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Abstract Assmart systems leverage capabilities of het-
erogeneous systems for accomplishing complex combined
behaviors, they pose new challenges to traditional soft-
ware engineering practices that considered software ar-
chitectures to be mostly static and stable. The soft-
ware architecture of a smart system is inherently dy-
namic due to uncertainty surrounding its operational
environment. While the abstract architecture offers a
way to implicitly describe different forms taken by the
software architecture at run-time, it is still not suffi-
cient to guarantee that all concrete architectures will
automatically adhere to it. To address this issue, this
work presents a formal method named Ark support-
ing the architectural synthesis of smart systems. This
is achieved by expressing abstract architectures as a set
of constraints that must be valid for any concrete ar-
chitecture of the smart system. This way, we can ben-
efit from existing model-checking techniques to guar-
antee that all concrete architectures realized from such
an abstract model will comply with well-formed rules.
We also describe how this method can be incorporated
to a model-driven approach for bridging the gap be-
tween abstract and concrete architectural models. We
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demonstrate our method in an illustrative case study,
showing how Ark can be used to support the synthesis
of concrete architectures as well check the correctness
and completeness of abstract architecture descriptions.
Finally, we elaborate on future directions to consolidat-
ing a process for the synthesis of run-rime architectures
that are correct-by-construction.
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1 Introduction

A smart system combines elements of sensing, acting,
and control that can lead to the development of in-
novative solutions for addressing social, economic, and
environmental challenges [63]. To provide more sophis-
ticated capabilities, smart systems require support for
[22]: (i) instrumentation, which enables to collect timely,
high-quality data through embedded sensors and en-
act planned strategies accordingly; (ii) interconnection,
which enables to create links among data, systems, and
people; and (iii) intelligence, which enables to devise
new computing models, algorithms, and analytics to
process collected data and support decision making.
In this scenario, software plays an important role in
smart systems for dynamically interconnecting systems
and leveraging individual capabilities to accomplish a
desired combined behavior. In this scenario, complex
smart systems, such as smart cities [42], smart devices,
and smart grids [60], can also be considered as Systems-
of-Systems (SoS), i.e., systems that are formed by het-
erogeneous and independent systems [5, 31].

Software architectures are valuable assets to cope
with the increasing complexity of smart systems. The
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software architecture is embodied in the parts of a sys-
tem and their relationships with each other, and to the
environment, as well as in the principles guiding its de-
sign and evolution [27]. The activity concerned with
the synthesis of a software architecture is supported by
architecture descriptions [24], which comprise the set
of artifacts documenting the software architecture and
often include several models [27].

Specifically for SoS engineering, three types of mod-
els can be useful [68]: (i) normative models, describing
norms and standards for how SoS should be; (ii) de-
scriptive models, describing how SoS are by showing
deviations from the normative model; and (iii) prescrip-
tive models, describing how one can achieve the norma-
tive model given the descriptive model. For instance,
normative models can be used for the dissemination
of best practices that will be used as the basis for the
evaluation of a descriptive model and/or refinement of a
prescriptive model. As normative models, abstract ar-
chitectures can be used to define, at design time, the
baseline for dynamically interconnecting systems within
the SoS. In turn, a concrete architecture can be re-
garded as a descriptive model of a particular setting,
which is also referred to as a coalition. The coalition
defines how individual actions of constituent systems
are to be combined within the SoS for accomplishing
its mission. Thereby, a number of concrete architec-
tures can be created and validated against the needs
of a smart system.

The software architecture of SoS represents a de-
parture from traditional software engineering practices
that assumed software architectures to remain relatively
stable throughout their entire life cycle [58, 61]. Be-
cause the evolution of SoS architectures can have deeper
repercussions in regards to both its structure and be-
havior, tailored means are needed to support rearchitect-
ing, a process that encompasses the modification, sub-
stitution, reconstruction, and/or addition of any ele-
ment of the software architecture [1]. Specifically in
the safety-critical domain, such as in a smart system
for monitoring environmental conditions to determine
whether there is an imminent risk of harming people
and/or damaging homes and businesses, a rigorous re-
architecting approach is essential for guaranteeing that
the system will continue to behave as expected despite
changes to its constituent systems. Moreover, it can
help prevent that changes to the software architecture
can eventually put the system’s mission at risk.

Architecture descriptions can play a central part of
a rigorous approach for the evolution of software archi-
tectures [39]. For instance, target architectures can be
represented using formal notations and change requests
can be defined as refinement relations between interme-

diary architectures, thus guaranteeing consistent mod-
els of the system throughout its entire life cycle [9, 41].

The nature of SoS complicates the adoption of tra-
ditional practices that have been employed in the de-
scription of SoS software architectures [58]. First, the
emergent behavior of a SoS requires models that can
simulate the behavior of a coalition at run-time, which
makes solely static, design time models unsuitable for
capturing the dynamism of SoS architectures [67]. Sec-
ond, the evolutionary development of a SoS requires
software architectures that can support multiple coali-
tions to emerge over time [7, 51]. In this sense, dy-
namic software architectures can be investigated for
promoting SoS resilience in face of uncertainty [14, 49,
51]. Nonetheless, most notations used for describing
software architectures, including formal notations (i.e.,
Architectural Description Languages, ADLs) [46] and
semi-formal notations (e.g., UML), only support the de-
scription of concrete architectures [18, 51]. Third, the
frequent pace in which evolution takes place in SoS can
accelerate the architecture decay, which is linked to the
degradation of internal and external system properties
[1]. For instance, smart system developers must check if
architectural properties, such as performance or safety,
and external conditions (e.g., geographical distribution
of constituent systems), that were defined at the ab-
stract architecture are preserved by the concrete archi-
tecture. As a consequence, synthesizing, assessing, and
comparing alternative concrete architectures becomes a
challenging and time consuming task for SoS designers
[11].

Aiming to support the design and development of
smart systems, tailored means are needed to detect
when a concrete architecture deflects from its norma-
tive model. In our previous work [20], we experimented
the formal method Alloy [30] for investigating whether
a concrete architecture complying with an abstract ar-
chitecture existed or not, which aligns with the research
on autonomous systems architecture [39], i.e., provid-
ing mechanisms to either automatically realize a con-
crete architecture for which purposes, properties, and
constraints of the abstract architecture description are
satisfied, or reporting that such an architecture is not
feasible. In particular, the abstract architecture of the
SoS was expressed in SosADL [56], a formal notation
that has been specifically developed to support partial
descriptions of coalitions. We described how the ab-
stract architecture can be manually translated into a
constraint satisfaction problem that can be processed
by the Alloy Analyzer, one of the constraint solvers
available for Alloy. As a result, we were able to ran
an exhaustive search for any concrete architecture that
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comply with the abstract architecture within a prede-
fined analysis setting.

In this article, we aim to address two limitations
of our previous work. First, our previous work requires
an in-depth understanding about Alloy in order to tai-
lor a constraint satisfaction problem for each SoS. Sec-
ond, our previous work presents the solution returned
by the Alloy Analyzer only as an XML model or as a
box-and-lines diagram, hence introducing an interme-
diary model to the SoS architecture description. In this
work, we establish Ark, a constraint-based method that
supports the transformation of the key concepts of a
SosADL abstract architecture into a constraint satisfac-
tion problem expressed in Alloy. In addition, we discuss
how this method can be incorporated in a model-driven
approach to further bridge the gap between the descrip-
tion of abstract and concrete architectures. Therefore,
this work makes the following contributions:

— Formalization of abstract architectures for SoS ex-
pressed in SosADL in terms of Alloy;

— Definition of a model-driven approach for the trans-
lation of the abstract architecture expressed in Sos-
ADL as a constraint satisfaction problem and of the
solutions obtained by the constraint solver as a con-
crete architecture expressed in SosADL;

— Extension of an integrated environment for SoS de-
sign and development with support for automated
synthesis of concrete architectures that comply with
an abstract architecture description.

1.1 Motivating Example

The city of Sao Carlos, located in the southeast of
Brazil, has been consolidated in recent years as a tech-
nological hub, centralizing universities and jobs on tech-
nology in the state of Sao Paulo. The Urban River Mon-
itoring (URM) is one of such systems that have been
placed on the Monjolinho River in Sao Carlos, Brazil
[26] to support local enforcement and rescue teams dur-
ing a flooding event, in which rivers that cross inhabited
regions overflow, endangering people and businesses in
the area. A joint effort among researchers on embedded
systems and systems engineering is putting in place a
distributed, yet reliable, Wireless Sensor Network (WSN)
that is expected to collect timely observations of the
river, such as depth and average current speed [26].
These networks have been widely used in river moni-
toring and warning systems as they support distributed
data collection thanks to assorted communication capa-
bilities, such as WiFi, ZigBee (IEEE 802.15.4), GPRS,
or Bluetooth, embedded in sensor motes [25].

