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Abstract.

Binary Image Analysis problems can be solved by set operators implemented as programs fora
Morphological Machine (MMach). These programs can be generated automatically by the descrip-
tion of the goals of the user as a collection of input-output image pairs and the estimation of the
target operator from these data. In this paper, we present a software, installed as a Toolbox for
the KHOROS system, that implements this technique and some impressive resuits of applying this
tool in shape recognition for OCR.
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1. Introduction

Optical Character Recognition (OCR) refers to a process in which printed documents
are transformed into ASCII files for the purpose of compact storage, editing, fast
retrieval, and other file manipulations through the use of a computer [8].

A key problem in OCR is the recognition of characters by their shapes. The
techniques applied for this task must be robust and flexible to deal with different
letter fonts in different contexts (distinct serifs, styles, noise, etc.)

A natural model of a procedure for shape recognition is a set operator applied on
a Discrete Random Set [6]. Mathematical Morphology (MM) is a general framework
to study set operators {2].

An important aspect of MM is the description of set operators by a formal lan-
guage that is complete and expressive [3]. Since the sixties special machines, the
Morphological Machines (MMach’s), have been built to implement this language.
However, designing useful MMach programs is not an elementary task.

Recently, much research effort has been addressed to automating the programming
of MMach’s. The goal is to find suitable knowledge representation formalisms to
describe operations over geometric structures and to translate them into MMach
programs. We have proposed [4, 5] the use of Machine Learning theory [1, 11} as a
framework for the automatic programming of MMach’s. In this approach, the goals
of the user are represented as a collection of input-output pairs of images and the
target operator is estimated from these data.

In this paper, we present a software that performs the automatic programming of
MMach’s by Machine Learning and some impressive results of applying this tool in
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shape recognition for OCR.

Following this introduction, section 2 shows how to approach the problem of shape
recognition by set operators. Sections 3 and 4 recall, respectively, the canonical rep-
resentation of set operators and the formulation of the problem of learning set operat-
ors. Section 5 describes the software developed. Section 6 describes the strategies of
learning employed in the experiments. Section 7 presents some experimental results.
Finally, we discuss some aspects of this work and present some possible future steps
of this research.

2. Shape Recognition by Set Operators

Let P(E) be the collection of all subsets of a non empty subset E . The set E is
assumed to be an Abelian group with respect to a binary operation denoted by +.
The zero element of (E, +) is called the origin of E and it is denoted o.

Let ¥ be a finite subset of E and W denote the set operators on P(E) that are
translation invariant (t.i.) and locally defined (1.d.) within the window W, that is,
¥ € Yw iff, VX € P(E) and Vh € E,

V(X +h)=9(X)+h

and
hey(X) <= hep(Xn(W+ h)).

Let M be a finite subset of E. A shape S in M is a collection of subsets of M.
A set X € S is called a set of shape S. A classical problem in Image Analysis is the
problem of shape recognition.

Let I be a set of indices. Given a collection of shapes {S; : i € I}, such that
SiNS; =B fori#j, i,j€l, and aset X, such that X € U{S; : i € I}, of unknown
shape, what is the shape of X7

A collection {t; : i € I} of set operators can be used to solve this problem. A
set operator ¥; indicates if X is of shape S; or not, respectively, if it satisfies the
properties: ¢;(X) # 0,VX € 8;, and ¢;(X) =0, VX €U{S; : j€ [,j #i}.

The operator ¥ is called the marker of the shape S;.

Let W and X be subsets of M. The model of X through W is the collection
Xw = {W+hnX,h€ E}. A shape recognition problem is said to be of dimension W
if. for all i € I, there exists M; C P(W), M; # {0}, such that VX € S;, M; C Xw
and Vi€ [, i#jVY €S;,M; € Yw.

‘This condition implies that there exists a collection of t.i. operators l.d. within
the window ¥ that can solve the shape recognition problem.

The elements of P(W) will be called patterns.

3. Set operators representation

Let ¥ € V. The set Kw(¥) = {X € P(W):0 € ¢(X)} is called the kernel of 9.

