Ci € R. With
these assumptions, Eq. (C4) results in a set of 16 equations,
the solutions of which imply the following interaction
Hamiltonian:

o) + o33 0 0 0

. 0 oy — 033 0 0

Hi, = 0 0 oy — o33 0
0 0 0 ap + o33

Since the sum of identity terms on the Hamiltonian does
not change the dynamics, we are free to select the value of

ap. We choose op = —a33 and define g = —2w33, which
recovers Eq. (C1).

Similarly, if the qubits are resonant, we suppose
that Hy = Hp = 0/2(c;14® + ¢,04®). For this case,
Eq. (C4) results in a set of 16 equations, the solutions of
which imply the following interaction Hamiltonian:

oy + o33 0 0 0
H, — 0 oy — (33 20(22 - 2i0l21 0
= 0 20007 + 2icy; g — o33 0
0 0 0 oy + 0033
Again, we select ®g = —a33 and define a, g, and 6, such

that ga = —2a;33 and ge™™ = 2wy, + 2iary;, which imply
Eq. (C2).

To prove the main result of the theorem, we start with the
nonresonant-qubit case. We desire to prove that the unitary
Uy, = e~ satisfies an equation in the form of Eq. (28).
To do this, we write the most general form of a two-qubit

density matrix,

Poo Vi V% v*
v po omet 3
pgen — Vs )’)671& plO UZ ) (CS)

14 V3 Va4 Pp1i

with poo + po1 + p1o + p11 = 1, where the diagonal terms
are real non-negative numbers while vy, v,, v3, V4, and y
are complex numbers, and 1 and & are real; all parameters
are constrained such that pgen, > 0. And now, given the uni-
tary evolution, U, = e~ generated by the interaction
Hamiltonian given by Eq. (C1), we have

1

1 1 1
Eunr[pgen] + Eugr[pgen] = 5 Unrpgen Uzr"i‘z ULpgen Unr
Poo v cos(gt) v; cos(gr) py*
vicos(gn  pol ne® V3 cos(gr)
v, cos(gt) ne P10 v} cos(gr)
14 V3 cos(gt) vy cos(gr) P

(Co)

This can be factorized as

1 1. .
Eunr[pgen] + Eun'r[pgen] = _pdm)pgen +pdmcnr[/0gen]a

(€7
where p,, . = sin®(gt/2) and
poo —vi —vy yF
—V Po1 ﬂeig -3
Cnr[pgen] = —iE 1 (C8)
—V2 ne Plo  —Vy
14 —V3  —V4 Pl
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To prove that Eq. (C7) is really the same as Eq. (28),
we must prove that the channel C,.(e) defined above
is a completely positive trace-preserving (CPTP) map.
To verify complete positivity, we can compute its Choi-
Jamiolkowski matrix [66,67] and prove that this matrix is
positive semidefinite. The Choi-Jamiolkowski matrix for a
map C(e) is defined as follows:

im0 (9)(5)

3,3
= Y WGIRecayn®, (€9
i=0,/=0 |
1 00 0 0 0 —1
0O 0 0 0 O 0 o0
0O 0 0 0 O O o0
0O 0 0 0 O 0 o0
0O 0 0 0 O 0 o0
0 00000 0
-1 0 0 0 0 0 1
A 0O 0 0 0 0 0 o0
Cor 0 00 0O0O0 O
-1 0 0 0 0 0 1
0O 0 0 0 0 0 o0
0 00000 0
0O 0 0 0 O 0 o0
0O 0 0 0 0 0 O
0 00000 0
1 0 0 0 0 0 -1

This matrix has eigenvalues {0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,4} and therefore it is positive semidefinite. Hence,
the channel C,.(e) is completely positive. Since the trace
of the map described in Eq. (C8) is the same as the ini-
tial density matrix in Eq. (C5), the channel is also clearly
trace preserving. Therefore, Eq. (28) holds, as we wanted
to show.

