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A B S T R A C T

Quantifying plant biomass in native forests is essential to understanding ecosystem health, primary productivity,
biodiversity, and the carbon cycle, contributing to climate regulation. Therefore, the objective of this study was
to establish biomass estimators and quantify biomass and carbon stocks in subtropical forests in Brazil. The study
area can be considered one of the largest preserved areas of the Atlantic Forest biome, covering approximately
6,000 km2. Two procedures were used to quantify biomass and carbon: i) for trees with less than 50 cm of dbh,
equations were established using allometric data collected; ii) for trees with more than 50 cm of dbh, the
equations established by Trautenmüller et al. (2021) were used. These equations were biologically consistent and
were corrected for heteroscedasticity, using the WNSUR procedure. These equations were later used to estimate
the biomass of everyone in an inventory of subtropical forests in the state of Paraná, Brazil. A total of
456,302.00 ha of area with vegetation cover were found, with an average biomass stock of 117.26Mg.ha− 1. The
total biomass stock for the entire area was 53,505.97 Gg, and the carbon equivalent was 92,208.63 Gg, high-
lighting the need to preserve this area with vegetation cover. One of the most immediate actions to mitigate the
effects of climate change is to reduce deforestation, which can be the result of human activities or caused by mass
movement. New studies should be carried out to assess the effects of climate extremes on carbon stocks and how
these can affect the lives involved.

1. Introduction

Native forests are a vital source of natural resources, among which
plant biomass stands out. Quantifying biomass is essential, as it serves as
an important ecological indicator that reflects the health and dynamics
of ecosystems (Di Corpo and Vannini, 2014; Ma et al., 2017; Andrade
et al. 2020; Maschler et al., 2022; Jiang et al., 2022; Trautenmüller et al.,
2023). Biomass provides valuable information on primary productivity,
resource availability, biodiversity, and ecological stability. Further-
more, it plays a central role in the carbon cycle by storing atmospheric
carbon and thus contributing to climate regulation (Erb et al., 2017;
Daioglou et al., 2019; Zhou et al., 2020).

To quantify forest biomass, it is common to evaluate the different

parts of trees, such as stem, branches, leaves, bark and roots, which
together make up the total biomass (Behling et al., 2018, Trautenmüller
et al., 2021). Measuring biomass, however, is considerably more com-
plex when compared to variables such as tree diameter or height. For
this reason, empirical models that estimate biomass based on traditional
forest mensuration variables (diameter and height) are of great value to
biometricians (Trautenmüller et al., 2021). These models offer greater
practicality and simplicity in estimating biomass, especially when
referring to specific parts of the tree (Zhao et al., 2019). However, since
biomass is composed of several correlated parts, it is essential that the
model used considers this correlation and variation between the parts.

Estimating biomass through allometric models stands out as an
important alternative for understanding ecosystem dynamics, especially
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when seeking to aggregate information to ecological indicators and
multiple diversity metrics (Barreto et al., 2023). By considering biomass
allocation and accumulation as part of the energy dynamics in an
ecosystem, these allometric models can be applied more broadly, rede-
fining their results to aid ecological interpretations. However, the ac-
curacy of these regression models is often limited, which represents a
significant challenge for their application (Chave et al., 2014; Trau-
tenmüller et al., 2021; David et al., 2022; Trautenmüller et al., 2023).

The use of models that ensure biological consistency is essential to
achieve the property of additivity of the tree parts, so that the sum of
these parts is equal to the total estimated tree biomass. A model is
considered biologically consistent when it integrates these variations so
that the sum of the estimates does not differ from the total biomass value
(Behling et al., 2018; Sanquetta et al., 2015; Trautenmüller et al., 2021).

Another crucial aspect in biomass modeling is the use of contem-
poraneous correlation between tree parts, a practice reported since the
1970 s as essential for multivariate adjustments. This approach allows
estimating the parameters of structured models more efficiently,
resulting in lower variance. Significant examples of this practice can be
found in the works of Kozak (1970), Jacobs and Cunia (1980), Chiyenda
and Kozak (1984), Reed and Green (1985), Affleck and Diéguez-Aranda
(2016), Behling et al. (2018), Trautenmüller et al. (2021), and Parresol
(1999, 2001). More consistent estimators increase the confidence in
using tree biomass as an ecological indicator.

At a time when discussions about the possible effects and impacts of
climate change on society and nature are on the rise (IPCC - Climate
Change, 2021). Using good ecological indicators is essential to better
understand the occurrence and dynamics of these changes. Climate
change caused by global warming is increasing the intensity and fre-
quency of natural disasters (Tradowsky et al., 2023; Tao et al., 2023).
Large-scale climate events that should occur every century (Ferreira,
2024) have increased in frequency since the beginning of the century
(Tao et al., 2023).

Extreme climatic events such as storms and high rainfall levels
aggravate the occurrence of disasters in areas with mountainous terrain,
which is characteristic of the main preserved areas of the Atlantic Forest
biome in Brazil. The Atlantic Forest biome is one of the most important
phytophysiognomies on the planet due to its high number of endemic
species (Myers et al., 2000) and threatened with extinction. There are
few large preserved areas, the largest of which are located in the coastal
regions of the southern and southeastern states of Brazil. These areas
have extremely rugged terrain, which makes human intervention diffi-
cult. However, they have large stocks of forest biomass and high
biodiversity.