Let A, B € P(W), such that A C B. Theset [A,B] = {X € P(W): AC X C B)
s called a closed interval.

The set of maximal intervals contained in Kw (¥') is called the basis of ¢ and is
denoted Bw (v).

Let A, B € P(W). such that A C B. The operator A&.B) defined by
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Mas(X)={z€E:A+2CXNW+2)CB+1z},

for all X € P(E), is called the locally defined sup-generator operator characterized
by the pair ((4, B), W).

Any operator ¢ € ¥ can be represented [2] as

¥(X) = (A4 p)(X) : [A, Bl € Bw(¥)},

for all X € P(E). This representation is called the canonical representation of the
operator ¢.

Equivalently, the operator ¥ can be represented by the Boolean function fy
defined by, for all X € P(W),

fo(X)=1&3(A,Bl€e Bw(¥): X €(A, B).

4. Machine Learning

We understand a concept as a subset of objects in a predefined domain, structured
by a probability distribution. An ezample of a concept is an object from the domain
together with a label indicating whether the object belongs to the concept. If the
object belongs to the concept it is a positive ezample, otherwise it is a negative
erample. Concept learning is the process by which a learner constructs a good
statistical approximation to an unknown concept, given a relatively small number of
examples and some prior information about the concept to be learned [1, 11]. In the
following, we formalize these ideas.

Let D be a finite domain with a distribution u. A concept c is a Boolean function
from D to {0,1}. A particular concept is the function fy that represents the operator
¢ in the domain D = P(W). '

For an object X € D, an example (X,) is a positive ezample if b=1and a
negative example if b = 0.

The set of all possible concepts to be learned will be referred to as the hypothesis
space and denoted by H. The concept t € H to be determined is called the target
concept. The problem is to find a concept h € H, called hypothesis which is a good
approximation for £.

A training sample of size m for a concept 1 is a sequence (X1,81), -y (Xomy ben)-

A learning or training algorithm is simply a function L which assigns to any
training sample s for a target concept ¢ a hypothesis he H. We write h = L(s) and
call L(s) a training or learning.

Let ¢ and & be two real numbers in the open interval (0,1). The precision of an
algorithm L applied on a training sample of size m is

Prec(L,m,¢) = P(u(D(m)) <€),
where D(m) = {X1, X3, .y Xm} and P is the probability on D™ inherited from the
distribution g on D.
For a pair (e, d) fixed, the size m of the training sample must be such that
Prec(L,m,¢) > 1-4.

A training sample is consistent if X; = X; implies b; = b;. A learning algorithm
L for H is consistent if, given any consistent training sample s for a target concept
t € H, the output hypothesis agrees with t on the examples in s, that is, A(X;) =
t(X;), for all i € [1,m].
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When the algorithm L is consistent it is also called Probably Appronimately Cor-
rect (PAC) [9] and a theoretical lower bound for m is

m(e, 6)—_--1 ('"')

where |H| denotes the cardinality of the set H. For approximately consistent sample
sets, the theoretical lower bounds for m are even bigger, since they need to take into
account the contradictions in the training sample.

5. A Toolbox for the Automatic Programming of MMach’s

We have developed a software for the automatic programming of MMach’s that was
installed as a toolbox for the KHOROS system {7]. We briefly describe the software
modules, as shown in figure 1:

1. Sample acquisition: the modules vwin and vpat are to compile positive and
negative examples. More specifically we have: (a) vwin: to specify the size and
format of the window W; (b) vpat: to collect pairs (X,b) of positive and negative
examples, where X is a pattern from X;.

2. Learning: the modules vxpl, vinterv, and vlearn are to learn the operator ¢,
from the examples acquired in the previous step. More specifically: (a) vxpl: to
generate a reduced table of examples, i.e., eliminating pairs (X, b) which occurred
more than once or choose between contradictory ones; (b) vinterv: to generate the
initial intervals for the ISI learning algorithm (see [5]); (c) vlearn: to learn the
operator v using the ISI algorithm.The resulting intervals correspond to the learned
operator basis, i.e., the sup-generators that constitute its minimal representation.