The URM architecture should be designed to deal
with changes in its constituents over time. Thereby, this
architecture is dynamic in that new sensor motes may
be added or removed from the system, e.g., to save bat-
tery power of connected sensor nodes. Moreover, its ar-
chitecture is expected to evolve over time, e.g., to take
advantage of new types of systems that can be incor-
porated as they become available to the organization
running the SoS or to replace or disconnect systems
aiming to maintain and/or increase the overall system
performance. Due to the criticality of the URM mis-
sion, verifying the correctness and completeness of the
abstract architecture constitutes an important step for
engineering this SoS. In particular, automated support
is needed to guarantee that changes to the abstract ar-
chitecture can still meet the original intent of the SoS
architect. In this scenario, architects of such system can
benefit from having an abstract architecture to reason
about required interconnections between systems, spe-
cially since the way in which systems are interconnected
impacts SoS-wide behaviors that can emerge [58].

The remainder of this paper is organized as follows.
First, Section 2 presents essential concepts on software
architectures and SoS for the development of this work.
Section 3 explains the rationale for the definition of
Ark, a constraint-based method that formalizes Sos-
ADL abstract architectures in terms of a constraint
satisfaction problem. Afterwards, Section 4 discusses
how Ark can be supported by a model-driven approach
for the synthesis of SoS architectures. Then, using the
dynamic architecture of the URM as an illustrative
case, Section 5 demonstrates how this method allows
one to generate concrete coalitions that are correct-by-
construction. Section 6 positions our method in regards
to other works on the synthesis of dynamic architec-
tures. Finally, Section 7 elaborates on future directions
for advancing the state-of-the-art on architectural syn-
thesis of smart systems.

2 Background

This section presents the main topics regarding software
architectures of SoS that are addressed in this paper.
In particular, we contextualize our research on model-
based approaches and ADLs for representing run-time
coalitions.

2.1 Definitions of SoS and Software Architectures
There are five characteristics that distinguish SoS from

traditionally complex, monolithic systems [7]: (i) coali-
tions produce an emergent behavior that cannot be pro-
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vided by any constituent alone; (ii) constituents retain
their operational independence since they can still oper-
ate even when detached from the SoS; (iii) constituents
also retain their managerial independence since they
can be developed, maintained, and evolved indepen-
dently from the SoS; (iv) coalitions are evolutionarily
developed by continuously changing in response to dif-
ferent environments and needs; and (v) constituents can
be geographically distributed as they can only exchange
information with each other.

The ISO/IEC/IEEE 42010 [27] defines a software
architecture as the “fundamental organization of a sys-
tem, embodied in its components, their relationships to
each other and to the environment, and the principles
governing its design and evolution over time.” Software
architectures have been associated with diverse qual-
ity attributes, e.g., safety [10], maintainability [3], and
longevity [1]. Aiming to establish a disciplined approach
for the design, evaluation, and evolution of software ar-
chitectures, several processes have been defined over the
years [24]. Following, we summarize the main steps of
a generic model [24] for architecting software systems.

The architectural analysis uses the context (i.e., the
environment) and architectural concerns to formulate

the set of Architecturally Significant Requirements (ASR)

in terms of desired systems properties that must be
fulfilled by an architecture. The architectural synthesis
builds upon ASR to outline potential solutions satis-
fying these requirements. Many decisions are taken as
part of the design of software architectures in regards
to which patterns, styles, reference architectures, and
platforms are more suitable for a given software system
that ultimately determine the final shape of software ar-
chitectures [32]. Therefore, a description of the software
architecture should ease the communication of its de-
sign to stakeholders as well as support its analysis [44].
Finally, the architectural evaluation checks candidate
solutions against ASRs until selecting one architecture
that is more suitable for the system, which is not trivial
given the diversity of competing requirements, quality
attributes, and concerns.

The evolution of software architectures is a natu-
ral step in long lived software systems as it is intended
to keep the architectural design aligned with systems
goals and technologies [52]. Without support for evo-
lution, architectures become obsolete, decreasing inter-
nal and external system qualities [1]. Despite its im-
portance, the evolution is often a secondary concern in
most studies on software architectures [8].

2.2 Challenges for Architecting SoS

The software architecture of an SoS encompasses the
structure of constituent systems, the relationships that
exist among them, and the principles and guidelines
governing its design and evolution over time [17]. As
a baseline for developing constituents and a shared in-
frastructure for distributing work, the architecture of a
SoS is a key artifact during SoS engineering processes
[15]. The dynamic architecture required by SoS repre-
sents a shift from architectures of traditionally large
and complex software systems that can be determined
early and remain relatively stable throughout their en-
tire life cycle [61]. In this scenario, current practices
lack the means to cope with the unpredictable ways in
that SoSs architecture can evolve and grow at run-time
[67].

The lack of support for evolution is particularly harm-
ful in the context of SoS since their software architec-
ture is constantly changing as a consequence of their
evolutionary nature. Therefore, even though a consol-
idated discipline has already been established for sup-
porting software architectures, architecting SoS brings
additional, major challenges [6] that remain open due
to the conjunction of their inherent characteristics [51].
For instance, a process for engineering SoS must sup-
port incremental development and evolution between it-
erations, continuous analysis against changing contexts
and requirements, and continuous input from the ex-
ternal environment [16].

To achieve interoperability among constituent sys-
tems, SoS require efficient means to mediate the col-
laboration among heterogeneous constituents as well
as tailor these interactions according to specific opera-
tional environments and needs [4, 6, 43]. For instance,
legacy constituent systems may resist to make the re-
quired changes for their interaction with other con-
stituents of the SoS [52]. In this case, SoS architects
may decide to define a gateway or encapsulate the con-
stituent system so that required changes to the actual
constituent are minimized. Moreover, specific architec-
ture styles can be used to foster connectivity among
constituent systems, such as net-centric architectures,
layered architectures, and agent-based architectures [14,
38].

2.3 Architectural Description of SoS

As tangible artifacts expressing software architectures,
architecture descriptions provide concrete ways for as-
sessing systems qualities, sharing architectural knowl-
edge, and preventing software systems decay [12, 27,
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40]. To disseminate best practices regarding the cre-
ation of such artifacts, the ISO/IEC/IEEE 42010 [27]
establishes the main elements framed in architecture de-
scriptions and the relationships that exist among them.
Moreover, architecture descriptions can be customized
for a particular domain or stakeholder community. In
the context of SoS, architecture descriptions must de-
tail functionality that is performed by key constituent
systems, data and control flow, externally visible prop-
erties and interfaces of constituents (e.g., behaviors, de-
pendencies, and use of shared resources), relationships
among organizational entities and constituents as well
as rationale and governance policies that apply to the
SoS, including guidelines for acquisition, termination,
and replacement of constituents [17].

The broader definition of an ADL as any technique
employed for expressing software architectures [27] al-
lows one to categorize them among formal, semi-formal,
and informal languages [3]. Formal languages are distin-
guished by a precise syntax and semantics, supporting
simulation and verification of architectural models [70].
Often, the precision and rigor that can be achieved with
formal models is essential for obtaining higher reliabil-
ity in software systems [29, 45]. Such languages have be-
come more accessible with the development of tailored
tools that hide their complexity from users [33]. Con-
versely, informal languages, such as box-and-lines no-
tations, have been widely employed for describing soft-
ware architectures despite their lack of precise syntax
and/or semantics. In this sense, informal notations of-
fer limited support for analysis and reuse. Semi-formal
languages can be seen as a compromise between formal
and informal notations, presenting a well-defined syn-
tax but lacking a complete semantics. Semi-formal lan-
guages, such as UML (Unified Modeling Language) [54]
and its extensions (e.g., SysML [55]), have been widely
used in industry [12] and also for the description of SoS
[19].

The architecture description of SoS must deal with
the intrinsic characteristics of such systems, in particu-
lar the independence of constituent systems, evolution-
ary development, and emergent behavior [51]. Nonethe-
less, traditional ADLs such as UML lack the means to
abstractly describe coalitions so that they can be dy-
namically created based on existing constituents and
targeted emergent behaviors [18]. In this scenario, a
novel ADL, named SosADL [56], has been developed to
overcome most of the limitations found in traditional
ADLs that limit their application for the description
of SoS architectures in formal terms. This language is
grounded on a novel process calculus of the family of
the m-Calculus for formally describing the architecture

of Software-intensive SoSs, named 7-Calculus for SoS
[57].