This raises some questions: i) What is the importance of forest
biomass as an ecological indicator? ii) What are the biomass and carbon
stocks in these conserved areas? iii) Can possible natural disasters result
in biomass loss and this carbon emitted into the atmosphere?

In this sense, this study hypothesizes that forest biomass is of great
importance for studying areas at risk of disasters, especially when used
as an ecological indicator. Thus, this study has the following objectives:
i) establish more consistent biomass estimators for Subtropical Forests in
Southern Brazil; ii) identify the importance of forest biomass as an
ecological indicator in the study area; iii) quantify biomass and carbon
stocks for the Serra do Mar in the state of Paraná – Brazil.

2. Materials and methods

2.1. Study area

The study was carried out in subtropical forests that predominate in
the “Serra do Mar” mountain range in the state of Paraná (Fig. 1). In
total, it covered seven municipalities, with coordinates ranging from
25◦15’S to 26◦00’S, 48◦00’W to 49◦00’W. The altitude ranges from 0 to
1,922m above sea level, under the domain of the Dense Ombrophilous
Forest (IBGE - Instituto Brasileiro de Geografia e Estatística, 2012). The

Fig. 1. Location of the study area with the sampling points of the National Forest Inventory (NFI-BR) inserted in the subtropical forest, state of Paraná − Brazil.
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climate of the predominant region is classified as Cfa with a transition
area to Cfb, with an average annual temperature between 16 and 22◦ C
and average annual precipitation between 1,900 and 2,500mm (Alvares
et al., 2014).

2.2. Multivariate adjustment of biomass models

To estimate biomass, data from the National Forest Inventory (NFI-
BR) (SFB - SERVIÇO FLORESTAL BRASILEIRO, 2018a) (https://snif.flo
restal.gov.br/pt-br/inventario-florestal-nacional-ifn/ifn-dados-abertos/
ifn-resultados-parana) were used. These data were collected using a two-
stage systematic sampling method, with the primary unit structured as a
Maltese cross. Each primary unit consisted of four 20 x 50m subplots.
There is no known two-stage sampling system in the literature in which
both stages are systematic. In Péllico Netto and Brena (1997), there are
approximate estimators; however, the first stage is random (A ppendix
1). Two approaches were applied to estimate aboveground tree biomass,
as described below. A summary of the procedures used is shown in
Fig. 2.

Procedure 01
Equations were generated using a database of 185 trees sampled in

the state of Santa Catarina from the same forest typology. A total of 67
tree species were sampled, with the full list provided in A ppendix 2.
This represents approximately 10% of the total species recorded for the
Dense Ombrophilous Forest by the NFI-SC (SFB - SERVIÇO FLORESTAL
BRASILEIRO, 2018b), including trees, palms, and ferns. These trees were
less than 50 cm in diameter at 1.30m aboveground (dbh). All felled
individuals were evaluated for the following variables: dbh, measured
using a tape measure, and total height (h), measured using a tape
measure, both with precision of one millimeter.

Biomass was measured for the stem parts (wood from the stem with
bark), branches and leaves, using the definitions of Picard et al. (2012).
For each tree, the parts were separated and weighed using a scale to
obtain the wet weight of each part. To determine the dry biomass of the
parts, samples were taken immediately after weighing the wet biomass

and their masses were measured using a digital scale with a precision of
0.1 g. From the data, the dry biomass of each part was calculated, with
the total biomass being the sum of the parts.

To adjust the independent biomass equations, traditional volumetric
models were tested using the independent variables dbh (in cm) and h
(in m). The linear models were adjusted using Ordinary Least Squares
and the nonlinear models using Generalized Least Squares (Greene,
2012).

The quality of the adjustment of the equations was assessed by the
Adjusted Coefficient of Determination (R2adj.), Coefficient of Variation,
in percentage (CV%), and Akaike Information Criterion (AIC). The re-
sults of the individual performance of each model were not presented, as
this was not the objective of this study.

The Schumacher and Hall (1933) and Spurr (1952) models were
selected for adjustments of the stem, branches, leaves and total biomass
aboveground, as defined in (01).

ŷstem = β1 • dbh
β2 • hβ3 + εstem

ŷbranches = β1 •
(
dbh2 • h

)β1
+ εbranches

ŷleaves = β1 • dbh
β2 • hβ3 + εleaves (1)

ŷtotal = β1 • dbh
β2 • hβ3 + εtotal

The White (1980) was applied to test the hypothesis of homogeneity
of the residuals in each equation with 95% probability. For cases in
which the hypothesis was rejected, weights were obtained through the
variance structure (Behling et al., 2018), the application of the weights
is described below (02).

β =
(
X́Ψ(θ̂)− 1X

)− 1
X́Ψ(θ̂)− 1y (02)

Where: Ψ(θ̂) is the diagonal matrix of weights, which depends on the
number of parameters (P) denoted by the vector θ of order (P • 1).

Fig. 2. Flowchart detailing the allometric procedures used to estimate the biomass of each inventoried tree, and the integration with NFI (National Forest Inventory)
data to find the estimated biomass and carbon stocks for the entire study area.
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The partial derivative functions referring to the matrix f(β̂) and the
variance–covariance matrices of β̂ i (where i refers to the coefficient of
each equation) were presented, information that is useful for making
inferences regarding the estimation of parameters.

