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Abstract. Sequential optimality conditions play a major role in proving stronger global
convergence results of numerical algorithms for nonlinear programming. Several exten-
sions are described in conic contexts, in which many open questions have arisen. In this pa-
per, we present new sequential optimality conditions in the context of a general nonlinear
conic framework, which explains and improves several known results for specific cases,
such as semidefinite programming, second-order cone programming, and nonlinear pro-
gramming. In particular, we show that feasible limit points of sequences generated by the
augmented Lagrangian method satisfy the so-called approximate gradient projection opti-
mality condition and, under an additional smoothness assumption, the so-called comple-
mentary approximate Karush–Kuhn–Tucker condition. The first result was unknown even
for nonlinear programming, and the second one was unknown, for instance, for semidefin-
ite programming.
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á Pesquisa do Estado do Rio de Janeiro [Grant E-26/010.001247/2016].

Keywords: nonlinear conic optimization • optimality conditions • numerical methods • global convergence • constraint qualifications

1. Introduction
We are interested in the general nonlinear conic programming (NCP) problem, which is usually presented in the
following form:

Minimize
x∈Rn

f (x),
subject to G(x) ∈ K,

(NCP)

where f : Rn → R and G : Rn → E are continuously differentiable mappings, E is a finite-dimensional vector space
over R equipped with an inner product 〈 · , · 〉 and the norm ||x|| :� �������〈x,x〉√

induced by it, and K ⊆ E is a nonempty
closed convex cone. Let us denote its feasible set by Ω. This is a general class of optimization problems that en-
compasses, for instance, some well-known particular cases, such as nonlinear programming (NLP), nonlinear semi-
definite programming (NLSDP), and nonlinear second order cone programming (NSOCP). It has applications in several
areas, which include but are not restricted to control theory (Fares et al. [32]), truss design problems and combi-
natorial optimization (Wolkowicz et al. [77]), portfolio optimization (Lobo et al. [54]), structural optimization
(Kocvara and Stingl [50]), and others. For more details, see Anjos and Lassere [14], Wolkowicz et al. [77], Yama-
shita and Yabe [78], and references therein. It is worth mentioning that the content of this paper can be straight-
forwardly extended to (NCP) with separate equality constraints in the form: h(x) � 0 and G(x) ∈K, but we stick
to (NCP) as is for the sake of simplicity.

Algorithms for solving nonlinear optimization problems are mostly iterative, and their convergence theories
are usually built around the limit points of their output sequences. However, numerical methods must employ
stopping criteria to properly truncate those sequences, which are often based on necessary optimality conditions.
Under a constraint qualification (CQ), every local minimizer of (NCP) satisfies the classical Karush–Kuhn–Tucker
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(KKT) conditions, but even simple problems, such as minimizing x subject to x2 ∈ {0}, may have minimizers that
do not satisfy the KKT conditions. For NLP problems, a “sequential” alternative condition with high practical ap-
peal was proposed in Andreani et al. [1] under the name approximate KKT (AKKT) condition, that holds at local
minimizers independently of CQs, similarly to the Fritz–John condition (Mangasarian and Fromovitz [56]), but
strictly stronger Andreani et al. [1, theorem 2.2].

Roughly speaking, sequential optimality conditions such as AKKT are general characterizations of feasible
limit points of an algorithm’s output sequence. It is proved in Andreani et al. [11] that these sequential conditions
imply KKT under very weak CQs; for instance, strictly weaker than the Mangasarian–Fromovitz constraint qualifi-
cation (MFCQ). These results assemble a simple unified tool for proving global convergence of algorithms with-
out assuming boundedness of the Lagrange multiplier set at the limit point. Indeed, proving global convergence
of an algorithm under such weak CQs reduces to proving that it generates limit points that satisfy a given se-
quential optimality condition. This was successfully done, for instance, in Andreani et al. [4] and Birgin and
Martı́nez [20] for augmented Lagrangian methods; in Gill et al. [38] for a shifted primal-dual penalty barrier method;
in Gill et al. [37] and Qi and Wei [67] for sequential quadratic programming (SQP) methods; in Andreani et al. [8],
Chen and Goldfarb [30], Haeser [40], and Haeser et al. [42] for interior point methods; and also in Andreani et al.
[8] and Birgin et al. [21] for inexact restoration methods—see also Andreani et al. [7, 10, 11] and references therein
for more details. Conversely, sequential optimality conditions may suggest adaptations for practical algorithms
that ensure a better theoretical performance; for instance, in Haeser et al. [42], the authors analyze a sequential
optimality condition satisfied by interior point methods, which characterizes the effects of a certain control over
the feasibility of the method on its convergence. In particular, they prove that a specific type of control guaran-
tees that the sequence of approximate Lagrange multipliers of the method is bounded even in the absence of a
constraint qualification. Moreover, in O’Neill and Wright [62], the authors develop a complexity analysis for an
algorithm based on a log-barrier function, Newton’s method, and conjugate gradients that converges to second
order stationary points via sequential optimality conditions. This kind of complexity analysis via sequential opti-
mality conditions can be done even for some special problems such as in Haeser et al. [43], in which the KKT con-
ditions are not defined at the limit point because of lack of differentiability; then, the AKKT notion serves as a
natural optimality condition for it.

Naturally, such an idea has been carried over for several other contexts, for example: Nash equilibrium problems
(Bueno et al. [28]), mathematical programs with equilibrium constraints (Ramos [68, 69]), mathematical programs with
complementarity constraints (Andreani et al. [9]), nonlinear vector optimization with conic constraints (Tuyen et al. [76]),
the multiobjective case (Giorgi et al. [39]), variational problems in Banach spaces (Kanzow et al. [49]), quasi-equilibrium-
problems (Bueno et al. [29]), and several others. The first extension to a conic context is due to Andreani et al. [2]
followed by Andreani et al. [12] for NLSDP and NSOCP, respectively, which gave rise to a more theoretical range
of applications of sequential optimality conditions. For instance, there is a recent work that uses sequential opti-
mality conditions (from Andreani et al. [2]) to prove that every local minimizer of a general nonconvex NLSDP
problem satisfies a second order condition that depends on a single Lagrange multiplier over the lineality space of
the critical cone without assuming nondegeneracy or strict complementarity (the common assumptions for this
kind of analysis) (Fukuda et al. [35]). The sequential framework also allows Andreani et al. [5] to define and study
weaker variants of the nondegeneracy condition, which are designed to aid in proving global convergence of
methods that rely on spectral decompositions or for problems that present some structural sparsity.

This paper aims at expanding the strongest known sequential optimality conditions fromNLP to the general conic
framework (NCP). The most difficult aspect of such generalizations is dealing with complementarity. For NLP con-
straints g(x) ≤ 0, g : Rn → R

m, g � (g1, : : : ,gm), and a Lagrange multiplier λ ∈ R
m,λ ≥ 0, λ � (λ1, : : : ,λm), the comple-

mentarity constraint 〈λ,g(x)〉 � 0 means precisely that, for every i ∈ {1, : : : ,m}, the multiplier λi is complementary
with respect to the constraint gi(x) ≤ 0 in the sense that λigi(x) � 0 at a feasible point of interest x. It turns out that,
when considering perturbations of x, the latter gives a stronger optimality condition. In the conic case (NCP), it is
not clear how to exploit a complementarity-like structure in a statement of the form 〈Λ,G(x)〉 � 0 for a Lagrange
multiplier Λ ∈K◦ (the polar of the cone K), where G(x) ∈K. In the context of NLSDP (Andreani et al. [2]), the eigen-
values are heavily employed to exploit a complementarity-like structure, for which one must carefully consider how
to order consistently the eigenvalues of G(x) and Λ. In Andreani et al. [12], this approach is extended to so-called
symmetric cones, in which an eigenvalue structure is still available, but a more elegant solution is given by making
use of a so-called Jordan product �, which is inherent to the cone K � {u�u : u ∈ E}. Note that self-duality of K plays
an important role in defining these optimality conditions (Andreani et al. [2, 12]).

In this paper, we propose a much more general and unified approach for defining such conditions. Here, we
propose splitting 〈Λ,G(x)〉 � 0, by means of Moreau’s decomposition, into two complementarity-like statements
of the form 〈Λ,ΠKG(x)〉 � 0 and 〈Λ,ΠK◦G(x)〉 � 0, where ΠK and ΠK◦ denote orthogonal projections onto K and
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its polar, respectively. Hence, no particular structure of the cone K is needed. We then show that a primal-dual
sequence {(xk,Λk)} ⊂ R

n ×K◦ generated by an augmented Lagrangian method is such that 〈Λk,ΠKG(xk)〉 → 0.
In the context of NLP, an optimality condition associated with this measure of complementarity turns out to
be equivalent to the so-called approximate gradient projection (AGP) optimality condition (Andreani et al. [3]),
which is strictly stronger than the more common AKKT (Andreani et al. [1]) optimality condition. The revelation
of this property of the augmented Lagrangian sequence is somewhat surprising, and it was achieved as a corollary
of our more general approach. Also, under an additional smoothness assumption, the other complementarity-like
statement 〈Λk,ΠK◦G(xk)〉 → 0 is also satisfied. This answers an open question of Andreani et al. [2] in the
context of NLSDP by presenting a stronger complementarity-like structure, generated by the augmented
Lagrangian method, which was not achieved in Andreani et al. [2]. In Andreani et al. [12], although an opti-
mality condition that reveals a strong complementarity-like structure is defined for general symmetric cones,
the proof that the sequence generated by the augmented Lagrangian fulfills this property was only done in
the context of NSOCP.

Finally, we show that our global convergence results are strictly stronger than the ones usually employed for
conic constraints, namely, in which Robinson’s CQ is employed. Note that our results do not require that K has a
nonempty interior or self-duality; hence, our results are relevant even when the constraints are linear. Also, be-
cause Robinson’s CQ may fail, our results imply that, even when the set of Lagrange multipliers is unbounded at
a feasible limit point of a sequence generated by the algorithm, a global convergence result is available; that is,
the dual sequence {Λk} may diverge.

This paper is organized as follows: Section 2 presents some basic definitions and a short literature review on
sequential optimality conditions for NLP and NLSDP. In Section 3, we define sequential conditions for NCP and
some standard properties are proven. Section 4 presents an augmented Lagrangian algorithm and its conver-
gence theory in terms of sequential conditions. Section 5 is dedicated to a distinguished extension of AKKT and
its relation to the other conditions. Section 6 is focused on contextualizing our conditions when NCP is reduced
to NLP, NLSDP, and NSOCP. Section 7 introduces new constraint qualifications that can be useful for the conver-
gence analysis of numerical methods. Finally, Section 8 is dedicated to summarizing our main contributions
while presenting our prospective work.

2. Preliminaries
In this section, we recall some basic concepts and results of convex analysis, and we make a more detailed review
of sequential optimality conditions for NLP and NLSDP.

2.1. Notations and Convex Analysis Background
Our notation is standard in optimization and variational analysis: N denotes the set of natural numbers (with
0 ∈ N), and R

n stands for the n-dimensional real Euclidean space. Let x ∈ R
n, and we use B[x,δ] to denote the

closed ball with the center at x and radius δ > 0. For a, b ∈ R
n with components ai and bi, respectively, we

use max{a,b} to represent the vector with components max {ai,bi}. The vector min{a,b} has a similar meaning.
We denote the interior of a set A by int A. Moreover, we recall that E is a finite-dimensional linear space equipped
with an inner product, which we denote by 〈 · , · 〉.

Given a set-valued mapping Γ : Rs ¶ E, the sequential (Painlevé–Kuratowski) outer limit of Γ (z) as z→ z is the
set {w ∈ E : ∃ (zk,wk) → (z,w),wk ∈ Γ (zk)}, which is denoted by limsupz→z Γ (z). Moreover, we say that Γ is outer
semicontinuous at z when

limsup
z→z

Γ (z) ⊆ Γ (z):

For a differentiable mapping G : Rn → E, we use DG(x) to denote the derivative of G at x, and DG(x)∗ : E→ R
n to

denote the adjoint of DG(x), which is characterized by the following property: 〈DG(x)d,Λ〉 � 〈d,DG(x)∗Λ〉 for ev-
ery d ∈ R

n, Λ ∈ E. For a differentiable real-valued function f : Rn → R, we use ∇f (x) to denote the transpose of
Df (x), seen as a 1 × n matrix.

Given a closed convex cone K ⊂ E, the polar of K is the set Ko :� {w ∈ E : 〈w, k〉 ≤ 0, ∀k ∈ K} and (Ko)o � K. The
distance of w ∈ E to K is defined as distK(w) :�min{||w− v|| : v ∈ K}, and the orthogonal projection of w onto K, de-
noted by ΠK(w), is the point at which the minimum is attained. Moreover, it can be proved that ΠK(w) is nonex-
pansive, that is,

||ΠK(w) −ΠK(v)|| ≤ ||w− v||, ∀v, ∀w,

Andreani et al.: On Optimality Conditions for Nonlinear Conic Programming
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so it is a Lipschitz continuous function, and it can also be proved that dist2K(w) is a continuously differentiable
function whose derivative is given by (1). For a proof, see Fitzpatrick and Phelps [34].