The core concepts modeled with SosADL are the
ones of [56]: (1) system, to represent potential constituents;
(ii) mediator, to represent potential connectors among
constituents; and (iii) SoS, to represent a potential coali-
tion. More precisely, constituent systems are architec-
tural elements defined by intention (declaratively in
terms of abstract system types) and selected at run-
time (concretized). Mediators are architectural elements
defined by intention (declaratively in terms of abstract
mediator types) and created at run-time (concretized
by the SoS) to mediate the interaction between con-
stituent systems and create an emergent behavior. Sys-
tems-of-systems are architectural elements defined by
intention (declaratively in terms of abstract architec-
ture types and the policies/constraints to select and
bind concrete constituents within a coalition using the
mediators created by the SoS itself) and evolutionar-
ily created at run-time (concretized) to achieve the SoS
mission in an operational environment.

In this scenario, tool support is needed to inves-
tigate a broader spectrum of run-time scenarios that
could be uncertain or unknown at design time. This
situation characterizes a satisfiability problem (SAT) in
that we attempt to determine if there is any concrete
architecture that complies with a SosADL description.
As a NP-complete problem [13], all known algorithms
for SAT face state space explosion issue as the number
of variables exponentially increases in the worst-case
scenario.

3 The Ark Method for Architectural Synthesis

Architecture descriptions of the SoS can be used to sup-
port the synthesis of architectural configurations that
meet the requirements of a SoS. In particular, our ap-
proach seeks the use of architecture descriptions for
representing SoS from two abstraction levels: (i) an ab-
stract architecture, which provides a normative model
for the SoS that can be formed from abstract con-
stituent and mediators types; and (ii) a concrete archi-
tecture, which provides a descriptive model of a coali-
tion that exists at run-time. Following, we further elab-
orate on the characteristics of each abstraction level.
Abstract architectures describe constituent systems
and communication links supported by the SoS. Nielsen
et al. [51] refer to an abstract architecture as a concep-
tual description of an envisaged SoS. This description
comprises abstract types of systems, which are char-
acterized in terms of properties, interfaces, and con-
straints that must hold in the environment. Because
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actual constituent systems of the SoS are not neces-
sarily known at design time, the abstract architecture
focuses on the identification of key constituents that
support the SoS mission. Abstract types of mediators
are also specified at this abstraction level, character-
ized as communication links within the SoS and also
with the environment. Finally, the abstract architecture
also defines abstract types of coalitions in terms of poli-
cies that govern how constituents may interact within
the SoS. Therefore, the coalition specification dictates
which sorts of configurations can emerge at run-time,
such as a layered or client-server architecture.

In turn, concrete architectures explicitly define the
architecture configuration of a SoS in terms of known
constituents and communication links between them.
This can be accomplished at run-time by enabling to
deploy mediators on-the-fly based on specific needs of
the SoS or current constituent systems of the coalition.
Therefore, the concrete architecture is also referred to
as a run-time software architecture of the SoS. Alterna-
tively, Kenley et al. [34] refer to concrete architectures
as allocated architectures or candidate solutions that
potentially show varying levels of quality. In this sense,
multiple candidate solutions can be realized for the SoS
but they might show different emergent behaviors de-
pending on which types of mediator are in place.

3.1 Steps for Synthesizing Concrete Architectures

To analyze and/or simulate the emergent behavior of a
SoS, one must first instantiate the abstract architecture
into a concrete architecture that represents a potential
coalition. This activity should be repeated at run-time
whenever there is a change to the abstract architec-
ture, e.g., a change in the policies (also referred to as
bindings/interconnections) that govern the composition
between architectural elements of the SoS. Since these
modifications cannot be predicted at design time, tool
support must be provided for helping SoS architects in
confirming the impact of these changes against their
original intent. Hereinafter, we present the method Ark
supporting the synthesis of concrete architectures that
are correct-by-construction. This method is based on
two formal notations for expressing architectural mod-
els of the SoS: SosADL, an ADL tailored for the descrip-
tion of SoS architectures, and Alloy, a formal method
for systems specification.

Figure 1 summarizes the four steps of the method:
(i) describe the abstract architecture of the SoS which is
expressed in the SosADL notation; (ii) describe the ab-
stract architecture of the SoS in terms of a CSP which
is expressed in the Alloy notation; (iii) solve the CSP
using off-the-shelf constraint solvers available for Alloy;

and (iv) evaluate the outcome of the constraint solver
in regards to the original goals of the SoS abstract ar-
chitecture. Therefore, the method bridges the gap be-
tween abstract and concrete architectures by means of
the translation of the abstract architecture in terms of
a Constraint Satisfaction Problem (CSP), which can
be automatically processed by a constraint solver for
realizing concrete architectures that adhere to such an
abstract description. As a result, Ark can be repeated
whenever there is a change to the abstract architec-
ture so that one can validate if desired properties are
still preserved by a potential coalition. Otherwise, Ark
can detect when an abstract architecture evolves into a
state from which no desirable coalition exists. Follow-
ing, we describe the conceptual model for SoS architec-
tures implemented in Alloy.

3.2 A Conceptual Model for SoS Architectures in Alloy

To automatically resolve the problem of finding a con-
crete architecture that satisfies the abstract architec-
ture, we formalized the abstract architecture of the SoS
in terms of a Boolean Satisfiability Problem (SAT) and
adopted Alloy as the underlying constraint solver. In
particular, this language is used for expressing policies
as facts, i.e., constraints that always hold. The Alloy
Analyzer supports the generation of instances of model
invariants, the simulation of operations defined as part
of a model, and the verification of user-specified proper-
ties of a model. In addition, the Alloy Analyzer supports
the analysis of partial models and thereby can perform
incremental analysis of models as they are constructed.

Aiming to facilitate the representation of abstract
architectures of SoS in terms of constraints, we cre-
ated TASoS! as an intermediary representation for Sos-
ADL models in Alloy. This representation, which is il-
lustrated in Fig. 2, captures the basic building blocks
of the SosADL notation in terms of signatures, i.e., in-
divisible atoms that behave as sets. Overall, TASoS
contains 20 signatures, 14 relations, and eight asser-
tions that can be used for checking optional proper-
ties about the abstract architecture. TASoS also defines
predicates and functions which describe operations over
these signatures. When executed in the Alloy Analyzer,
a predicate will instruct the solver to produce an in-
stance, i.e., a concrete architecture, that satisfies the
constraints framed by the predicate. In turn, a function
defines an expression whose evaluation yields a subset
of atoms and, thus, may be called in predicates, asser-
tions, and facts to improve modularity and readability

! The source code for TASoS is available at http://goo.gl/
5ZNgDQ
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Fig. 1: General model of Ark for SoS architectural synthesis [21]

of the model. TASoS is defined as a module that can
be referenced by other Alloy models, thus facilitating
its reuse.

Inspired by the SosADL language, TASoS provides
individual signatures for each abstract architecture ele-
ment in SosADL, namelly System, Mediator, and Sos.
These three signatures derive from the same parent sig-
nature that is named Architectural Element. There-
fore, when we define the hasPort relation between their
parent signature and the Port signature, we are actu-
ally defining a relation that applies to all three child
signatures. The reasons for the selection of SosADL as
the basis for the creation of this metamodel are three-
fold: (i) the notation has explicit constructs for abstract
types of constituents, mediators, and SoS, including a
mathematical foundation [57] that enables to define dy-
namic connectivity in terms of constraints; (ii) the no-
tation supports the description of SoS abstract archi-
tectures from a dynamic as well as static viewpoint;
and (iii) the notation is supported by a tool that can
be extended to work with different modeling and im-
plementation languages, such as UML, Java, and C.
Following, the central elements of TASoS are detailed.

The main signature of TASoS is Architecture, which
captures the abstract architecture of a SoS in terms
of potential elements (i.e., systems and mediators), ab-
stract interconnections between these elements, and their
configuration, which expresses a concrete architecture
of the SoS (i.e., Topology). Thereby, this signature is
defined in terms of three relations, namely: (i) contain,
a binary relation of type Architecture — (System +
Mediator) relating each architecture to elements of sys-
tem or mediator types that can participate in the coali-
tion; (ii) bindings, a binary relation of type Architecture

— Unification mapping the interconnections between
systems and mediators that have been defined by the
abstract architecture; and (iii) unifiedAs, a binary re-
lation of type Architecture — Topology describing dif-
ferent ways (i.e., candidate concrete architectures) in
which systems and mediators can be arranged together
to form a coalition.

