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Abstract As smart systems leverage capabilities of het-

erogeneous systems for accomplishing complex combined

behaviors, they pose new challenges to traditional soft-

ware engineering practices that considered software ar-

chitectures to be mostly static and stable. The soft-

ware architecture of a smart system is inherently dy-

namic due to uncertainty surrounding its operational

environment. While the abstract architecture offers a

way to implicitly describe different forms taken by the

software architecture at run-time, it is still not suffi-

cient to guarantee that all concrete architectures will

automatically adhere to it. To address this issue, this

work presents a formal method named Ark support-

ing the architectural synthesis of smart systems. This

is achieved by expressing abstract architectures as a set

of constraints that must be valid for any concrete ar-
chitecture of the smart system. This way, we can ben-

efit from existing model-checking techniques to guar-

antee that all concrete architectures realized from such

an abstract model will comply with well-formed rules.

We also describe how this method can be incorporated

to a model-driven approach for bridging the gap be-

tween abstract and concrete architectural models. We

This work was supported by the São Paulo Research Foun-
dation (FAPESP), grants 2012/24290-5, 2017/22107-2, and
2017/06195-9.

Milena Guessi
ICMC, University of São Paulo, Brazil
IHPME, University of Toronto, Canada
E-mail: milena@icmc.usp.br

Flavio Oquendo
IRISA - UMR CNRS/Université de Bretagne-Sud, France
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demonstrate our method in an illustrative case study,

showing how Ark can be used to support the synthesis

of concrete architectures as well check the correctness

and completeness of abstract architecture descriptions.

Finally, we elaborate on future directions to consolidat-

ing a process for the synthesis of run-rime architectures

that are correct-by-construction.
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1 Introduction

A smart system combines elements of sensing, acting,

and control that can lead to the development of in-
novative solutions for addressing social, economic, and

environmental challenges [63]. To provide more sophis-

ticated capabilities, smart systems require support for

[22]: (i) instrumentation, which enables to collect timely,

high-quality data through embedded sensors and en-

act planned strategies accordingly; (ii) interconnection,

which enables to create links among data, systems, and

people; and (iii) intelligence, which enables to devise

new computing models, algorithms, and analytics to

process collected data and support decision making.

In this scenario, software plays an important role in

smart systems for dynamically interconnecting systems

and leveraging individual capabilities to accomplish a

desired combined behavior. In this scenario, complex

smart systems, such as smart cities [42], smart devices,

and smart grids [60], can also be considered as Systems-

of-Systems (SoS), i.e., systems that are formed by het-

erogeneous and independent systems [5, 31].

Software architectures are valuable assets to cope

with the increasing complexity of smart systems. The
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software architecture is embodied in the parts of a sys-

tem and their relationships with each other, and to the

environment, as well as in the principles guiding its de-

sign and evolution [27]. The activity concerned with

the synthesis of a software architecture is supported by

architecture descriptions [24], which comprise the set

of artifacts documenting the software architecture and

often include several models [27].

Specifically for SoS engineering, three types of mod-

els can be useful [68]: (i) normative models, describing

norms and standards for how SoS should be; (ii) de-

scriptive models, describing how SoS are by showing

deviations from the normative model; and (iii) prescrip-

tive models, describing how one can achieve the norma-

tive model given the descriptive model. For instance,

normative models can be used for the dissemination

of best practices that will be used as the basis for the

evaluation of a descriptive model and/or refinement of a

prescriptive model. As normative models, abstract ar-

chitectures can be used to define, at design time, the

baseline for dynamically interconnecting systems within

the SoS. In turn, a concrete architecture can be re-

garded as a descriptive model of a particular setting,

which is also referred to as a coalition. The coalition

defines how individual actions of constituent systems

are to be combined within the SoS for accomplishing

its mission. Thereby, a number of concrete architec-

tures can be created and validated against the needs

of a smart system.

The software architecture of SoS represents a de-

parture from traditional software engineering practices

that assumed software architectures to remain relatively

stable throughout their entire life cycle [58, 61]. Be-

cause the evolution of SoS architectures can have deeper

repercussions in regards to both its structure and be-

havior, tailored means are needed to support rearchitect-

ing, a process that encompasses the modification, sub-

stitution, reconstruction, and/or addition of any ele-

ment of the software architecture [1]. Specifically in

the safety-critical domain, such as in a smart system

for monitoring environmental conditions to determine

whether there is an imminent risk of harming people

and/or damaging homes and businesses, a rigorous re-

architecting approach is essential for guaranteeing that

the system will continue to behave as expected despite

changes to its constituent systems. Moreover, it can

help prevent that changes to the software architecture

can eventually put the system’s mission at risk.

Architecture descriptions can play a central part of

a rigorous approach for the evolution of software archi-

tectures [39]. For instance, target architectures can be

represented using formal notations and change requests

can be defined as refinement relations between interme-

diary architectures, thus guaranteeing consistent mod-

els of the system throughout its entire life cycle [9, 41].

The nature of SoS complicates the adoption of tra-

ditional practices that have been employed in the de-

scription of SoS software architectures [58]. First, the

emergent behavior of a SoS requires models that can

simulate the behavior of a coalition at run-time, which

makes solely static, design time models unsuitable for

capturing the dynamism of SoS architectures [67]. Sec-

ond, the evolutionary development of a SoS requires

software architectures that can support multiple coali-

tions to emerge over time [7, 51]. In this sense, dy-

namic software architectures can be investigated for

promoting SoS resilience in face of uncertainty [14, 49,

51]. Nonetheless, most notations used for describing

software architectures, including formal notations (i.e.,

Architectural Description Languages, ADLs) [46] and

semi-formal notations (e.g., UML), only support the de-

scription of concrete architectures [18, 51]. Third, the

frequent pace in which evolution takes place in SoS can

accelerate the architecture decay, which is linked to the

degradation of internal and external system properties

[1]. For instance, smart system developers must check if

architectural properties, such as performance or safety,

and external conditions (e.g., geographical distribution

of constituent systems), that were defined at the ab-

stract architecture are preserved by the concrete archi-

tecture. As a consequence, synthesizing, assessing, and

comparing alternative concrete architectures becomes a

challenging and time consuming task for SoS designers

[11].

Aiming to support the design and development of
smart systems, tailored means are needed to detect

when a concrete architecture deflects from its norma-

tive model. In our previous work [20], we experimented

the formal method Alloy [30] for investigating whether

a concrete architecture complying with an abstract ar-

chitecture existed or not, which aligns with the research

on autonomous systems architecture [39], i.e., provid-

ing mechanisms to either automatically realize a con-

crete architecture for which purposes, properties, and

constraints of the abstract architecture description are

satisfied, or reporting that such an architecture is not

feasible. In particular, the abstract architecture of the

SoS was expressed in SosADL [56], a formal notation

that has been specifically developed to support partial

descriptions of coalitions. We described how the ab-

stract architecture can be manually translated into a

constraint satisfaction problem that can be processed

by the Alloy Analyzer, one of the constraint solvers

available for Alloy. As a result, we were able to ran

an exhaustive search for any concrete architecture that



Ark: a Constraint-based Method for Architectural Synthesis of Smart Systems 3

comply with the abstract architecture within a prede-

fined analysis setting.

In this article, we aim to address two limitations

of our previous work. First, our previous work requires

an in-depth understanding about Alloy in order to tai-

lor a constraint satisfaction problem for each SoS. Sec-

ond, our previous work presents the solution returned

by the Alloy Analyzer only as an XML model or as a

box-and-lines diagram, hence introducing an interme-

diary model to the SoS architecture description. In this

work, we establish Ark, a constraint-based method that

supports the transformation of the key concepts of a

SosADL abstract architecture into a constraint satisfac-

tion problem expressed in Alloy. In addition, we discuss

how this method can be incorporated in a model-driven

approach to further bridge the gap between the descrip-

tion of abstract and concrete architectures. Therefore,

this work makes the following contributions:

– Formalization of abstract architectures for SoS ex-

pressed in SosADL in terms of Alloy;

– Definition of a model-driven approach for the trans-

lation of the abstract architecture expressed in Sos-

ADL as a constraint satisfaction problem and of the

solutions obtained by the constraint solver as a con-

crete architecture expressed in SosADL;

– Extension of an integrated environment for SoS de-

sign and development with support for automated

synthesis of concrete architectures that comply with

an abstract architecture description.

1.1 Motivating Example

The city of São Carlos, located in the southeast of

Brazil, has been consolidated in recent years as a tech-

nological hub, centralizing universities and jobs on tech-

nology in the state of São Paulo. The Urban River Mon-

itoring (URM) is one of such systems that have been

placed on the Monjolinho River in São Carlos, Brazil

[26] to support local enforcement and rescue teams dur-

ing a flooding event, in which rivers that cross inhabited

regions overflow, endangering people and businesses in

the area. A joint effort among researchers on embedded

systems and systems engineering is putting in place a

distributed, yet reliable, Wireless Sensor Network (WSN)

that is expected to collect timely observations of the

river, such as depth and average current speed [26].

These networks have been widely used in river moni-

toring and warning systems as they support distributed

data collection thanks to assorted communication capa-

bilities, such as WiFi, ZigBee (IEEE 802.15.4), GPRS,

or Bluetooth, embedded in sensor motes [25].

