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ABSTRACT 

In this paper we propose two neural algoritbms that can be 
considered a simplification and a generalization of the 
Differential Competi tive Learning (DCL) neural network, 
respectively. Firstly, we suggest some simplifications for 
rhe original DCL model to eliminate redundant aspects of 
rhe competition mechanism. We get rid of the lateral 
connections arguing that it is possible because the winning 
neuron is chosen based solely on metrical similarity 
measures and the lateral feedback weights play no 
effective role. The activation rule is made simpler 
requiring less computational effort. In the second model, 
we show how to combine lateral connections with metrical 
relations on the activation and the learning rules ofDCL to 
effectively estimate cluster centroids. This model is also 
less sensitive to weight initialization. A number of 
simulations are carried out to compare the presented 
models in unsupervised clustering tasks. 

Keywords: Neural networks, unsupervised learning, 
differential competitive learning, inhibítion, clustering. 

1. INTRODUCTION 

Unsupervised artificial neural networks (UANN) 
models have offered new approaches to the solutíon of 
many pattem recognition tasks. Statistical pattem 
classification, cluster detection, vector quantization and 
probability density function estimation are some areas in 
Müch UANN have successfully been used [1]. In this 
paper, we are particularly concemed with cluster detection 
via centroid estimation. 

Clustering a set of p pattems comprises finding m 
disjoínt partitions so that the members of each partition are 
more similar to each other than to the remaining patterns. 
Unsupervised leaming through competitive neural 
networks can be used for clustering by discovering the 
salient statistical features in the input [2], [3]. 

In competitive leaming systems, a set of neurons 
compete among themselves for the right to respond to an 
input pattem. The winners of the competition are allowed 
ro modify their weight vectors to become more similar to 
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the input pattems. In effect, competitive UANN models 
modify their weight vectors in an adaptive fashion in order 
to estimate the center of gravity of the clusters embedded 
in the input distribution [4]. Centroid estimation is useful 
in a number of applications, such as speech and image 
compression [5]. 

The goal is to minimize the mean square error E in 
finding m cluster centroids (wb w2, ... , w,J for p pattems 
(XI> X2, ••• , Xp) (5], (6): 

(I) 

in vvhich M;1 = 1 if x, belongs to cluster m and M;1 = O 
otherwise. 

In this paper, we introduce two competitive models for 
clustering based on Differential Competitive Learning 
(DCL) [7], [8]. The first model derives directly from DCL 
requiring less computational efforts. The second is less 
sensitive to weight initialization than the others two. In 
addition, both models can detect subtle aspects of the 
input pattern distributíon dividing the input pattems in 
clusters with low clustering error. 

The paper is organized as follows. In Section 2 we 
present the original DCL model and discuss some features 
ofthe model. In Section 3 a simplified version ofthe DCL 
is presented based on the discussion in Section 2. The 
previous two models have some limitations and in Section 
4 we present a novel neural network model with the aim of 
solving some ofthe problems. Then, in Section 5 we carry 
out a number of simulations to illustrate the performance 
ofthe models in simple clustering tasks. Finally, in Section 
6, we discuss the results of the simulations and the issues 
for further work. 

2. DIFFERENTIAL COMPETITIVE 
LEARNING 

Kong and Kosko [7] and Kosko [8], [9] have'proposed 
the DCL model as a new unsupervised leaming paradigm 
for adaptive vector quantiza,!!2!!J~YQ1~J1Jw,.~.M:!:1.e~en .... us.ed.~ 

I /'""l \"'Z) f' "F 
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in a number of applications such as density estimation and
phoneme recognition [7] and printed circuit board
inspecdon [10].

The DCL model comprises two layers of neurons
ÇFigure l). The input layer hás n neurons and fhe output
layer hás m neurons. The input neurons propagate the
observed mputs, Üirough feedforward weight connections,
to the output layer. In bofh layers, the neurons may have
linear or non-lmear (sigmoid) activations. Each neuron
within the competition layer excites itsetf and mhibits the
ofhers through feedback inhibitory connections.

