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ABSTRACT

In this paper we propose two neural algorithms that can be
considered a simplification and a generalization of the
Differential Competitive Learning (DCL) neural network,
respectively. Firstly, we suggest some simplifications for
the original DCL model to eliminate redundant aspects of
the competition mechanism. We get rid of the lateral
connections arguing that it is possible because the winning
newron is chosen based solely on metrical similarity
measures and the lateral feedback weights play no
effective role. The activation rule is made simpler
requiring less computational effort. In the second model,
we show how to combine lateral connections with metrical
relations on the activation and the learning rules of DCL to
effectively estimate cluster centroids. This model is also
less sensitive to weight initialization. A number of
simulations are carried out to compare the presented
models in unsupervised clustering tasks.

Keywords: Neural net\x}orks, unsupervised learning,
differential competitive learning, inhibition, clustering.

1. INTRODUCTION

Unsupervised artificial neural networks (UANN)
models have offered new approaches to the solution of
many pattern recognition tasks. Statistical pattern
classification, cluster detection, veector quantization and
probability density function estimation are some areas in
which UANN have successfully been used [1]. In this
paper, we are particularly concerned with cluster detection
via centroid estimation.

Clustering a set of p patterns comprises finding m
disjoint partitions so that the members of each partition are
more similar to each other than to the remaining patterns.
Unsupervised learning through competitive neural
networks can be used for clustering by discovering the
salient statistical features in the input {2}, [3].

In competitive learning systems, a set of neurons
compete among themselves for the right to respond to an
input pattern. The winners of the competition are allowed
10 modify their weight vectors to become more similar to
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the input patterns. In effect, competitive UANN models
modify their weight vectors in an adaptive fashion in order
to estimate the center of gravity of the clusters embedded
in the input distribution [4]. Centroid estimation is useful
in a2 number of applications, such as speech and image
compression [5].

The goal is to minimize the mean square error E in
finding m cluster centroids (w;, Wy, ..., W,) for p patterns
(xh X725 ees Xp) [5]2 [6]:

=ikt o

in which M; = 1 if x, belongs to cluster m and A4; = 0
otherwise.

In this paper, we introduce two competitive models for
clustering based on Differential Competitive Learning
(DCL) [71, [8]. The first model derives directly from DCL
requiring less computational efforts. The second is less
sensitive to weight initialization than the others two. In
addition, both models can detect subtle aspects of the
input pattern distribution dividing the input patterns in
clusters with low clustering error.

The paper is organized as follows. In Section 2 we
present the original DCL model and discuss some features
of the model. In Section 3 2 simplified version of the DCL
is presented based on the discussion in Section 2. The
previous two models have some limitations and in Section
4 we present a novel neural network model with the aim of
solving some of the problems. Then, in Section 5 we carry
out a number of simulations to illustrate the performance
of the models in simple clustering tasks. Finally, in Section
6, we discuss the results of the simulations and the issues
for further work.

2. DIFFERENTIAL COMPETITIVE
LEARNING

Kong and Kosko [7] and Kosko [8], [9] have proposed
the DCL model as a new unsupervised learning paradigm

for adaptive vector quantization (AVQ). It has been used.
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in a number of applications such as density estimation and
phoneme recognition [7] and printed circuit board
inspection [10].

The DCL model comprises two layers of neurons
(Figure 1). The input layer has » neurons and the output
layer has m neurons. The input neurons propagate the
observed inputs, through feedforward weight connections,
to the output layer. In both layers, the neurons may have
linear or non-linear (sigmoid) activations. Each neuron
within the competition layer excites itself and inhibits the
others through feedback inhibitory connections.

Input layer

Output layer

FIGURE 1. TOPOLOGY OF THE LATERALLY INHIBITORY

DIFFERENTIAL COMPETITIVE LEARNING MODEL.

The DCL algorithm is summarized below:

(1) Initialize the excitatory weight connections with m
samples drawn from the input distribution and initialize
the activations of the output neurons:

m,(0) =x, and yi(0)=0, j=1,..m

(2) Present a randomly chosen sample x() to the net.

(3)Find the closest (“winner”) weight vector my(7)
according to the Euclidean norm:

m, (t) - x(t)" = mj.m“m , (t) - x(t)“ @

(4) Update the activations of the output neurons through:

21+ ) =50+ Z8(Im(D+ Z8. (ml)) 3

in which S{x;) and S/(x,) are linear or sigmoid-type
transfer functions. The inhibitory weight, w,; , connects
the output neuron r to the output neuron 7.

(5) Update the winning weight vector my(?) through:

m, (e +1) = m, (1) + n(Osgn] Ay (O] x(0) - m, ()] ()

-432-

in which 0 < n(f) << 1 is the leamins m &

sgn|An (7)) = sgnly(t+1)- ()]

(6) Repeat steps 2-5 continuously for the mumber f ==
tma Specified by the user.