D(dist2K)(w) � 2(w−ΠK(w)), ∀w: (1)

The following lemma (see, e.g., Hiriart-Urruty and Lemaréchal [47, theorems 3.2.3 and 3.2.5]) encompasses other
well-known properties of projections:

Lemma 1. Let K ⊂ E be a closed convex cone and w ∈ E. Then,
1. v �ΠK(w) if and only if v ∈ K, w− v ∈ Ko, and 〈w− v,v〉 � 0;
2.ΠK(αw) � αΠK(w), for every α ≥ 0, andΠK(−w) � −Π−K(w);
3. (Moreau’s decomposition) for every w ∈ E, we have w �ΠK(w) +ΠKo(w) and 〈ΠK(w),ΠKo(w)〉 � 0.

2.2. Sequential Optimality Conditions for NLP and NLSDP
In order to start a deeper discussion on sequential optimality conditions, we make a brief exposition of the most
important results around them in NLP, in which it has been extensively studied, and a summary of some recent
advances in NLSDP.

Consider the following NLP problem in standard form:

Minimize
x∈Rn

f (x),
subject to G(x) ≤ 0,

(NLP)

which is (NCP) with E � R
m and K � R

m
− :� {z ∈ R

m :∀i ∈ {1, : : : ,m},zi ≤ 0}. Following Andreani et al. [1], we say
that the AKKT condition holds at a feasible point x when there exist sequences {xk}k∈N → x and {Λk}k∈N ⊂ R

m
+ :�

−Rm
− such that

∇f (xk) +∑m
i�1

Λk
i∇Gi(xk) → 0, (2)

and Λk
i � 0; whenever Gi(x) < 0, for sufficiently large k: Note that AKKT allows divergence of the multiplier se-

quences associated with active constraints. It has been proved that, under some constraint qualifications, weaker
than the linear independence constraint qualification and MFCQ, for example, every AKKT point also satisfies the
KKT conditions (see Andreani et al. [7, 8, 10]). Then, as mentioned in the introduction, because many algorithms
generate AKKT sequences, this improves their convergence theory in a unified manner. Another practical advan-
tage of sequential conditions is their relation to natural choices of stopping criteria for algorithms; for example, it
is elementary to verify that AKKT holds at x if and only if, for every ε > 0, there is some xε ∈ B[x,ε] and some ap-
proximate multiplier Λε ≥ 0 such that

||max {0,G(xε)}|| ≤ ε,
∣∣∣∣∣∣∣∣∇f (xε) +∑m

i�1
(Λε)i∇Gi(xε)

∣∣∣∣∣∣∣∣ ≤ ε, ||min{Λε, −G(xε)}|| ≤ ε: (3)

The properties that made AKKT useful motivate the following general description of a “good” sequential opti-
mality condition that provides guidelines for defining new ones:

1. It must be a necessary optimality condition independent of the fulfillment of any CQ.
2. There must be meaningful numerical methods that generate sequences whose limit points satisfy it.
3. It must imply optimality conditions in the form “KKT or not-CQ” for very weak CQs.
The third property measures the strength of such a sequential optimality condition in comparison with

standard ones, and the first one guarantees that no local minimizer is censured by it. In addition, the second
property means that one must be able to employ it to formalize the convergence theory of at least one algorithm.
It should be observed that, as long as they satisfy those three properties, the stronger the condition (in the logical
implication sense), the better. The ability of strengthening global convergence results is of paramount importance
because, otherwise, stronger optimality conditions could be derived without resorting to the sequential
approach.

For improving the AKKT condition for (NLP), it is proposed in Andreani et al. [3] the so-called complementary
AKKT (CAKKT) condition, that holds at a feasible point x when there are sequences {xk}k∈N → x and {Λk}k∈N ⊂
R

m
+ such that (2) holds and

Λk
i Gi(xk) → 0, ∀i ∈ {1, : : : ,m}:

Andreani et al.: On Optimality Conditions for Nonlinear Conic Programming
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Indeed, the CAKKT condition is strictly stronger than the AKKT condition, but an additional property (the
so-called generalized Łojasiewicz inequality) is needed in order to prove that the augmented Lagrangian algorithm
generates CAKKT sequences.

Another interesting sequential condition is introduced in Martı́nez and Svaiter [60] under the name AGP,
which holds at a feasible point x when there exists some sequence {xk}k∈N → x such that

||ΠL(Ω,xk)(−∇f (xk))|| → 0, (4)

where L(Ω,x) :� {d ∈ R
n :min{0,Gi(x)} + ∇Gi(x)Td ≤ 0, for all i such that Gi(x) � 0}: One of the most highlighted

features of AGP is its lack of Lagrange multiplier approximations, using projections instead. This makes it useful
for supporting the global convergence of numerical optimization methods in which multiplier approximations
are not explicitly available; for example, algorithms based on inexact restoration (IR) procedures. See Bueno et al.
[27], Fischer and Friedlander [33]. Martı́nez and Pilotta [58, 59], Martı́nez and Svaiter [60], and references therein
for details.

Now, consider the following NLSDP problem:

Minimize
x∈Rn

f (x),
subject to G(x) ∈ S

m
− ,

(NLSDP)

which is a particular case of (NCP) in which E � S
m is the linear space of m ×m symmetric matrices and K � S

m
−

is the cone of m ×m symmetric negative semidefinite matrices. The AKKT extension for (NLSDP) presented in
Andreani et al. [2, definition 3.1] holds at a feasible point x when there are sequences {xk}k∈N → x and {Λk}k∈N ⊂
S
m
+ :� −Sm− such that

∇f (xk) +DG(xk)∗Λk → 0 (5)

and λUk

i (Λk) � 0 whenever λU
i (G(x)) < 0 and k is sufficiently large for some sequence of orthogonal matrices

{Uk}k∈N →U, whereUk diagonalizesΛk for each k, andU diagonalizes G(x). The notation λU
i (G(x)) stands for the i th

eigenvalue in the diagonal of UTG(x)U, and the same goes for λUk

i (Λk). This is done for imbuing the notion of order-
ing into the eigenvalues of the multipliers and for establishing a proper correspondence with the eigenvalues of G(x),
which makes this extension natural from the NLP context but very dependent on the structure of Sm. Still under the
same analogy, the most natural extension of CAKKT, discussed in Andreani et al. [2], would simply require (5) and

λSk
i (G(xk))λUk

i (Λk) → 0, (6)

where {Sk}k∈N →U is a sequence of orthogonal matrices that diagonalizes G(xk) for each k. However, although
this is an actual optimality condition, it is not possible at the moment to provide an algorithm capable of generat-
ing sequences with these properties even under generalized Łojasiewicz. Then, instead of using the eigenvalue
product, Andreani et al. [2] use the canonical inner product of Sm (given by the trace of the matrix product) to de-
fine a new condition called trace AKKT (TAKKT), that requires (5) and

〈Λk,G(xk)〉 → 0:

Surprisingly, TAKKT is proven to be completely independent of AKKT (see Andreani et al. [2, example 5.2; 12,
example 3.1]), and it also requires the generalized Łojasiewicz inequality to hold for it to be generated by the aug-
mented Lagrangian algorithm. However, observe that TAKKT can be equivalently stated in NLP using diagonal
matrices, and in this context, it is strictly implied by CAKKT.

3. New Optimality Conditions for Nonlinear Conic Programming
In this section, we propose new sequential optimality conditions for general optimization problems, we prove
some of their properties, and we clarify the relations among them.

Before we begin, recall (from Bonnans and Shapiro [25] and Robinson [70], for example) that the KKT condi-
tions hold at a feasible point x of (NCP) when there exists some Lagrange multiplier Λ ∈K◦ such that

∇f (x) +DG(x)∗Λ � 0, (7)

〈Λ,G(x)〉 � 0: (8)

By taking the natural relaxation of (7) and (8), we obtain a trivial extension of the TAKKT condition (Andreani
et al. [2]) from NLSDP to NCP, replacing the trace product with an arbitrary inner product.
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Definition 1 (TAKKT). Let x be a feasible point of (NCP). We say that x satisfies the TAKKT condition if there ex-
ist sequences {xk}k∈N → x and {Λk}k∈N ⊂K◦ such that

∇f (xk) +DG(xk)∗Λk → 0, (9)

〈Λk,G(xk)〉 → 0: (10)

Points that satisfy TAKKT are usually called “TAKKT points,” and the sequences associated with them are called
“TAKKT sequences.” Similar names hold for the other sequential conditions. At the end of this section, we prove
that TAKKT is an optimality condition for (NCP) as well. Before that, note that, at a KKT pair (x,Λ) ∈ R

n ×K◦,
we also have

〈Λ,ΠK(G(x))〉 � 〈Λ,G(x)〉 − 〈Λ,ΠK◦ (G(x))〉 � 〈Λ,G(x)〉 � 0,

by Moreau’s decomposition, so (8) can be equivalently stated as 〈Λ,ΠK(G(x))〉 � 0. Relaxing this alternative ex-
pression leads to the following:

Definition 2 (AGP). Let x be a feasible point of (NCP). We say that x satisfies the AGP condition if there exist se-
quences {xk}k∈N → x and {Λk}k∈N ⊂K◦ such that (9) holds and

〈Λk,ΠK(G(xk))〉 → 0: (11)

A similar optimality condition appears in Kanzow et al. [49, definition 5.2], in which the authors deal with a ver-
sion of (NCP) over infinite-dimensional Banach spaces, in which K is contained in a Hilbert lattice. However, the
authors refer to it as “asymptotic KKT (AKKT),” which does not make it clear how strong their results are. We
point out that AGP might be a more appropriate name for, when Definition 2 is reduced to NLP, it is equivalent
to the concept with the same name introduced in Martı́nez and Svaiter [60], which is given by (4). What follows
is a proof of our claim.

Theorem 1. Consider (NLP), which is (NCP) with E � R
m and K � R

m
− . Let x be a feasible point for it. Then, AGP as in

Definition 2 holds at x if and only if AGP as in (4) holds at x.

Proof. Let x satisfy Definition 2. Then, there exist sequences xk → x and {Λk}k∈N ⊂ R
m
+ such that (9) and (11) hold.

Now, define dk :�ΠL(Ω,xk)(−∇f (xk)), ∀k ∈ N. By definition, dk is a solution of

Minimize
d∈Rn

1
2
|| − ∇f (xk) − d||2,

subject to min{0,Gi(xk)} +DGi(xk)d ≤ 0, ∀i ∈A(x), (12)

where A(x) :� {i ∈ {1, : : : ,m} : Gi(x) � 0}: Because the constraints are linear, by the KKT conditions, there exists

some Λ̂
k ∈ R

|A(x)|
+ such that the first order conditions hold for it. Define Λk

i ∈ R
m
+ such that

Λ
k
i :� Λ̂k

i , if i ∈A(x),
0, otherwise:

{
Hence,

∇f (xk) + dk +DG(xk)∗Λk � 0 and 〈Λk,min {0,G(xk)} +DG(xk)dk〉 � 0: (13)

Multiplying (13) by dk, we obtain

||dk||2 � −〈∇f (xk),dk〉 − 〈dk,DG(xk)∗Λk〉
� −〈∇f (xk),dk〉 − 〈DG(xk)dk,Λk〉
� −〈∇f (xk),dk〉 − 〈DG(xk)dk +min{0,G(xk)},Λk〉+

+〈min {0,G(xk)},Λk〉
≤ −〈∇f (xk),dk〉
� −〈∇f (xk) +DG(xk)∗Λk,dk〉 + 〈DG(xk)dk +min{0,G(xk)},Λk〉−

−〈min{0,G(xk)},Λk〉
≤ ||∇f (xk) +DG(xk)∗Λk|| ||dk||+

+ ∑
i∈A(x)

(DGi(xk)dk +min {0,Gi(xk)})Λk
i − 〈min {0,G(xk)},Λk〉,
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where in the last inequality we used the Cauchy–Schwarz inequality and that dk is feasible for (12). Moreover, be-
cause ||dk|| ≤ ||∇f (xk)|| and (9) and (11) hold, we obtain dk → 0, and (4) holds because Λk

i → 0 for every i ∉A(x).
Conversely, assume that x satisfies AGP as in (4) and set dk :�ΠL(Ω,xk)(−∇f (xk)). Analogously, because dk is a

global minimizer of (12), there is an analogous choice of Λk ∈ R
m
+ such that (13) holds. Then,

〈Λk,min{0,G(xk)}〉 � −〈Λk,DG(xk)dk〉 � −〈DG(xk)∗Λk,dk〉 � 〈∇f (xk) + dk,dk〉: (14)

By (4), (13), and (14), we obtain ∇f (xk) +DG(xk)∗Λk � −dk → 0 and 〈Λk,min{0,G(xk)}〉 → 0. Consequently,
Definition 2 holds at x. w

Surprisingly, although AGP and TAKKT look like twins, they are completely independent. The following
counterexample shows that TAKKT does not imply AGP.