The URM architecture should be designed to deal

with changes in its constituents over time. Thereby, this

architecture is dynamic in that new sensor motes may

be added or removed from the system, e.g., to save bat-

tery power of connected sensor nodes. Moreover, its ar-

chitecture is expected to evolve over time, e.g., to take

advantage of new types of systems that can be incor-

porated as they become available to the organization

running the SoS or to replace or disconnect systems

aiming to maintain and/or increase the overall system

performance. Due to the criticality of the URM mis-

sion, verifying the correctness and completeness of the

abstract architecture constitutes an important step for

engineering this SoS. In particular, automated support

is needed to guarantee that changes to the abstract ar-

chitecture can still meet the original intent of the SoS

architect. In this scenario, architects of such system can

benefit from having an abstract architecture to reason

about required interconnections between systems, spe-

cially since the way in which systems are interconnected

impacts SoS-wide behaviors that can emerge [58].

The remainder of this paper is organized as follows.

First, Section 2 presents essential concepts on software

architectures and SoS for the development of this work.

Section 3 explains the rationale for the definition of

Ark, a constraint-based method that formalizes Sos-

ADL abstract architectures in terms of a constraint

satisfaction problem. Afterwards, Section 4 discusses

how Ark can be supported by a model-driven approach

for the synthesis of SoS architectures. Then, using the

dynamic architecture of the URM as an illustrative

case, Section 5 demonstrates how this method allows

one to generate concrete coalitions that are correct-by-

construction. Section 6 positions our method in regards

to other works on the synthesis of dynamic architec-

tures. Finally, Section 7 elaborates on future directions

for advancing the state-of-the-art on architectural syn-

thesis of smart systems.

2 Background

This section presents the main topics regarding software

architectures of SoS that are addressed in this paper.

In particular, we contextualize our research on model-

based approaches and ADLs for representing run-time

coalitions.

2.1 Definitions of SoS and Software Architectures

There are five characteristics that distinguish SoS from

traditionally complex, monolithic systems [7]: (i) coali-

tions produce an emergent behavior that cannot be pro-
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vided by any constituent alone; (ii) constituents retain

their operational independence since they can still oper-

ate even when detached from the SoS; (iii) constituents

also retain their managerial independence since they

can be developed, maintained, and evolved indepen-

dently from the SoS; (iv) coalitions are evolutionarily

developed by continuously changing in response to dif-

ferent environments and needs; and (v) constituents can

be geographically distributed as they can only exchange

information with each other.

The ISO/IEC/IEEE 42010 [27] defines a software

architecture as the “fundamental organization of a sys-

tem, embodied in its components, their relationships to

each other and to the environment, and the principles

governing its design and evolution over time.” Software

architectures have been associated with diverse qual-

ity attributes, e.g., safety [10], maintainability [3], and

longevity [1]. Aiming to establish a disciplined approach

for the design, evaluation, and evolution of software ar-

chitectures, several processes have been defined over the

years [24]. Following, we summarize the main steps of

a generic model [24] for architecting software systems.

The architectural analysis uses the context (i.e., the

environment) and architectural concerns to formulate

the set of Architecturally Significant Requirements (ASR)

in terms of desired systems properties that must be

fulfilled by an architecture. The architectural synthesis

builds upon ASR to outline potential solutions satis-

fying these requirements. Many decisions are taken as

part of the design of software architectures in regards

to which patterns, styles, reference architectures, and

platforms are more suitable for a given software system

that ultimately determine the final shape of software ar-

chitectures [32]. Therefore, a description of the software

architecture should ease the communication of its de-

sign to stakeholders as well as support its analysis [44].

Finally, the architectural evaluation checks candidate

solutions against ASRs until selecting one architecture

that is more suitable for the system, which is not trivial

given the diversity of competing requirements, quality

attributes, and concerns.

The evolution of software architectures is a natu-

ral step in long lived software systems as it is intended

to keep the architectural design aligned with systems

goals and technologies [52]. Without support for evo-

lution, architectures become obsolete, decreasing inter-

nal and external system qualities [1]. Despite its im-

portance, the evolution is often a secondary concern in

most studies on software architectures [8].

2.2 Challenges for Architecting SoS

The software architecture of an SoS encompasses the

structure of constituent systems, the relationships that

exist among them, and the principles and guidelines

governing its design and evolution over time [17]. As

a baseline for developing constituents and a shared in-

frastructure for distributing work, the architecture of a

SoS is a key artifact during SoS engineering processes

[15]. The dynamic architecture required by SoS repre-

sents a shift from architectures of traditionally large

and complex software systems that can be determined

early and remain relatively stable throughout their en-

tire life cycle [61]. In this scenario, current practices

lack the means to cope with the unpredictable ways in

that SoSs architecture can evolve and grow at run-time

[67].

The lack of support for evolution is particularly harm-

ful in the context of SoS since their software architec-

ture is constantly changing as a consequence of their

evolutionary nature. Therefore, even though a consol-

idated discipline has already been established for sup-

porting software architectures, architecting SoS brings

additional, major challenges [6] that remain open due

to the conjunction of their inherent characteristics [51].

For instance, a process for engineering SoS must sup-

port incremental development and evolution between it-

erations, continuous analysis against changing contexts

and requirements, and continuous input from the ex-

ternal environment [16].

To achieve interoperability among constituent sys-

tems, SoS require efficient means to mediate the col-

laboration among heterogeneous constituents as well

as tailor these interactions according to specific opera-

tional environments and needs [4, 6, 43]. For instance,

legacy constituent systems may resist to make the re-

quired changes for their interaction with other con-

stituents of the SoS [52]. In this case, SoS architects

may decide to define a gateway or encapsulate the con-

stituent system so that required changes to the actual

constituent are minimized. Moreover, specific architec-

ture styles can be used to foster connectivity among

constituent systems, such as net-centric architectures,

layered architectures, and agent-based architectures [14,

38].

2.3 Architectural Description of SoS

As tangible artifacts expressing software architectures,

architecture descriptions provide concrete ways for as-

sessing systems qualities, sharing architectural knowl-

edge, and preventing software systems decay [12, 27,
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40]. To disseminate best practices regarding the cre-

ation of such artifacts, the ISO/IEC/IEEE 42010 [27]

establishes the main elements framed in architecture de-

scriptions and the relationships that exist among them.

Moreover, architecture descriptions can be customized

for a particular domain or stakeholder community. In

the context of SoS, architecture descriptions must de-

tail functionality that is performed by key constituent

systems, data and control flow, externally visible prop-

erties and interfaces of constituents (e.g., behaviors, de-

pendencies, and use of shared resources), relationships

among organizational entities and constituents as well

as rationale and governance policies that apply to the

SoS, including guidelines for acquisition, termination,

and replacement of constituents [17].

The broader definition of an ADL as any technique

employed for expressing software architectures [27] al-

lows one to categorize them among formal, semi-formal,

and informal languages [3]. Formal languages are distin-

guished by a precise syntax and semantics, supporting

simulation and verification of architectural models [70].

Often, the precision and rigor that can be achieved with

formal models is essential for obtaining higher reliabil-

ity in software systems [29, 45]. Such languages have be-

come more accessible with the development of tailored

tools that hide their complexity from users [33]. Con-

versely, informal languages, such as box-and-lines no-

tations, have been widely employed for describing soft-

ware architectures despite their lack of precise syntax

and/or semantics. In this sense, informal notations of-

fer limited support for analysis and reuse. Semi-formal

languages can be seen as a compromise between formal

and informal notations, presenting a well-defined syn-

tax but lacking a complete semantics. Semi-formal lan-

guages, such as UML (Unified Modeling Language) [54]

and its extensions (e.g., SysML [55]), have been widely

used in industry [12] and also for the description of SoS

[19].

The architecture description of SoS must deal with

the intrinsic characteristics of such systems, in particu-

lar the independence of constituent systems, evolution-

ary development, and emergent behavior [51]. Nonethe-

less, traditional ADLs such as UML lack the means to

abstractly describe coalitions so that they can be dy-

namically created based on existing constituents and

targeted emergent behaviors [18]. In this scenario, a

novel ADL, named SosADL [56], has been developed to

overcome most of the limitations found in traditional

ADLs that limit their application for the description

of SoS architectures in formal terms. This language is

grounded on a novel process calculus of the family of

the π-Calculus for formally describing the architecture

of Software-intensive SoSs, named π-Calculus for SoS

[57].

The core concepts modeled with SosADL are the

ones of [56]: (i) system, to represent potential constituents;

(ii) mediator, to represent potential connectors among

constituents; and (iii) SoS, to represent a potential coali-

tion. More precisely, constituent systems are architec-

tural elements defined by intention (declaratively in

terms of abstract system types) and selected at run-

time (concretized). Mediators are architectural elements

defined by intention (declaratively in terms of abstract

mediator types) and created at run-time (concretized

by the SoS) to mediate the interaction between con-

stituent systems and create an emergent behavior. Sys-

tems-of-systems are architectural elements defined by

intention (declaratively in terms of abstract architec-

ture types and the policies/constraints to select and

bind concrete constituents within a coalition using the

mediators created by the SoS itself) and evolutionar-

ily created at run-time (concretized) to achieve the SoS

mission in an operational environment.

In this scenario, tool support is needed to inves-

tigate a broader spectrum of run-time scenarios that

could be uncertain or unknown at design time. This

situation characterizes a satisfiability problem (SAT) in

that we attempt to determine if there is any concrete

architecture that complies with a SosADL description.