To adjust the multivariate regression models for total aboveground
biomass and its parts (stem, branches and leaves), the equations defined
in (03) were used. For total biomass, the model considered was based on
the models of each part, thus, the following system of equations was
defined.

ŷstem = β11 • dbh
β12 • hβ13 + εstem

ŷbranches = β21 •
(
dbh2 • h

)β21
+ εbranches (3)

ŷleaves = β31 • dbh
β32 • hβ33 + εleaves

ŷtotal = β11 • dbh
β12 • hβ13 + β21 •

(
dbh2 • h

)β21
+ β31 • dbh

β32 • hβ33 + εtotal

To adjust the multivariate regression models, apparently unrelated
nonlinear regression (NSUR) was used. The White (1980) was used to
verify the hypothesis of homogeneity of the residuals in all equations
(simultaneous and independent) at 95% probability. In cases of rejec-
tion of the hypothesis, weighting was applied using weights (Parresol,
1999, 2001; Behling et al., 2018; Trautenmüller et al., 2021). Once the
weights were obtained through the variance structure, the models were
adjusted using apparently unrelated weighted nonlinear regression
(WNSUR). The equations were evaluated by R2adj., CV% and AIC.

Performance tests (04) and the Chi-Square test were also used to
verify whether the estimates of the two methods presented significant
differences.

D =
(̂In − M̂n)

Î n
100 (4)

Where: D is the difference (in %) between the estimators or statistics
obtained by the independent and multivariate adjustment; În are the
estimators or statistics obtained by the independent adjustment; M̂n are
the estimators or statistics obtained by the multivariate adjustment; ŷi is
the biomass estimate and σ2ŷi is the variance for the equation i.

Procedure 02
Trees with more than 50 cm dbh were used. Thus, the equations

published by Trautenmüller et al. (2021) were used, for the simulta-
neous equations in (05) to (08), which were weighted. These equations
were adjusted to estimate the biomass of subtropical forests in Southern
Brazil, but this sampling did not cover the present study area.

Equations.
R2adj. CV (%) AIC White.
ŷstem = 0.028726 • dbh1.675713 • h1.165411 94.86% 61.06 5,985.8

12.75 ns (05).

ŷbranches = 0.003816 •
(
dbh2 • h

)1.121684
93.02% 92.45 6,242.4

7.45 ns (06).

ŷleaves = 0.014257 •
(
dbh2 • h

)0.671907
60.46% 131.79 4,165.9

0.64 ns (07).
ŷtotal = ŷstem+ŷbranches +ŷleaves 97.95% 42.75 6,226.0 19.17 ns (08).
Pearson correlation analysis was conducted to compare the estimates

obtained from the multivariate equations developed in this study with
those derived from the equations of Trautenmüller et al. (2021).

2.3. Forest biomass and carbon estimates

The equations to estimate aboveground biomass were applied to the
NFI-BR data, whose database contains 4,170 trees evaluated for dbh and
h. This database consists of 18 sampling units with 4000m2 each,

totaling a sampled area per inventory of 7.2 ha. The inventory system
was systematic in quadrants of 20 x 20 km, two sampling units were
relocated, since the predicted coordinate is located at sea. Each sampling
unit was allocated in the shape of a Maltese cross (SFB - SERVIÇO
FLORESTAL BRASILEIRO, 2018a), with four subsamples. The sampling
intensity of the inventory was 0.00002%.

After calculating individual biomass in each plot, the average
biomass stock per hectare was estimated. All calculations were per-
formed using the software SAS OnDemand for Academics (SAS Institute
Inc., 2012) and (R Core Team, 2024).

The biomass per hectare was multiplied by the total study area to
estimate the total aboveground biomass within the area of interest. The
total aboveground carbon (C) was calculated by multiplying the biomass
by the standardized factor of 0.47, as recommended by the Intergov-
ernmental Panel on Climate Change (IPCC – Intergovernmental Panel on
Climate Change, 2006). Carbon equivalent (CO2e) was calculated by
multiplying the total carbon by the conversion factor (44/12).

2.4. Forest biomass: Ecological indicator

To use forest biomass as an ecological indicator, two indices are
proposed, named Index1 and Index2.

The first is the ratio between the biomass stored in the largest trees
(dbh≥ 40 cm) (K) and the total biomass (T) estimated from the trees
sampled in the forest inventory, as shown in equation (09).

Index1 =
K
T

(9)

Péllico Netto et al. (2015) developed a new index to assess the
importance of species in a climax-stage Seasonal Semideciduous Forest
located in Cássia, MG, Brazil, and preliminarily introduced what they
called the Species Hierarchy Index (SHI) through the Relationship (gi/g),
where (gi) is the average cross-sectional area of each species and (g) is
the average cross-sectional area of the entire tree population of the
stand. They also observed that the average diameter for this condition is
approximately 20 cm. In this way, trees with dbh≥ 40 cm result in an
SIH value of approximately≥ 2, which ensures that species with this
condition achieve biomass values positioned in the upper-intermediate
stratum of the biocenosis, with a concrete possibility of ascending to
the upper stratum of the forest. This stratum is dominant and hosts the
group of species with the greatest importance in the biocenosis, expe-
riencing minimal competition for light.

Pan et al. 2013 stated that the expected carbon stocks in intact forests
reflect the forest structure. Therefore, the Index1 will provide access to
the hierarchical evolutionary degree of this structure. The higher value
of this index indicates a more advanced ecological evolution of the forest
structure.