Example 1 (TAKKT Does Not Imply AGP). In R
2, consider the nonlinear programming problem to minimize −x2

subject to G(x1,x2) ∈K, where G(x1,x2) :� (−x1,x1 exp (x2)), K :� R
2
−, and the feasible point x � (0, 1). In this case,

Λk :� (λk
1,λ

k
2) ∈ R

2
+ and ∇f (xk) +DG(xk)∗Λk → 0 reduces to −λk

1 +λk
2 exp (xk2) → 0 and −1+λk

2x
k
1 exp (xk2) → 0.

TAKKT holds at x: take xk1 :� 1=k, xk2 :� 1, λk
2 :� (xk1 exp (xk2))−1, λk

1 :� exp (xk2)λk
2. It is elementary to verify that

{xk � (xk1,xk2)} is a TAKKT sequence.
AGP fails at x: assume that there is an AGP sequence {xk}. We observe that the approximate complementarity

condition 〈Λk,ΠK(G(xk))〉 → 0 implies that λk
1 min {−xk1, 0} +λk

2 exp (xk2)min{xk1, 0}→ 0. If there is an AGP se-
quence with xk1 > 0 for an infinite set of indices, from the complementarity condition, we have that −xk1λk

1 → 0,
and thus, xk1λ

k
2 exp (xk2) → 0, which is a contradiction with −1+λk

2x
k
1 exp (x2) → 0. Similar results are obtained if

there is an AGP sequence with xk1 < 0 (or xk1 � 0) for an infinite set of indices. w

Now, we show that AGP does not imply TAKKT either.

Example 2 (AGP Does Not Imply TAKKT). Consider the nonlinear programming problem in R
2 to minimize x2

subject to G(x1,x2) :� x2h(x1) ∈K � {0} ⊂ R, where h : R→ R is the C1 function introduced in Andreani et al. [3],
defined as

h(z) :� z4sin (z−1) if z≠ 0;
0 if z � 0:

{
(15)

Consider the point x :� (0, 1). Following Andreani et al. [3], we see that there exists a sequence {zk}k∈N ⊂ R such
that zk → 0, h′(zk) � −(zk)5 and sin (1=zk) → 1.

AGP holds at x. First, choose a sequence xk :� (zk, 1) with Λ :� −(zk)−4 ∈K◦ � R. Now, observe that ∇f (xk) +
DG(xk)Λk goes to zero because

0
1

( )
+Λk h′(zk)

h(zk)
( )

� 0
1

( )
+ −1
(zk)4

−(zk)5
(zk)4sin (1=zk)

( )
� 0

1

( )
+ zk

−sin (1=zk)
( )

→ 0
0

( )
: (16)

Finally, the approximate complementarity condition trivially holds because ΠK(G(xk)) � 0.
TAKKT fails at x. Suppose that there exists a sequence {xk :� (xk1,xk2)}k∈N and {Λk}k∈N ⊂ R conforming to the def-

inition of TAKKT. Then,

0
1

( )
+Λk xk2h

′(xk1)
h(xk1)

( )
→ 0

0

( )
: (17)

The approximate complementarity condition of TAKKT implies ΛkG(xk1,xk2) �Λkxk2h(xk1) → 0. Because xk2 → 1, we
get Λkh(xk1) → 0, which is a contradiction with (17). w

Through Definition 2 and Theorem 1, it is possible to see AGP as an incomplete CAKKT condition in (NLP),
which is a different interpretation from Martı́nez and Svaiter [60]. Indeed, note that AGP holds at x with sequences
{xk}k∈N → x and {Λk}k∈N ⊂ R

m
+ if and only if Λk

i Gi(xk) → 0 whenever Gi(xk) ≤ 0. Because both AGP and
CAKKT push Λk

i to zero when Gi(x) < 0, they only differ when Gi(x) � 0. Even though the CAKKT condition
allows divergence of Λk

i in this case, it demands it to go to infinity slower than Gi(xk) goes to zero although AGP
may allow a faster growth as long as {xk}k∈N violates Gi(xk) ≤ 0. From this point of view, CAKKT improves AGP by
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introducing some control in the behavior of the multiplier sequences associated with the infeasible part of the con-
straints, using a quantitative measure of such infeasibility. Generalizing this reasoning, we obtain the following:

Definition 3 (CAKKT). Let x be a feasible point. We say that x satisfies the CAKKT condition if there exist sequen-
ces {xk}k∈N → x and {Λk}k∈N ⊂K◦ such that (9) and (11) hold, and

〈Λk,ΠK◦ (G(xk))〉 → 0: (18)

Observe that CAKKT as in Definition 3 is indeed a generalization of the condition with the same name from
Andreani et al. [3] for (NLP) because Λk

i Gi(xk) → 0 in this case, independently on the sign of Gi(xk). Moreover,
note that CAKKT is essentially AGP upgraded with (18). Therefore, in view of Moreau’s decomposition, CAKKT
clearly implies both AGP and TAKKT. But, because they are independent, the implications are strict. We proceed
by showing that CAKKT is a genuine necessary optimality condition, that is, a property that must be satisfied by
every local minimizer, even the ones that do not satisfy any constraint qualification.

Theorem 2. If x is a local minimizer of (NCP), then x satisfies the CAKKT condition.

Proof. Let x be a local minimizer of (NCP) in B[x,δ] for some δ > 0. Then, x is a global minimizer of

Minimize
x∈Rn

f (x) + 1
2
||x− x||2,

subject to G(x) ∈K
||x− x|| ≤ δ:

Let {ρk}k∈N →∞, and for each k ∈ N, consider the penalized optimization problem

Minimize
x∈Rn

f (x) + 1
2
||x− x||2 + ρk

1
2
||ΠK◦ (G(x))||2,

subject to ||x− x|| ≤ δ:
(19)

Denote by xk a global solution of (19). Using analogous arguments as in the standard external penalty algorithm
convergence proof Nocedal and Wright [61], we see that xk → x, and thus, ||xk − x|| < δ for k large enough. Using
Fermat’s rule applied to (19), we have

∇f (xk) + (xk − x) +DG(xk)∗Λk � 0, where Λk :� ρkΠK◦ (G(xk)) ∈K◦,

and the expression for the derivative follows from (1) along with the definition of orthogonal projection andMor-
eau’s decomposition. Thus, (9) holds. Furthermore, by the definition of Λk and Lemma 1, we see that
〈Λk,ΠK(G(xk))〉 � 〈ρkΠK◦ (G(xk)),ΠK(G(xk))〉 � 0; that is, (11) holds. We proceed to show that (18) is satisfied. First,
from the optimality of xk, we have

f (xk) + 1
2
||xk − x||2 + 1

2
〈Λk,ΠKo(G(xk))〉 � f (xk) + 1

2
||xk − x||2 + ρk

1
2
||ΠK◦ (G(xk))||2 ≤ f (x),

which leads to

0 ≤ 〈Λk,ΠKo(G(xk))〉 � ρk||ΠK◦ (G(xk))||2 ≤ 2( f (x) − f (xk)) − ||xk − x||2,
and because xk → x and f (xk) → f (x), we see that 〈Λk,ΠK◦ (G(xk))〉 → 0. Thus, CAKKT holds at x. w

Consequently, from our previous discussion, we get the following:

Corollary 1. If x is a local minimizer of (NCP), then x satisfies AGP and TAKKT.

In the next section, we propose an augmented Lagrangian algorithm for NCP based on projections onto Ko,
and we build its convergence theory using the new conditions.

4. An Augmented Lagrangian Algorithm
Employing augmented Lagrangian methods to find the solution of optimization problems is a very successful tech-
nique for solving finite-dimensional problems, and it is described in several textbooks on continuous optimization,
for example, Bertsekas [18, 19], Birgin and Martı́nez [20], Nocedal and Wright [61], and Schnabel [74], to cite a
few of them. In this section, we show that a variant of the Powell–Hestenes–Rockafellar (Hestenes [46], Powell [65],
Rockafellar [72]) augmented Lagrangian algorithm generates AGP sequences without any additional condition and
also CAKKT (and TAKKT) sequences under the so-called generalized Łojasiewicz inequality (see (28) for the
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definition). The augmented Lagrangian variant that we consider is a direct generalization of the one considered in
Andreani et al. [2, 3] and in the book Birgin and Mart́ınez [20], called Algencan. Roughly speaking, the main distin-
guishing features of Algencan is the use of a step control strategy (step 3) and a safeguarding strategy (step 2). The lat-
ter consists of solving the inner subproblem of the method (step 1) using a bounded Lagrange multiplier estimate to
mitigate numerical instability. A detailed study of the effects of these modifications over the “quality of convergence”
of the method is presented, at least for the particular case of NLP, in Andreani et al. [13] and Kanzow and Steck [48].

Given ρ > 0, let Lρ : Rn ×K◦ → R be the augmented Lagrangian function of (NCP), defined as

Lρ(x,Λ) :� f (x) + ρ

2

∣∣∣∣∣∣∣∣ΠK◦ G(x) +Λ

ρ

( )∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣Λρ
∣∣∣∣∣∣∣∣2

[ ]
,

whose partial derivative with respect to x is given by

∇xLρ(x,Λ) � ∇f (x) +DG(x)∗ ρΠK◦ G(x) +Λ

ρ

( )( )
: (20)

The expression of the derivative in (20) is what motivates the particular choice of Lagrange multiplier update in
the following algorithm:

Algorithm 1 (General Framework: Augmented Lagrangian)
Inputs: A sequence {εk}k∈N of positive scalars such that εk → 0; a nonempty convex compact set B ⊂K◦; real pa-

rameters τ > 1, σ ∈ (0, 1), and ρ0 > 0; and initial points (x−1, Λ̂0) ∈ R
n × B. Also, define ||V−1|| � ∞.

For every k ∈ N,
1. Compute some point xk such that

||∇xLρk(xk, Λ̂k)|| ≤ εk; (21)

2. Update the multiplier

Λk :� ρkΠKo G(xk) + Λ̂k

ρk

( )
, (22)

and compute some Λ̂k+1 ∈ B (typically, the projection of Λk onto B);
3. Define

Vk :� Λ̂k

ρk
−ΠK◦ G(xk) + Λ̂k

ρk

( )
; (23)

4. If ||Vk|| ≤ σ||Vk−1||, set ρk+1 :� ρk. Otherwise, choose some ρk+1 ≥ τρk.

In Algorithm 1, the role of the set B is to bound the Lagrange multiplier estimates used in step 1, as part of the
so-called safeguarding strategy; in practice, B should be any set that allows projections to be computed easily,
such as a box. Note that step 4 implies that either ρk →∞ or there is some k0 ∈ N such that ρk � ρk0

for every
k > k0. In the latter case, it holds also that ||Vk|| → 0. With this in mind, we proceed by showing that Algorithm 1
generates sequences whose limit points satisfy AGP.

Theorem 3. Let x be a feasible limit point of a sequence {xk}k∈N generated by the augmented Lagrangian method. Then, x
satisfies AGP.