The metamodel defines several facts, i.e., constraints,
about the SoS architecture that must hold in any given
concrete architecture, instructing the solver about de-
sirable and undesirable configurations. Listing 1 shows
an excerpt of the facts in which Architecture plays a
role. For instance, constraint #28 instructs the solver to
consider any two architectures to be equal if the set of
elements assigned to their topologies, which is returned
by calling the elems function over the unifiedAs rela-
tion, is the same for both architectures. Thereby, one
can further instruct the solver to only search for unique
architectures. Constraint #31 instructs the solver to
only find topologies in which all systems engage in at
least one interconnection with another element of the
architecture, hence discarding disconnected concrete ar-
chitectures as valid solutions. To guarantee that this
is the case, TASoS forces the set of all unifications in
which a system is either the recipient or the source of
an unification (which is returned by the participates-
InTopology function) to not be null. Constraint #32
instructs the solver to only take into account topolo-
gies that use all types of abstract interconnections. In
particular, the isUnifiedTo function is referenced in
this rule to obtain the elements that are linked by an
unification in the topology. Finally, constraint #34 en-
sures that for any given topology of an architecture,
each interface of a system (referred to as Gate) can
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SosADL, TASoS introduces a new architectural element (colored) for the definition of concrete configurations [21]

be related to exactly one interface of a mediator (re-
ferred to as Duty), which is returned by calling the
dutiesOfUnification function over Suni, i.e., the set
of unifications of a given port returned by the unifica-
tionsOfPort function.

The Topology is the signature in TASoS supporting
the description of concrete architectures. Atoms of this
signature have two relations, namely: (i) inTopology,
a relation in the form Topology — Uni fication which
contains the set of intentional bindings that can be real-
ized between abstract types of systems and mediators;
and (i) path, a ternary relation of type Topology —
Unification — Unification which connects atoms of
unification in order to compose a network of systems
and mediators. Thereby, this signature is responsible
for merging the description of an abstract architecture
with a concrete architecture in that its first relation
lists abstract types of bindings that can be established
at run-time (which is taken from the abstract descrip-
tion) and its second relation forms a network that can
be created on top of these bindings (which results in
the concrete description). To complete the specifica-
tion of well-formed concrete architectures for an SoS,
TASoS defines the policies (i.e., constraints) govern-
ing the topology in terms of facts. Listing 2 shows an
excerpt of constraints that apply to topology. For in-
stance, constraint #29 instructs the solver to allow a
topology to be empty if, and only if, there is no system
in the coalition. Constraint #30 instructs the solver to
look for topologies in which all defined types of media-
tors are present. This is achieved by checking if the me-
diator is the recipient or the source of any unification in

the topology, which is returned by the owner function.
Finally, constraint #33 instructs the solver to only ac-
cept connected topologies by restricting which unifica-
tions can be associated by the path relation. Specifically,
two unifications can only be associated if they share the
same origin and/or destination with each other. To do
so, it calls the isUnifiedTo function over each unifi-
cation to verify which architectural elements they bind
together.

As an intermediary model for SosADL abstract ar-
chitectures expressed in terms of constraints, TASoS
can be further refined (i.e., instantiated) for represent-
ing the abstract architecture of a particular SoS. The
execution of TASoS in the constraint solver is expected
to produce one or more concrete architectures, i.e., so-
lutions, that satisfy these constraints. Therefore, if no
solution is found, we can state that no coalition satis-
fying the abstract architecture exists under the speci-
fied execution bound, i.e., scope. In this case, the ar-
chitect can either investigate if the scope is sufficiently
large to hold at least one solution of this problem or
if the abstract architecture is not suitable (i.e., if it
is over constrained). This metamodel can support both
investigations by means of assertions, i.e., optional con-
straints that can be verified. An assertion can check, for
instance, if non-empty instances or multiple mediators
are allowed for a coalition. If a given assertion does not
hold in the SoS, a counterexample depicting a concrete
architecture that violates the abstract architecture is
generated. This outcome can be useful for correcting
or refining the abstract architecture. Conversely, if no
counterexample is found, the architect can infer that
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Listing 1: Excerpt of constraints on architectures in
TASoS

1 //#28 Two architectures should be equal
if they have the same set of
topologies

2 all a,a’:Architecture]|

3 (a.unifiedAs).elems=(a’.
elems implies a=a’

4 //#31 All systems that participate in an

architecture must engage in at least

one unification in all candidate
topologies

e:System ,a: Architecture ,t: Topology |

e in a.contain

6 and t in (a.unifiedAs).elems implies

7 some participatesinTopology|[e,t]

8 //#32 All unifications in the set of
bindings must be used in the topology

unifiedAs).

5 all

9 all u:Unification ,a:Architecture ,e:

System | u in a.bindings and

10 e in a.contain and e in isUnifiedTo [u]
implies

11 all t:Topology | t in (a.unifiedAs).
elems implies

12 u in path[t].Unification

13 //#34 Connections of the same gate can

only be unified to connections of the
same duty in a given Architecture.

14 all g: Gate, a: Architecture, t:
Topology |

15 let Suni=unificationsOfPort[g,t] |

16 g. hasPort in (a.contain) and t in (a.
unifiedAs).elems

17 implies one dutiesOfUnification[Suni]

the assertion holds for that particular scope and in-
crease the analysis scope aiming to gain more confi-
dence about the architectural design. Thereby, checking
these assertions can provide concrete evidences about
the feasibility and soundness of the SoS.

4 Tool Support for Ark

To perform the steps recommended by Ark, architects
create at least three models of the SoS architecture.
First, architects manually create an abstract architec-
ture for the SoS under analysis in SosADL. Then, archi-
tects represent this architecture as a set of constraints,
creating an instance module of TASoS. If this resulting
representation is syntactically correct, architects can
analyze this model in external constraint solvers. Fi-
nally, architects have to translate the solution returned
by the constraint solver (i.e., concrete architectures)
back into a format that they can more easily analyze
and communicate with stakeholders. In this scenario,

Listing 2: Excerpt of constraints on topologies in TASoS

1 //#29 The relations inTopology and path

must be empty if no system

participates in the coalition

t: Topology, a:Architecture | t in (a

.unifiedAs).elems implies {{no t.path

} iff {no a.contain & System}}

3 //#30 For all topologies of an
architecture , a mediator engages in
at least one unification

2 all

4 all t: Topology, m: Mediator |

5 let Suni=participatesinTopology[m,t] |
some Suni implies

6 m in owner[Suni.src] or m in owner]|
Suni.dest]

7 //#33 The path of a topology connects
unifications that originate or end in

the same architectural element

8 all t:Topology, a:Architecture | {some a
.contain} and

9 t in (a.unifiedAs).elems implies {

10 all u,v: Unification | u—=>v in t.path
implies

11 some isUnifiedTo [u]&isUnifiedTo[v]

12}

these activities can be time consuming and prone to
error.

An automated process for applying Ark encompasses
two model transformations: first, an abstract architec-
ture must be translated into a CSP that extends TASoS;
secondly, solutions for this problem must be translated
back into SosADL as concrete architectures. Hence, we
devised a tailored software tool named SoSy that uses
constraint solving techniques under the hood. More pre-
cisely, SoSy implements two model transformations (il-
lustrated in Figure 3): (i) a Model-to-Text (M2T) trans-
formation from SosADL to TASoS, in which instance
modules can be dynamically created for abstract ar-
chitectures; and (ii) a Text-to-Model (T2M) transfor-
mation from the solution returned by the constraint
solver to SosADL, in which concrete instances found
by the tool are represented in SosADL. The first trans-
formation is implemented as an Xtend? class named
SosADL2AlloyGenerator, whereas the second is imple-
mented as a Java method named Solution2SosADL-
Generator. Moreover, this tool is provided as an ex-
tension to SosADE? (Architectural Framework for SoS
Design) [59], an integrated environment for the design,
validation, and simulation of SoS that supports SosADL
as the modeling notation.