As a NP-complete problem [13], all known algorithms

for SAT face state space explosion issue as the number

of variables exponentially increases in the worst-case

scenario.

3 The Ark Method for Architectural Synthesis

Architecture descriptions of the SoS can be used to sup-

port the synthesis of architectural configurations that

meet the requirements of a SoS. In particular, our ap-

proach seeks the use of architecture descriptions for

representing SoS from two abstraction levels: (i) an ab-

stract architecture, which provides a normative model

for the SoS that can be formed from abstract con-

stituent and mediators types; and (ii) a concrete archi-

tecture, which provides a descriptive model of a coali-

tion that exists at run-time. Following, we further elab-

orate on the characteristics of each abstraction level.

Abstract architectures describe constituent systems

and communication links supported by the SoS. Nielsen

et al. [51] refer to an abstract architecture as a concep-

tual description of an envisaged SoS. This description

comprises abstract types of systems, which are char-

acterized in terms of properties, interfaces, and con-

straints that must hold in the environment. Because
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actual constituent systems of the SoS are not neces-

sarily known at design time, the abstract architecture

focuses on the identification of key constituents that

support the SoS mission. Abstract types of mediators

are also specified at this abstraction level, character-

ized as communication links within the SoS and also

with the environment. Finally, the abstract architecture

also defines abstract types of coalitions in terms of poli-

cies that govern how constituents may interact within

the SoS. Therefore, the coalition specification dictates

which sorts of configurations can emerge at run-time,

such as a layered or client-server architecture.

In turn, concrete architectures explicitly define the

architecture configuration of a SoS in terms of known

constituents and communication links between them.

This can be accomplished at run-time by enabling to

deploy mediators on-the-fly based on specific needs of

the SoS or current constituent systems of the coalition.

Therefore, the concrete architecture is also referred to

as a run-time software architecture of the SoS. Alterna-

tively, Kenley et al. [34] refer to concrete architectures

as allocated architectures or candidate solutions that

potentially show varying levels of quality. In this sense,

multiple candidate solutions can be realized for the SoS

but they might show different emergent behaviors de-

pending on which types of mediator are in place.

3.1 Steps for Synthesizing Concrete Architectures

To analyze and/or simulate the emergent behavior of a

SoS, one must first instantiate the abstract architecture

into a concrete architecture that represents a potential

coalition. This activity should be repeated at run-time

whenever there is a change to the abstract architec-

ture, e.g., a change in the policies (also referred to as

bindings/interconnections) that govern the composition

between architectural elements of the SoS. Since these

modifications cannot be predicted at design time, tool

support must be provided for helping SoS architects in

confirming the impact of these changes against their

original intent. Hereinafter, we present the method Ark

supporting the synthesis of concrete architectures that

are correct-by-construction. This method is based on

two formal notations for expressing architectural mod-

els of the SoS: SosADL, an ADL tailored for the descrip-

tion of SoS architectures, and Alloy, a formal method

for systems specification.

Figure 1 summarizes the four steps of the method:

(i) describe the abstract architecture of the SoS which is

expressed in the SosADL notation; (ii) describe the ab-

stract architecture of the SoS in terms of a CSP which

is expressed in the Alloy notation; (iii) solve the CSP

using off-the-shelf constraint solvers available for Alloy;

and (iv) evaluate the outcome of the constraint solver

in regards to the original goals of the SoS abstract ar-

chitecture. Therefore, the method bridges the gap be-

tween abstract and concrete architectures by means of

the translation of the abstract architecture in terms of

a Constraint Satisfaction Problem (CSP), which can

be automatically processed by a constraint solver for

realizing concrete architectures that adhere to such an

abstract description. As a result, Ark can be repeated

whenever there is a change to the abstract architec-

ture so that one can validate if desired properties are

still preserved by a potential coalition. Otherwise, Ark

can detect when an abstract architecture evolves into a

state from which no desirable coalition exists. Follow-

ing, we describe the conceptual model for SoS architec-

tures implemented in Alloy.

3.2 A Conceptual Model for SoS Architectures in Alloy

To automatically resolve the problem of finding a con-

crete architecture that satisfies the abstract architec-

ture, we formalized the abstract architecture of the SoS

in terms of a Boolean Satisfiability Problem (SAT) and

adopted Alloy as the underlying constraint solver. In

particular, this language is used for expressing policies

as facts, i.e., constraints that always hold. The Alloy

Analyzer supports the generation of instances of model

invariants, the simulation of operations defined as part

of a model, and the verification of user-specified proper-

ties of a model. In addition, the Alloy Analyzer supports

the analysis of partial models and thereby can perform

incremental analysis of models as they are constructed.

Aiming to facilitate the representation of abstract

architectures of SoS in terms of constraints, we cre-

ated TASoS1 as an intermediary representation for Sos-

ADL models in Alloy. This representation, which is il-

lustrated in Fig. 2, captures the basic building blocks

of the SosADL notation in terms of signatures, i.e., in-

divisible atoms that behave as sets. Overall, TASoS

contains 20 signatures, 14 relations, and eight asser-

tions that can be used for checking optional proper-

ties about the abstract architecture. TASoS also defines

predicates and functions which describe operations over

these signatures. When executed in the Alloy Analyzer,

a predicate will instruct the solver to produce an in-

stance, i.e., a concrete architecture, that satisfies the

constraints framed by the predicate. In turn, a function

defines an expression whose evaluation yields a subset

of atoms and, thus, may be called in predicates, asser-

tions, and facts to improve modularity and readability

1The source code for TASoS is available at http://goo.gl/

5ZNgDQ
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Fig. 1: General model of Ark for SoS architectural synthesis [21]

of the model. TASoS is defined as a module that can

be referenced by other Alloy models, thus facilitating

its reuse.

Inspired by the SosADL language, TASoS provides

individual signatures for each abstract architecture ele-

ment in SosADL, namelly System, Mediator, and Sos.

These three signatures derive from the same parent sig-

nature that is named ArchitecturalElement. There-

fore, when we define the hasPort relation between their

parent signature and the Port signature, we are actu-

ally defining a relation that applies to all three child

signatures. The reasons for the selection of SosADL as

the basis for the creation of this metamodel are three-

fold: (i) the notation has explicit constructs for abstract

types of constituents, mediators, and SoS, including a

mathematical foundation [57] that enables to define dy-

namic connectivity in terms of constraints; (ii) the no-

tation supports the description of SoS abstract archi-

tectures from a dynamic as well as static viewpoint;

and (iii) the notation is supported by a tool that can

be extended to work with different modeling and im-

plementation languages, such as UML, Java, and C.

Following, the central elements of TASoS are detailed.

The main signature of TASoS isArchitecture, which

captures the abstract architecture of a SoS in terms

of potential elements (i.e., systems and mediators), ab-

stract interconnections between these elements, and their

configuration, which expresses a concrete architecture

of the SoS (i.e., Topology). Thereby, this signature is

defined in terms of three relations, namely: (i) contain,

a binary relation of type Architecture → (System +

Mediator) relating each architecture to elements of sys-

tem or mediator types that can participate in the coali-

tion; (ii) bindings, a binary relation of typeArchitecture

→ Unification mapping the interconnections between

systems and mediators that have been defined by the

abstract architecture; and (iii) unifiedAs, a binary re-

lation of type Architecture→ Topology describing dif-

ferent ways (i.e., candidate concrete architectures) in

which systems and mediators can be arranged together

to form a coalition.

The metamodel defines several facts, i.e., constraints,

about the SoS architecture that must hold in any given

concrete architecture, instructing the solver about de-

sirable and undesirable configurations. Listing 1 shows

an excerpt of the facts in which Architecture plays a

role. For instance, constraint #28 instructs the solver to

consider any two architectures to be equal if the set of

elements assigned to their topologies, which is returned

by calling the elems function over the unifiedAs rela-

tion, is the same for both architectures. Thereby, one

can further instruct the solver to only search for unique

architectures. Constraint #31 instructs the solver to

only find topologies in which all systems engage in at

least one interconnection with another element of the

architecture, hence discarding disconnected concrete ar-

chitectures as valid solutions. To guarantee that this

is the case, TASoS forces the set of all unifications in

which a system is either the recipient or the source of

an unification (which is returned by the participates-

InTopology function) to not be null. Constraint #32

instructs the solver to only take into account topolo-

gies that use all types of abstract interconnections. In

particular, the isUnifiedTo function is referenced in

this rule to obtain the elements that are linked by an

unification in the topology. Finally, constraint #34 en-

sures that for any given topology of an architecture,

each interface of a system (referred to as Gate) can
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ArchitecturalElement System

Mediator

Sos

Port

Gate

Duty

contain

unifiedAs[seq/Int]

Architecture

Topology

Unification

Connection

Outward Inward

dest

src

inTopology

hasConnection

path[Unification]

bindings

hasPort

contain

owner arch[Architecture]
Relay

relayCon[Connection]

Fig. 2: TASoS, an Alloy metamodel for SosADL. Dashed arrows represent an extend relation. While based on

SosADL, TASoS introduces a new architectural element (colored) for the definition of concrete configurations [21]

be related to exactly one interface of a mediator (re-

ferred to as Duty), which is returned by calling the

dutiesOfUnification function over Suni, i.e., the set

of unifications of a given port returned by the unifica-

tionsOfPort function.