Proof. First, from (21) together with (22) and (20), we get

||∇f (xk) +DG(xk)∗Λk|| ≤ εk, with Λk � ρkΠK◦ (G(xk) + ρ−1
k Λ̂k), (24)

which implies (9) and Λk ∈K◦. Taking a subsequence if necessary, we can suppose that {xk}k∈N → x. We consider
two cases depending on whether the sequence {ρk}k∈N is bounded or not:

1. Suppose that ρk →∞. By (24) and Lemma 1, item 3, we have 〈Λk,ΠK(G(xk) + ρ−1
k Λ̂k)〉 � 0 for every k ∈ N,

which yields

|〈Λk,ΠK(G(xk))〉| � |〈Λk,ΠK(G(xk)) −ΠK(G(xk) + ρ−1
k Λ̂k)〉|

≤ ||Λk|| ||ΠK(G(xk)) −ΠK(G(xk) + ρ−1
k Λ̂k)||

≤ ||Λk|| ||ρ−1
k Λ̂k||,
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where the inequalities follow from the Cauchy–Schwarz inequality and the nonexpansiveness of the projection,

respectively. But note that ||ρ−1
k Λk|| ||Λ̂k|| � ||ΠKo G(xk) + ρ−1

k Λ̂k
( )

|| ||Λ̂k|| converges to zero by the continuity of the

projection, so 〈Λk,ΠK(G(xk))〉 → 0 and AGP holds at x.
2. If {ρk}k∈N is a bounded sequence, it must be constant for sufficiently large k. Note that

〈Λk,ΠK(G(xk))〉 � ρ−1
k 〈ΠK◦ (ρkG(xk) + Λ̂k),ΠK(ρkG(xk))〉

� ρ−1
k 〈ΠK◦ (ρkG(xk) + Λ̂k),ΠK(ρkG(xk)) −ΠK(ρkG(xk) + Λ̂k)〉, (25)

where, in the second equality, we use 〈ΠK◦ (ρkG(xk) + Λ̂k),ΠK(ρkG(xk) + Λ̂k)〉 � 0. It remains to show that the

right-hand side of (25) goes to zero. In fact, because Λk �ΠK◦ (ρkG(xk) + Λ̂k) is a bounded sequence, we only need

to prove thatΠK(ρkG(xk)) −ΠK(ρkG(xk) + Λ̂k) converges to zero. Indeed, the reasoning is as follows:
By step 4 of Algorithm 1, we see that Vk converges to zero, and hence, ρkV

k → 0. Using the definition ofVk we get that

Λk − Λ̂k �ΠK◦ (ρkG(xk) + Λ̂k) − Λ̂k � −ρkV
k → 0,

and thus, Λk � Λ̂k − ρkV
k characterizes a bounded sequence. To show that ΠK(ρkG(xk)) −ΠK(ρkG(xk) + Λ̂k) con-

verges to zero, consider the next expression

ρkG(xk) −ΠK(ρkG(xk) + Λ̂k) � ρkG(xk) + Λ̂k −ΠK(ρkG(xk) + Λ̂k) − Λ̂k

�ΠK◦ (ρkG(xk) + Λ̂k) − Λ̂k �Λk − Λ̂k → 0:
(26)

Using this expression and the nonexpansiveness of the projection onto K, we get that

||ΠK(ρkG(xk)) −ΠK(ρkG(xk) + Λ̂k)|| ≤ ||ρkG(xk) −ΠK(ρkG(xk) + Λ̂k)|| → 0: (27)

Thus, we obtain that x is an AGP point associated with {xk}k∈N. w

Remark 1. IR algorithms are well-known methods for solving NLP problems (see Birgin et al. [23], Martı́nez and
Pilotta [58, 59] for details). The philosophy behind them consists of dealing with feasibility and optimality in dif-
ferent stages. Hence, IR methods fit well in difficult problems whose structure allows the implementation of an
efficient feasibility restoration procedure (Bueno et al. [27]). The AGP condition plays a pivotal role in obtaining
global convergence results for IR methods (Birgin et al. [21]), but its applicability beyond that class of algorithms
was still unclear. Theorem 3 solves this issue by showing that the convergence theory of the augmented Lagrang-
ian is also supported by AGP, which is not an obvious result. From this point of view, Theorems 1 and 3 show
that IR methods generate solution candidates at least as good as augmented Lagrangian methods for NLP.

Next, we show that Algorithm 1 generates CAKKT sequences under an additional condition called generalized
Łojasiewicz inequality, that is satisfied by a point x and a function Ψ when there exist some δ > 0 and a continu-
ous function ψ(x) : B(x,δ) ⊂ R

n → R such that ψ(x) → 0 when x→ x, and

|Ψ(x) −Ψ(x)| ≤ ψ(x)||DΨ(x)|| for every x ∈ B(x,δ): (28)

This property coincides with the inequality with the same name that is proposed in Andreani et al. [3]. Such
types of property have been extensively used in optimization methods, complexity theory, stability of gradient
systems etc. See, for instance Attouch et al. [15, 16], Bolte et al. [24], Chill and Mildner [31], Kurdyka [52], Li and
Pong [53], Łojasiewicz [55], and references therein. For instance, all analytic functions satisfy it, and so does every
function that satisfies the classical Łojasiewicz [55] inequality. Now, we may resume our results:

Theorem 4. Let x be a feasible limit point of a sequence {xk}k∈N generated by the augmented Lagrangian algorithm. If x
satisfies (28) forΨ(x) � (1=2)||ΠK◦ (G(x))||2, then x satisfies CAKKT.

Proof. For the sake of simplicity, we can suppose that {xk}k∈N → x. By Theorem 3, 〈Λk,ΠK(G(xk))〉 converges to
zero. Thus, it suffices to show that 〈Λk,ΠK◦ (G(xk))〉 converges to zero as well. Similarly to the proof of the previ-
ous theorem, we split this proof into two cases, depending on whether {ρk}k∈N is a bounded sequence or not:

1. Suppose that {ρk}k∈N is unbounded. We start by showing that ρk||ΠK◦ (G(xk))||2 → 0:
From the generalized Łojasiewicz inequality, there exists some functionψ such that

1
2
||ΠK◦ (G(xk))||2 � |Ψ(xk)| ≤ ψ(xk)||DΨ(xk)|| � ψ(xk)||DG(xk)∗ΠK◦ (G(xk))||,
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and we obtain the following inequality

ρk||ΠK◦ (G(xk))||2 ≤ 2ψ(xk)||ρkDG(xk)∗ΠK◦ (G(xk))||:

Now, we proceed by finding an upper bound for the sequence ||ρkDG(xk)∗ΠK◦ (G(xk))||:
||ρkDG(xk)∗ΠK◦ (G(xk))|| ≤ ||DG(xk)∗(Λk − ρkΠK◦ (G(xk)))|| + ||DG(xk)∗Λk||

≤ ||DG(xk)∗|| ||Λk − ρkΠK◦ (G(xk)))|| + ||DG(xk)∗Λk||
≤ ||DG(xk)∗|| ||ΠK◦ (ρkG(xk) + Λ̂k) −ΠK◦ (ρkG(xk)))|| + ||DG(xk)∗Λk||:

Furthermore, from ||ΠK◦ (ρkG(xk) + Λ̂k) −ΠK◦ (ρkG(xk)))|| ≤ ||Λ̂k||, we see that

||ρkDG(xk)∗ΠK◦ (G(xk))|| ≤ ||DG(xk)∗|| ||Λ̂k|| + ||DG(xk)∗Λk||
≤ ||DG(xk)∗|| ||Λ̂k|| + ||∇f (xk)|| + εk,

(29)

where, in the second inequality, we use that ||∇f (xk) +DG(xk)∗Λk|| ≤ εk (step 1 of Algorithm 1). Thus, (29) is
bounded by some scalar M > 0 because of the continuity of DG and ∇f near x. Thus, ρk||ΠK◦ (G(xk))||2 ≤ 2ψ(xk)M.
Using the fact that ψ(xk) → 0, we get that ρk||ΠK◦ (G(xk))||2 → 0. We proceed by computing 〈Λk,ΠK◦ (G(xk))〉.
Indeed,

〈Λk,ΠK◦ (G(xk))〉 � 〈ΠK◦ (ρkG(xk) + Λ̂k),ΠK◦ (G(xk))〉
� 〈ΠK◦ (ρkG(xk) + Λ̂k) −ΠK◦ (ρkG(xk)),ΠK◦ (G(xk))〉+
+〈ΠK◦ (ρkG(xk)),ΠK◦ (G(xk))〉

� 〈ΠK◦ (ρkG(xk) + Λ̂k) −ΠK◦ (ρkG(xk)),ΠK◦ (G(xk))〉+
+ρk||ΠK◦ (G(xk))||2:

(30)

Because ρk||ΠK◦ (G(xk))||2 → 0, we only need to show that the first expression of (30) goes to zero. Now, be-
cause ΠK◦ (G(xk)) →ΠK◦ (G(x)) � 0 and from the boundedness of {Λ̂k}, we get that

|〈ΠK◦ (ρkG(xk) + Λ̂k) −ΠK◦ (ρkG(xk)),ΠK◦ (G(xk))〉| ≤ ||Λ̂k|| ||ΠK◦ (G(xk))|| → 0:

Thus, 〈Λk,ΠK◦ (G(xk))〉 → 0, and as a consequence, CAKKT holds at x.

2. Suppose that {ρk}k∈N is a bounded sequence. By the proof of Theorem 3, we see that {Λk}k∈N is a bounded se-
quence, and hence, 〈Λk,ΠK◦ (G(xk))〉 goes to zero becauseΠK◦ (G(xk)) →ΠK◦ (G(x)) � 0.

In both cases, we show that x is a CAKKT point associated with {xk}k∈N. w

The augmented Lagrangian method presented in Andreani et al. [2, algorithm 1] for NLSDP is proven to gen-
erate TAKKT sequences under generalized Łojasiewicz (Andreani et al. [2, theorem 5.2]). Hence, Theorem 4 im-
proves this result not only in terms of generality, but also in terms of refinement of the convergence theory. If
(28) is not satisfied, then Algorithm 1 may generate sequences that do not satisfy CAKKT as is shown by the
counterexample after Andreani et al. [3, theorem 5.1] (note that Algorithm 1 is a direct generalization of the aug-
mented Lagrangian presented in Andreani et al. [3]).

For completing the convergence theory of Algorithm 1, it is necessary to know how likely it is to reach feasible
points. In fact, even though one cannot guarantee that every limit point of the sequence {xk}k∈N generated by Al-
gorithm 1 is always feasible, at least it is possible to prove that it has the tendency of finding feasible points in
the following sense:

Proposition 1. Every limit point x of a sequence {xk}k∈N generated by Algorithm 1 is a stationary point of

Minimize
x∈Rn

||ΠK◦ (G(x))||2: (31)

Proof. Taking a subsequence if necessary, suppose that xk → x. If {ρk}k∈N is bounded, it must converge to some ρ
and then Λ̂k → Λ̂. Also, in this case Vk → 0, which means Λ̂ �ΠK◦ (Λ̂ + ρG(x)). Then, by Lemma 1, item 1, we get
ρG(x) ∈ K, so ΠK◦ (G(x)) � 0 and x is a global solution of (31). On the other hand, if {ρk}k∈N is unbounded, by
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step 1 and (20), note that

1
ρk (∇f (xk) +DG(xk)∗Λk) � ∇f (xk)

ρk +DG(xk)∗ΠK◦
Λ̂k

ρk +G(xk)
( )

→ 0:

Then, because ∇f (xk) → ∇f (x) and {Λ̂k}k∈N is bounded, we obtain DG(x)∗ΠK◦ (G(x)) � 0, which means x is a sta-
tionary point of (31). w

Remark 2. We highlight that our convergence theory for Algorithm 1 allows the set K to have an empty interior,
and it does not demand self-duality. For instance, it can be applied to optimization problems involving the classi-
cal set of Euclidean distance matrices (EDM) of dimension m, which is defined as

Em :� M ∈ S
m : ∃p1, : : : ,pm ∈ R

r, ∀i, j ∈ {1, : : : ,m},Mij � ||pi − pj||22
{ }

:

It is a closed convex cone because it can be seen as the image of Sm+ through the linear operator

T (Y) :� diag (Y) eT + e diag (Y)T − 2Y,

where e is a vector of ones and diag(M) :� (M11, : : : ,Mmm). Also, Em is not self-dual. Because every M ∈ Em is hol-
low, that is, diag(M) � 0, the EDM cone has an empty interior. In this case, it is possible to build a general conver-
gence theory of algorithms over the EDM cone via sequential conditions even when Robinson’s CQ does not
hold. In particular, algorithms based on projections onto Em or its polar, such as the augmented Lagrangian
method we propose, can benefit from the recent advances toward efficient numerical methods to compute projec-
tions while keeping a fixed embedding dimension (Qi and Yuan [66]). More details about Euclidean distance matri-
ces can be found in Krislock and Wolkowicz [51].

5. The AKKT Condition
Until this point, we have presented generalizations of CAKKT and AGP via projections onto K and K◦, but we
have not addressed yet a generalization of AKKT, which is the most natural and simple condition in NLP. How-
ever, in Sections 3 and 4, everything was built starting from TAKKT instead of AKKT. Historically, AKKT was
born in NLP as a natural way of representing limit points of sequences generated by algorithms and studying
their properties. But, in NCP, we present it arising from a much more theoretical field, which is the theory of per-
turbations in optimization problems.