Figure 4 illustrates the model-driven process imple-
mented by SoSy, which is inspired on the four steps

2Xtend, http://www.eclipse.org/xtend/
3S0sADE tool, https://www-archware.irisa.fr/software/
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Fig. 3: Relationship between abstract and concrete architecture models in SosADL and TASoS [21]

required by Ark. This process is represented in SPEM
[53], an OMG standard for the specification of software
methods and processes. In particular, this figure de-
scribes the sequence in which tasks (i.e., work that has a
particular purpose) and activities (i.e., group of related
tasks) must be carried out by architects. The first activ-
ity in this process concerns the creation of an abstract
architecture for the SoS, which automatically triggers
the task for generating an instance of TASoS. In par-
allel to this task, the tool also generates a Java* class
that when executed will call the Alloy Analyzer from
within the SosADL development environment for pro-
cessing the instance module. In addition, this class tem-
porarily stores data (namely, datatype functions) that
are not processed by the constraint solver but that are
needed for the reconstruction of the concrete architec-
ture. These tasks are followed by the manual execution
of the Java class. As a result, if any solution is returned
by the solver, it will be automatically translated into a
concrete architecture expressed in SosADL. Otherwise,
architects can decide to manually repeat this activity
with a different analysis scope or repeat the process for
a new abstract architecture, triggering the update of
the related artifacts in the project directory. The pro-
cess ends when the evaluation of a candidate concrete
architecture terminates with a valid concrete architec-
ture of this SoS.

5 Demonstration of Ark

The analysis performed by the Alloy Analyzer is based
on checking the validity of a property (i.e., a constraint).

4Java, http://wuw.java.com

To guarantee efficiency, the analysis (i.e., model check-
ing and model-finding) is completed under a execution
scope that constrains the investigated solution space,
thereby finite. The scope for the analysis must be care-
fully selected according to each problem at hand. Even a
small scope yields a sizable solution space (in the order
of 108 clauses) which is sufficiently large for discover-
ing problems in small instances of models [28]. In fact,
the analysis performed by the tool is grounded on the
premise that even small instances of a model can illus-
trate flaws, which arise from incorrectly handling types
[30]. Furthermore, the power of this analysis is greater
than one that could be achieved by specifying the prob-
lem in Java, which would lack support for generating
arbitrary samples, performing exhaustive checking on
test cases, and visualizing the results.

Following, we describe the URM system (Section
5.1), which has been selected as an illustrative exam-
ple to demonstrate the Ark method. Then, Sections 5.2
through 5.5 explain step-by-step how one can use this
method for checking the feasibility of an abstract ar-
chitecture and producing a correct concrete architec-
ture for the URM. In Section 5.6, we report the per-
formance of this method after running the constraint
solver over several analyses scope and in Section 5.7 we
discuss threats to the validity of this quasi-experiment.
Finally, in Section 5.8, we discuss advantages, limita-
tions, and lessons learned of our method and tool.

5.1 Urban River Monitoring System-of-System
Emergency management and response is a relevant ap-

plication domain for complex SoS [51]. The design of
such SoS often requires the coordination among hetero-
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geneous constituent systems (e.g., surveillance, weather
forecast, and river monitoring systems) and protocols
(e.g., traffic management, first aid, and rescue teams).
An Urban River Monitoring SoS plays a key role in
obtaining precise, real-time data that supports author-
ities’ timely and organized response, specially in case
of flash floods. To achieve this goal, data provided by
independent, heterogeneous sensors (e.g., water level,
current, and pollutant sensors) are combined by the
SoS to monitor the flood risk. Ultimately, the effective-
ness of such SoS has also a relevant impact on costs
incurred by flood events, which can be greatly dimin-
ished by sending out warnings in advance [62].

To detect an imminent flood risk, data collected
from stationary sensors are forwarded to a gateway sta-
tion, which has dedicated resources for processing, in-
tegrating, and publishing this information. Specifically,
the gateway station can transform raw data collected by
sensors for determining the relative height reached by
the water level and publish this information to the au-
thorities. If a gateway station cannot be reached by the
individual communication capabilities of a sensor, the
sensor will forward these data to its neighboring motes
until the gateway station is reached. Since this system
operates in a highly dynamic environment, its archi-
tectural configuration must be continuously changed
for ensuring: (i) efficiency in the use of the available
resources, mainly in terms of power consumption and
communication; (ii) resilience in case of temporary un-
availability of motes during operation; (iii) accuracy in
flood detection; and (iv) autonomy in adapting to dy-
namic environmental conditions while minimizing man-
ual intervention.

When compared against the five characteristics pre-
sented by SoS [43], the Urban River Monitoring meets
all five criteria. Each sensor mote operates in a way that
is independent of other sensor motes, since they belong
to different city councils and could have different mis-
sions, e.g. pollution control or water supply. Each one

has its own management strategy for transmission vs.
energy consumption and acts under the authority of the
different city councils. New sensor motes may be in-
stalled by the different councils as well as existing ones
may be changed or deactivated without any control
from the system. Finally, the sensor motes, coordinated
by the gateway, make emerge the behavior of flood de-
tection. This behavior is collectively achieved by the
distributed, independent sensors working together with
the gateway station rather than being provided by any
of them working in isolation. Thus, as a collaborative
SoS that has no central authority coordinating the con-
stituents operation to achieve the SoS goal [43], the
URM must be able to dynamically assemble new coali-
tions from the sensor motes that voluntarily decide to
forward data to the gateway station.

5.2 Step 1: Describe the URM Abstract Architecture

The first step of the method concerns the description of
an abstract architecture for the SoS under analysis. To
perform this task, the architect uses the SosADE tool
to create SosADL models for the URM?. In particular,
the architect should begin by the definition of abstract
types for the architectural elements that form the URM
SoS, i.e., sensor, mediator, and gateway. However, the
abstract architecture does not identify the actual ele-
ments that participate in the coalition since these are
not necessarily known at design time. These abstract
types are defined within a SosADL library, named urm-
Library, which comprises two abstract types of sys-
tems, namely sensor and gateway, and an abstract type
of mediator, named transmitter, which represents the
interconnections supporting their collaboration. Follow-
ing, the description of these abstract types is further
elaborated.

5The complete source code for the URM models referenced
in Section 5 are available at http://goo.gl/5ZNgDQ.
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A gateway is an abstract type of system that re-
quests observations from sensors and publishes collected
data. The declaration of this system, shown in Listing
3, encompasses one gate named alerting that has three
connections: (i) request receives queries from other sys-
tems about current condition of the river; (ii) measure
handles observations returned by other systems; and
(ili) alert sends out warning messages when an internal
parameter of the gateway is violated by environmental
conditions. All connections have an associated direction
(inward or outward) and data type, which is limited to
an abstract integer type named ¢ for the sake of simplic-
ity. For the behavior declaration, the architect specifies
a sequence in which the system is expected to interact
with the environment. The main behavior of the gate-
way is depicted in lines 18-24. It begins by receiving
an observation from another systems via its measure
connection. Then, the gateway evaluates if this obser-
vation surpasses the local depth threshold (line 22). If
S0, it publishes a warning message via its alert connec-
tion of the same gate. These actions can be repeated
indefinitely.

Listing 3: Excerpt of abstract gateway type for the
URM in SosADL

3 system gateway () is {

4 gate alerting is {

5 connection measure is in {t}
6 connection request is in {t}
7 connection alert is out {t}
8 } guarantee {

9 protocol alertingpact is {

10 repeat {

11 via request receive any

12 repeat {

13 via measure receive any
14 repeat { anyaction }

15 }

16 via alert send any
7} )}

18 behavior main is {

19 value depththreshold : t = 3
20 repeat {

21 via alerting :: measure receive v
22 if (v > depththreshold) then {
23 via alerting::alert send v
2} )}

A sensor is also an abstract type of system that
collects observations from the environment. The decla-
ration of this system, shown in Listing 4, encompasses
two gates: (1) measuring, that comprises one environ-
ment connection named sense that reads observations
and one connection named measure that handles these
observations over to a neighboring system; and (ii) pass-
ing, that has two connections pass and measure for
just handling observations over to other systems. These
gates declarations are complemented by a guarantee

protocol, which describes assumptions (i.e., properties)
that must be fulfilled by the environment. For instance,
the measuring gate guarantees that while the sensor is
operational (i.e., if all assumptions that a sensor makes
about the environment hold), it will continually receive
observations from the environment via its connection
sense and transmit these data via its connection mea-
sure. The main behavior of this system is declared in
lines 45-53. The sequence of interactions is given by a
choice between collecting an observation via its sense
connection of the measurement gate and sending it to
one of its neighboring systems via the measure connec-
tion of the same gate, or receiving an observation via
its pass connection of the passing gate and forwarding
it to one of its neighboring systems via the measure
connection of the same gate.

