

The 8th Hutton Symposium on Granites and Related Rocks

PT.117

New geochemical and geochronological data from Ediacaran magmatism in Central Ribeira Belt, southeastern Brazil: implications for the assembly of West Gondwana Meira VT¹, Schorscher JHD¹, Juliani C¹, García-Casco A² - ¹University of São Paulo - Institute of Geosciences, ²University of Granada - Faculty of Sciences

Widespread Ediacaran magmatism of the Ribeira Belt is generally interpreted in terms of successive generation of magmatic arcs and accretion of terranes during the evolution of the Neoproterozoic fold-and-thrust belts in southeastern Brazil. This voluminous magmatism includes large high-K calcalkaline porphyritic batholiths, elongated peraluminous granitic plutons and A-type alkaline to subalkaline plutons. The high-K calc-alkaline batholiths are mostly composed of Bt±Hbl porphyritic granites and granodiorites and occur as large bodies elongated along major shear zones in the entire Ribeira Belt. Syn-tectonic Bt and Ms-Bt granites represent the peraluminous granitic plutons that occur wrapped by the strike-slip shear zones. Two roughly linear belts of A-type subalkaline to alkaline plutons, closely associated with coeval high-K calc-alkaline granitic rocks, characterize the post-orogenic magmatism (Itu and Graciosa provinces) that also includes the Ubatuba Charnockite. Based on new geochemical data and a large compilation of data available for granitoids and mafic rocks of Embu and Costeiro domains, we interpret the S-type magmatism as extensive melting of the middle-upper crust during decompression, as documented by migmatites, while generalized geochemical evidences for hybridization in Hbl granitoids and associated mafic rocks indicate mixing of deeper crustal and mantle-derived magmas. Both magmatic processes occurred simultaneously at 585–575 Ma (new U–Pb SHRIMP zircon data), coeval with A-type and high-K calc-alkaline magmatism of Graciosa and Itu Granite provinces. This timespan was associated with extensional and wrench tectonics characterized by migmatite-cored gneiss domes and wide strikeslip shear system in the Costeiro and Embu domains, respectively. We hence interpret that the widespread magmatism in the whole Ribeira Belt is related to a post-thickening (or post-collisional) extension-related partial melting event affecting the lithospheric mantle and crust, and not to successive accretion events of magmatic arcs. This new interpretation is in agreement with the late Ediacaran-Cambrian Rift System of the southeastern South America.