Let us recall the KKT conditions at a point x ∈ R
n with a multiplier Λ ∈K◦ in the form of a generalized equa-

tion (in the sense of Robinson [71]):

∇f (x) +DG(x)∗Λ
G(x)

( )
︸������︷︷������︸

F (x,Λ)

∈ {0}
{Y ∈K : 〈Y,Λ〉 � 0}

[ ]
︸�������︷︷�������︸

N (Λ)

:

Given some ε > 0, the standard perturbation theory (see, for example, Bonnans and Shapiro [25], Hager and
Gowda [44], Hager and Mico-Umutesi [45]) can be used as inspiration to say that a point x ∈ B(x,ε) satisfies the
KKT conditions with error ε when there is a multiplier Λ ∈K◦ and some perturbation vector ξ ∈ R

n × E such that
F (x,Λ) + ξ ∈N (Λ) and ||ξ|| ≤ ε. This strongly suggests a sequential optimality condition:

Definition 4 (AKKT). A feasible point x satisfies the AKKT condition when there exist sequences {yk}k∈N → 0,
{xk}k∈N → x, and {Λk}k∈N ⊂K◦ such that (9) holds, G(xk) + yk ∈K, and

〈Λk,G(xk) + yk〉 � 0, ∀k ∈ N: (32)

It turns out that Definition 4 coincides with Qi and Wei [67, definition 2.5], which, to the best of our knowledge,
employed for the first time perturbed KKT ideas to improve global convergence results of algorithms (for in-
stance, SQP methods). At the time, the authors did not prove it was an optimality condition. Note that AKKT as
in Definition 4 is distinguished for not directly relying on projections, eigenvalues, or other similar objects, but
giving some degree of freedom to the approximation instead, makes it much more versatile and simple than the
others. On the other hand,because the perturbation is inside the inner product, AKKT has a more solid structure
to work with when compared with the others. Also, when Definition 4 is specialized to the NLP, the NLSDP,
or the NSOCP contexts, it is consistent with the existing concepts with the same name from Andreani et al. [1,
section 2; 2, definition 3.1; 12, definition 3.3], respectively. This is clarified in Section 6.1.

Andreani et al.: On Optimality Conditions for Nonlinear Conic Programming
Mathematics of Operations Research, 2022, vol. 47, no. 3, pp. 2160–2185, © 2021 INFORMS 2171

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
3.

10
7.

45
.1

] 
on

 1
5 

Fe
br

ua
ry

 2
02

3,
 a

t 0
6:

42
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



For relating AKKT with the other conditions in NCP, we begin by proving that AGP implies AKKT:

Proposition 2. If x satisfies the AGP condition, then it must also satisfy AKKT.

Proof. If x satisfies AGP, then there are sequences {Λ̃k}k∈N ⊂K◦ and {xk}k∈N → x satisfying (9) and (11). Denote
by yk the global solution of

Minimize
y∈E

1
2
||y||2 − 〈Λ̃k

,G(xk) + y〉,
subject to G(xk) + y ∈K

(33)

and consider the feasible point y :� −ΠK◦ (G(xk)) of (33). Then,

(1=2)||yk||2 − 〈Λ̃k
,G(xk) + yk〉 ≤ (1=2)||ΠK◦ (G(xk))||2 − 〈Λ̃k

,G(xk) −ΠK◦ (G(xk))〉
� (1=2)||ΠK◦ (G(xk))||2 − 〈Λ̃k

,ΠK(G(xk))〉: (34)

Taking k→∞ in (34), because ΠK◦ (G(xk)) → 0 and AGP holds, we see that yk → 0 and 〈Λ̃k
,G(xk) + yk〉 → 0 be-

cause Λ̃
k ∈K◦ and G(xk) + yk ∈K. Now, the necessary optimality condition for yk in (33) implies

0 ∈ yk − Λ̃
k + {Θ ∈ K◦ : 〈Θ,G(xk) + yk〉 � 0}:

Now, choosing Λk :� Λ̃
k − yk for all k ∈ N, we obtain that AKKT holds at x with the sequences {xk}k∈N, {Λk}k∈N,

and {yk}k∈N. w

Though, the converse is not necessarily true because of Andreani et al. [1, counterexample 3.1], which shows
that AKKT does not imply AGP in NLP (and Theorem 1). Also, Andreani et al. [2, example 5.2; 12, example 3.1]
show that TAKKT and AKKT do not imply each other in NLP; hence, the same is valid for NCP.

Because AKKT is a weak condition, in comparison with AGP and CAKKT, we expect it to be more commonly
generated by algorithms designed for solving (NCP). An interesting fact is that the vector yk of Definition 4 for-
malizes the idea of seeing joint feasibility–complementarity measures, which are commonly used in algorithms,
as certificates of approximate optimality along with the Lagrangian residue. For example, it is easy to verify that
Algorithm 1 generates sequences {xk}k∈N and {Λk}k∈N such that every feasible limit point x of {xk}k∈N satisfies
AKKT. In this case, without loss of generality, we can assume {xk}k∈N → x. Then, AKKT can be verified by taking
the sequence {yk}k∈N such that yk � Vk for every k; then, G(xk) + yk ∈K and

〈Λk,G(xk) + yk〉 � ρk〈ΠK◦ G(xk) + Λ̂k

ρk

( )
, G(xk) + Λ̂k

ρk

( )
−ΠK◦ G(xk) + Λ̂k

ρk

( )〉� 0,

by Lemma 1. Condition (9) follows directly from step 1 because ∇xLρk(xk,Λk) � ∇f (xk) +DG(xk)∗Λk for the multi-
plier choice of step 2. Also, if {ρk}k∈N is unbounded, it follows that yk →−ΠK◦ (G(x)) � 0; if it is bounded, then
||yk|| → 0 because of step 4. Thus, it can be said that AKKT is the most simple and natural sequential condition
among the ones we present when viewed from the algorithmic and theoretical perspectives.

When K is a product of closed convex cones, say K �K1 × : : : ×Kr and E � E1 × : : : × Em, where Ki ⊂ Ei for all
i ∈ {1, : : : , r}, it is possible to see that Definition 4 resembles the classical AKKT fromNLP via the following lemma:

Lemma 2. Let x be a feasible point of (NCP). If x satisfies AKKT, then there are sequences {xk}k∈N → x and {Λk}k∈N ⊂K◦
such that (9) holds and Λk

i � 0 whenever Gi(x) ∈ intKi for sufficiently large k.

Proof. Let x be an AKKT point associated with the sequences {(y1,: : : ,yr)k}k∈N → 0, {xk}k∈N → x, and {(Λ1,: : : ,

Λr)k}k∈N ⊂K◦. Proving (9) is trivial. Then, for every index i ∈ {1, : : : , r} such that Gi(x) ∈ int Ki, there is some k0 ∈ N

such that zki :� Gi(xk) + yki ∈ int Ki for every k > k0. Hence, for every such k and i, there is some αk
i > 0 such that

zki +αk
iΛ

k
i ∈Ki, so we have 0 ≥ 〈Λk

i , z
k
i +αk

iΛ
k
i 〉 � αk

i ||Λk
i ||2. Thus, Λk

i � 0 when Gi(x) ∈ int Ki for all k > k0. w

Note that the converse holds in NLP when K � R
m
+ is seen as the Cartesian product of m copies of R+. There-

fore, Definition 4 is consistent with the usual form of AKKT in NLP. In the next section, we contextualize the
other conditions in other classical particular cases of (NCP) as well.

Remark 3. In Steck’s [75] PhD thesis, it is introduced a new sequential optimality condition, which is further de-
veloped in Börgens et al. [26, definitions 3.1 and 3.2]. In view of Börgens et al. [26, remark 4.1], because E is
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finite-dimensional and K is a closed convex cone, their condition can be defined for (NCP) similarly to Definition
1, but replacing (10) by

liminf
k→∞

〈Λk,G(xk)〉 ≥ 0: (35)

Following Börgens et al. [26], we call this condition s-AKKT. It is immediate to see that s-AKKT is implied by
TAKKT. Moreover, if AGP holds at a feasible point x and K is self-dual, then Moreau’s decomposition tells us that

liminf
k→∞

〈Λk,G(xk)〉 � lim inf
k→∞

−〈Λk,ΠK(−G(xk))〉 ≥ 0:

Then, if K is self-dual, AGP implies s-AKKT. However, because AGP and TAKKT are independent, then
s-AKKT is strictly implied by both of them in this case. Because TAKKT does not imply AKKT, then s-AKKT
does not imply AKKT either. Conversely, Example 2 shows that AKKT does not imply s-AKKT; in fact, any se-
quence that satisfies (17) must have liminfk→∞ΛkG(xk1,xk2) � Λkxk2h(xk1) → −1 < 0 because xk2 → 1. In summary, if K
is self-dual, s-AKKT is strictly weaker than TAKKT, strictly weaker than AGP, but independent of AKKT. If K is
not self-dual, Example 2 also shows that AGP is independent of s-AKKT, but the other relations still hold. It is
worth mentioning that all notions of convergence considered in Börgens et al. [26] are equivalent in a finite di-
mensional setting, which is why we only address s-AKKT.

The relations between the new sequential optimality conditions of this paper are presented in Figure 1, in
which the arrows indicate (strict) implications.

6. Contextualization in Some Particular Cases of NCP
In this section, we specialize CAKKT, AGP, and AKKT in the contexts of NLP, NLSDP, and NSOCP to illustrate
the stopping criteria associated with each of them in more practical terms. The TAKKT condition does not ac-
quire any specific format when reduced to any context, so it is not included in this section.

6.1. Nonlinear Programming
Consider the standard nonlinear programming problem with q inequality constraints and p equality constraints:

Minimize
x∈Rn

f (x),
subject to h(x) � 0,

g(x) ≤ 0:
(NLP)

The most straightforward way of viewing (NLP) as a particular case of (NCP) is directly phrasing the constraints as
(h(x),g(x)) ∈ {0}p × R

q
−, but Moreau’s decomposition is meaningless when K � {0}p, and CAKKT reduces to TAKKT

in this case. However, the CAKKT from Andreani et al. [3] is strictly stronger than TAKKT, which indicates that this
is not the best way of modeling (NLP) as a particular case of (NCP) concerning CAKKT. The AKKT and AGP condi-
tions do not present the same behavior. It is noteworthy that if one considers (NCP) with separate equality con-
straints, that is, with two blocks of constraints: h(x) � 0 and G(x) ∈K, then every definition from this paper can be
straightforwardly extended to this new problem and, in this case, K can be taken as Rq

−. Then, we consider an auxil-
iary formulation of (NLP), in which equality constraints are treated as two inequalities:

Minimize
x∈Rn

f (x),
subject to G(x) :� (h(x), − h(x),g(x)) ∈ R

p
− × R

p
− × R

q
−: (NLP-Auxiliary)

The Lagrange multipliers are then written as

Λk � ωk
1+, : : : ,ω

k
p+,ω

k
1−, : : : ,ω

k
p−,µ

k
1, : : : ,µ

k
q

( )
∈ R

p
+ × R

p
+ × R

q
+:

Figure 1. (Color online) Relationship of the new sequential optimality conditions.
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Our next result concerns the specializations of CAKKT, AGP, and AKKT from (NCP) to (NLP), but we use
(NLP-Auxiliary) as an intermediary step for recovering the original (NLP) definitions of such conditions.

Proposition 3. Let x be a feasible point of (NLP). Then, x satisfies
a. AKKT for (NLP-Auxiliary) if and only if µk

j � 0 whenever gj(x) < 0 for every sufficiently large k and some sequences
{xk}k∈N → x, {ωk}k∈N ⊂ R

p, and {µk}k∈N ⊂ R
q
+ such that

∇f (xk) +∑p
i�1

ωk
i∇hi(xk) +

∑q
j�1

µk
j∇gj(xk) → 0; (36)

b. AGP for (NLP-Auxiliary) if and only if µk
j min {0,gj(xk)} → 0 and lim infk→∞ωk

i hi(xk) ≥ 0 for every i ∈ {1, : : : ,p} and
every j ∈ {1, : : : ,q}; for some sequences {xk}k∈N → x, {µk}k∈N ⊂ R

q
+, and {ωk}k∈N ⊂ R

p such that (36) holds;

c. CAKKT for (NLP-Auxiliary) if and only if µk
j gj(xk) → 0 and ωk

i hi(xk) → 0 for every i ∈ {1, : : : ,p} and every
j ∈ {1, : : : ,q}; for some sequences {xk}k∈N → x, {µk}k∈N ⊂ R

q
+, and {ωk}k∈N ⊂ R

p such that (36) holds.

Proof.
a. AKKT: If AKKT holds for (NLP-Auxiliary), there exist sequences {xk}k∈N → xk, {Λk}k∈N ⊂K◦, and {Yk}k∈N ⊂

R
p × R

p × R
q, where Yk � (zk+, zk−,yk) → 0 such that h(xk) + zk+ ≤ 0, −h(xk) + zk− ≤ 0, and g(xk) + yk ≤ 0 for every k, and

〈G(xk) +Yk,Λk〉 �∑p
i�1

ωk
i+(hi(xk) + zki+) +

∑p
i�1

ωk
i−(−hi(xk) + zki−) +

∑q
j�1

µk
j (gj(xk) + ykj ) � 0: (37)

Because all terms are nonnegative, they are all zero, and consequently, whenever gj(x) < 0, we have gj(xk) + ykj < 0

for sufficiently large k. That implies µk
j � 0 for every such k and j. Take ωk

i :� ωk
i+ −ωk

i− to obtain (36) from (9).