Input layer Output layer

FIGURE l. TOPOLOGY OF TOE LATERALLY INHIBITORY
DIFFERENTIAL COMPETmVE LEARNING MODEL.

The DCL algorithm is summarized below:

(l)Initialize the excitatory weight connections wiüi m
samples drawn fi-om the input distribuüon and iniüalize
the activations offhe output neurons:

m^(0)=x, and yj(0)=0, j =!,..., m

(2) Present a randomly chosen sample s(/) to the net.

(3)Find the closest ("wümer") weight vector va^f)
accordiag to the Eucüdean norm:

IKM-^)[|=™+*^)-^)[| (2)

(4) Update the activations ofthe output neurons through:

yAt +1) = yÁt} + ZS,(x^{t) + ^(y^(t) (3)
hl

in wfaich S,{x,) and Sr(,x,) are Imear or sigmoid-type
transfer füncüons. The mhibitory weight, w^, connects
the output neuron r to fhe output neurony.

(5) Update the wümmg weight vector m^r) tfarough:

m, (/+!)= m, (/) + Ti(r)sgn[Ay, (/)][s(?) - m, (í)] (4)

in which O < r|(í) « l is the leamins ni!: c

sgn[Aj4 {t}] = sgn[^ (? +1) - y k {t)].

(6) Repeat steps 2-5 contmuously for the numbs- asa

tmm spedfied by the user.

The learmng process takes place only if ée nsn-

activaüoDS change. IfA^í) > 0, fhe winning wcA '.ar
m^t) moves towards fhe direction of the ima s:' !

A>'i(0 < 0, the wuming weight vector is mo'.tí a »
opposite direction, away fi-om fhe input Tte np
velocity mformation provides UDSUpemai .»«

reinforcement during leaming [7].
It is wotíhwfaile to note that fhe wimias mra i

chosen based on Euclidean distance measures.

way to fimd fhe wümer is via lateral feedback wqte li

by choosmg fhe neuron wifh highest response fcr i p»
input pattem. The use ofboth mechanism is reázàa •
brings no special advantage to the model. In fe a
section, we suggest some simplifications to & X
model m order to elimmate fhe redundaxe a »
competition mechamsm.

3. SIMPLIMED

The compeütion mechanism in DCL dKïr^as »
wüming neuron based on metncal similariç'. bsc v
argue tihat DCL does not eÉFectively uses its
connections. Hence, we geí rid of the lateral
introducmg the Simplifíed Differential Ccaa!»
Leamiag (SDCL) neural algorithm. As a ?ïsaH »
activation role (3) is made simpler and recpra «
computational eflforts than DCL:

^(í+l)=^(/)+ts,(x,)m,(r) f;
(«l

The computational savings in using (5) imaaí a IS

are of particular mterest v/bea the S,(y, )szu »

sigmoid fünctioDS. Sigmoids are computatiocíï 'ae
heavier than the distance computations [11].

simplicity md locality are fhe major coceimB t

desigmng a neural system. These are tbs wim
requirements if the neural system hás to be hzri-wm t
analog or hybrid YLSI architectures. The zisss t
lateral coimections sünplifies VLSI implefficscia t
artificial neural models substantially. The acti^-saa a

aad the neural network operation reqst •
computational effort and use only the
avaüáble locally at fhe neuron-level. '

The original DCL and its simplified verscc w
fheir feedforward excitatory weights accorÊa 11.
competitive leammg role [2]. Wimer-take-il] iT'.n
behavior hás the advantage of simplirity, bu: lin »
some drawbacks mcluding underuülized ouipo:
(dead imits), wfaich reduces lhe representationzl IOÍÍÍT <
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I competitive neural networks [1], [3], [4]. In the next 
section, we propose a neural algorithm in order to show 

I how Euclidean distance can be used together vvith lateral 
inhíbition to correctly estimate cluster centroids. 