The second index is the ratio between the estimated biomass stock
per hectare (B) and the average potential biomass (L) for subtropical
forests with similar structures, as shown in equation (10).

Index2 =
B
L

(10)

As a reference, we use the estimates provided by Balbinot et al.
(2017). This index evaluates the forest’s potential as a greenhouse gas
sink, helping to mitigate the effects of climate change. A higher value of
this index indicates greater potential for biomass and carbon stock.

3. Results

3.1. Multivariate adjustment of biomass models

The equations adjusted using the independent procedure and the
adjustment statistics are presented in (11) to (14). The equations
adjusted using the multivariate procedure are presented in (15) to (18).

H.A. Machado et al.
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The null hypothesis for the homogeneity of the distribution of residues
was verified by the White test. The test revealed that the tested hy-
pothesis was rejected, since the alpha value corresponding to the White
statistic was less than 5% probability, for all parts and the total biomass.

When fitted equations present heterogeneous residuals, there are two
main approaches to achieve homogeneous residuals: data trans-
formation or equation weighting (Carroll and Ruppert, 1988). An
effective way to apply weighting is through variance structure modeling,
as described by Harvey (1976). Several researchers recommend this
approach (Parresol, 1999, 2001; Behling et al., 2018; Wang et al., 2018;
Trautenmüller et al., 2021) to correct heteroscedasticity in biomass
data. For the weighted adjustment, weights for the biomass of the parts

and for the total aboveground biomass were obtained through the
variance structure, as shown in equations (19) to (22).
Parts Weights

ŷstem σ̂2
= dbh4.251607 • h1.045364 (19)

ŷbranches σ̂2
=
(
dbh2 • h

)1.738346 (20)

ŷleaves σ̂2
= dbh4.610687 • h0.583014 (21)

ŷtotal σ̂2
= dbh4.796349 • h0.70327 (22)

The results obtained with the weighting for the independent equations
are presented in (23) to (26) and for the simultaneous equations they are
presented in (27) to (30), all with their corresponding statistics.

Fig. 3. Distribution of standardized residuals through independent adjustment, unweighted (first row) and weighted (second row), as a function of diameter at
1.30m aboveground (dbh), for estimates of parts stem (A and E), branches (B and F), leaves (C and G) and total aboveground biomass (D and H).

Equations R2adj CV (%) AIC White

ŷstem = 0.026651 • dbh1.756756 • h1.098748 85.93% 34.94 2,624.18 49.9* (11)

ŷbranches = 0.003589 •
(
dbh2 • h

)1.134702 77.97% 54.70 2,716.96 47.2* (12)

ŷleaves = 0.000472 • dbh2.287631 • h1.133934 65.57% 70.75 2,120.47 105.5* (13)

ŷtotal = 0.024169 • dbh2.03414 • h1.040367 91.16% 29.21 2,796.98 49.8* (14)

ŷstem = 0.028152 • dbh1.759321 • h1.076449 86.05% 34.95 2,624.22 49.4* (15)

ŷbranches = 0.003566 •
(
dbh2 • h

)1.135374 78.09% 54.70 2,716.96 47.1* (16)

ŷleaves = 0.000398 • dbh2.242152 • h1.249418 65.79% 70.82 2,120.85 101.3* (17)
ŷtotal = ŷstem + ŷbranches + ŷleaves 91.07% 29.27 2,797.77 57.4* (18)

H.A. Machado et al.
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The weights established by the variance structure modeling allowed for
the homoscedasticity of the residuals, as demonstrated by the White test
and the graphical analysis of the residuals (Fig. 3 and Fig. 4). Thus, it
was possible to find true confidence intervals. All coefficients were
significant at 95% probability with the application of the t-test.

The variance–covariance matrices of β̂ i, where i are the coefficients
of each equation, for the independent fit are presented in (31) to (34)
and for the multivariate fit in (35).

0.0000153 -0.0000406 -0.0002580
-0.0000406 0.0042409 -0.0039338
-0.0002580 -0.0039338 0.0095815

(31)

0.0000071 -0.0001074
-0.0001074 0.0016456

(32)

0.0000285 -0.0001292 -0.0008402
-0.0001292 0.0246388 -0.0233696
-0.0008402 -0.0233696 0.0557980

(33)

0.0000830 -0.0000869 -0.0005801
-0.0000869 0.0039283 -0.0037169
-0.0005801 -0.0037169 0.0089800

(34)

Fig. 4. Distribution of standardized residuals through multivariate adjustment, unweighted (first row) and weighted (second row), as a function of diameter at
1.30m aboveground (dbh), for estimates of parts stem (A and E), branches (B and F), leaves (C and G) and total aboveground biomass (D and H).

Equations R2adj CV (%) AIC White

ŷstem = 0.018761 • dbh1.748948 • h1.234618 85.79% 35.13 2,626.03 1.8ns (23)

ŷbranches = 0.007292 •
(
dbh2 • h

)1.060027 77.62% 55.14 2,719.74 6.3ns (24)

ŷleaves = 0.011097 • dbh2.029614 • h0.300514 60.60% 75.68 2,144.33 9.4ns (25)

ŷtotal = 0.046233 • dbh2.121703 • h0.702375 90.37% 30.49 2,812.23 6.8ns (26)

ŷstem = 0.022785 • dbh1.872289 • h1.019728 85.80% 35.26 2,627.40 1.7ns (27)

ŷbranches = 0.003992 •
(
dbh2 • h

)1.120316 77.89% 54.95 2,718.58 7.0ns (28)

ŷleaves = 0.002957 • dbh1.754425 • h1.107952 62.59% 74.06 2,136.65 15.4ns (29)
ŷtotal = ŷstem + ŷbranches + ŷleaves 91.08% 29.26 2,797.60 17.3ns (30)

H.A. Machado et al.
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The variance–covariance matrix of the residuals for the simulta-
neously fitted equations is presented in (36).