To prove the resonant case, we start by noting that the
interaction Hamiltonian of Eq. (C2) can be written in the
following form:

H]r == H@ + Ha>
where
0 0 0
0 1 e? 0
HG =g 0 e—zG 1 0
0 0 0
and
0 0 0 0
0 a—1 0 0
Hi=glo 0 a4-1 o0
0 0 0 0

where the index R denotes the channel acting on an aux-
iliary Hilbert space Hyr with dimension 4, the index S
denotes the channel acting on the global two-qubit sys-
tem Hilbert space Hs, Z is the identity channel, and

)\fl> = ijo i)® ®j)° is the unnormalized maximally
entangled state in Hr ® Hs.

Computing the Choi-Jamiolkowski matrix Ac,, explic-
itly for the map C,.(e), we obtain

00 -1 00 0 0 0 1
00 0 O0OO0O0OODO0O O
00 0 O0O0O0OO0OO0O O
00 0 O0O0O0OO0OO0O O
00 0 O0O0O0OO0ODO0O O
00 0 O0O0OO0OO0OO0O O
00 1 O0O0O0OO0OO0O -1
00 0 OO0OO0OODO0O O
00 0 O0O0OO0OOO0O O
00 1 O0O0O0OO0OO0O -1
00 0 O0OO0O0OOO0O O
00 0 O0O0OO0OOO0O O
00 0 O0OO0O0OO0ODO0O O
00 0 O0O0O0OO0OO0O O
00 0 O0O0OOOO0O O
00 -1 0000 O0 1

Since U, = e~ because [Hy, H,] = 0 we have that U,
can be decomposed as

Ur = U9 Ua>

where Uy = e™™ and U, = e "« For the rest of the
proof, we show that U, and Uy each satisfy Egs. (29)
and (30), respectively.

Again, we suppose that the initial global state starts in
its general form Eq. (C5). For the case of U, note that H,
has the same form as Hj,, [Eq. (C1)] with the exchange of
g by g(a — 1). Therefore, a similar equation to Eq. (C7) is
immediately valid, namely,

1 |
Euﬁ [pgen] + zué [pgen] = (1 — P1)Pgen +piCy [pgen]s

where p; = sin®((a — Dgt/2), and Ci[pgen] is defined
exactly as in Eq. (C8), which we have already proved is
a CPTP map.
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As for Uy, we compute

1 1 1 1
_Z/{O [pgen] + Eug [pgen] = E U0 Pgen Uj; +5 Ug Pgen U9

2
po  fo(Z, D foB, 1) v
f6o2, D) f6(2,2) f6(3,2)" fo(4,2)"
f6GD £32) £33 &3]

Y Jo(4,2)  fo(4,3) P
(C10)

where we now have a more complicated matrix defined via
the functions

1
f6(2,2) = 3 (o1 — p10) cos(2gt) + po1 + p1o)

f6(3,3) = % (Po1 + p1o + (P10 — po1) cos(2g1)) ,
fo2,1) = cosz(gt) — ve? sinz(gt),

fo(3,1) = vy cos?(gf) — vie " sin’(gf),

1(3,2) = ne_"(9 (cos(§ — 0) — icos(2gt) sin(§ — 0)),
f2(4,2) = v3 cos?(gf) — vse " sin(g1),

f2(4,3) = vy cos(gf) — v3e” sin(gr).

1 0 0 0 0 0 —é
0 00 00 0 0
0 00 00 0 0
0 00 00 0 0
0 0000 0 0
0 00 00 0 0
— 0 0 0 0 0 1
A—| © 00000 o0
=1 0o 0 0 0 0 0 0
- 0 0 0 0 0 ¥
0 00 00 0 0
0 00 00 0 0
0 0000 0 0
0 00 00 0 0
0 0000 0 0
1 0 0 0 0 0 —é

This matrix has eigenvalues {0, 0,0, 0,0,0,0,0,0,0,0,0,0,0,0,4}.

C,(e) is completely positive, and this concludes the proof.

eNeoNeololoBaolololo ol =2 =R =i i)

Eq. (C10) can be factorized as

1 1
EZ/{G [pgen] + Eug [pgen] = (1 _pdz)pgen +pdzc2[pgen]a

(C11)
where
Pd, = sin® (g?)
and
Poo _vikefiﬁ _vikeié V*
c - oif Do ne ¥ ¢i2 v} oif
2[Pgen] = e pefe®  py —vie
14 —vge™  —vze P11
(C12)

Eq. (C11) gives us the desired form of factorization (i.e.,
the form of Eq. (26)). The remaining step is to prove that
the map C,(e), described in Eq. (C12), is a CPTP map.
Again, trace preservation follows trivially, so we proceed
to show complete positivity.

