

XVI LATIN AMERICAN CONGRESS OF PROBABILITY AND MATHEMATICAL STATISTICS

BOOK OF ABSTRACTS

IME - USP

JULY 10 - 14

IME.USP.BR/~16CLAPEM/

Bernoulli Society
for Mathematical Statistics
and Probability

Cleber Bisognin

Professor no departamento de Estatística
Universidade Federal de Santa Maria

Thiago Alexandre Nascimento de Andrade

Professor no departamento de Estatística
Universidade Federal de Santa Maria

Marshall-Olkin introduced a new method of adding a shape parameter to any continuous distribution. In this research, we consider the modified Kumaraswamy distribution as the base distribution and apply it in the MO generator in order to create a new model with three parameters. Cumulative distribution, probability density and hazard functions are derived for the new model. All functions associated with the new model are simple and manageable. Maximum likelihood estimation is used to estimate the parameters, which requires the Fisher information matrix for assessing its asymptotic distribution. Finally, the research includes simulation studies and applications to real data.

Funding: Este trabalho foi apoiado por FIPE/UFSM

References

- [1] MARSHALL, ALBERT W AND OLKIN, INGRAM: *A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families*, Biometrika, 3, 83, 641–652 (1997).
- [2] SAGRILLO, MURILO AND GUERRA, RENATA ROJAS AND BAYER, FÁBIO M: *Modified Kumaraswamy distributions for double bounded hydro-environmental data*, Jornal de Hidrologia, 603, 127021 (2021).

Estimating the number of communities in weighted networks

Luana Ayumi Tamura

Universidade Federal de São Carlos - UFSCar

The Stochastic Block Model is a commonly used model in real networks that exhibits community structure, that is, the vertices of the network are divided into groups. However, the number of communities related to the underlying model is not specified in real data, so it is necessary to use inferential methods to estimate this number. The objective of this work is to study the method proposed by [1] to estimate the number of communities for binary networks. Moreover, we will adapt this method to estimate the number of communities in weighted networks.

Acknowledgments: I thank my advisor Andressa Cerqueira for help and guidance in the development of the research, my friends Gustavo, Luben, Paulo, Rodrigo and Vicenzo for help and support.

Funding: This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and by the Programa Interinstitucional de Pós-Graduação em Estatística UFSCar-USP (PIPGEs).

References

- [1] JING LEI: *A goodness-of-fit test for stochastic block models*, The Annals of Statistics, 1, 44, 401–424 (2016).

Toward Local and Valid Uncertainty Estimation in Machine Learning

Luben Miguel Cruz Cabezas, Mateus Piovezan Otto, Rafael Izbicki, Rafael Bassi Stern

Federal University of São Carlos / University of São Paulo

Predictive models make mistakes, and thus it is often important to quantify the uncertainty associated with their predictions. Recently, conformal inference emerged as a powerful tool in creating statistically valid prediction regions. However, the application of conformal machinery to prediction methods yields sub-optimal regions that are not adaptive. Researchers have overcome this by designing new conformal scores. Although they are useful in creating prediction bands, these are detached from the original goal of transforming simple point predictions into prediction intervals and use more complicated base models to generate prediction regions such as quantile regression methods and conditional density estimators. In this work, we focus on improving the existing conformal regression split method. We develop a framework capable of generating locally adaptative prediction intervals using decision tree-based feature space partitions. We compare our method to other adaptative approaches, such as the locally weighted conformal split and Mondrian conformal split.

Acknowledgments: I thank my advisor Rafael Izbicki and co-advisor Rafael Bassi Stern for the constant help and supervision on this work and my colleague Mateus Piovezan Otto for the discussion of ideas and help in the code implementation.

Funding: This work was supported by FAPESP, grant 2022/08579-7.

References

- [1] IZBICKI, RAFAEL AND SHIMIZU, GILSON AND STERN, RAFAEL B.: *Distribution-free conditional predictive bands using density estimators*, Proceedings of AISTATS 2020, v 108, p 3068-3077 (2020).
- [2] LEI, JING AND G'SELL, MAX AND RINALDO, ALESSANDRO AND TIBSHIRANI, RYAN J AND WASSERMAN, LARRY: *Distribution-free predictive inference for regression*, Journal of the American Statistical Association, v 113, n 523, p 1094–1111 (2018)
- [3] PAPADOPOULOS, HARRIS AND VOVK, VLADIMIR AND GAMMERMAN, ALEXANDER: *Algorithmic learning in a random worlde*, Springer Science & Business Media (2005).

Population-based change-point detection for the identification of homozygosity islands

Lucas de Oliveira Prates