The Topology is the signature in TASoS supporting

the description of concrete architectures. Atoms of this

signature have two relations, namely: (i) inTopology,

a relation in the form Topology → Unification which

contains the set of intentional bindings that can be real-

ized between abstract types of systems and mediators;

and (ii) path, a ternary relation of type Topology →
Unification → Unification which connects atoms of

unification in order to compose a network of systems

and mediators. Thereby, this signature is responsible

for merging the description of an abstract architecture

with a concrete architecture in that its first relation

lists abstract types of bindings that can be established

at run-time (which is taken from the abstract descrip-

tion) and its second relation forms a network that can

be created on top of these bindings (which results in

the concrete description). To complete the specifica-

tion of well-formed concrete architectures for an SoS,

TASoS defines the policies (i.e., constraints) govern-

ing the topology in terms of facts. Listing 2 shows an

excerpt of constraints that apply to topology. For in-

stance, constraint #29 instructs the solver to allow a

topology to be empty if, and only if, there is no system

in the coalition. Constraint #30 instructs the solver to

look for topologies in which all defined types of media-

tors are present. This is achieved by checking if the me-

diator is the recipient or the source of any unification in

the topology, which is returned by the owner function.

Finally, constraint #33 instructs the solver to only ac-

cept connected topologies by restricting which unifica-

tions can be associated by the path relation. Specifically,

two unifications can only be associated if they share the

same origin and/or destination with each other. To do

so, it calls the isUnifiedTo function over each unifi-

cation to verify which architectural elements they bind

together.

As an intermediary model for SosADL abstract ar-

chitectures expressed in terms of constraints, TASoS

can be further refined (i.e., instantiated) for represent-

ing the abstract architecture of a particular SoS. The

execution of TASoS in the constraint solver is expected

to produce one or more concrete architectures, i.e., so-

lutions, that satisfy these constraints. Therefore, if no

solution is found, we can state that no coalition satis-

fying the abstract architecture exists under the speci-

fied execution bound, i.e., scope. In this case, the ar-

chitect can either investigate if the scope is sufficiently

large to hold at least one solution of this problem or

if the abstract architecture is not suitable (i.e., if it

is over constrained). This metamodel can support both

investigations by means of assertions, i.e., optional con-

straints that can be verified. An assertion can check, for

instance, if non-empty instances or multiple mediators

are allowed for a coalition. If a given assertion does not

hold in the SoS, a counterexample depicting a concrete

architecture that violates the abstract architecture is

generated. This outcome can be useful for correcting

or refining the abstract architecture. Conversely, if no

counterexample is found, the architect can infer that
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Listing 1: Excerpt of constraints on architectures in

TASoS

1 //#28 Two a r c h i t e c t u r e s shou l d be equa l
i f they have the same s e t o f
t o p o l o g i e s

2 a l l a , a ’ : A r c h i t e c t u r e |
3 ( a . u n i f i e dA s ) . e lems=(a ’ . u n i f i e dA s ) .

e lems imp l i e s a=a ’
4 //#31 A l l s y s t ems tha t p a r t i c i p a t e i n an

a r c h i t e c t u r e must engage i n at l e a s t
one u n i f i c a t i o n i n a l l c and i d a t e

t o p o l o g i e s
5 a l l e : System , a : A r c h i t e c t u r e , t : Topology |

e i n a . c on t a i n
6 and t i n ( a . u n i f i e dA s ) . e lems imp l i e s
7 some p a r t i c i p a t e s I nT o p o l o g y [ e , t ]
8 //#32 A l l u n i f i c a t i o n s i n the s e t o f

b i n d i n g s must be used i n the topo l ogy
.

9 a l l u : U n i f i c a t i o n , a : A r c h i t e c t u r e , e :
System | u i n a . b i n d i n g s and

10 e i n a . c on t a i n and e i n i s U n i f i e dTo [ u ]
imp l i e s

11 a l l t : Topology | t i n ( a . u n i f i e dA s ) .
e lems imp l i e s

12 u i n path [ t ] . Un i f i c a t i o n
13 //#34 Connec t i on s o f the same gate can

on l y be u n i f i e d to c onn e c t i o n s o f the
same duty i n a g i v en A r c h i t e c t u r e .

14 a l l g : Gate , a : A r c h i t e c t u r e , t :
Topology |

15 l e t Suni=u n i f i c a t i o n sO f P o r t [ g , t ] |
16 g . ˜ hasPor t i n ( a . c on t a i n ) and t i n ( a .

u n i f i e dA s ) . e lems
17 imp l i e s one d u t i e sO f U n i f i c a t i o n [ Sun i ]

the assertion holds for that particular scope and in-

crease the analysis scope aiming to gain more confi-

dence about the architectural design. Thereby, checking

these assertions can provide concrete evidences about

the feasibility and soundness of the SoS.

4 Tool Support for Ark

To perform the steps recommended by Ark, architects

create at least three models of the SoS architecture.

First, architects manually create an abstract architec-

ture for the SoS under analysis in SosADL. Then, archi-

tects represent this architecture as a set of constraints,

creating an instance module of TASoS. If this resulting

representation is syntactically correct, architects can

analyze this model in external constraint solvers. Fi-

nally, architects have to translate the solution returned

by the constraint solver (i.e., concrete architectures)

back into a format that they can more easily analyze

and communicate with stakeholders. In this scenario,

Listing 2: Excerpt of constraints on topologies in TASoS

1 //#29 The r e l a t i o n s inTopo logy and path
must be empty i f no system
p a r t i c i p a t e s i n the c o a l i t i o n

2 a l l t : Topology , a : A r c h i t e c t u r e | t i n ( a
. u n i f i e dA s ) . e lems imp l i e s {{no t . path
} i f f {no a . c on t a i n & System }}

3 //#30 For a l l t o p o l o g i e s o f an
a r c h i t e c t u r e , a med ia to r engages i n
at l e a s t one u n i f i c a t i o n

4 a l l t : Topology , m: Med iator |
5 l e t Sun i=p a r t i c i p a t e s I nT o p o l o g y [m, t ] |

some Suni imp l i e s
6 m i n owner [ Sun i . s r c ] or m i n owner [

Sun i . de s t ]
7 //#33 The path o f a t opo l ogy connec t s

u n i f i c a t i o n s t ha t o r i g i n a t e or end i n
the same a r c h i t e c t u r a l e l ement

8 a l l t : Topology , a : A r c h i t e c t u r e | {some a
. c on t a i n } and

9 t i n ( a . u n i f i e dA s ) . e lems imp l i e s {
10 a l l u , v : U n i f i c a t i o n | u−>v i n t . path

imp l i e s
11 some i s U n i f i e dTo [ u ]&i s U n i f i e dTo [ v ]
12 }

these activities can be time consuming and prone to

error.

An automated process for applying Ark encompasses

two model transformations: first, an abstract architec-

ture must be translated into a CSP that extends TASoS;

secondly, solutions for this problem must be translated

back into SosADL as concrete architectures. Hence, we

devised a tailored software tool named SoSy that uses

constraint solving techniques under the hood. More pre-

cisely, SoSy implements two model transformations (il-

lustrated in Figure 3): (i) a Model-to-Text (M2T) trans-

formation from SosADL to TASoS, in which instance

modules can be dynamically created for abstract ar-

chitectures; and (ii) a Text-to-Model (T2M) transfor-

mation from the solution returned by the constraint

solver to SosADL, in which concrete instances found

by the tool are represented in SosADL. The first trans-

formation is implemented as an Xtend2 class named

SosADL2AlloyGenerator, whereas the second is imple-

mented as a Java method named Solution2SosADL-

Generator. Moreover, this tool is provided as an ex-

tension to SosADE3 (Architectural Framework for SoS

Design) [59], an integrated environment for the design,

validation, and simulation of SoS that supports SosADL

as the modeling notation.

Figure 4 illustrates the model-driven process imple-

mented by SoSy, which is inspired on the four steps

2Xtend, http://www.eclipse.org/xtend/
3SosADE tool, https://www-archware.irisa.fr/software/
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Fig. 3: Relationship between abstract and concrete architecture models in SosADL and TASoS [21]

required by Ark. This process is represented in SPEM

[53], an OMG standard for the specification of software

methods and processes. In particular, this figure de-

scribes the sequence in which tasks (i.e., work that has a

particular purpose) and activities (i.e., group of related

tasks) must be carried out by architects. The first activ-

ity in this process concerns the creation of an abstract

architecture for the SoS, which automatically triggers

the task for generating an instance of TASoS. In par-

allel to this task, the tool also generates a Java4 class

that when executed will call the Alloy Analyzer from

within the SosADL development environment for pro-

cessing the instance module. In addition, this class tem-

porarily stores data (namely, datatype functions) that

are not processed by the constraint solver but that are

needed for the reconstruction of the concrete architec-

ture. These tasks are followed by the manual execution

of the Java class. As a result, if any solution is returned

by the solver, it will be automatically translated into a

concrete architecture expressed in SosADL. Otherwise,

architects can decide to manually repeat this activity

with a different analysis scope or repeat the process for

a new abstract architecture, triggering the update of

the related artifacts in the project directory. The pro-

cess ends when the evaluation of a candidate concrete

architecture terminates with a valid concrete architec-

ture of this SoS.

5 Demonstration of Ark

The analysis performed by the Alloy Analyzer is based

on checking the validity of a property (i.e., a constraint).