Fig. 5. Relationship between biomass values estimated through independent adjustment (ENGLS) and biomass estimated through multivariate adjustment (WNSUR)
for parts and total aboveground biomass in subtropical forests in Brazil.

0.0000219 -0.0000622 -0.0002895 -0.0000012 0.0000321 -0.0000001 0.0000390 -0.0000317
-0.0000622 0.0039100 -0.0033716 0.0000239 -0.0006647 0.0000106 -0.0003921 -0.0009121
-0.0002895 -0.0033716 0.0086034 -0.0000087 0.0002387 -0.0000103 -0.0002379 0.0015905
-0.0000012 0.0000239 -0.0000087 0.0000011 -0.0000289 0.0000005 -0.0000330 -0.0000187
0.0000321 -0.0006647 0.0002387 -0.0000289 0.0007952 -0.0000128 0.0008781 0.0005507
-0.0000001 0.0000106 -0.0000103 0.0000005 -0.0000128 0.0000016 -0.0000393 -0.0001571
0.0000390 -0.0003921 -0.0002379 -0.0000330 0.0008781 -0.0000393 0.0170337 -0.0141020
-0.0000317 -0.0009121 0.0015905 -0.0000187 0.0005507 -0.0001571 -0.0141020 0.0356868

(35)

=
0.0001073 -0.0000306 -0.0000017 0.0000556
-0.0000306 0.0003890 0.0000362 0.0002117
-0.0000017 0.0000362 0.0000100 0.0000263
0.0000556 0.0002117 0.0000263 0.0001731

(36)

H.A. Machado et al.
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3.2. Comparison of independent and multivariate adjustments

The independent and multivariate adjusted equations showed
similar performance trends even with differences in the coefficients. The
multivariate adjustment is the only method that ensures the additivity of
estimates for tree components, making it the approach used for biomass
estimation in this study. For the stem, branches and leaves parts, the

greatest differences were observed for the scale coefficient of the
equations (β̂3 e β̂x3), which varied between − 268.69 and 17.41%,
respectively, while the other coefficients varied from − 21.45 to
73.35%. For the precision statistics, the leaves part presented the
greatest differences for R2adj., CV and AIC, which were − 0.34, − 0.10
and − 0.02%, respectively. For the stem and branches parts, all precision
statistics varied from − 0.15 to 0.01 %.

Fig. 7. Correlations between the estimates of the multivariate equations found in the present study (part_P) with the estimates of the equations published by
Trautenmüller et al. (2021) (part_T).

Fig. 6. Non-additivity of total aboveground biomass estimated by independent adjustment as a function of diameter at 1.3 m aboveground (dbh) in trees from
subtropical forests in Brazil.
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The relationship between the biomasses estimated through inde-
pendent and multivariate adjustment are shown in Fig. 5. The biomass
values estimated for the stem, branches, leaves and total biomass
showed a small difference between the two forms of adjustment, being
considered non-significant by the Chi-square test (stem= 0.61 ns;
branches= 0.01 ns; leaves= 1.49 ns; total= 10.49 ns).

Biomass estimates through independent adjustment did not result in
biologically consistent values, i.e., ŷstem + ŷbranches + ŷleaves − ŷtotal ∕= 0.
The non-additivity of the independent equations is shown in Fig. 6, these
differences varied between − 97.54 and 49.39%.

3.3. Comparison of multivariate equations with those of Trautenmüller
et al. (2021)

A high correlation can be observed between the estimates (Fig. 7) of
the multivariate equations (Procedure 1) and the estimates of the
equations by Trautenmüller et al. (2021) (Procedure 2). For the stem,
branches, leaves and total biomass parts the correlations between the
estimates were 0.9996, 1.0000, 0.9452 and 0.9999, respectively.

3.4. Biomass and carbon stocks

The total area studied corresponds to a total of 6,055.34 km2, of
which 4,563.02 km2 have vegetation cover, which is equivalent to
456,302 ha (ha) (Fig. 8). The average biomass found was 120.92Mg.
ha− 1 (Table 1). When applied to the total area, the accumulated biomass
in the region reaches a total value of 55,176.04 Gg. Considering that
47% of the biomass is composed of carbon, the total carbon stored in the
biomass of Serra do Mar was calculated at 25,932.74 Gg. The total
carbon stored corresponds to an equivalent of 95,096.22 Gg of CO2,
reflecting the importance of this region in the retention of atmospheric
carbon and its contribution to the mitigation of climate change.

3.5. Forest biomass: Ecological indicator

The NFI (SFB - SERVIÇO FLORESTAL BRASILEIRO, 2018a) data used
in this study presented 4,170 trees, which represents 579.2 trees.ha− 1

(Table 2). A total of 29.9 trees.ha− 1 with more than 40 cm of dbh were
found, these trees represent 5.16% of the total trees found in one
hectare. The value calculated for the proposed Index1 (09) was 0.404,
indicating that 40.4% of the tree biomass is allocated to trees with a
diameter at breast height (dbh) greater than 40 cm. For Index2 (10), the
value obtained was 0.316.