Listing 4: Excerpt of abstract sensor type for URM in
SosADL

25 system sensor () is {

26 gate measuring is {

27 environment connection sense is in {
t}

28 connection measure is out {t}

29 } guarantee {

30 protocol measuringpact is {

31 repeat {

32 via sense receive observation

33 repeat { anyaction }

34 via measure send observation

35 133

36 gate passing is {

37 connection pass is in {t}

38 connection measure is out {t}

39 } guarantee {

40 protocol passingpact is {

41 repeat {

42 via pass receive data

43 via measure send data

44 123

45 behavior main is {

46 repeat {

47 choose {

48 via measuring::sense receive
observation

49 via measuring:: measure send
observation

50 } or {

51 via passing:: pass receive data

52 via passing:: measure send data

53 333

A transmitter is an abstract type of mediator that
forwards observations from sensors to a gateway, either
directly or by means of other sensors. The declaration
of this mediator, shown in Listing 5, comprises one
duty, named transmitting. This duty has two connec-
tions named fromSensors and toGateway that handle
the transmission of observations from sensors to a gate-
way. A duty can also declare assumptions that must
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be fulfilled by constituents in the environment. In this
case, this duty requires that the distance between the
source and target of this communication link do not
exceed a predefined range threshold. If this property
holds, then the abstract declaration of mediator can
guarantee that the protocol declared in transmitting-
pact is also fulfilled. This protocol defines that all ob-
servations received via the fromSensors connection are
forwarded via its toGateway connection. Then, trans-
mitting behavior of this mediator states that this action
is continuously repeated, with no processing in between.

Listing 5: Excerpt of abstract mediator type for the
URM in SosADL

54 mediator transmitter () is {

55 duty transmitting is {

56 connection fromSensors is in {t}

57 connection toGateway is out {t}

58 } assume {

59 property inrange is {

60 repeat {anyaction}

61

62 } guarantee {

63 protocol transmittingpact is {

64 repeat {

65 via fromSensors receive measure

66 via toGateway send measure

o 11}

68 behavior transmitting is {

69 repeat {

70 via transmitting :: fromSensors
receive measure

71 via transmitting ::toGateway
send measure

RSS!

Without further directions, a concrete architecture
for the URM can potentially be any combination of
elements defined in this library. Therefore, the URM
description cannot be considered complete without the
specification of an abstract coalition type, which identi-
fies a family of concrete architectures that are desirable
at run-time. For instance, one can specify an abstract
coalition type in which constituent systems must be lo-
cated within 5 meters of each other and/or that have
replied to the SoS within the past 5 minutes in order to
attain to the goals of the SoS, such as promote rational
use of resources or guarantee overall performance. In
either case, the formal specification of such a coalition
type supports evaluating the correctness of potential
concrete architectures in regards to the original intent
of the SoS architect.

Listing 6 shows an excerpt of the abstract archi-
tecture named simple for the URM. The serving gate
of this architecture enables the communication of the
Flood Monitoring coalition with other systems and the
environment. This gate declares two connections named
request and alert that handles external queries about

the conditions of the river and publish warning mes-
sages in case one of the sensors has identified a flood
event. The behavior of an architecture is different from
the one of systems and mediators in that it contains:
a compose declaration, which states constituents that
are allowed to participate in the coalition (lines 10-14);
and, a binding declaration, which defines policies for or-
ganizing systems and mediators into a cohesive whole
(lines 14-28). The simple type of this coalition is com-
posed of any number of sensors and transmitters but
has only one gateway, named gatewayl. Therefore, any
instance of this abstract coalition type may only exer-
cise the unifications defined in the bindings declaration.

Listing 6: Excerpt of abstract coalition type for the
URM in SosADL

1 with urmLibrary

2 sos FloodMonitoring is {

3 architecture simple() is {

4 gate serving is {

5 connection request is in {t}

6 connection alert is out {t}

7 } guarantee {

8

9 }

10 behavior main is compose {

11 sensors is sequence{sensor}

12 transmitters is sequence{transmitter}

13 gatewayl is gateway

14 } binding {

15 forall { t in transmitters suchthat

16 forall { sl in sensors suchthat

17 forall { s2 in sensors suchthat (

18 // t receives from s

19 ( unify one {sl::measuring:: measure}
to

20 one {t::transmitting::fromSensors}

21 or unify one {sl::passing:: measure}
to

22 one {t::transmitting::fromSensors} )

23 and // and sends to s or g

24 ( unify one {t::transmitting::
toGateway} to

25 one {gatewayl::alerting :: measure}

26 xor unify one {t::transmitting::
toGateway} to

27 one {s2::passing::pass} )

28 ) } } }//close forall

2 } )}

5.3 Step 2: Describe URM as a Constraint Satisfaction
Problem

The second step of Ark requires the transformation of
the URM abstract architecture described in SosADL
into a constraint satisfaction problem described in Al-
loy. To accomplish this task, the abstract signatures
in TASoS must be extended with the elements defined
by the URM abstract architecture. Figure 5 shows how
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TASoS is extended to represent the URM abstract ar-
chitecture: (a) shows that gateway (Listing 3) and sen-
sor (Listing 4) extend the System signature; (b) shows
that transmitter (Listing 5) extends the Mediator sig-
nature; and (c) shows that flood monitoring and simple
(Listing 6) extend the Sos and Architecture signatures,
respectively. Listing 7 shows an excerpt of the generated
Alloy model for the simple coalition abstract type.

Because Alloy is a declarative language, it is impor-
tant to guarantee that signatures naming are unique.
SoSy accomplishes that by composing the names of
the elements. Take for instance the alert connection of
the serving gate in the simple architecture in Listing
6 (line 6). This connection is mapped in Listing 7 as
simple_serving alert (line 7). The compose declara-
tion of the abstract architecture in Listing 6 (lines 11-
13) is mapped in Listing 7 by the constraints in lines
11-13. Accordingly, the bindings declaration is mapped
by the constraints in lines 16-31. In SosADE, the trans-
formation of SosADL models into Alloy can be auto-
matically performed by the SoSy tool, which is run-
ning in the background. Therefore, instance modules of
TASoS are dynamically created by the environment as
the architect creates SosADL models.

5.4 Step 3: Solve the Constraint Satisfaction Problem

The third step of Ark comprises the automated anal-
ysis of the generated instance model by the constraint
solver. In particular, the instance module instructs the
solver to find for a concrete architecture that satisfies
the scenario described in Listing 8 (lines 38-44), i.e., it
is a coalition composed of at least one element of the
sensor type, one element of the transmitter type, and
one element of the gateway type. To perform this task,
the architect can manually execute the generated Java
class using the default analysis scope defined for the
instance module in line 45.

Listing 8: Scenario instance module

38 fact instanceOfsimple{

39 some a: simple {

40 sensors in a.contain

41 transmitters in a.contain
42 gatewayl in a.contain

43 }

44

45 run case0 {some sensor} for 3 but 1

Architecture , 4 System, 4 Mediator, 1
Sos, 7 Port, 16 Connection, 16
Unification, 1 Relay

5.5 Step 4: Evaluate Candidate Concrete
Architectures for the URM

If the solver finds a solution for the previous problem
within this analyzed scope, the architect can automat-
ically obtain the corresponding SosADL models, such
as the one presented in Listing 9 and illustrated in Fig-
ure 6. Afterwards, the architect can proceed with the
evaluation of this concrete architecture in regards to
one’s original intent when designing the abstract coali-
tion type in the first place. Moreover, one can use gen-
erated concrete architectures as input for simulations of
the SoS. As a result of this activity, the architect may
decide to modify the policies defined in the abstract ar-
chitecture to prevent the formation of undesirable coali-
tions, to define mechanisms (i.e., mediators) that sup-
port new interactions between constituents and /or with
the environment, or accept this abstract architecture,
hence proceeding to the next stages in the SoS devel-
opment process.

5.6 Performance of the Method

We can evaluate the performance of Ark in terms of
elapsed time for the execution of steps 2 and 3, which
comprise the use of a constraint solver to find a well-
formed concrete architecture for the Urban River Mon-
itoring. Nonetheless, the outcome of this evaluation de-
pends on a careful selection of the analysis scope, which
must be sufficiently large to hold at least one concrete
architecture of the SoS yet small enough so as not to
cause state explosion. Aiming to understand the role
played by the selected analysis scope in the performance
of Ark, we performed a quasi-experiment [69].

To collect data for this evaluation, we instrumented
the generated Java class to repeatedly run the con-
straint solver with a different scope at each time. In
particular, we tested all possible combinations within
the interval defined in Table 1, totaling 400 unique
test cases. It is important to highlight that the scope
assigned to signature Architectural Element actually
covers all elements of this subtype, including System,
Sos, and Mediator.