4Java, http://www.java.com

To guarantee efficiency, the analysis (i.e., model check-

ing and model-finding) is completed under a execution

scope that constrains the investigated solution space,

thereby finite. The scope for the analysis must be care-

fully selected according to each problem at hand. Even a

small scope yields a sizable solution space (in the order

of 108 clauses) which is sufficiently large for discover-

ing problems in small instances of models [28]. In fact,

the analysis performed by the tool is grounded on the

premise that even small instances of a model can illus-

trate flaws, which arise from incorrectly handling types

[30]. Furthermore, the power of this analysis is greater

than one that could be achieved by specifying the prob-

lem in Java, which would lack support for generating

arbitrary samples, performing exhaustive checking on

test cases, and visualizing the results.

Following, we describe the URM system (Section

5.1), which has been selected as an illustrative exam-

ple to demonstrate the Ark method. Then, Sections 5.2

through 5.5 explain step-by-step how one can use this

method for checking the feasibility of an abstract ar-

chitecture and producing a correct concrete architec-

ture for the URM. In Section 5.6, we report the per-

formance of this method after running the constraint

solver over several analyses scope and in Section 5.7 we

discuss threats to the validity of this quasi-experiment.

Finally, in Section 5.8, we discuss advantages, limita-

tions, and lessons learned of our method and tool.

5.1 Urban River Monitoring System-of-System

Emergency management and response is a relevant ap-

plication domain for complex SoS [51]. The design of

such SoS often requires the coordination among hetero-
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Fig. 4: Workflow of a model-driven process for the synthesis of concrete architectures in SosADE [21]

geneous constituent systems (e.g., surveillance, weather

forecast, and river monitoring systems) and protocols

(e.g., traffic management, first aid, and rescue teams).

An Urban River Monitoring SoS plays a key role in

obtaining precise, real-time data that supports author-

ities’ timely and organized response, specially in case

of flash floods. To achieve this goal, data provided by

independent, heterogeneous sensors (e.g., water level,

current, and pollutant sensors) are combined by the

SoS to monitor the flood risk. Ultimately, the effective-

ness of such SoS has also a relevant impact on costs

incurred by flood events, which can be greatly dimin-

ished by sending out warnings in advance [62].

To detect an imminent flood risk, data collected

from stationary sensors are forwarded to a gateway sta-

tion, which has dedicated resources for processing, in-

tegrating, and publishing this information. Specifically,

the gateway station can transform raw data collected by

sensors for determining the relative height reached by
the water level and publish this information to the au-

thorities. If a gateway station cannot be reached by the

individual communication capabilities of a sensor, the

sensor will forward these data to its neighboring motes

until the gateway station is reached. Since this system

operates in a highly dynamic environment, its archi-

tectural configuration must be continuously changed

for ensuring: (i) efficiency in the use of the available

resources, mainly in terms of power consumption and

communication; (ii) resilience in case of temporary un-

availability of motes during operation; (iii) accuracy in

flood detection; and (iv) autonomy in adapting to dy-

namic environmental conditions while minimizing man-

ual intervention.

When compared against the five characteristics pre-

sented by SoS [43], the Urban River Monitoring meets

all five criteria. Each sensor mote operates in a way that

is independent of other sensor motes, since they belong

to different city councils and could have different mis-

sions, e.g. pollution control or water supply. Each one

has its own management strategy for transmission vs.

energy consumption and acts under the authority of the

different city councils. New sensor motes may be in-

stalled by the different councils as well as existing ones

may be changed or deactivated without any control

from the system. Finally, the sensor motes, coordinated

by the gateway, make emerge the behavior of flood de-

tection. This behavior is collectively achieved by the

distributed, independent sensors working together with

the gateway station rather than being provided by any

of them working in isolation. Thus, as a collaborative

SoS that has no central authority coordinating the con-

stituents operation to achieve the SoS goal [43], the

URM must be able to dynamically assemble new coali-

tions from the sensor motes that voluntarily decide to

forward data to the gateway station.

5.2 Step 1: Describe the URM Abstract Architecture

The first step of the method concerns the description of

an abstract architecture for the SoS under analysis. To

perform this task, the architect uses the SosADE tool

to create SosADL models for the URM5. In particular,

the architect should begin by the definition of abstract

types for the architectural elements that form the URM

SoS, i.e., sensor, mediator, and gateway. However, the

abstract architecture does not identify the actual ele-

ments that participate in the coalition since these are

not necessarily known at design time. These abstract

types are defined within a SosADL library, named urm-

Library, which comprises two abstract types of sys-

tems, namely sensor and gateway, and an abstract type

of mediator, named transmitter, which represents the

interconnections supporting their collaboration. Follow-

ing, the description of these abstract types is further

elaborated.

5The complete source code for the URM models referenced
in Section 5 are available at http://goo.gl/5ZNgDQ.
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A gateway is an abstract type of system that re-

quests observations from sensors and publishes collected

data. The declaration of this system, shown in Listing

3, encompasses one gate named alerting that has three

connections: (i) request receives queries from other sys-

tems about current condition of the river; (ii) measure

handles observations returned by other systems; and

(iii) alert sends out warning messages when an internal

parameter of the gateway is violated by environmental

conditions. All connections have an associated direction

(inward or outward) and data type, which is limited to

an abstract integer type named t for the sake of simplic-

ity. For the behavior declaration, the architect specifies

a sequence in which the system is expected to interact

with the environment. The main behavior of the gate-

way is depicted in lines 18-24. It begins by receiving

an observation from another systems via its measure

connection. Then, the gateway evaluates if this obser-

vation surpasses the local depth threshold (line 22). If

so, it publishes a warning message via its alert connec-

tion of the same gate. These actions can be repeated

indefinitely.

Listing 3: Excerpt of abstract gateway type for the

URM in SosADL

3 system gateway ( ) i s {
4 gate a l e r t i n g i s {
5 connect ion measure i s i n { t }
6 connect ion r e q u e s t i s i n { t }
7 connect ion a l e r t i s out { t }
8 } guarantee {
9 p ro t o co l a l e r t i n g p a c t i s {

10 r epeat {
11 v i a r e q u e s t r e c e i v e any
12 r epeat {
13 v i a measure r e c e i v e any
14 r epeat { anya c t i on }
15 }
16 v i a a l e r t send any
17 } } }
18 behav i o r main i s {
19 va lue d ep t h t h r e s h o l d : t = 3
20 r epeat {
21 v i a a l e r t i n g : : measure r e c e i v e v
22 i f ( v > d ep t h t h r e s h o l d ) then {
23 v i a a l e r t i n g : : a l e r t send v
24 } } } }

A sensor is also an abstract type of system that

collects observations from the environment. The decla-

ration of this system, shown in Listing 4, encompasses

two gates: (i) measuring, that comprises one environ-

ment connection named sense that reads observations

and one connection named measure that handles these

observations over to a neighboring system; and (ii) pass-

ing, that has two connections pass and measure for

just handling observations over to other systems. These

gates declarations are complemented by a guarantee

protocol, which describes assumptions (i.e., properties)

that must be fulfilled by the environment. For instance,

the measuring gate guarantees that while the sensor is

operational (i.e., if all assumptions that a sensor makes

about the environment hold), it will continually receive

observations from the environment via its connection

sense and transmit these data via its connection mea-

sure. The main behavior of this system is declared in

lines 45-53. The sequence of interactions is given by a

choice between collecting an observation via its sense

connection of the measurement gate and sending it to

one of its neighboring systems via the measure connec-

tion of the same gate, or receiving an observation via

its pass connection of the passing gate and forwarding

it to one of its neighboring systems via the measure

connection of the same gate.

Listing 4: Excerpt of abstract sensor type for URM in

SosADL

25 system s e n s o r ( ) i s {
26 gate measur ing i s {
27 environment connect ion s en s e i s i n {

t }
28 connect ion measure i s out { t }
29 } guarantee {
30 p ro t o co l measu r i ngpac t i s {
31 r epeat {
32 v i a s en s e r e c e i v e o b s e r v a t i o n
33 r epeat { anya c t i on }
34 v i a measure send o b s e r v a t i o n
35 }}}
36 gate pa s s i n g i s {
37 connect ion pas s i s i n { t }
38 connect ion measure i s out { t }
39 } guarantee {
40 p ro t o co l pa s s i n g p a c t i s {
41 r epeat {
42 v i a pas s r e c e i v e data
43 v i a measure send data
44 }}}
45 behav i o r main i s {
46 r epeat {
47 choose {
48 v i a measur ing : : s e n s e r e c e i v e

o b s e r v a t i o n
49 v i a measur ing : : measure send

o b s e r v a t i o n
50 } or {
51 v i a pa s s i n g : : pa s s r e c e i v e data
52 v i a pa s s i n g : : measure send data
53 }}}}

A transmitter is an abstract type of mediator that

forwards observations from sensors to a gateway, either

directly or by means of other sensors. The declaration

of this mediator, shown in Listing 5, comprises one

duty, named transmitting. This duty has two connec-

tions named fromSensors and toGateway that handle

the transmission of observations from sensors to a gate-

way. A duty can also declare assumptions that must
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be fulfilled by constituents in the environment. In this

case, this duty requires that the distance between the

source and target of this communication link do not

exceed a predefined range threshold. If this property

holds, then the abstract declaration of mediator can

guarantee that the protocol declared in transmitting-

pact is also fulfilled. This protocol defines that all ob-

servations received via the fromSensors connection are

forwarded via its toGateway connection. Then, trans-

mitting behavior of this mediator states that this action

is continuously repeated, with no processing in between.