4. Discussion

Studies that quantify biomass stocks using allometric equations
constantly face the problem of a lack of homoscedasticity for the models
generated. Cunia and Briggs (1984) suggests that there is less variability
in the biomass of smaller individuals when compared to larger ones. For
this reason, heteroscedasticity of the residues was observed. As pointed
out by several authors (Parresol, 1999, 2001; Basuki et al. 2009, Bi et al.
2010; Zeng et al. 2011; Blujdea et al. 2012; Sileshi, 2014; Sanquetta
et al. 2015, Zhao et al. 2015, Wang et al. 2018; Oliveira et al., 2017;
Behling et al., 2018; Trautenmüller et al., 2021; Trautenmüller et al.,
2023), heterogeneity in the distribution of residuals is frequently found.
To solve this problem, the resulting models were weighted. Weighting
based on the variance structure (Behling et al., 2018; Trautenmüller
et al., 2021) was sufficient to correct the distribution of residuals (Figs. 2
and 3).

According to the work carried out by Behling et al. (2018), this

Fig. 8. Land use in the Serra do Mar, coastal region of the state of Paraná – BR,
image of the year 2022.

Table 1
Stocks of biomass, carbon and Carbon equivalent (CO2e) in Serra do Mar, Paraná
– BR, based on land use and occupation in 2022.

Metrics Values(Confidence Interval)

Total area (Km2) 6,055.34
Vegetated area (Km2) 4,563.02
Vegetated area (ha) 456,302.00
Biomass (Mg.ha− 1) 117.26± 23.36
Standard error of estimate (%) 19.16
Biomass Stock (Gg) 53,505.97± 10,254.37
Carbon Stock (Gg) 25,147.81± 4,819.55
Carbon equivalent (CO2e) stock (Gg) 92,208.63

Table 2
Number of trees per hectare for the present study, number of trees larger than
40 cm in dbh (diameter at 1.30m aboveground), biomass found by Balbinot
et al. (2017) and the values of the indices proposed in the present work.

Metrics Values

Total tree (tree.ha− 1) 579.2
Total biomass of trees (kg) 731,348.7
Tree> 40 cm of dbh (tree.ha− 1) 29.9
Total biomass of trees> 40 cm of dbh (kg) 295,391.4
Tree biomass Balbinot et al. (2017) (Mg.ha− 1) 371.1
Index1 0.404
Index2 0.316
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element of variation along the diameter gradient can explain the het-
erogeneity of the residues. Some parts may present greater variance than
others, as pointed out by Trautenmüller et al. (2021), when demon-
strating that the estimates of some parts, such as the biomass of leaves of
native species, present greater coefficients of variation.

As Greene (2012) points out, heteroscedasticity correction should be
performed whenever it is detected, as it is not an ideal factor for
regression analyses. The homogeneity of the distribution of residuals is
directly related to the validation of hypotheses tested in the models
(Gujarati & Porter, 2009). To solve the problem of heteroscedasticity,
the variance structure was used as weighting (Parresol, 1999, 2001;
Balboa-Murias et al., 2006; Oliveira et al., 2017; Behling et al., 2018;
Trautenmüller et al., 2021). Correction of the variation for the highest
diametric values can also be observed in the graphs of the standardized
residuals (Figs. 2 and 3).

The use of the variance structure in the weighting was able to reduce
the variation in the dispersion of the residues for the larger diameters.
Despite this correction, the weighted model began to present greater
variation for the residues in the smaller diameters, thus inverting the
expected relationship for the variation of the residues along the dia-
metric gradient.

As expected, only the multivariate adjustment presents additivity
between the parts, while the independent adjustment demonstrated
divergent results between the estimate for the total and the sum of the
estimates for parts (Fig. 6). The coefficients adjusted by the multivariate
procedure presented less variation between each other. The coefficients
adjusted by the independent adjustment presented greater variation
between each other. These results are feasible, since the multivariate
adjustment considers contemporary correlations in its procedure, thus
increasing efficiency and obtaining biological consistency (Behling
et al., 2018). Similar results were found by Trautenmüller et al. (2021)
when studying the independent and multivariate adjustment for sub-
tropical forests in Brazil.

As shown in Fig. 7, the correlations between the estimates from
procedures 1 and 2 are highly significant. The literature continues to
debate whether local or global models are better suited for estimating
different forest variables (Basuki et al., 2009; Chave et al., 2014; Lima
et al., 2017; Trautenmüller et al., 2021). However, tree allometry varies
across species and regions of origin (Basuki et al., 2009; Timilsina et al.,
2017; Trautenmüller et al., 2023), with soil and climate variables
influencing these relationships across different locations.

For this reason, equations were specifically developed for the Dense
Ombrophilous Forest, as this forest type was not included in the equa-
tions of Trautenmüller et al. (2021). However, the equations derived in
this study for the Dense Ombrophilous Forest had a diameter limit of
50 cm at breast height (dbh). Consequently, trees sampled by the NFI
with a dbh greater than 50 cm were estimated using the equations from
Trautenmüller et al. (2021).