Conversely, consider the following natural choice: Yk :� (−h(xk),h(xk), ĝj(xk)) → 0, where

ĝj(xk) :�
0, if gj(x) < 0
−gj(xk), otherwise,

{
and then, for sufficiently large k, we have (37) and G(xk) +Yk ∈K, and AKKT is satisfied with ωk

i+ :�max{0,ωk
i }

and ωk
i− :� −min{0,ωk

i }.
b. AGP: In this case, 〈Λk,ΠK(G(xk))〉 → 0 is equivalent to saying that∑p

i�1
ωk

i+min {0,hi(xk)} +
∑p
i�1

ωk
i−min {0, − hi(xk)} +

∑q
j�1

µk
jmin{0,gj(xk)} → 0:

Because each part of the sum has the same sign, we get that ωk
i−min {0, − hi(xk)} → 0, ωk

i+min {0,hi(xk)} → 0,
and µk

jmin {0,gj(xk)} → 0. Hence, we have that µk
jmin {0,gj(xk)} → 0 for every j ∈ {1, : : : ,q}, and defining

ωk
i :� ωk

i+ −ωk
i−, we observe that
ωk

i hi(xk) � ωk
i+min {0,hi(xk)} −ωk

i−min {0,hi(xk)} −ωk
i+min {0, − hi(xk)} +ωk

i−min {0, − hi(xk)}: (38)

Then, note that the first and last terms of the right-hand side of (38) both vanish in the limit, and the middle
terms are nonnegative. Hence, lim infk→∞ωk

i hi(xk) ≥ 0 for every i ∈ {1, : : : ,p}.
Conversely, set ωk

i+ :�max{0,ωk
i } and ωk

i− :� −min {0,ωk
i }. Then, for each k, only one term of the right-hand side

of (38) can be nonzero, so its first and last terms must converge to zero because they are nonpositive.
c. CAKKT: Here, we get

〈Λk,ΠK(G(xk))〉 � 〈ωk
+, min {h(xk), 0}〉 + 〈ωk

−, min {−h(xk), 0}〉 + 〈µk,min { g(xk), 0}〉
and

〈Λk,ΠK◦ (G(xk))〉 � 〈ωk
+,max {h(xk), 0}〉 + 〈ωk

−, max {−h(xk), 0}〉 + 〈µk,max { g(xk), 0}〉,
so if both tend to zero, define ω̂k

:� ωk+ −ωk−, and we obtain ω̂
k
i hi(xk) → 0 and µk

j gj(xk) → 0.
The converse is analogous to the previous item with the same choice of multipliers:

ωk
i+ :� max {0,ωk

i } and ωk
i− :� −min {0,ωk

i }: w

Note that, from this point of view, our definitions are consistent with the original AKKT from Andreani et al. [1],
the AGP from Martı́nez and Svaiter [60] (which follows from Theorem 1), and the CAKKT from Andreani et al.
[3], respectively.
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We summarize our results in Table 1.
Because the sequential conditions mostly differ in how they deal with approximate complementarity, only this

condition is made explicit in Table 1.

6.2. Nonlinear Semidefinite Programming
Here, we recall the classical form of an NLSDP problem:

Minimize
x∈Rn

f (x),
subject to G(x) ∈ S

m
− , (NLSDP)

which is (NCP) with E � S
m, 〈A,B〉 :� tr(AB) is the (Frobenius) inner product given by the trace of AB, and

K � S
m
− . We recall that K◦ � −K and every symmetric matrix A ∈ E has a spectral decomposition, that is, there ex-

ists an orthogonal matrix U such that A �UDUT, where D �Diag (λU
1 (A), : : : ,λU

m(A)) is a diagonal matrix and
λU
i (A) are eigenvalues of A ordered according to the eigenvectors in the columns of U. Moreover,

ΠK(A) �UDiag(min {λU
1 (A), 0}, : : : ,min {λU

m(A), 0})UT,

and a similar relation holds forΠK◦ (A)with max instead of min .
When no order is specified, we consider λ1(A) ≤ : : : ≤ λm(A). Note that for every i ∈ {1, : : : ,m}, we have

λi(−A) � −λm−i+1(A). Also, the following inequality is important to our analyses: for every A,B ∈ S
m
− , we have the

inequality ∑m
i�1

λi(A)λm−i+1(B) ≤ tr(AB) ≤∑m
i�1

λi(A)λi(B): (39)

For its proof see Marcus [57].
Now, we specialize our conditions from (NCP) to (NLSDP):

Proposition 4. Let x be a feasible point of (NLSDP). Then, x satisfies
a. AKKT if and only if there exist sequences {xk}k∈N → x, {Λk}k∈N ⊂K◦, and a sequence of orthogonal matrices Sk →U,

where U diagonalizes G(x) and each Sk diagonalizes Λk such that (9) holds and λSk
i (Λk) � 0 if λU

i (G(x)) < 0 for sufficiently
large k.

b.AGP implies that, for every i,

min {0,λi(G(xk))}λi(Λk) → 0,

for some sequences {xk}k∈N → x and {Λk}k∈N ⊂K◦ such that (9) holds.
c. CAKKT implies that, for every i,

min {0,λi(G(xk))}λi(Λk) → 0 and min {0, −λm−i+1(G(xk))}λi(Λk) → 0,

for some sequences {xk}k∈N → x and {Λk}k∈N ⊂K◦ such that (9) holds.

Proof.
a. AKKT: If there is a sequence {yk}k∈N → 0 such that G(xk) + yk ∈K and 〈Λk,G(xk) + yk〉 � 0 for every k, the latter

implies that G(xk) + yk and Λk are simultaneously diagonalizable; that is, for every k, there is a matrix Sk such that

G(xk) + yk � SkΘk(Sk)T and Λk � SkΓ k(Sk)T, whereΘk �Diag(λSk
i (G(xk) + yk)) and Γ k �Diag(λSk

i (Λk)). The continuity
of G and the convergence of {xk}k∈N imply that Sk →U for some orthogonal matrix U. Then, U diagonalizes G(x)
because G(xk) + yk → G(x), and if λU

i (G(x)) < 0, then for sufficiently large k, we have λSk
i (G(xk) + yk) < 0 as well.

Then, λSk
i (Λk) � 0 for those k. Conversely, let x be a feasible point associated with the sequences {Λk}k∈N,

{xk}k∈N → x, and {Sk}k∈N →U, where each Sk diagonalizes Λk and U diagonalizes G(x) such that λSk
i (Λk) � 0

Table 1. Sequential conditions when specialized to (NLP).

Approximate complementarity condition

AKKT gj(x) < 0⇒ µk
j � 0, ∀j and k sufficiently large

AGP µk
jmin {gj(xk), 0}→ 0 and liminfk→∞ωk

i hi(xk) ≥ 0, ∀i, ∀j
CAKKT µk

j gj(xk) → 0 and ωk
i hi(xk) → 0, ∀i, ∀j:
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whenever λU
i (G(x)) < 0. Without loss of generality and to simplify the notation, we can suppose that U leaves the

eigenvalues of G(x) increasingly ordered. Also, suppose that there are α negative eigenvalues and β zero eigenval-

ues in G(x)with α+ β �m, and for some indexedmatrix Ak, define Ã
k
:� (Sk)TAkSk. Then, choose

yk :� Sk
0 −G̃(xk)αβ

−G̃(xk)βα −G̃(xk)ββ

[ ]
(Sk)T, where G̃(xk) � G̃(xk)αα G̃(xk)αβ

G̃(xk)βα G̃(xk)ββ

[ ]
,

and the partition αα refers to the first α rows of the matrix, for example. Then, if Γ k :� Λ̃k, we get

〈Λk,G(xk) + yk〉 � 〈Γ k, G̃(xk) + ỹk〉 � 0,

for sufficiently large k because Γ k
αα � 0 for large enough k. Because every block of G̃(xk) converges to zero except

for G̃(xk)αα, we know that yk → 0. Also, because G̃(xk) + ỹk ∈ S
m
− , we get G(xk) + yk ∈ S

m
− .

b. AGP: In this case, observe that 〈Λk,ΠK(G(xk))〉 � tr(ΛkΠK(G(xk))) → 0 can be simplified using the left inequali-
ty of (39) for A �ΠK(G(xk)), B � −Λk. With this, we obtain λi(ΠK(G(xk)))λm−i+1(−Λk) → 0 for all i. Because λi(Λk) �
−λm−i+1(−Λk), we conclude that AGP implies λi(ΠK(G(xk)))λi(Λk) → 0, for every i ∈ {1, : : : ,m}. This means

min {0,λi(G(xk))}λi(Λk) → 0:

c. CAKKT: Similarly to the previous item, from 〈Λk,ΠK(G(xk))〉 → 0 we get min {0,λi(G(xk))}λi(Λk) → 0. Also,
from 〈Λk,ΠK◦ (G(xk))〉 → 0 and (39), we obtain λi(−ΠK◦ (G(xk)))λi(Λk) → 0, for every i ∈ {1, : : : ,m}, which is equiva-
lent to λi(ΠK(−G(xk)))λi(Λk) → 0. Then,

min {0, −λm−i+1(G(xk))}λi(Λk) → 0: w

Note that the characterizations for AGP and CAKKT are unilateral in this case, but because the purpose of spe-
cializing our conditions is to define stopping criteria, this is not an issue. For instance, if an algorithm employs
the stopping criterion related to AGP (given by item (b) of Proposition 4), the proposition states that its feasible
limit points are at least as good as AGP. Nevertheless, we point out that the converse statements hold when Λk

and G(xk) commute for every k.
We summarize our results for (NLSDP) in Table 2.
Recall from Definition 3 that CAKKT incorporates the idea of controlling the behavior of the Lagrange multi-

plier through a vanishing measure of infeasibility. In NLP, this control can be understood in terms of growth,
but in more general contexts, such as NLSDP, it can have different meanings. As mentioned in the introduction,
Andreani et al. [2] conjecture that the ideal definition of CAKKT should control the growth of all eigenvalues of
the multiplier. In our case, only max {0,m− 2r} eigenvalues have their growths controlled, and r is the number of
nonzero eigenvalues of G(x). This suggests that, even though our definition of CAKKT generalizes one of the
multiple interpretations of the nonlinear programming CAKKT, it is still imperfect. We conjecture that our defi-
nition, the one presented in Andreani et al. [12], and (6) are all independent. If this is the case, then there would
be multiple correct ways of generalizing CAKKT. However, we are not able to find examples that support our
claim at this moment.

That AGP was not yet defined for NLSDP and AKKT is consistent with the definition presented in Andreani et al.
[2, definition 3.1]. Also, employing analogous reasoning, it is possible to recover AKKT from Andreani et al. [12] in
symmetric cones after imbuing a Jordan product into E by making use of the spectral theorem from Baes [17].

Table 2. Sequential optimality conditions when specialized to (NLSDP). Recall that, for C ∈ S
m, the symbols

λ1(C), : : : ,λm(C) represent the eigenvalues of C, increasingly ordered.

Approximate complementarity condition

AKKT λU
i (G(x)) < 0⇒ λSk

i (Λk) � 0, ∀i, ∀k sufficiently large,where Sk diagonalizes Λk, for every k, and U diagonalizes G(x)
AGP min {0,λi(G(xk))}λi(Λk) → 0, ∀i
CAKKT min {0,λi(G(xk))}λi(Λk) → 0 and max {0,λm−i+1(G(xk))}λi(Λk) → 0, ∀i

Andreani et al.: On Optimality Conditions for Nonlinear Conic Programming
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6.3. Nonlinear Second Order Cone Programming
Consider the following particular case of (NCP):

Minimize
x∈Rn

f (x),
subject to Gi(x) ∈ Ki, i ∈ {1, : : : , r}, (NSOCP)

where E � R
m1 × : : : × R

mr with m1 + : : : +mr �m, and each Ki ⊂ R
mi is a second order cone (or Lorentz cone), that is,

Ki :� {(z0, ẑ) ∈ R × R
mi−1 : ||̂z|| ≤ z0}, i ∈ {1, : : : , r}:

Denote G(x) :� (G1(x), : : : ,Gr(x)) and K :�K1 × : : : ×Kr. From Fukushima et al. [36], the interior and the bound-
ary of Ki are described by

int Ki :� {(z0, ẑ) ∈ R × R
mi−1 : ||̂z|| < z0},

bd Ki :� {(z0, ẑ) ∈ R × R
mi−1 : ||̂z|| � z0}:

Moreover, consider the following sets of indices:

I int :� {i ∈ {1, : : : , r} : Gi(x) ∈ int Ki},
Ibd+ :� {i ∈ {1, : : : , r} : Gi(x) ∈ bd Ki\{0}}: (40)

It is well known that Ko
i � −Ki, ∀i, and hence, K◦ � −K. In Fukushima et al. [36], there is a formula for the

projection onto a single Lorentz cone Ki. Following Fukushima et al. [36], every v � (v0, v̂) ∈ R × R
mi−1 can be

decomposed as

v � µ1(v)c1(v) +µ2(v)c2(v), (41)

where µℓ(v) ∈ R and cℓ(v) ∈K for ℓ ∈ {1, 2} are given by the following expressions:

µℓ(v) � v0 + (−1)ℓ||̂v|| and cℓ(v) � (1=2)(1, (−1)ℓv̂|| v̂ ||−1) if v̂ ≠ 0
(1=2)(1, (−1)ℓw) if v̂ � 0,

{
(42)

where w is any unitary vector in R
mi−1. Clearly, we always have that µ1(v) ≤ µ2(v) and 0 ≤ 〈ci(v), cj(w)〉 ≤ 1 for

every v,w and i, j ∈ {1, 2}. Now, for every v � (v0, v̂) ∈ R × R
mi−1, we have ΠKi(v) :�max{µ1(v), 0}c1(v)+

max{µ2(v), 0}c2(v). Using Ko
i � −Ki, we obtain

ΠKo
i
(v) :�min {µ1(v), 0}c1(v) +min {µ2(v), 0}c2(v):

Finally, for v � (v1, : : : ,vr) ∈ E with vi ∈ R × R
mi−1, we have that ΠK(v) � (ΠK1(v1), : : : ,ΠKr(vr)) and ΠK◦ (v) �

(ΠKo
1
(v1), : : : ,ΠKo

r
(vr)).