Listing 5: Excerpt of abstract mediator type for the

URM in SosADL

54 mediator t r a n sm i t t e r ( ) i s {
55 duty t r a n sm i t t i n g i s {
56 connect ion f r omSenso r s i s i n { t }
57 connect ion toGateway i s out { t }
58 } assume {
59 p rope r t y i n r a ng e i s {
60 r epeat { anya c t i on }
61 }
62 } guarantee {
63 p ro t o co l t r a n sm i t t i n g p a c t i s {
64 r epeat {
65 v i a f r omSenso r s r e c e i v e measure
66 v i a toGateway send measure
67 }}}
68 behav i o r t r a n sm i t t i n g i s {
69 r epeat {
70 v i a t r a n sm i t t i n g : : f r omSenso r s

r e c e i v e measure
71 v i a t r a n sm i t t i n g : : toGateway

send measure
72 }}}

Without further directions, a concrete architecture

for the URM can potentially be any combination of
elements defined in this library. Therefore, the URM

description cannot be considered complete without the

specification of an abstract coalition type, which identi-

fies a family of concrete architectures that are desirable

at run-time. For instance, one can specify an abstract

coalition type in which constituent systems must be lo-

cated within 5 meters of each other and/or that have

replied to the SoS within the past 5 minutes in order to

attain to the goals of the SoS, such as promote rational

use of resources or guarantee overall performance. In

either case, the formal specification of such a coalition

type supports evaluating the correctness of potential

concrete architectures in regards to the original intent

of the SoS architect.

Listing 6 shows an excerpt of the abstract archi-

tecture named simple for the URM. The serving gate

of this architecture enables the communication of the

Flood Monitoring coalition with other systems and the

environment. This gate declares two connections named

request and alert that handles external queries about

the conditions of the river and publish warning mes-

sages in case one of the sensors has identified a flood

event. The behavior of an architecture is different from

the one of systems and mediators in that it contains:

a compose declaration, which states constituents that

are allowed to participate in the coalition (lines 10-14);

and, a binding declaration, which defines policies for or-

ganizing systems and mediators into a cohesive whole

(lines 14-28). The simple type of this coalition is com-

posed of any number of sensors and transmitters but

has only one gateway, named gateway1. Therefore, any

instance of this abstract coalition type may only exer-

cise the unifications defined in the bindings declaration.

Listing 6: Excerpt of abstract coalition type for the

URM in SosADL

1 with u rmL ib ra r y
2 sos F loodMon i to r i ng i s {
3 a r c h i t e c t u r e s imp l e ( ) i s {
4 gate s e r v i n g i s {
5 connect ion r e q u e s t i s i n { t }
6 connect ion a l e r t i s out { t }
7 } guarantee {
8 . . .
9 }

10 behav i o r main i s compose {
11 s e n s o r s i s sequence { s e n s o r }
12 t r a n sm i t t e r s i s sequence { t r a n sm i t t e r }
13 gateway1 i s gateway
14 } b ind i ng {
15 f o r a l l { t i n t r a n sm i t t e r s suchthat
16 f o r a l l { s1 i n s e n s o r s suchthat
17 f o r a l l { s2 i n s e n s o r s suchthat (
18 // t r e c e i v e s from s
19 ( un i f y one { s1 : : measur ing : : measure}

to
20 one { t : : t r a n sm i t t i n g : : f r omSenso r s }
21 or u n i f y one { s1 : : p a s s i n g : : measure}

to
22 one { t : : t r a n sm i t t i n g : : f r omSenso r s } )
23 and // and sends to s or g
24 ( un i f y one { t : : t r a n sm i t t i n g : :

toGateway} to
25 one {gateway1 : : a l e r t i n g : : measure}
26 xor u n i f y one { t : : t r a n sm i t t i n g : :

toGateway} to
27 one { s2 : : p a s s i n g : : pa s s } )
28 ) } } }// c l o s e f o r a l l
29 } } }

5.3 Step 2: Describe URM as a Constraint Satisfaction

Problem

The second step of Ark requires the transformation of

the URM abstract architecture described in SosADL

into a constraint satisfaction problem described in Al-

loy. To accomplish this task, the abstract signatures

in TASoS must be extended with the elements defined

by the URM abstract architecture. Figure 5 shows how
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TASoS is extended to represent the URM abstract ar-

chitecture: (a) shows that gateway (Listing 3) and sen-

sor (Listing 4) extend the System signature; (b) shows

that transmitter (Listing 5) extends the Mediator sig-

nature; and (c) shows that flood monitoring and simple

(Listing 6) extend the Sos and Architecture signatures,

respectively. Listing 7 shows an excerpt of the generated

Alloy model for the simple coalition abstract type.

Because Alloy is a declarative language, it is impor-

tant to guarantee that signatures naming are unique.

SoSy accomplishes that by composing the names of

the elements. Take for instance the alert connection of

the serving gate in the simple architecture in Listing

6 (line 6). This connection is mapped in Listing 7 as

simple serving alert (line 7). The compose declara-

tion of the abstract architecture in Listing 6 (lines 11-

13) is mapped in Listing 7 by the constraints in lines

11-13. Accordingly, the bindings declaration is mapped

by the constraints in lines 16-31. In SosADE, the trans-

formation of SosADL models into Alloy can be auto-

matically performed by the SoSy tool, which is run-

ning in the background. Therefore, instance modules of

TASoS are dynamically created by the environment as

the architect creates SosADL models.

5.4 Step 3: Solve the Constraint Satisfaction Problem

The third step of Ark comprises the automated anal-

ysis of the generated instance model by the constraint

solver. In particular, the instance module instructs the

solver to find for a concrete architecture that satisfies
the scenario described in Listing 8 (lines 38-44), i.e., it

is a coalition composed of at least one element of the

sensor type, one element of the transmitter type, and

one element of the gateway type. To perform this task,

the architect can manually execute the generated Java

class using the default analysis scope defined for the

instance module in line 45.

Listing 8: Scenario instance module

38 f a c t i n s t a n c eO f s imp l e {
39 some a : s imp l e {
40 s e n s o r s i n a . c on t a i n
41 t r a n sm i t t e r s i n a . c on t a i n
42 gateway1 i n a . c on t a i n
43 }
44 }
45 run case0 {some s e n s o r } f o r 3 but 1

A r c h i t e c t u r e , 4 System , 4 Mediator , 1
Sos , 7 Port , 16 Connect ion , 16

Un i f i c a t i o n , 1 Re lay

5.5 Step 4: Evaluate Candidate Concrete

Architectures for the URM

If the solver finds a solution for the previous problem

within this analyzed scope, the architect can automat-

ically obtain the corresponding SosADL models, such

as the one presented in Listing 9 and illustrated in Fig-

ure 6. Afterwards, the architect can proceed with the

evaluation of this concrete architecture in regards to

one’s original intent when designing the abstract coali-

tion type in the first place. Moreover, one can use gen-

erated concrete architectures as input for simulations of

the SoS. As a result of this activity, the architect may

decide to modify the policies defined in the abstract ar-

chitecture to prevent the formation of undesirable coali-

tions, to define mechanisms (i.e., mediators) that sup-

port new interactions between constituents and/or with

the environment, or accept this abstract architecture,

hence proceeding to the next stages in the SoS devel-

opment process.

5.6 Performance of the Method

We can evaluate the performance of Ark in terms of

elapsed time for the execution of steps 2 and 3, which

comprise the use of a constraint solver to find a well-

formed concrete architecture for the Urban River Mon-

itoring. Nonetheless, the outcome of this evaluation de-

pends on a careful selection of the analysis scope, which

must be sufficiently large to hold at least one concrete

architecture of the SoS yet small enough so as not to

cause state explosion. Aiming to understand the role

played by the selected analysis scope in the performance

of Ark, we performed a quasi-experiment [69].

To collect data for this evaluation, we instrumented

the generated Java class to repeatedly run the con-

straint solver with a different scope at each time. In

particular, we tested all possible combinations within

the interval defined in Table 1, totaling 400 unique

test cases. It is important to highlight that the scope

assigned to signature ArchitecturalElement actually

covers all elements of this subtype, including System,

Sos, and Mediator.

Table 1: Boundary for analysis scope

Signature Min Max
Architectural Element 3 7
Port 4 8
Connection 8 11
Unification 8 11



Ark: a Constraint-based Method for Architectural Synthesis of Smart Systems 15

System

hasPortGateway

hasConnection

Gateway_alerting

Gateway_alerting_measure

Gate

Inward

Outward

Gateway_alerting_request

Gateway_alerting_alert

hasConnection

hasConnection

hasPort

hasPort

Sensor
hasConnection

Sensor_measuring Sensor_measuring_sense

Sensor_measuring_measure

Sensor_passing_pass

Sensor_passing_measure

Sensor_passing

hasConnection

hasConnection

hasConnection

owner

owner

owner

owner

owner

owner

owner

(a) Abstract system types

Mediator

hasPort
Transmitter

hasConnection

Transmitter_transmitting

Transmitter_transmitting_fromSensors

Duty

Inward

OutwardTransmitter_transmitting_toGatewayhasConnection

owner

owner

(b) Abstract mediator type

Sos

hasPort
FloodMonitoring

hasConnection
Simple_serving

Simple_serving_request

Gate Inward

Outward

Simple_serving_alerthasConnection

Simple

Architecture

owner

owner

(c) Abstract coalition type
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extracted from the SosADL description
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Listing 7: Architecture instance module of TASoS for the URM

1 open t a s o s
2 open u t i l / o r d e r i n g [ t a s o s / A r c h i t e c t u r e ] as A0
3 open u rmL ib ra r y
4 /∗∗ A r c h i t e c t u r e ( s ) D e c l a r a t i o n ( s ) ∗/
5 s i g F loodMon i to r i ng extends Sos {}
6 . . .
7 s i g s i m p l e s e r v i n g a l e r t extends Outward{}
8 −− c o n s t r a i n t s about a r c h i t e c t u r a l e l ement s
9 . . .