Computing A¢, (defined in Eq. (C9)) explicitly, we
obtain

0 —™ 0 0 0 0 0 1

0 0 0 0 0 0 O 0
0 0 0 0 0 0 O 0
0 0 00 0 0O 0
0 0 0 0 0 0 O 0
0 0 0 0 0 0O 0
0 e 0 0 0 0 0 —e™
0 0 0 0 0 0 O 0
0 0 0 0 0 0 O 0
0 1 0 000 0 —ef
0 0 00 0 0O 0
0 0 0 0 0 0 O 0
0 0 0 0 0 0 O 0
0 0 00 0 0O 0
0 0 0 0 0 0 O 0
0 —™ 0 0 0 0 0 1

Therefore, it is positive semidefinite and the channel

APPENDIX D: AZ(A : B) FOR QUBITS AND THE CLAUSIUS INEQUALITY

The relation between heat flow and the change in mutual information comes from

AZ(A4: B) = (Ba — Bp){(Qa) — S(p4l104) — S(ppllps),

(D1)
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which is a consequence of Eq. (A4), derived in
Appendix A. To show that, for short times, the main term
contributing to an anomalous heat flow is also the one that
contributes to a negative mutual-information difference
AZ, we proceed as follows. Let the initial global two-
qubit density matrix be given by Eq. (39) (with vy = v| =

J

AZ(A4: B) = (B4 — Bp)2nwsin(§ — 0)gt
1

v, = 0 for simplicity, since they are irrelevant for heat
exchange). In this case, if the global state evolves accord-
ing to the general resonant energy-conserving Hamiltonian
[Eq. (37)], then for short times, we obtain the following
expression for the change in mutual information:

1
+ <w(/3A — Bs) (eﬁzaw 1 e 1) — 4n* sin*(0 — &) (cosh(wp) + cosh(wPBp) +2)> 222+ 0 P).

It is impractical to display the full analytic expression
for the mutual information here, but for our analysis it is
sufficient to consider the first two orders in gt.

The first-order term, (84 — Bg)2nw sin(§ — )gt, is the
leading contribution responsible for the negativity of AZ
and is exactly (84 — Bp) times the first-order term of the
heat average shown in Eq. (40). This comes from the heat
contribution to the mutual-information change, as given in
Eq. (D1), and is of the same order as the gt heat-flow term
responsible for violating the noncontextuality inequality.
Therefore, the same term that signals quantum contextual-
ity and the reversal of heat flow is the one that contributes,
in leading order, to the negative change in the mutual
information at short times.

APPENDIX E: PROOF OF EQ. (48)

As described in the main text, we compute the heat
received by a system 4, which is a qudit with Hilbert-space
dimension d > 2. The local Hamiltonian of the qudit 4 is
given by Eq. (46). This qudit interacts with another qudit B,

d—1

(D2)

(

with Hilbert-space dimension d, via a partial SWAP unitary,
given by Eq. (44). Let the initial density matrix of the joint
system 4B be given by Eq. (47); then the heat received by
A, after it interacts during an interval of time ¢ with B, is

(Q.) = tr{H(UpspUhg—p)}. (E1)

To compute this quantity, we make the following compu-
tation, using Eq. (44):

Upsp U,TJS = cos’ (gt)p + isin(gt) cos(gt) pS

— isin(gr) cos(g)Sp + sin®(gn)SpS. (E2)
This implies that
UpspUpg—p = sin’(g0) (SpS — p)
+ isin(g?) cos(gt) (pS —Sp).  (E3)

Using this and Egs. (46) and (47) in Eq. (E1), we obtain

(Quy =tr [ D wn k) (kly ® L | sin*(g)) > prsnar (Sl m) (0’| S — [n,m) (', |)

k=0 nm,n’ ,m’