We recall from Peng et al. [64, lemma 6.2.3] that, for every zi,vi ∈ R
mi ,

µ1(zi)µ2(vi) +µ2(zi)µ1(vi) ≤ 2〈zi,vi〉 ≤ µ1(zi)µ1(vi) +µ2(zi)µ2(vi): (43)

Now, let x be a feasible point of (NSOCP) and {xk}k∈N be a sequence with xk → x associated with some sequential
optimality condition with multipliers {Λk}k∈N; then, (9) can be stated as

∇f (xk) +∑r
i�1

DGi(xk)Tλk
i → 0, (44)

where Λk � (λk
1, : : : ,λ

k
r) ∈Ko

1 × : : : ×Ko
r .

Similarly to the previous sections, the following result exhibits the formats of our sequential condition when
specialized to NSOCP:

Proposition 5. Let x be a feasible point of (NSOCP). Then, x satisfies
a. AKKT if and only if there exist sequences {xk}k∈N → x, {λk

i }k∈N ⊂Ko such that (44) holds, λk
i � 0 for every i ∈ I int and

sufficiently large k, and when i ∈ I bd+, then −λk
i ∈ bd Ki and either λk

i → 0 or

λ̂k
i

||λ̂k
i ||

→ Ĝi(x)
||Ĝi(x)||

; (45)
b.AGP implies that

µℓ(λk
i )max {µℓ(Gi(xk)), 0} → 0,

for every ℓ ∈ {1, 2} and every i ∈ {1, : : : , r} for some sequences {xk}k∈N → x and {λk
i }k∈N ⊂K◦ such that (44) holds;
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c. CAKKT implies that

µℓ(λk
i )max {µℓ(Gi(xk)), 0} → 0, ℓ ∈ {1, 2} and µℓ(λk

i ) min {µs(Gi(xk)), 0} → 0,

for every ℓ, s ∈ {1, 2} with ℓ ≠ s, and every i ∈ {1, : : : , r} for some sequences {xk}k∈N → x and {Λk}k∈N ⊂K◦ such that (44)
holds.

Proof.
a. AKKT: If there are sequences {yki }k∈N → 0 such that zki :� Gi(xk) + yki ∈Ki for every i and∑r

i�1
〈λk

i ,Gi(xk) + yki 〉 � 0,

then we have, for every i, that 〈λk
i ,Gi(xk) + yki 〉 � 0. So if Gi(x) ∈ int Ki, we get λk

i � 0 for k sufficiently large because
of Lemma 2. But, also, if Gi(x) ∈ bd+Ki, then ||Ĝi(x)|| � (Gi(x))0 > 0, so for large enough k, we must have (zki )0 > 0
as well. Now, note that

0 � 〈λk
i , z

k
i 〉 � 〈λ̂k

i , ẑ
k
i 〉 + (λk

i )0(zki )0 ≤ ||λ̂k
i || ||ẑki || + (λk

i )0(zki )0 ≤ (||λ̂k
i || + (λk

i )0)(zki )0,
but because (zki )0 > 0, we get ||λ̂k

i || ≥ −(λk
i )0. On the other hand, because −λk

i ∈Ki, we know that ||λ̂k
i || ≤ −(λk

i )0.
Hence, ||λ̂k

i || � −(λk
i )0, which means −λk

i ∈ bd Ki. If λk
i =→ 0, then (λk

i )0 =→ 0, but we still have 〈λk
i ,z

k
i 〉 � 0, whence

1 � lim
k→∞〈 λ̂k

i

−(λk
i )0

,
ẑki

(zki )0〉� lim
k→∞
〈 λ̂k

i

||λ̂k
i ||
,

Ĝi(xk)
(Gi(xk))0〉� lim

k→∞
〈 λ̂k

i

||λ̂k
i ||
,
Ĝi(x)
||Ĝi(x)||〉,

which means λ̂
k
i =||λ̂

k
i || → Ĝi(x)=||Ĝi(x)||. In order to check this, keep in mind that both vectors are unitary, so the

cosine of the angle between them must tend to one.
Conversely, without loss of generality, we can suppose that every λk

i such that i ∈ Ibd+ and λk
i → 0 is equal to

zero for k sufficiently large and set

yki :�
−Gi(xk), if Gi(x) � 0,

−ΠK◦ (Gi(xk)), if i ∈ I int or i ∈ Ibd+ with λk
i → 0,

||Ĝi(xk)||
(λk

i )0
(λk

i )0, − λ̂k
i

( )
−Gi(xk), if i ∈ Ibd+ with λk

i =→ 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Then, we have Gi(xk) + yki ∈Ki for every i ∈ {1, : : : , r} because ((λk

i )0, − λ̂k
i ) ∈K◦ and (λk

i )0 ≤ 0. If Gi(x) ∈
{0}⋃ int Ki, we clearly have 〈Gi(xk) + yki ,λ

k
i 〉 � 0 for k sufficiently large. If i ∈ Ibd+ , because −λk

i ∈ bd Ki, we get

〈Gi(xk) + yki ,λ
k
i 〉 �

||Ĝi(xk)||
(λk

i )0
(λk

i )20 − ||λ̂k
i ||2

( )
� 0:

Also, note that

(yki )0 � ||Ĝi(xk)|| − (Gi(xk))0 and ŷki �
||Ĝi(xk)||
||λ̂k

i ||
λ̂k
i − Ĝi(xk),

so in case λk
i =→ 0, we get yki → 0 from Gi(x) ∈ bd Ki\{0} and (45).

b. AGP: In this case, because

〈Λk,ΠK(G(xk))〉 �
∑r
i�1

〈λk
i ,ΠKi(Gi(xk))〉 → 0

and K◦ � −K, we obtain 〈λk
i ,ΠKi(Gi(xk))〉 → 0 for every i ∈ {1, : : : , r}. Now, using the spectral decomposition (41)

and the right-hand side of (43), we obtain

2〈λk
i ,ΠKi(Gi(xk))〉 ≤ µ1(λk

i )µ1(ΠKi(Gi(xk))) +µ2(λk
i )µ2(ΠKi(Gi(xk))) ≤ 0:
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Hence, taking k→∞ in the preceding expression, we see that

• µ1(λk
i )µ1(ΠKi(Gi(xk))) � µ1(λk

i )max{µ1(Gi(xk)), 0}→ 0.

• µ2(λk
i )µ2(ΠKi(Gi(xk))) � µ2(λk

i )max{µ2(Gi(xk)), 0}→ 0.

Furthermore, from the preceding and because µ1(λk) ≤ µ2(λk) ≤ 0, we see that µ2(λk
i )max {µ1(Gi(xk)), 0}→ 0.

Thus, 〈λk
i ,ΠKi(Gi(xk))〉 → 0 implies µℓ(λk

i )max{µℓ(Gi(xk)), 0}→ 0 for ℓ ∈ {1, 2} and ∀i ∈ {1, : : : , r}.
CAKKT: Again, 〈Λk,ΠK(G(xk))〉 → 0 and 〈Λk,ΠK◦ (G(xk))〉 → 0 are equivalent to 〈λk

i ,ΠKi(Gi(xk))〉 → 0 and
〈λk

i ,ΠKo
i
(Gi(xk))〉 → 0 for every i ∈ {1, : : : , r}.

From 〈λk
i ,ΠKo

i
(Gi(xk))〉 → 0, using (41) and the left-hand side of (43), we have

0 ≤ µ1(λk
i )µ2(ΠK

◦
i
(Gi(xk))) +µ2(λk

i )µ1(ΠK
◦
i
(Gi(xk))) ≤ 2〈λk

i ,ΠK
◦
i
(Gi(xk))〉:

Then, from (41) and taking k→∞ in the preceding expression, we see that

• µ1(λk
i )µ2(ΠKo

i
(Gi(xk))) � µ1(λk

i )min {µ2(Gi(xk)), 0}→ 0.

• µ2(λk
i )µ1(ΠKo

i
(Gi(xk))) � µ2(λk

i )min {µ1(Gi(xk)), 0}→ 0.

Furthermore, from the preceding, we see that µ2(λk
i )min{µ2(Gi(xk)), 0}→ 0. Thus, 〈λk

i ,ΠKo
i
(Gi(xk))〉 → 0 implies

µℓ(λk
i )min{µs(Gi(xk)), 0}→ 0 for ℓ, s ∈ {1, 2}, s ≠ ℓ, and ∀i ∈ {1, : : : , r}. See Table 3. w

Note that AKKT is consistent with Andreani et al. [12, definition 3.3] in view of Andreani et al. [12, theorem
4.1], which gives the exact same characterization as item (a) of Proposition 5, and AGP was not yet defined for
NSOCP. Also, our version of CAKKT comprises eigenvalue products, which is similar to what we expected to
obtain in the NLSDP case.

Table 3 summarizes our results.
In NSOCP, the relation between Definition 3 and CAKKT as in Andreani et al. [12, definition 3.4] is not clear.

We conjecture that they are independent, which may endorse the possibility of the existence of multiple indepen-
dent extensions of CAKKT. Observe that the most important feature of our approach is its simplicity and its gen-
erality because it only uses inner products and projections. On the other hand, Andreani et al. [12, definition 3.4]
relies on the Jordan algebra structure, which is limited to symmetric cones, but it is more elegant than our ap-
proach in certain aspects.

7. Strength of the Sequential Optimality Conditions
A sequential optimality condition carries the convergence properties of the algorithms supported by them, and
this is what gives them a practical meaning. However, even though we compared sequential conditions among
themselves, we have not yet shown any improvement regarding the usual convergence theory of any algorithm.
In other words, to complete our results, we still need to clarify the relation between our sequential conditions
and other optimality conditions of the form “KKT or not-CQ” for some CQ. This section is dedicated to filling
this gap.

Recall that the classical Robinson’s [70] CQ holds at some feasible point x when

0 ∈ int(G(x) +DG(x)Rn −K), (46)

where DG(x)Rn :� {DG(x)d : d ∈ R
n}. It is widely known that Robinson’s CQ generalizes the MFCQ from NLP

(see Mangasarian and Fromovitz [56]). We proceed by reproving the classical convergence results to KKT points
under Robinson’s CQ via sequential conditions.

Table 3. Sequential optimality conditions when specialized to (NSOCP). We use {µℓ(v), ℓ ∈ {1, 2}} to
denote spectral values of v ∈Ki (see (42)). For the definitions of I bd+ and I int, see (40).

Approximate complementarity condition

AKKT i ∈ I int, λk
i → 0, and for i ∈ I bd+, −λk

i ∈ bd Ki and either λk
i → 0 or λ̂

k
i =||λ̂

k
i || → Ĝi(x)=||Ĝi(x)||

AGP µℓ(λk
i )max {µℓ(Gi(xk)), 0}→ 0 for ∀ℓ ∈ {1, 2}, ∀i

CAKKT µℓ(λk
i )max {µℓ(Gi(xk)), 0}→ 0 and µℓ(λk

i )min {µs(Gi(xk)), 0}→ 0,∀ℓ, s ∈ {1, 2} (ℓ ≠ s), ∀i
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Proposition 6. If Robinson’s CQ holds at an AKKT point x associated with the sequences {xk}k∈N and {Λk}k∈N, then x sat-
isfies the KKT conditions for (NCP).