Table 1: Boundary for analysis scope

Signature Min Max
Architectural Element 3 7
Port 8

4
Connection 8 11
Unification 8 11
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Listing 7: Architecture instance module of TASoS for the URM

1 open tasos

2 open util/ordering[tasos/Architecture] as A0

3 open urmlLibrary

4 /xx Architecture(s) Declaration(s)x*/

5 sig FloodMonitoring extends Sos{}

6 ...

7 sig simple_serving_alert extends Outward{}

8 — constraints about architectural elements

9 ...

10 — constraints about elements in coalitions

11 sig sensors extends sensor{}

12 sig transmitters extends transmitter{}

13 one sig gatewayl extends gateway{}

14 — definition of abstract unifications in architectures

15 sig simple extends Architecture{}{

16 all t: transmitters |

17 all sl: sensors |

18 all s2: sensors |

19 ((

20 unify [sensor_measuring_measure&(sl. owner),transmitter_transmitting_fromSensors&(t."
owner)] and //ul

21 unify [transmitter_transmitting_toGateway&(t. owner),gateway_alerting_measure&(
gatewayl. owner)] //u3

22 ) or

23 unify [sensor_measuring_measure&(sl. owner) , transmitter_transmitting_fromSensors&(t.~
owner)] and //ul

24 unify [transmitter_transmitting_toGateway&(t. owner),sensor_passing_pass&(s2. owner)]
/[ u4

25 ) or (

26 unify [sensor_passing_measure&(sl. owner),transmitter_transmitting_fromSensors&(t.”
owner)] and //u2

27 unify [transmitter_transmitting_toGateway&(t. owner),gateway_alerting_measure&(
gatewayl. owner)] //u3

28 ) or (

29 unify [sensor_passing_measure&(sl. owner), transmitter_transmitting_fromSensors&(t.~
owner)] and //u2

30 unify [transmitter_transmitting_toGateway&(t. owner),sensor_passing_pass&(s2. owner)]
/[ u4

n )

32}

We take into account the following aspects in each
test case: (i) analysis scope, given by the quantity of
elements assigned to each signature in the execution of
the Alloy model for the abstract architecture; (ii) solver
running time, given by the running time of the con-
straint solver; and (iii) satisfiability of the abstract ar-
chitecture, which can be considered as satisfiable or un-
satisfiable if the analysis scope is too small. For the sake
of completeness, we also collected the running time of
the Solution2SosADLGenerator when the solver pro-
duced a concrete architecture for the problem.

All test cases were executed sequentially in a ma-
chine macOS High Sierra v.10.13.6, with 16GB RAM,
and Intel Core i7. All 400 test cases were successful,
yielding a solution for the problem under the prede-
fined time limit of five minutes. Table 2 shows descrip-
tive statistics for this experiment. The running time of

the constraint solver shows great variation between test
cases even though none of them has taken longer than 5
seconds to terminate. Overall, the transformation back
from the solver solution into SosADL is efficient, being
concluded under 1 second.

Table 2: Descriptive statistics of dependent variables

Solver | Transformation
Quantity 400 400
Min (ms) 624 14
Max (ms) 4793 49
Mean (ms) 2008 19
Median (ms) | 1915 17
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Fig. 6: A concrete architecture of the URM in SosADL

Listing 9: Excerpt of a concrete architecture for the
URM that is compliant with the abstract coalition type

1 with urm_library

2 sos FloodMonitoring0 is {

3 architecture simple0() is {

4 gate serving0 is {

5 connection request0 is in{RangeTypeO}

6 connection alert0 is out{RangeTypeO}

7 } guarantee {

8

9 }

10 behavior main is compose {

11 gatewaylO is gatewaylO

12 gateway0 is gatewayO

13 transmittersO is transmittersO

14 } binding {

15 unify

16 one{transmitters0O::transmittingO ::
togatewayO} to

17 one{gateway0O:: alerting0 :: request0}

18 and

19 unify

20 one{gatewaylO:: alertingl :: alertl} to

21 one{transmitters0O::transmittingO ::
fromsensors0}

22 }

% 1)

5.7 Threats to Validity

Four levels of validity threats were identified for this
quasi-experiment, which are discussed in detail.

Internal validity is an inherent risk of this quasi-
experiment since treatments are not assigned to sub-
jects and objects by chance. Furthermore, there is only
one object and one subject in this experiment due to
stage of development of the tool set (SosADE) and lack
of subjects with required skills in SosADL and Alloy.
Still, this risk is ameliorated by focusing the evalua-
tion on the performance of activities automated by the
method, making the role played by the subject not sig-
nificant in the outcome of this experiment.

Ezxternal Validity is also a concern for this exper-
iment since its outcome reflects only one object case.
This risk is mitigated by selecting as object a system
that has the fundamental characteristics of an SoS, as
previously discussed. Nonetheless, it is possible to ex-
pand this experiment aiming to compare the perfor-
mance of different constraint solvers and/or coalition
types.

Construct validity is related to the threat that mea-
surements are not appropriate for selected entities. To
mitigate this threat, we defined several combinations of
the analysis scope that do not depend on context.

Conclusion Validity can be also a threat because
we have set a minimum and top analysis scope for our
experiment, hence not taking into account test cases
that would yield longer running times and would not
terminate as they cause the state explosion problem.
Since our approach purposefully seeks for the smallest
solution (i.e., concrete architecture) within the analysis
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scope, we conclude that a larger scope would not neces-
sarily bring new information to the SoS analysis. There-
fore, we focus our investigation on the lower boundary
in our analysis scope provided that we selected a fea-
sible object case for which the solver can produce a
solution. We have detailed the protocol and materials
used in this experiment aiming to further mitigate this
threat.

5.8 Discussion

The translation of abstract architectures into a con-
straint satisfaction problem is not trivial, specially since
this task requires one to be familiar with declarative
programming paradigm. The tool support provided with
Ark enables one to automatically obtain these Alloy
models from a SosADL description and also to read the
Alloy solution back as a SosADL model, hence conceal-
ing the use of a constraint solving tool in the method.
Therefore, Ark enables one to use this formal method
in the design of the SoS architectures without the ad-
ditional burden that follows mastering a new notation.

In this scenario, the purpose of our case study has
been twofold: (i) to demonstrate the method Ark for the
synthesis of SoS concrete architectures, and (ii) to serve
as a guide for practitioners and researchers who want
to apply SosADL in the design of smart systems. The
expected outcome of the method is a minimal concrete
architecture that satisfies the abstract architecture de-
scription. Therefore, if this is not accomplished, one can
either investigate if the constraints that govern the ab-
stract architecture are correct or if the analysis scope
is sufficient to cover at least one solution. Because the
Alloy Analyzer will look for the minimal concrete archi-
tecture within such an analysis scope, we can work with
a smaller instance of the concrete architecture to val-
idate the suitability of the constraints that have been
defined to govern the interactions within a coalition,
which can also be more efficient since the constraint
solver will perform an exhaustive search.

In practice, however, there can be multiple (e.g.,
dozens or hundreds) of elements in a coalition such as
the one in our case study. Nonetheless, the interactions
between these elements would still be governed by the
same constraints. By focusing on the minimal concrete
architecture of a SoS, we can more easily detect errs
within the specification of these interactions. For in-
stance, we can investigate if undesirable interactions are
also feasible from the abstract architecture description
so that we can refine our model to prevent these inter-
actions at run-time. In this scenario, we can investigate
complementary approaches for Ark to animate concrete

architectures, hence enabling to simulate and/or com-
pare emergent behaviors that can be expected from dif-
ferent coalitions at run-time. To do so, additional mech-
anisms are needed to scale out these minimal concrete
architectures to represent real systems.

6 Related Work

Due to SoS evolutionary development, it is important
to guarantee that changes to the abstract architecture
are performed within a predefined time frame, specially
given that SoS can perform safety-critical missions. There-

fore, we presented in this article a constraint-based method

to automatically determine the feasibility of an abstract
architecture expressed with SosADL. The main advan-
tages of our method can be summarized as follows: (i) it
formally defines the rules governing the formation of
coalitions at run-time; (ii) it limits the need for human
intervention in the verification of such abstract architec-
tures; and (iii) it automatically presents the output of
a constraint solver as a concrete architecture expressed
in SosADL, which can be more easily understood by
SoS architects.