With efficient and biologically consistent equations, biomass be-
comes an important ecological indicator (Trautenmüller et al., 2023) of
ecosystem health and dynamics (Ma et al., 2017, Andrade et al. 2020,
Maschler et al., 2022, Jiang et al., 2022). This stability, quality, and
dynamics can be negatively affected by climate extremes. Storms affect
topographically critical regions with a greater chance of landslides
(Ferreira, 2024). Under these conditions, regions with mountainous
relief become highly unstable, susceptible to the occurrence of large
mass movements.

The study region (Serra do Mar – Paraná) is one of the best-preserved
areas of the Atlantic Forest biome in Brazil. This region has highly
rugged terrain, where mass movements occur frequently. The forest
under study may be highly vulnerable to climate change, particularly if
disturbances become more frequent and intense due to the increase in
climate extremes. In the future, such disturbances could threaten
existing carbon stocks (Table 1), potentially turning the area into a
source of CO2 emissions.

An inventory carried out one month after an extreme rainfall event in

central Italy recorded 1,687 landslides in an area of 550 km2

(Santangelo et al., 2023). The data from Santangelo et al. (2023) high-
light the potential for degradation in the study area due to increasingly
intense climate extremes, particularly excessive rainfall. The study area
in the present research is approximately 11 times larger than the region
analyzed by Santangelo et al. (2023), covering a total of 6,055.34 km2.
For comparison, the territorial size of Luxembourg is 2,586 km2

(Hausemer, 2008), which represents 42.7% of the area under study.
Therefore, the increase in the frequency of climate extremes may

increase the likelihood of the entire study area becoming an emitter of
greenhouse gases due to the loss of vegetation cover.

Therefore, the increased frequency of climate extremes could raise
the likelihood of the entire study area becoming a greenhouse gas
emitter due to the loss of vegetation cover.

The total carbon equivalent stock stored in the forest is nearly
equivalent to the amount emitted by the state of Rio de Janeiro in 2015,
totaling 92,689.74 Gg CO2e (SEAS – Secretaria do Estado do Ambiente e
Sustentabilidade, 2019).

The continued preservation of these areas is essential to maintaining
the quality and quantity of life of flora and fauna, including human
beings. One of the most immediate actions to mitigate the effects of
climate change is to reduce deforestation (Griscom et al., 2009; Cook-
Patton et al., 2021; Freund et al., 2024; Butler et al., 2024), which
may be the result of human activities or caused by mass movements,
which is the issue under study in this paper. New studies should be
carried out to assess the effects of climate extremes on carbon stocks and
how these may affect the lives involved.

With the values obtained for the proposed indices, it is evident that
the forest under study has the potential to increase its biomass and
carbon stock. The Index1 range between 0 and 1. For Index1, lower values
indicate younger forests; values near 0 suggest forests in early stages of
regeneration. Conversely, values approaching 1 indicate forests nearing
a climax state (Lindenmayer et al., 2012; Bordin et al., 2021), charac-
terized by a higher proportion of large trees. In the present study, 40.4%
of the biomass is allocated to trees with a diameter at breast height (dbh)
greater than 40 cm, which represent 5.44% of the trees in the forest
inventory.

Previous research highlights the critical role of large trees
(dbh> 50 cm) in biomass allocation, with studies showing that they can
account for more than 50% of tree biomass (Goodman et al., 2014; Lutz
et al., 2018; Romero et al., 2022). This suggests that the forest under
study has significant potential for continued biomass accumulation.
However, large trees are particularly sensitive to climate change, as
noted by Lindenmayer et al. (2012) and Lutz et al. (2018). Therefore,
management and conservation strategies should prioritize the preser-
vation of these large trees.

Index2 provides insights into the forest’s biomass stock potential.
Values closer to 0 indicate a forest with low biomass stocks, while values
closer to 1, or even above the reference, indicate the forest’s capacity to
store biomass and carbon. Conversely, values near 1 suggest a maximum
capacity for biomass stock, indicating a forest close to its dynamic
equilibrium of growth and mortality. For the forest under study, the
biomass stock was calculated at 117.26Mg.ha− 1, representing 31.6% of
the stock found by Balbinot et al. (2017) in subtropical forests in Brazil.
Their study reported an average biomass stock of 371.1Mg.ha− 1.
Similarly, Pan et al. (2013) reported an average carbon stock of
163.9Mg.ha− 1 for intact tropical forests, which, when converted using a
carbon content factor of 0.47 (IPCC – Intergovernmental Panel on
Climate Change, 2006), corresponds to an average biomass stock of
348.72Mg.ha− 1 closely aligned with the findings of Balbinot et al.
(2017).

Future studies are recommended to further evaluate and validate the
proposed indices. Additionally, research should examine the effects of
climate extremes on carbon stocks and how these impacts can affect
ecosystems and human livelihoods.
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5. Conclusions

The equations obtained through the weighted multivariate proced-
ure provide biological consistency and correction for heteroscedasticity,
in addition to presenting coefficients with less variation between the
parts.

The biomass and carbon stocks are important for assessing the
ecological conditions of subtropical forests. The stocks found are rele-
vant when it comes to in climate change, mainly due to the stocks found.
The intensification of climate extremes caused by climate change could
make the area a potential source of CO2 emissions.

The present tropical forest has a stock of 55,176.04 Gg of tree
biomass aboveground and 92,209.65 Gg of carbon equivalent stored in
the aerial part of the vegetation of the studied forest.