4. THE GENERALIZED MODEL 

Tbis new model vvill be , called Generalized DCL 
(GDCL). GDCL bas the same topology as DCL. The 
inputs are non-linearly transformed according to: 

(5) 

in wbich x(t) is the input vector, m;{t) is the weight vector 
associated with the jth output and p is the selectivity 
parameter. Tbis model has no ''winner", that is, all output 
neurons are updated at each presentation of an input 
pattern. It is worth noting that simultaneous updating of ali 
the neurons should accelerate the convergence of the 
network and helps to avoid dead units [1], [6]. 

Because of the new strategy for weight modification, 
. the simple competitive learning rule can be no longer 

used. Hence, some kind of correlation-based learning [3], 
, [4] role must be used. The weights are adjusted through: 

in which m;{t) is the feedforward weight connection 
between input i and output neuron j, x(t) is the input 
vector, Y.J(t) is the output transfer fimction defined as: 

: " in which Wij is connection :from the output unit r to unit j 
r (w.iJ=a. and wiJ=-~). The transfer fimction g(v) = 1 if v>l, 

g(v) =O ifv<O andg(v) =v otherwise. The signals.Y.J(t) are 
normalized so that í:j .Y.J(t) = 1. The extended learning rate 

ll'(t) is defined as rr (t) = TJ(t)sgn(y(t + 1)-y(t)]. 
In order to avoid different neurons to respond to the 

same input pattern, we suggest the use of fixed lateral 
inhibitory connections. It is worth empbasizing that here 
the lateral connections play an effective role. This is not 
the case for DCL. Computer simulations illustrate that the 
combination of these mechanism is able to improve the 
performance ofDCL models in clustering tasks. 

5. SIMULATION AND RESULTS 

We simulated the models, written in ANSI C, in a SUN 
workstation ULTRA-L For all tests n = 2, m = 4. In the 
first experiment, the pattern set consists of 2000 two­
dimensional Gaussian-distributed pattem vectors with 

-433-

standard deviation O" = 0.09, and with centroids or modes 
at (113, 1/3), (113, 2/3), (2/3, 113) and (2/3, 2/3). 

Figure la shows the evolution oftraining for the SDCL 
model where TJ(t) = 0.01 and the initial weight vectors 
were {(0.48, 0.48), (0.52, 0.48), (0.52, 0.52), (0.48, 0.52)}. The 
SDCL weights estimated the centroids of the distributions 
correctly. The final weights a:fter 5000 iterations were 
{(0.329, 0.332), (0.673, 0.328), (0.662, 0.662), (0.322, 0.659)}. 
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(a) (b) 

FIGURE L CENTROID CONVERGENCE OF SYNAPTIC VECTORS 
FOR: (a) SDCL AND (b) GDCL. THE INPUTS ARE LINEARLY 
TRANSDUCED. 

W e repeat the previous test to evaluate the ability o f 
the GDCL model in estimating centroids. The same 
training pattern set and initial weights of the previous 
experimentare used. For tbis model, TJ(t) = 0.01 and p = 
0.025, ~ = -2 anda.= 1. Figure lb shows the results ofthe 
simulation. After 5000 iterations the final weights were 
{ (0.323,0.330), (0.660,0.337), (0.324,0.660), (0.672,0.666)}. 

Figure 2 shows the trajectories of one ofthe SDCL and 
GDCL synaptic vectors reaching the centroid at (2/3, 1/3). 
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FIGURE 2. TRAJECTORIES OF ONE OF THE SDCL AND GDCL 
WEIGHT VECTORS REACHll'IG THE CENTROID (213, 113). 

Both models have fast convergence, reaching the 
centroids after 1600 training iterations. The original DCL 
was unable to converge to the centroids for tbis pattern set. 