10 −− c o n s t r a i n t s about e l ement s i n c o a l i t i o n s
11 s i g s e n s o r s extends s e n s o r {}
12 s i g t r a n sm i t t e r s extends t r a n sm i t t e r {}
13 one s i g gateway1 extends gateway {}
14 −− d e f i n i t i o n o f a b s t r a c t u n i f i c a t i o n s i n a r c h i t e c t u r e s
15 s i g s imp l e extends A r c h i t e c t u r e {}{
16 a l l t : t r a n sm i t t e r s |
17 a l l s1 : s e n s o r s |
18 a l l s2 : s e n s o r s |
19 ( (
20 u n i f y [ s e n s o r mea su r i n g mea su r e&( s1 . ˜owner ) , t r a n sm i t t e r t r a n sm i t t i n g f r omS e n s o r s&( t . ˜

owner ) ] and //u1
21 u n i f y [ t r a n sm i t t e r t r a n sm i t t i n g t oG a t ew a y&( t . ˜owner ) , g a t ewa y a l e r t i n g mea s u r e&(

gateway1 . ˜owner ) ] //u3
22 ) or (
23 u n i f y [ s e n s o r mea su r i n g mea su r e&( s1 . ˜owner ) , t r a n sm i t t e r t r a n sm i t t i n g f r omS e n s o r s&( t . ˜

owner ) ] and //u1
24 u n i f y [ t r a n sm i t t e r t r a n sm i t t i n g t oG a t ew a y&( t . ˜owner ) , s e n s o r p a s s i n g p a s s&( s2 . ˜owner ) ]

//u4
25 ) or (
26 u n i f y [ s e n s o r p a s s i n g mea s u r e&( s1 . ˜owner ) , t r a n sm i t t e r t r a n sm i t t i n g f r omS e n s o r s&( t . ˜

owner ) ] and //u2
27 u n i f y [ t r a n sm i t t e r t r a n sm i t t i n g t oG a t ew a y&( t . ˜owner ) , g a t ewa y a l e r t i n g mea s u r e&(

gateway1 . ˜owner ) ] //u3
28 ) or (
29 u n i f y [ s e n s o r p a s s i n g mea s u r e&( s1 . ˜owner ) , t r a n sm i t t e r t r a n sm i t t i n g f r omS e n s o r s&( t . ˜

owner ) ] and //u2
30 u n i f y [ t r a n sm i t t e r t r a n sm i t t i n g t oG a t ew a y&( t . ˜owner ) , s e n s o r p a s s i n g p a s s&( s2 . ˜owner ) ]

//u4
31 ) )
32 }

We take into account the following aspects in each

test case: (i) analysis scope, given by the quantity of

elements assigned to each signature in the execution of

the Alloy model for the abstract architecture; (ii) solver

running time, given by the running time of the con-

straint solver; and (iii) satisfiability of the abstract ar-

chitecture, which can be considered as satisfiable or un-

satisfiable if the analysis scope is too small. For the sake

of completeness, we also collected the running time of

the Solution2SosADLGenerator when the solver pro-

duced a concrete architecture for the problem.

All test cases were executed sequentially in a ma-

chine macOS High Sierra v.10.13.6, with 16GB RAM,

and Intel Core i7. All 400 test cases were successful,

yielding a solution for the problem under the prede-

fined time limit of five minutes. Table 2 shows descrip-

tive statistics for this experiment. The running time of

the constraint solver shows great variation between test

cases even though none of them has taken longer than 5

seconds to terminate. Overall, the transformation back

from the solver solution into SosADL is efficient, being

concluded under 1 second.

Table 2: Descriptive statistics of dependent variables

Solver Transformation
Quantity 400 400
Min (ms) 624 14
Max (ms) 4793 49
Mean (ms) 2008 19
Median (ms) 1915 17
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Fig. 6: A concrete architecture of the URM in SosADL

Listing 9: Excerpt of a concrete architecture for the

URM that is compliant with the abstract coalition type

1 with u rm l i b r a r y
2 sos F loodMon i to r i ng0 i s {
3 a r c h i t e c t u r e s imp l e0 ( ) i s {
4 gate s e r v i n g 0 i s {
5 connect ion r e qu e s t 0 i s i n {RangeType0}
6 connect ion a l e r t 0 i s out{RangeType0}
7 } guarantee {
8 . . .
9 }

10 behav i o r main i s compose {
11 gateway10 i s gateway10
12 gateway0 i s gateway0
13 t r a n sm i t t e r s 0 i s t r a n sm i t t e r s 0
14 } b ind i ng {
15 un i f y
16 one{ t r a n sm i t t e r s 0 : : t r a n sm i t t i n g 0 : :

togateway0 } to
17 one{gateway0 : : a l e r t i n g 0 : : r e qu e s t 0 }
18 and
19 un i f y
20 one{gateway10 : : a l e r t i n g 1 : : a l e r t 1 } to
21 one{ t r a n sm i t t e r s 0 : : t r a n sm i t t i n g 0 : :

f r omsen so r s 0 }
22 }
23 }}

5.7 Threats to Validity

Four levels of validity threats were identified for this

quasi-experiment, which are discussed in detail.

Internal validity is an inherent risk of this quasi-

experiment since treatments are not assigned to sub-

jects and objects by chance. Furthermore, there is only

one object and one subject in this experiment due to

stage of development of the tool set (SosADE) and lack

of subjects with required skills in SosADL and Alloy.

Still, this risk is ameliorated by focusing the evalua-

tion on the performance of activities automated by the

method, making the role played by the subject not sig-

nificant in the outcome of this experiment.

External Validity is also a concern for this exper-

iment since its outcome reflects only one object case.

This risk is mitigated by selecting as object a system

that has the fundamental characteristics of an SoS, as

previously discussed. Nonetheless, it is possible to ex-

pand this experiment aiming to compare the perfor-

mance of different constraint solvers and/or coalition

types.

Construct validity is related to the threat that mea-

surements are not appropriate for selected entities. To

mitigate this threat, we defined several combinations of

the analysis scope that do not depend on context.

Conclusion Validity can be also a threat because

we have set a minimum and top analysis scope for our

experiment, hence not taking into account test cases

that would yield longer running times and would not

terminate as they cause the state explosion problem.

Since our approach purposefully seeks for the smallest

solution (i.e., concrete architecture) within the analysis
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scope, we conclude that a larger scope would not neces-

sarily bring new information to the SoS analysis. There-

fore, we focus our investigation on the lower boundary

in our analysis scope provided that we selected a fea-

sible object case for which the solver can produce a

solution. We have detailed the protocol and materials

used in this experiment aiming to further mitigate this

threat.

5.8 Discussion

The translation of abstract architectures into a con-

straint satisfaction problem is not trivial, specially since

this task requires one to be familiar with declarative

programming paradigm. The tool support provided with

Ark enables one to automatically obtain these Alloy

models from a SosADL description and also to read the

Alloy solution back as a SosADL model, hence conceal-

ing the use of a constraint solving tool in the method.

Therefore, Ark enables one to use this formal method

in the design of the SoS architectures without the ad-

ditional burden that follows mastering a new notation.

In this scenario, the purpose of our case study has

been twofold: (i) to demonstrate the method Ark for the

synthesis of SoS concrete architectures, and (ii) to serve

as a guide for practitioners and researchers who want

to apply SosADL in the design of smart systems. The

expected outcome of the method is a minimal concrete

architecture that satisfies the abstract architecture de-

scription. Therefore, if this is not accomplished, one can

either investigate if the constraints that govern the ab-

stract architecture are correct or if the analysis scope

is sufficient to cover at least one solution. Because the

Alloy Analyzer will look for the minimal concrete archi-

tecture within such an analysis scope, we can work with

a smaller instance of the concrete architecture to val-

idate the suitability of the constraints that have been

defined to govern the interactions within a coalition,

which can also be more efficient since the constraint

solver will perform an exhaustive search.

In practice, however, there can be multiple (e.g.,

dozens or hundreds) of elements in a coalition such as

the one in our case study. Nonetheless, the interactions

between these elements would still be governed by the

same constraints. By focusing on the minimal concrete

architecture of a SoS, we can more easily detect errs

within the specification of these interactions. For in-

stance, we can investigate if undesirable interactions are

also feasible from the abstract architecture description

so that we can refine our model to prevent these inter-

actions at run-time. In this scenario, we can investigate

complementary approaches for Ark to animate concrete

architectures, hence enabling to simulate and/or com-

pare emergent behaviors that can be expected from dif-

ferent coalitions at run-time. To do so, additional mech-

anisms are needed to scale out these minimal concrete

architectures to represent real systems.