In this scenario, Ark can be compared to works that
use constraint programming for modeling dynamic soft-
ware systems. For instance, Sawyer et. al [64] transform
a goal model that captures the variability in context de-
mands (e.g. environment conditions and quality of ser-
vice) in terms of a constraint satisfaction problem that
can be automatically analyzed by a tool. Even though
their approach is closer to requirements modeling than
abstract architectures, one could further explore the re-
lation that exists between the elements that have been
selected to compose an abstract architecture and the
goals that the SoS is able to accomplish, as discussed
by Silva et. al [65]. Kogekar et. al [37] presents an ap-
proach to support the reconfiguration of explicit models
of a system by formalizing the relationship between sub-
sequent configurations in terms of constraints. In this
respect, their approach is closer to the task of reconfig-
uring concrete architectures of the SoS, supporting the
investigation of subsequent stages of SoS development
that do not require changes to the abstract architecture.
Given the complex nature of designing autonomous sys-
tems, Nafz et. al [48] introduce a design guideline for
modeling the behavior of agent-based systems that is
expressed in KodKod [66], an alternative to the Alloy
Analyzer that accepts a subset of the Alloy language.
Their approach instructs the solver to look for a recon-
figuration of the system when elements of the solution
have already been fixed by the problem. However, their
formalization lacks some of the architectural elements
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that would be needed to represent SoS concrete archi-
tectures in terms of ADLs.

We can also compare our work to research on model
checking for software architectures [70]. Heyman et. al
[23] propose a metamodel of software architectures in
Alloy, focusing on security aspects of these software ar-
chitectures, such as integrity issues, availability issues,
and timing-related issues. The authors introduce an Al-
loy metamodel of software architectures that cover a
subset of UML constructs, including signatures for com-
ponents, connectors, and interfaces. Our metamodel is
based on a novel notation for the description of SoS
architectures that supports the definition of intercon-
nections (i.e., unifications) in terms of constraints and
the composition of systems and mediators within an
architecture, offering additional elements for the de-
scription of complex models for smart systems architec-
tures. In contrast, the Alloy model proposed by Kezniki
et al. [35] is focused on the synthesis of connectors,
which can be determined from the components and
the communication patterns that are defined for the
architecture. The outcome of their method is a connec-
tor instance configuration that establishes how these
components are composed together in the architecture.
Their approach takes into account non-functional prop-
erties, which describe structured/enumerated features,
and roles for these connectors. In contrast, our method
focuses on bridging the gap between abstract and con-
crete architectures by investigating topologies that can
be created from constraints defined over the intercon-
nections between constituents and mediators.

There are also other initiatives for designing and an-
alyzing SoS based on ADLs, such as DANSES (Design-
ing for Adaptability and evolutioN in System of systems
Engineering) and COMPASS” (Comprehensive Mod-
elling for Advanced Systems of Systems). DANSE em-
ploys SysML to the description of executable architec-
tures that can be analyzed against interface contracts.
This approach is aimed at supporting the generation of
new architectures as well as generation of subsequent
ones by means of transformation steps between evolu-
tion. On the other hand, COMPASS develops a formal
approach and applies CML for enriching the specifica-
tion of systems and interfaces with contracts. One dis-
advantage of the latter is that an automatic transforma-
tion of SysML into CML can produce large, unreadable
descriptions.

Kenley et. al [34] define a process for synthesizing
SoS architectures based on three different models of the
SoS, namely: a functional architecture, defining a se-
quence for sequentially executing actions that allow to

SDANSE, www.danse-ip.eu
“COMPASS, www.compass-research.eu

accomplish a mission; a physical architecture, defining
a set of physical capabilities (e.g., sensors, databases,
and communication links); and, an allocated architec-
ture, which assigns functional capabilities to physical
components. In this scenario, abstract architectures are
related to the objectives of functional and physical ar-
chitectures whilst an allocated architecture is closer to
concrete architectures. A dynamics mode is used in
their work to express the dynamic behavior of allo-
cated architectures as input to an executable model
implemented in Discrete Agent Framework (DAF)[47],
which is based on MATLAB. The task of creating al-
located architectures is delegated to a model builder
developed in DAF that replaces explicit definitions of
arrangements and interconnections by a physical net-
work, defining available point-to-point links, and an
agent data path, selecting constituents that can be con-
nected. Assumptions and the link allocation algorithm
are employed to tailor architectures according to archi-
tects preferences, e.g., by choosing faster physical links
instead of shortest path. Then, different techniques can
be used, including UML activity diagrams for model-
ing the dynamics model and transforming then in Petri
nets to create an executable model. In this regard, the
main difference with our work is that SoSy, built-in in
the SosADE development environment for SosADL, fo-
cuses on bridging the gap between abstract and con-
crete architectures, raising the abstraction level with
which architects can design coalitions. Therefore, addi-
tional work is needed in order to support the simulation
of SoS concrete architectures expressed in SosADL as
it is proposed by Graciano Neto et. al [50].

Our work can also be compared with approaches
that use formal architectural models in the description
of SoS. Baldwin et. al [2] use set theory for mathe-
matically representing SoS characteristics by means of
systems, goals, and actions. Their approach models: (i)
autonomy, as the cardinality of the set of actions that
each system contributes for achieving the SoS goals; (ii)
belonging, as the ratio between actions that a system
contributes for the SoS goal and its autonomy (e.g.,
systems can only participate in the SoS if their be-
longing is greater than a threshold, which is inversely
proportional to their contributed value); and (iii) dy-
namic connectivity, which is enabled when two systems
share at least one connector and disabled when any sys-
tem contribution stand below their belonging thresh-
old. Using agent-based modeling, they simulated if it
is possible to dynamically create coalitions given con-
stituents’ autonomy, belonging, and connectivity prop-
erties. In comparison to our approach, their model still
lacks abstractions for the description of abstract types
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and coalitions, which would enable to specify correct-
ness properties about interconnections.

Khlif et. al [36] focus on the decomposition and re-
finement of an SoS architecture expressed in SySML. In
particular, their approach does not cover the topology
of the architecture, i.e., how constituents and media-
tors are connected together, and the modifications that
could be applied to the software architecture. In com-
parison, Ark is based on a novel formal language, Sos-
ADL, that is semantically and syntactically well-defined
for expressing SoS. Finally, empirical evidence for cost-
benefit of a new method is needed for its dissemination
in industry [44]. Even though we have demonstrated the
potential of our method in an illustrative scenario of ur-
ban river monitoring, additional cases are needed. The
existence of tool support for our method is expected
to ameliorate this issue, since it automatically creates
models that are required by Ark, thereby reducing the
investment for applying this method in practice.

7 Conclusions

The evolutionary development of SoSs requires software
architectures that can support changes in constituent
systems for the realization of emergent behaviors. The
main contribution of our method to the state-of-the-
art is to provide mechanisms that enable to automati-
cally verify the feasibility of a SoS abstract architecture
at run-time based on correctness properties specified
at design time. In particular, this method conceals the
use of constraint solvers, which automatically synthe-
size concrete architectures that adhere to an abstract
description of the SoS. Custom tool support, named
SoSy, is also provided, automating the transformation
of SoS abstract architectures in terms of a Constraint
Satisfaction Problem (CSP) and the subsequent trans-
lation of the output for this problem as a concrete archi-
tecture of the SoS. We demonstrated this method and
its accompanying tool support in a case study where we
confirm the feasibility of an abstract architecture for a
urban river monitoring SoS.

As future research, we will investigate means to ame-
liorate the efficiency of our method, which is sensitive to
the selection of the analysis scope. We also intend to in-
vestigate the impact of particular architectural styles to
the sustainability of abstract architectures and expand
this method to support dynamic changes to abstract
architectures, which directly impact concrete architec-
tures. Examples of such changes encompass: (i) the
addition of a new system to the coalition; (ii) unex-
pected self-termination of a communication link be-
tween systems due to internal conditions (e.g., low bat-
tery power or malfunctioning); or (iii) the optimization

of internal and/or external resources. To achieve this
goal, we will develop a mechanism that can be trig-
gered by mediators and constituents for “sensing” the
environment, e.g. discovering nearby constituents and
voluntarily sharing information. Finally, a qualitative
evaluation about the usability of our method and tool
is also important for tailoring a design and develop-
ment environment for the SosADL language based on
the needs of researchers and practitioners. For instance,
it can help identify the main challenges for the design of
abstract architectures and offer additional guidance for
these tasks. Therefore, such an investigation is certainly
useful for minimizing human errs during the analysis of
abstract and concrete architectures.
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