In the third experiment, we evaluate the performance 
ofthe models on a simple clustering task [6]. For tbis test, 
the pattem set comprises 24 two-dimensional vectors: 

V! = (0.18, 0.28) V7 = (0.23, 0.28) V13 = (0.27, 0.20) V19 = (0.45, 0.24) 
v 2 = (0.19, 0.26) vs = (0.24, 0.22) v,.= (0.27, 0.18) vzo = (0.47, 0.26) 
V3 = (0.20, 0.28) V9 = (0.23, 0.20) VJS = (0.27, 0.16) V21 = (0.47, 0.24) 
V4 = (0.18, 0.30) VIQ = (0.23, 0.18) Vi6 = (0.34, 0.22) Vn = (0.47, 0.22) 
Vs = (0.22, 0.26) V! I= (0.25, 0:20) V17 = (0.43, 0.26) V23 = (0.47, 0.20) 
V6 = (0.22, 0.24) Vil= (0.25, 0.20) VJS = (0.44, 0.28) Vz4 = (0.49, 0._22) 

In the trained networks, the patterns are grouped in 
classes according to the response of the output neurons. 



The weight vector of each output neuron represents a 
cluster centroid. Each input pattern belongs to the cluster 
identifi.ed by the output neuron with the highest response. 

For this experiment the learning rates are decresead 
according to: rt(t) = rto(l- tltmax) in wbich Tio= 1 and tmax = 
2500. The initial weights were chosen at random from the 
pattem set and !3 = -0.9 anda= 1.3. We compare SDCL 
and GDCL with the WTA network [2]. The clusters found 
by SDCL and GDCL are {vi> v2, v3, V4, Vs, v6, v,}, {vs, v9, V to, 
v1I> v12, v13, v14, Vt5}, {v16} and {vJ,, Vts, V19, Vzo, Vzh Vzz, V23, 
v24} wbich can be visualized by the Voronoi tesselation 
[3] shown in Figure 3. GDCL has achieved this result in 
40 out of55 attempts, SDCL needs 29 out of55 and WTA 
in only 13 out 55 trials. In most cases, WTA has tried to 
shift the weight vectors to oversampled regions (Figure 4) 
finding the following clusters: {v~> v2, v3, V4, vs, v6, v,}, {vs, 
v9, v10, vu, v12, v13, v14, v1s}, {vt6• VJ7, Vts} and {vl9• Vzo, Vzb Vzz, 
v23, Vz4}· 
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FIGURE 3. VORONOI DIAGRAM REPRESENTING CLUSTER.IN'G 
RESUL TS FOR SDCL AND GDCL. 

The result sho'Ml in Figure 3 suggests that SDCL and 
GDCL have paid a close attention to pattern v16 which is 
an outlier and assigned a weight vector to represent that. 

It is important to note that the original DCL model was 
unable to cluster the input patterns for the training trials. 
In fact, this simulation suggests that the negative feedback 
through lateral connections in DCL generates some kind of 
instability. 
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FIGURE 4. VORONOI DIAGRAM REPRESENTING CLUSTER.IN'G 
RESULTS FOR \\'TA 

This experiment shows that GDCL is less sensitive to 
weight initialization than SDCL. Both, GDCL and SDCL 
converge faster than WTA. For the clusters shown in 
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Figure 3 the final clustering error calculated thrcr.:?! ' t 

0.00070 and for those in Figure 4 the error is o.occ:r: 

6 CONCLUSION AND FURTHER 

We have suggested a set of modificatiocs n 
original DCL model introducing the SDCL ani CD::. 
models in order to enhance the performance in a~ 
tasks. In SDCL, we assessed the role played by cil...~ 
lateral weights in the competition mechanism. VI e ~ 
of the inhibition arguing that the use of both E::.dil!l!ll 
distance relations and lateral connection is red:lr:émr 
determining the winning neuron. In GDCL, v.-e ~­
how to use Euclidean distances and inhibition ~~ 
updating ali the output neurons. The simulations i!!~'.st:~~t 
that SDCL and GDCL are more stabie than tbe m.pl'l 

DCL always converging to cluster centroids. M~ 
the GDCL model is less sensitive to weight ~~~~ 
tban SDCL and WTA. SDCL and GDCL also ón 
lower clustering error tban WTA for certain inpct ~ 

Further work must be developed in order to ~ 
the SDCL and GDCL models on real world ap;iS::wJt11 
such as speech and image processing. 
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