+i sin(g?) cos(gt) Z Dot (I, m) (n’, m’| S —S|n,m) <n’, m’\)

nm,n’ ,m’

d—1

=tr | Y wxlk) (kly® Lp | sin’ (@) Y puomat o (Im,n) (w0 | — In,m) (', m])

| / /
k=0 n,m,n’ m

+isin(gr) cos(gh) . pumaraw (In,m) (m' 0| — lm,n) (0] | ],

nm,n’ ,m’

(E4)
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where in the last equality we have just used S|a,b) = |b,a) and (a,b|S = (b,a|. Continuing with the computation,
applying ), wy |k)4 (k|4 ® 1p in the operators at its right and summing over the Kronecker deltas, we have

(Qu) =tr | sin® (@) Y Pusmar (@ Im.n) (m' 0| — @, In,m) (0, ')

nm,n’ ,m’

+ isin(gr) cos(@h) Y Pumarw (@n |n,m) (m' 1| = wp |m,n) (', m'])

nmn’ .m'

= Si1’12 (gt) an,m,n,m (wm - a)n) + iSil’l(gl) COS(gt) an,m,m,n(a)n - wm)a

n,m

where in the last equality we have used the fact that
tr(la, b) (c,d|) = 64.0p4. The above equation is the same
as Eq. (48): this becomes clear if we use the marginals
Py =y Pumam a0 pl = 3" Dy in the first term
on the right-hand side of the equation. For the second term,
we use the fact that o is Hermitian. Therefore, p;, . =
Pmnnm and this implies that

_ *
E P (©p — W) = E On(Pn.mann _pn,m,m,n)
n,m nm

=2i Z wnlm(pn,m,m,n)o (ES)

nm

where in the first equality we have used the fact that
Zn,mpn,m,m,nwm = Zm,n Pmnn,m@n-

APPENDIX F: RELEVANT PARAMETERS FOR
THE TWO QUTRITS AND PARTIAL SWAP
INTERACTIONS CASE

In Sec. III B, we have employed local thermal states.
This implies that the diagonal terms p; (i =0,1,...,8)
correspond to those in the thermal-density matrix p3g3,
where p; = (e %14 /7,), with H; = Hp given by Eq. (56).
Consequently, we can explicitly express p; as follows:

e~ (Ba+Bp)wg e(—Bawo—Ppwr)

Po = p1= 5

ZyZp ZyZg
e(—P1wo—Ppan) e(—PBwo—B4w1)
P2 = 7, p3 = 7,
e~ (Bat+Bplor e(—Pa1w1—Ppan)
P4 = w, pPs = 7,
e(—PBwo—Paw2) e(—PBw1—B4wn)
Pe = 7, b7 = 7,
e~ (Pa+Bp)wy
ps = —ZAZB

nm

(

Utilizing these results in Eq. (58), we obtain that

(Q4) = ¢ sin’(gf) + & sin(gr) cos(gd), (F1)

where ¢ is given by

¢ =—wy(p3+ps—p1 —p2) +w1 (p1 —p3 —ps +p7)
+ w2 (P2 +ps —ps — 1) s

indicating that ¢ is solely a function of the energies w; and
temperatures 8;. In contrast,

& = m1 (w2 — w1) sin(B31) + ne2 (w3 — 1) sin(B2)

+ 175 (w3 — wy) sin(f75)

encodes the correlations of the system, represented by 7;;
and phases 6;;. Notably, if we select three states separated
by the same quantum number, such that w; — wy = w; —
w| = Aw, and set the phases 0; = m/2, we achieve the
simplest form

& = Aw (31 + 2062 +175)

which indicates that the inversion of heat flux is strictly
determined by negative values of the correlations 7;; .

We have also computed the first-order term, in gt, for the
change of the mutual information (the higher-order terms
are too large and give no additional information for our

purpose):
AZ(A : B) = 2gt(Bs — Bp)§ + O(g°F).  (F2)

This term is, as in the two-qubit case, equal to (84 — B5)
times the first-order term of the heat average of Eq. (F1).
It comes from the heat contribution for the change of the
mutual information of Eq. (D1) and is the leading-order
term causing the initial negativity in the change of the
mutual information.
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