Proof. We begin by proving that {Λk}k∈N is bounded. In order to do that, by contradiction, suppose not. Then, we

can assume ||Λk|| →∞, but Λ̂k :�Λk=||Λk|| →Λ ∈K◦. Then, from (9), we get ∇f (xk)=||Λk|| +DG(xk)∗Λ̂k → 0 and,
consequently, DG(x)∗Λ � 0. Moreover,

0 � 〈Λk,G(xk) + yk〉 � 〈Λ̂k,G(xk) + yk〉 → 〈Λ,G(x)〉 � 0,

and by Robinson’s CQ, there exists some small α > 0 such that −αΛ ∈ (G(x) +DG(x)Rn −K). Let d ∈ R
n and z ∈K

be such that −αΛ � G(x) +DG(x)d− z, so we have

−α〈Λ,Λ〉 � 〈Λ,G(x)〉 + 〈Λ,DG(x)d〉 − 〈Λ,z〉 � 〈DG(x)∗Λ,d〉 − 〈Λ,z〉 ≥ 0,

which implies Λ � 0. Because this contradicts the definition of Λ, we conclude that {Λk}k∈N must be bounded.
Hence, without loss of generality, we can assume it converges to Λ ∈K◦. Trivially, ∇f (x) +DG(x)∗Λ � 0 and

|〈Λ,G(x)〉| � lim
k→∞

|〈Λk,G(xk)〉| � | lim
k→∞

〈Λk,yk〉| � 0:

Also, because K is closed andK�G(xk) + yk → G(x), we have G(x) ∈ K. Thus, (x,Λ) is a KKT pair of (NCP). w

Analogously, it can be proved that TAKKT also satisfies the KKT conditions under Robinson’s CQ. Moreover, be-
cause AKKT is implied by CAKKT and AGP, the same holds for both. That means every algorithm that is supported
by one of our sequential conditions converges to KKT points under Robinson’s CQ, but sequential conditions tell us
more than that. Following Andreani et al. [11], for each sequential optimality condition (OC), it is possible to define
conditions, so-called strict constraint qualifications (SCQ) such that “OC+ SCQ⇒ KKT” and, among them, character-
ize the weakest one.

We use the same nomenclature style of Andreani et al. [11]. For instance, the weakest SCQ associated with the
AKKT condition is called AKKT-regularity, and similar names are given for the other sequential optimality condi-
tions presented in Section 3.

Definition 5. Consider the following sets:
1.KA(x, r) :� DG(x)∗Λ : |y| ≤ r, Λ ∈K◦,G(x) + y ∈K ∩ {Λ}⊥{ }

;
2.KT(x, r) :� DG(x)∗Λ : |〈Λ,G(x)〉| ≤ r, Λ ∈K◦{ };
3.KAGP(x, r) :� DG(x)∗Λ : |〈Λ,ΠK(G(x))〉| ≤ r, Λ ∈K◦{ };
4.KC(x, r) :� DG(x)∗Λ :max{|〈Λ,ΠK(G(x))〉|, |〈Λ,ΠK◦ (G(x))〉|} ≤ r, Λ ∈K◦{ }.
We say that the AKKT-regularity condition holds at x if the set-valued mapping (x, r) �→KA(x, r) is outer semi-

continuous at (x, 0). The constraint qualification conditions TAKKT-, AGP-, and CAKKT-regularity have analo-
gous definitions using the sets KT(x, r),KAGP(x, r), and KC(x, r), respectively.
Remark 4. For a feasible point x of (NCP), we see that, at (x, 0), all the sets from Definition 5 coincide with
DG(x)∗Λ : 〈Λ,G(x)〉 � 0,Λ ∈K◦{ }. Thus, given an objective function f for (NCP), the KKT conditions hold at x if
and only if −∇f (x) ∈KA(x, 0). Similar statements hold for the other sets.

The next theorem states that each SCQ is, indeed, the weakest SCQ associated with each optimality condition.

Theorem 5. A feasible point x for (NCP) satisfies CAKKT-regularity if and only if for every continuously differentiable ob-
jective function, the CAKKT condition at x implies the KKT conditions. Similar conclusions are valid for AKKT-, AGP-,
and TAKKT-regularity.

Proof. We use the same techniques as Andreani et al. [10, 11]. We just prove the statement for CAKKT-regularity
because the other ones are analogous.

Suppose that CAKKT-regularity holds at x and take any objective function f having x as a CAKKT point. By
definition, there exist sequences {xk}k∈N → x and {Λk}k∈N ⊂K◦ such that

wk :� ∇f (xk) +DG(xk)∗Λk → 0, 〈Λk,ΠK(G(xk))〉 → 0, and 〈Λk,ΠK◦ (G(xk))〉 → 0:

Set rk :�max {|〈Λk,ΠK(G(xk))〉|, |〈Λk,ΠK◦ (G(xk))〉|}, ∀k ∈ N. Thus, −∇f (xk) +wk ∈KC(xk, rk). Taking limits in the last
expression, we get −∇f (x) ∈KC(x, 0) from the outer semicontinuity of KC, and hence, the KKT conditions hold at
x. Conversely, suppose that, for every continuously differentiable objective function, the CAKKT condition at x
implies the KKT conditions. We show that CAKKT-regularity holds at x. Take ω ∈ limsup(x,r)→(x,0) KC(x, r). Then,
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there exists an infinite subset I ⊆ N and sequences {xk}k∈I → x, {rk}k∈I → 0, and {wk}k∈I → w such that wk ∈
KC(xk, rk) for every k ∈ I, which means each wk is associated with some Λk ∈K◦. Now, define the function
f (x) :� −〈ω,x〉, and let i(k) denote the element of I that is closest to a given k ∈ N; in particular, when k ∈ I, then
i(k) � k. Defining x̃k :� xi(k) and Λ̃k :� Λi(k) for every k ∈ N, we see that x is a CAKKT point for f associated with
the sequences {x̃k}k∈N and {Λ̃k}k∈N. Then, by assumption, the KKT conditions hold, which is equivalent to
−∇f (x) � w ∈KC(x, 0), and thus, CAKKT-regularity holds at x. w

From Theorem 6 and Definition 5, we observe that Robinson’s CQ implies AKKT-regularity, which strictly
implies AGP-regularity, and the latter strictly implies CAKKT-regularity because of Theorem 5 and the relations
among the sequential conditions from Sections 3 and 5. Thus, our previous considerations show that the algo-
rithms supported by the CAKKT condition are guaranteed to converge to KKT points under assumptions that
are weaker than Robinson’s CQ, for example.

Now, to conclude our analyses, we make explicit the relation between our SCQs and the very weak Abadie’s
CQ, which holds at a feasible point x if and only if TΩ(x) � LΩ(x) and the set KC(x, 0) � DG(x)∗Λ : 〈Λ,G(x)〉 �{
0,Λ ∈K◦} is closed, where

TΩ(x) :� {d ∈ R
n : ∃ tk ↓ 0,dk → d with x + tkdk ∈Ω}

is the tangent cone toΩ at x and

LΩ(x) :� {d ∈ R
n :DG(x)d ∈ TK(G(x))}

is the so-called linearized tangent cone toΩ at x.
The only affirmation that requires a proof is “CAKKT-regularity implies Abadie’s CQ,” but note that even in

the finite-dimensional setting of (NCP) the set KC(x, 0) may not be closed (Pataki [63]). Therefore, the first thing
we prove is that this condition is guaranteed under CAKKT-regularity.

Lemma 3. Let x be a feasible point of (NCP) that satisfies CAKKT-regularity. Then, KC(x, 0) is closed, which, in turn, im-
plies that it coincides with LΩ(x)o.
Proof. Recall that limsup(x,r)→(x ,0)KC(x, r) is always a closed set, so if it coincides with KC(x, 0), then the latter is
also closed. Moreover, it follows directly from Rockafellar and Wets [73, corollary 11.25(d)] that, if KC(x, 0) is
closed, then it coincides with LΩ(x)o. w

In light of Lemma 3, the rest of the proof follows the same recipe as in NLP. To present it, we first recall the reg-
ular normal cone toΩ at z ∈Ω, which is defined as

N̂Ω(z) :� w ∈ R
n : limsup

z→z,z∈Ω
||z− z||−1〈w, z− z〉 ≤ 0

{ }
,

and the limiting normal cone to Ω at x ∈Ω, which is NΩ(z) :� limsupz→z ,z∈ΩN̂Ω(z). Now, we present a technical
lemma.

Lemma 4. We always have that NΩ(x) ⊂ limsup(x,r)→(x,0)KC(x, r).
Proof. Analogous to the proof of Andreani et al. [11, lemma 4.3]. w

And, finally, the result:

Theorem 6. CAKKT-regularity implies Abadie’s CQ.

Proof. Let x be a feasible point such that CAKKT-regularity holds at x. Using the definition of outer semicontinu-
ity of KC(x, r) and Lemma 4, we get that NΩ(x) ⊂KC(x, 0), and by Lemma 3, we have that KC(x, 0) is closed and
KC(x, 0) � LΩ(x)o. Therefore, NΩ(x) ⊂ LΩ(x)o. Now, because TΩ(x) ⊂ LΩ(x) always holds for every set, to show
that Abadie’s CQ holds at x, it suffices to prove the inclusion LΩ(x) ⊂ TΩ(x). Now, from the inclusion
NΩ(x) ⊂ LΩ(x)o, we get that LΩ(x) ⊂ (LΩ(x)o)o ⊂NΩ(x)o ⊂ TΩ(x), where the first inclusion follows from the polari-
ty theorem because LΩ(x) is a closed convex cone because K is also a closed convex cone, and the last inclusion
comes from Rockafellar and Wets [73, theorems 6.28(b) and 6.26]. w

Remark 5. Börgens et al. [26, theorem 4.6] states that s-AKKT-regularity Börgens et al. [26, definition 4.4] is the
weakest constraint qualification that guarantees equivalence between KKT and s-AKKT, similarly to Theorem 5.
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Therefore, s-AKKT-regularity is independent of AKKT-regularity, independent of AGP-regularity, and strictly
stronger than TAKKT-regularity. When K is self-dual, however, it implies AGP regularity strictly. Moreover, we
obtain from Börgens et al. [26, theorem 5.2 and example 5.4], that s-AKKT-regularity is strictly implied by
Robinson’s CQ.

For summarizing our results, we illustrate the position of the new SCQs among the existing CQs: s-AKKT-
regularity, Abadie’s CQ, and Robinson’s CQ, in the diagram of Figure 2.

8. Final Remarks
Powerful modeling languages and other recent technological advances extended the possibilities for solving com-
plex real-life problems. Such complexity is often translated in terms of (NCP), which is a large family of optimiza-
tion problems, that generalizes NLP, NLSDP, and NSOCP, for example. In this paper, we extended to the NCP
context some of the so-called sequential optimality conditions, which have been useful in particular cases of NCP
for improving the global convergence analysis of several practical algorithms in a unified manner. Also, we pre-
sented a variant of the augmented Lagrangian method for NCP, whose global convergence theory was built via
sequential optimality conditions. We proved that every feasible limit point of this method satisfies AGP, and un-
der an additional smoothness assumption, it also satisfies CAKKT, which is a strictly stronger condition. The
meaning of such results lies in the fact that every CAKKT (respectively, AGP) point also satisfies the KKT condi-
tions in the presence of a constraint qualification called CAKKT-regularity (AGP-regularity), which is strictly
weaker than Robinson’s condition. That means, for instance, that Algorithm 1 is at least as strong as the classical
variants of the augmented Lagrangian method despite being much more general. To the best of our knowledge,
the convergence of the augmented Lagrangian to CAKKT points was only known in NLP and, more recently, in
NSOCP, but its convergence to AGP points was not yet known even in NLP.

Intuitively, one may expect general environments to be more complicated or to be less likely to achieve strong
results in comparison with more structured ones. However, in this work, we see the opposite because we are
able to recover and improve most of the existing results from NLP, NLSDP, and NSOCP while employing sim-
pler techniques in our analyses. In fact, we limit ourselves to using only somewhat simple structures, such as in-
ner products and projections, to make our results as applicable as possible. Our efforts lead us to believe that
NCP encompasses most of the fundamental aspects of the classical optimization theory in a natural way, which
may encourage further research in this field. For instance, the relation between CAKKT and the concept with the
same name, from Andreani et al. [12], is still unclear. Another subject of further investigation is the role of se-
quential conditions in perturbation theory and error estimation, which may clarify their value as a theoretical lo-
cal optimality analysis tool as an alternative to the punctual KKT conditions. Second order sequential conditions
have recently appeared in Andreani et al. [6], Birgin et al. [22], Haeser [40], and Haeser and Ramos [41] for NLP,
and we intend to extend them to more general contexts as well. Moreover, as mentioned in the introduction,
there are several algorithms for NLP that have had their convergence theories (re)built via sequential optimality
conditions of first and second order, such as Andreani et al. [8], Birgin et al. [21], Chen and Goldfarb [30], Gill
et al. [37, 38], Haeser [40], Haeser et al. [42], Qi and Wei [67], and we believe that this work can be useful for ex-
tending such algorithms to NCP as well.

Figure 2. (Color online) Relationship between the new (strict) constraint qualifications and existing ones.
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