The learning process takes place only if ¢ nm
activations change. If Ay(?) > 0, the winning weigr war
my(?) moves towards the direction of the inpw z1 !
Aydr) < 0, the winning weight vector is movel 2 %
opposite direction, away from the input Tks mym
velocity information provides unsupervise! &a
reinforcement during learning [7].

It is worthwhile to note that the winning zewn «
chosen based on Euclidean distance measures imu
way to find the winner is via lateral feedback weipn
by choosing the neuron with highest response fr 1 e
input pattern. The use of both mechanism is redrim &
brings no special advantage to the model. Iz =
section, we suggest some simplifications to e 217,
model in order to eliminate the redundance 7 @
competition mechanism.

3. THE SIMPLIFIED MODEL

The competition mechanism in DCL determe ¥ |
winning neuron based on metrical similarity, bz w
argue that DCL does not effectively uses its minine
connections. Hence, we get rid of the lateral comes
introducing the Simplified Differential Compeun
Learning (SDCL) neural algorithm. As a rewt, @
activation rule (3) is made simpler and QI 5
computational efforts than DCL:

y,(t+1)=yj(t)+'z:;8,(x,)m,(t) f

The computational savings in using (5) instza? 1
are of particular interest when the S,(y.)szur @

sigmoid functions. Sigmoids are computations™ mg
heavier than the distance computations [11]. Mireoe
simplicity and locality are the major consTmm &
designing a neural system. These are the dimm
requirements if the neural system has to be herd-wm 4
analog or hybrid VLSI architectures. The e ¢
lateral connections simplifies VLSI implemerami «
artificial neural models substantially. The activeeun =
and the neural network operation reqIr @
computational effort and use only the ifrmes
available locally at the neuron level. ‘

The original DCL and its simplified versice mas
their feedforward excitatory weights accorcy v
competitive learning rule [2]. Winner-take-2] (¥
behavior has the advantage of simplicity, bz iw 5
some drawbacks including underutilized oulr e
(dead units), which reduces the representational sl [




competitive neural networks [1], [3], [4]. In the next
ssction, we propose a neural algorithm in order to show
how Euclidean distance can be used together with lateral
ishibition to correctly estimate cluster centroids.

{ THE GENERALIZED MODEL

This new model will be called Generalized DCL
(GDCL). GDCL has the same topology as DCL. The
mputs are non-linearly transformed according to:

a(t)= exp(“x(t) -m, (t)n / 2p2) )
in which x(¥) is the input vector, my¥) is the weight vector
associated with the jth output and p is the selectivity
parameter. This model has no “winner”, that is, all output
newrons are updated at each presentation of an input
pattern. It is worth noting that simultaneous updating of all
the neurons should accelerate the convergence of the
network and helps to avoid dead units {1], [6].

Because of the new strategy for weight modification,
- the simple competitive leamning rule can be no longer
used. Hence, some kind of correlation-based leamning [3],
[4] rule must be used. The weights are adjusted through:

m,(t+1)=m,(r)+ n'(t)y(t)[x(t) - m,(t)]

in which m(#) is the feedforward weight conmnection
~ between input /i and output neuron j, x(¢) is the input
vector, y(?) is the output transfer function defined as:

7 (0= S mal) = e ()-BEma () @

r=l rey

* in which wy; is connection from the output unit 7 to unit ;
(w~a and w;=B). The transfer function g(v) = 1 if v>1,
g(v) = 0 if v<0 and g(v) = v otherwise. The signals y () are
normalized so that Z; y{(#) = 1. The extended learning rate
n'(¢t) is defined as n°(¢) = n(t)sgn{y(t +1)- y(t)] }

In order to avoid different neurons to respond to the
same input pattern, we suggest the use of fixed lateral
inhibitory connections. It is worth emphasizing that here
the lateral connections play an effective role. This is not
the case for DCL. Computer simulations illustrate that the
combination of these mechanism is able to improve the
performance of DCL models in clustering tasks.

5. SIMULATION AND RESULTS

We simulated the models, written in ANSI C, in 2 SUN
workstation ULTRA-1. For all tests n = 2, m = 4. In the
first experiment, the pattern set consists of 2000 two-
dimensional Gaussian-distributed pattern vectors with

®
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standard deviation ¢ = 0.09, and with centroids or modes
at (1/3, 1/3), (1/3, 2/3), (2/3, 1/3) and (2/3, 2/3).

Figure 1a shows the evolution of training for the SDCL
model where n(Y) = 0.01 and the initial weight vectors
were {(0.48, 0.48), (0.52, 0.48), (0.52, 0.52), (0.48, 0.52)}. The
SDCL weights estimated the centroids of the distributions
correctly. The final weights after 5000 iterations were
{(0.329, 0.332), (0.673, 0.328), (0.662, 0.662), (0.322, 0.659)}.
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FIGURE 1. CENTROID CONVERGENCE OF SYNAPTIC VECTORS
FOR: (2) SDCL AND (b) GDCL. THE INPUTS ARE LINEARLY
TRANSDUCED.