The two indices proposed here can be considered ecological in-
dicators based on the tree biomass of forests. Index1 provides informa-
tion on biomass allocation and forest structure, while Index2 reflects the
forest’s potential to stock biomass or indicates whether it has reached
the climax stage.
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Appendix 1

Equations taken from Péllico Netto and Brena (1997), remembering that these authors considered the first stage random and the second systematic.
In the present work, both stages were systematic. However, this approximation will be very close to the real values of the estimates with the two
systematic stages.

The following are the equations:
Where:
Xij is the value found in each subplot within each conglomerate;
N is the potential conglomerate number;
n is the number of conglomerate sampled;
M is the number of subplots within the conglomerate;
t is the tabulated value of the Student’s t distribution.

• Mean within each conglomerate:

xi =
∑M

j=1Xij
M

• Mean between conglomerates:

x =

∑n
i=1
∑M

j=1Xij
nM

• Variance within conglomerates:

s2d =
∑n

i=1
∑M

j=1
(
Xij − xi

)2

n(M − 1)

• Variance between conglomerates:

s2e =

(∑n
i=1

M•(xi − x)2

n− 1

)

− s2d

M
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• Standard error of mean:

sx =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
N − n
N

)

•
s2e
n
+

s2d
n •M

√

• Standard error of estimate:

Er = ±
(t • sx

x

)
*100

• Confidence interval for the mean, 95% confidence:

IC[x − t • sx ≤ X ≤ x+ t • sx] = P

• Confidence interval for total area, 95% confidence:

IC[x − N •M • t • sx ≤ X ≤ x+N •M • t • sx] = P

Table A2
List of species sampled in the biomass collection for trees with up to 50 dbh, in Santa Catarina, column No.
represents the number of trees sampled for each species.

List Scientific name Family No.

1 Prunus myrtifolia Rosaceae 2
2 Posoqueria latifolia Rubiaceae 2
3 Casearia sylvestris Flacourtiaceae 3
4 Tabebuia cassinoides Bignoniaceae 3
5 Matayba elaeagnoides Sapindaceae 6
6 Cupania vernalis Sapindaceae 1
7 Nectandra lanceolata Lauraceae 3
8 Ocotea catharinensis Lauraceae 2
9 Ocotea nectandrifolia Lauraceae 7
11 Cryptocarya aschersoniana Lauraceae 3
12 Endlicheria paniculata Lauraceae 3
13 Ocotea puberula Lauraceae 10
16 Ocotea sp. Lauraceae 3
17 Tetrorchidium rubrivenium Euphorbiaceae 1
18 Cabralea canjerana Meliaceae 3
19 Myrsine ferruginea Myrsinaceae 3
20 Myrsine umbellata Myrsinaceae 3
21 Clethra scabra Clethraceae 2
22 Sclerolobium paniculatum Fabaceae 2
23 Diptychandra aurantiaca Fabaceae 1
24 Ilex dumosa Aquifoliaceae 2
25 Cedrela fissilis Meliaceae 3
26 Monteverdia gonoclada Celastraceae 2
27 Annona neoinsignis Annonaceae 3
28 Guatteria australis Annonaceae 3
29 Joannesia princeps Euphorbiaceae 1
30 Pseudobombax grandiflorum Malvaceae 2
31 N.I ​ 3
32 Aegiphila sellowiana Lamiaceae 1
33 Nectandra rigida Lauraceae 2
34 Nectandra sp. Lauraceae 2
35 Trema micrantha Cannabaceae 1
36 Psychotria nuda Rubiaceae 5
37 Campomanesia xanthocarpa Myrthaceae 1
38 Eugenia spp Myrthaceae 5
39 Eugenia florida Myrthaceae 2
40 Eugenia Hiemalis Myrthaceae 2
41 Eugenia schuechiana Myrthaceae 3
42 Myrcia neoclusiifolia Myrthaceae 3
43 Eugenia cerasiflora Myrthaceae 1
44 Inga fagifolia Fabaceae 3
45 Tibouchina trichopoda Melastomataceae 2
46 Sloanea monosperma Elaeocarpaceae 3
47 Hyeronima alchorneoides Phyllanthaceae 3
49 Pimenta pseudocaryophyllus Myrthaceae 2
50 Bathysa australis Rubiaceae 5
51 Didymopanax morototonii Araliaceae 5

(continued on next page)
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Table A2 (continued )

List Scientific name Family No.

52 Casearia sylvestris Flacourtiaceae 3
53 Dendropanax cuneatus Araliaceae 3
54 Andira fraxinifolia Fabaceae 3
55 Copaifera trapezifolia Fabaceae 3
56 Aniba rosaeodora Lauraceae 2
57 Luehea divaricata Malvaceae 2
58 Aspidosperma polyneuron Apocinaceae 3
59 Prunus Sellowii Rosaceae 1
60 Leandra angustifolia Melastomataceae 2
61 Miconia organensis Melastomataceae 3
62 Ocotea odorifera Lauraceae 3
63 Pera glabrata Peraceae 2
64 Alchornea triplinervia Euforbiaceae 1
65 Alchornea sidifolia Euforbiaceae 4
66 Piptocarpha angustifolia Asteraceae 2
67 Piptocarpha spp Asteraceae 15

Data availability

Data will be made available on request.
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