6 Related Work

Due to SoS evolutionary development, it is important

to guarantee that changes to the abstract architecture

are performed within a predefined time frame, specially

given that SoS can perform safety-critical missions. There-

fore, we presented in this article a constraint-based method

to automatically determine the feasibility of an abstract

architecture expressed with SosADL. The main advan-

tages of our method can be summarized as follows: (i) it

formally defines the rules governing the formation of

coalitions at run-time; (ii) it limits the need for human

intervention in the verification of such abstract architec-

tures; and (iii) it automatically presents the output of

a constraint solver as a concrete architecture expressed

in SosADL, which can be more easily understood by

SoS architects.

In this scenario, Ark can be compared to works that

use constraint programming for modeling dynamic soft-

ware systems. For instance, Sawyer et. al [64] transform

a goal model that captures the variability in context de-

mands (e.g. environment conditions and quality of ser-

vice) in terms of a constraint satisfaction problem that

can be automatically analyzed by a tool. Even though

their approach is closer to requirements modeling than

abstract architectures, one could further explore the re-

lation that exists between the elements that have been

selected to compose an abstract architecture and the

goals that the SoS is able to accomplish, as discussed

by Silva et. al [65]. Kogekar et. al [37] presents an ap-

proach to support the reconfiguration of explicit models

of a system by formalizing the relationship between sub-

sequent configurations in terms of constraints. In this

respect, their approach is closer to the task of reconfig-

uring concrete architectures of the SoS, supporting the

investigation of subsequent stages of SoS development

that do not require changes to the abstract architecture.

Given the complex nature of designing autonomous sys-

tems, Nafz et. al [48] introduce a design guideline for

modeling the behavior of agent-based systems that is

expressed in KodKod [66], an alternative to the Alloy

Analyzer that accepts a subset of the Alloy language.

Their approach instructs the solver to look for a recon-

figuration of the system when elements of the solution

have already been fixed by the problem. However, their

formalization lacks some of the architectural elements
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that would be needed to represent SoS concrete archi-

tectures in terms of ADLs.

We can also compare our work to research on model

checking for software architectures [70]. Heyman et. al

[23] propose a metamodel of software architectures in

Alloy, focusing on security aspects of these software ar-

chitectures, such as integrity issues, availability issues,

and timing-related issues. The authors introduce an Al-

loy metamodel of software architectures that cover a

subset of UML constructs, including signatures for com-

ponents, connectors, and interfaces. Our metamodel is

based on a novel notation for the description of SoS

architectures that supports the definition of intercon-

nections (i.e., unifications) in terms of constraints and

the composition of systems and mediators within an

architecture, offering additional elements for the de-

scription of complex models for smart systems architec-

tures. In contrast, the Alloy model proposed by Kezniki

et al. [35] is focused on the synthesis of connectors,

which can be determined from the components and

the communication patterns that are defined for the

architecture. The outcome of their method is a connec-

tor instance configuration that establishes how these

components are composed together in the architecture.

Their approach takes into account non-functional prop-

erties, which describe structured/enumerated features,

and roles for these connectors. In contrast, our method

focuses on bridging the gap between abstract and con-

crete architectures by investigating topologies that can

be created from constraints defined over the intercon-

nections between constituents and mediators.

There are also other initiatives for designing and an-

alyzing SoS based on ADLs, such as DANSE6 (Design-

ing for Adaptability and evolutioN in System of systems

Engineering) and COMPASS7 (Comprehensive Mod-

elling for Advanced Systems of Systems). DANSE em-

ploys SysML to the description of executable architec-

tures that can be analyzed against interface contracts.

This approach is aimed at supporting the generation of

new architectures as well as generation of subsequent

ones by means of transformation steps between evolu-

tion. On the other hand, COMPASS develops a formal

approach and applies CML for enriching the specifica-

tion of systems and interfaces with contracts. One dis-

advantage of the latter is that an automatic transforma-

tion of SysML into CML can produce large, unreadable

descriptions.

Kenley et. al [34] define a process for synthesizing

SoS architectures based on three different models of the

SoS, namely: a functional architecture, defining a se-

quence for sequentially executing actions that allow to

6DANSE, www.danse-ip.eu
7COMPASS, www.compass-research.eu

accomplish a mission; a physical architecture, defining

a set of physical capabilities (e.g., sensors, databases,

and communication links); and, an allocated architec-

ture, which assigns functional capabilities to physical

components. In this scenario, abstract architectures are

related to the objectives of functional and physical ar-

chitectures whilst an allocated architecture is closer to

concrete architectures. A dynamics mode is used in

their work to express the dynamic behavior of allo-

cated architectures as input to an executable model

implemented in Discrete Agent Framework (DAF)[47],

which is based on MATLAB. The task of creating al-

located architectures is delegated to a model builder

developed in DAF that replaces explicit definitions of

arrangements and interconnections by a physical net-

work, defining available point-to-point links, and an

agent data path, selecting constituents that can be con-

nected. Assumptions and the link allocation algorithm

are employed to tailor architectures according to archi-

tects preferences, e.g., by choosing faster physical links

instead of shortest path. Then, different techniques can

be used, including UML activity diagrams for model-

ing the dynamics model and transforming then in Petri

nets to create an executable model. In this regard, the

main difference with our work is that SoSy, built-in in

the SosADE development environment for SosADL, fo-

cuses on bridging the gap between abstract and con-

crete architectures, raising the abstraction level with

which architects can design coalitions. Therefore, addi-

tional work is needed in order to support the simulation

of SoS concrete architectures expressed in SosADL as

it is proposed by Graciano Neto et. al [50].

Our work can also be compared with approaches

that use formal architectural models in the description

of SoS. Baldwin et. al [2] use set theory for mathe-

matically representing SoS characteristics by means of

systems, goals, and actions. Their approach models: (i)

autonomy, as the cardinality of the set of actions that

each system contributes for achieving the SoS goals; (ii)

belonging, as the ratio between actions that a system

contributes for the SoS goal and its autonomy (e.g.,

systems can only participate in the SoS if their be-

longing is greater than a threshold, which is inversely

proportional to their contributed value); and (iii) dy-

namic connectivity, which is enabled when two systems

share at least one connector and disabled when any sys-

tem contribution stand below their belonging thresh-

old. Using agent-based modeling, they simulated if it

is possible to dynamically create coalitions given con-

stituents’ autonomy, belonging, and connectivity prop-

erties. In comparison to our approach, their model still

lacks abstractions for the description of abstract types
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and coalitions, which would enable to specify correct-

ness properties about interconnections.

Khlif et. al [36] focus on the decomposition and re-

finement of an SoS architecture expressed in SySML. In

particular, their approach does not cover the topology

of the architecture, i.e., how constituents and media-

tors are connected together, and the modifications that

could be applied to the software architecture. In com-

parison, Ark is based on a novel formal language, Sos-

ADL, that is semantically and syntactically well-defined

for expressing SoS. Finally, empirical evidence for cost-

benefit of a new method is needed for its dissemination

in industry [44]. Even though we have demonstrated the

potential of our method in an illustrative scenario of ur-

ban river monitoring, additional cases are needed. The

existence of tool support for our method is expected

to ameliorate this issue, since it automatically creates

models that are required by Ark, thereby reducing the

investment for applying this method in practice.

7 Conclusions

The evolutionary development of SoSs requires software

architectures that can support changes in constituent

systems for the realization of emergent behaviors. The

main contribution of our method to the state-of-the-

art is to provide mechanisms that enable to automati-

cally verify the feasibility of a SoS abstract architecture

at run-time based on correctness properties specified

at design time. In particular, this method conceals the

use of constraint solvers, which automatically synthe-

size concrete architectures that adhere to an abstract

description of the SoS. Custom tool support, named

SoSy, is also provided, automating the transformation

of SoS abstract architectures in terms of a Constraint

Satisfaction Problem (CSP) and the subsequent trans-

lation of the output for this problem as a concrete archi-

tecture of the SoS. We demonstrated this method and

its accompanying tool support in a case study where we

confirm the feasibility of an abstract architecture for a

urban river monitoring SoS.

As future research, we will investigate means to ame-

liorate the efficiency of our method, which is sensitive to

the selection of the analysis scope. We also intend to in-

vestigate the impact of particular architectural styles to

the sustainability of abstract architectures and expand

this method to support dynamic changes to abstract

architectures, which directly impact concrete architec-

tures. Examples of such changes encompass: (i) the

addition of a new system to the coalition; (ii) unex-

pected self-termination of a communication link be-

tween systems due to internal conditions (e.g., low bat-

tery power or malfunctioning); or (iii) the optimization

of internal and/or external resources. To achieve this

goal, we will develop a mechanism that can be trig-

gered by mediators and constituents for “sensing” the

environment, e.g. discovering nearby constituents and

voluntarily sharing information. Finally, a qualitative

evaluation about the usability of our method and tool

is also important for tailoring a design and develop-

ment environment for the SosADL language based on

the needs of researchers and practitioners. For instance,

it can help identify the main challenges for the design of

abstract architectures and offer additional guidance for

these tasks. Therefore, such an investigation is certainly

useful for minimizing human errs during the analysis of

abstract and concrete architectures.
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