We repeat the previous test to evaluate the ability of
the GDCL model in estimating centroids. The same
training pattern set and initial weights of the previous
experiment are used. For this model, n(f) = 0.01 and p =
0.025, p = -2 and a = 1. Figure 1b shows the results of the
simulation. After 5000 iterations the final weights were
{(0.323,0.330), (0.660,0.337), (0.324,0.660), (0.672,0.666)}

Figure 2 shows the trajectories of one of the SDCL and
GDCL synaptic vectors reaching the centroid at (2/3, 1/3).
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FIGURE 2. TRAJECTORIES OF ONE OF THE SDCL AND GDCL
WEIGHT VECTORS REACHING THE CENTROID (2/3, 1/3).

Both models have fast convergence, reaching the
centroids after 1600 training iterations. The original DCL
was unable to converge to the centroids for this pattern set.

In the third experiment, we evaluate the performance
of the models on a simple clustering task {6]. For this test,
the pattern set comprises 24 two-dimensional vectors:

vi =(0.18,0.28) v,=(0.23, 0.28) w;3=(0.27, 0.20) vio=(0.45, 0.24)
v2=(0.19, 0.26) vs=(0.24, 0.22) vi¢=(0.27, 0.18) vz = (0.47, 0.26)
v3=(0.20, 0.28) vo=(0.23, 0.20) vi15=(0.27, 0.16) va; = (0.47, 0.24)
vs=(0.18, 0.30) vio=(0.23, 0.18) vis=(0.34, 0.22) vy, =(0.47, 0.22)
vs=(0.22, 0.26) vy, = (0.25, 0:20) vi7=(0.43, 0.26) vz3 = (0.47, 0.20)
vs=(0.22,0.24) viz=(0.25, 0.20) wig = (0.4, 0.28) vz =(0.49, 0.22)

In the trained networks, the patterns are grouped in
classes according to the response of the output neurons.



The weight vector of each output neuron represents a
cluster centroid. Each input pattern belongs to the cluster
identified by the output neuron with the highest response.

For this experiment the learning rates are decresead
according to: N(#) = Mo(1- #/tma) in which 1o =1 20d te =
2500. The initial weights were chosen at random from the
pattern set and B = -0.9 and o = 1.3. We compare SDCL
and GDCL with the WTA network [2]. The clusters found
by SDCL and GDCL are {vy, V2, V3, V4, Vs, Ve, V7}, {Vs, ¥, V10,
V1> V12> V13, V14> V1s}, {V1e} 20d {¥17, Vi3, V19, V20, V21, V22, V235
vy} which can be visualized by the Voronoi tesselation
[3] shown in Figure 3. GDCL has achieved this result in
40 out of 55 attempts, SDCL needs 29 out of 55 and WTA
in only 13 out 55 trials. In most cases, WTA has tried to
shift the weight vectors to oversampled regions (Figure 4)
finding the following clusters: {v,, v3, v3, V4, Vs, Ve, ¥7}, {Vs,
V5, V10, V11 V12 Vi3s Vias Vis}s {V16s V17 Vis} and {V1g, Vag, V21, Vo,
V3 v24} .
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FIGURE 3. VORONO! DIAGRAM REPRESENTING CLUSTERING
RESULTS FOR SDCL AND GDCL.

The result shown in Figure 3 suggests that SDCL and
GDCL have paid a close attention to pattern vy which is
an outlier and assigned a weight vector to represent that.

It is important to note that the original DCL model was
unable to cluster the input patterns for the training trials.
In fact, this simulation suggests that the negative feedback
through lateral connections in DCL generates some kind of
instability.
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FIGURE 4. VORONOI DIAGRAM REPRESENTING CLUSTERING
RESULTS FOR WTA.

This experiment shows that GDCL is less sensitive to
weight initialization than SDCL. Both, GDCL and SDCL
converge faster than WTA. For the clusters shown in
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Figure 3 the final clustering error calculated throeg *
0.00070 and for those in Figure 4 the error is 0.000%2

6 CONCLUSION AND FURTHER W0&L

We have suggested a set of modificatioss w
original DCL model introducing the SDCL =i &%
models in order to enhance the performance mm dumery
tasks. In SDCL, we assessed the role played by =iy
lateral weights in the competition mechanism. We gz %
of the inhibition arguing that the use of both Euclitme
distance relations and lateral connection is redumdar 4
determining the winning neuron. In GDCL, we dgmws |
how to use Euclidean distances and inhibition eZeram
updating all the output neurons. The simulations T
that SDCL and GDCL are more stable than the orpms
DCL always converging to cluster centroids. Morame
the GDCL model is less sensitive to weight intZalmma
than SDCL and WTA. SDCL and GDCL aiso s
lower clustering error than WTA for certain inpu partien:

Further work must be developed in order to somuis
the SDCL and GDCL models on real world apphomim
such as speech and image processing.
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