3. Application on new inputs: the module vunisup is used to apply the learned
operator 1/: on new inputs Z.

Sample Leamning Application
Acquisition

Fig. 1. Software Modules

6. Shape Recognition for OCR

Our goal is to learn a marker ¢ that separates the characters that represent the letter
of interest from the others. The marker ¥ will be learned from pages of a book and
applied on other pages of the same book.

We have performed the following steps to prepare the data : al) scanning some
pages of a book; a2) processing these data with gray-scale morphological operators
in order to segment the images (i.e. transform the gray-scale image into a binary
image, where the one pixels represent the characters and the zero pixels represent



AUTOMATIC PROGRAMMING OF MMACH'S FOR OCR 5

the background); a3) separate some pages of the scanned data and extract by hand
(i.e. using some image editing tools) all the occurrences of a given character. Each
experiment consists of the following steps: bl) learning a set operator ¥ from the
data prepared in a3; b2) estimating the precision of ¥, from images not used in bl.

In b2, we have defined two type of errors : missing errors and errors by ercess.
The former is verified when the learned operator misses (i.e. doesn’t mark ) a char-
acter that should be recognized and the second is verified when it marks a character
that should not be recognized. The sum of these two types of error, in relation to
the total of characters in the pages considered in b2, determines the relative error of
the learned operator.

Let I be a set of indices and let {X; : i € I} and {Y; : i € I} be the collection
of images generated, respectively, in a2 and a3. A first marker ¢, was learned from
these data. This training considers as positive examples just the patterns that were
observed in the sets of the shape of interest and were not observed in the sets of the
other shapes.

We have noticed that almost all errors observed in ;(X;) (where X; was not
used in the training) were by excess. This fact led us to suggest a second training
stage, based on the pairs of images (¥, (X;), Y;), where X; was not used to train ¢,
to get a second operator ¥ that acts as a filter to reduce the errors by excess [10].
In this case, the marker is ¥ = ¥29;.

We have also noticed that we could apply a succession of filters to get improved
results. We will generically use the term n-stage training to express the learning of
a marker built by the composition of a first marker with (n — 1) filters.

We have used two variants, Ly and L3, of the ISI algorithm (see [5]) to perform
the training. These variants are such that Ly (s)(X;) = L3(s)(X;), for all pattern X
in the training sample s. However, they have different generalizations, that is, there
exists a pattern Y € P(W) such that Ly(s)(Y) # La(s)(Y).

7. Experimental Results

We have chosen two old books, referred to as Book 1 and 2 (written in Portuguese),
to experiment our tools to solve the problem of shape recognition for OCR. We have
performed some experiments on both books to recognize the lower case letters “s”
and “a”. Figure 2 shows images of these books. In this figure, the pixels in black
are the markers produced by .

7.1. ONE-STAGE TRAINING

In tables I and 11 we describe the results of experiments with one-stage training
performed with Book 1. In all the tables presented in this paper, the time of training
was measured in hours(h), minutes(m) and seconds(s).

One can notice the number of examples used in the training affects rightly the
relative error (see rows 1,2 and 4 in table II). However, the time of training increases
with the size of the training sample (see rows 1 and 2 in table II).

We can observe in rows 2 and 4 in table [, or rows 3 and 5 or rows 2 and 6 in
table II, that there is no conclusive relationship between the window size and the
relative error.
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Fig. 2. a) Book 1. b) Book 2.

window | number of type of size of | time of relative
size examples | algorithm | basis | training | error (%)
5x5 270,267 2 1,560 5h20m 6.2
5x5 79,049 3 416 20m53s 7.66
Tx7 79,040 2 1,348 1h46m 14.85
T 79,040 3 284 25m 5.12
TABLE 1

Book 1 - letter “s”

Furthermore, since the variants of ISI give different number of elemnents in the
basis to the same training sample, it affects the relative error of the learned operator,
as we can see in rows 3 and 4 in table I or in rows 2 and 3 or rows 5 and 6 in table II.

We have repeated some of these gxperiments to Book 2 and the best relative error
obtained for it were 4.1 and 11.8, respectively, for the letters “s” and “a”.

7.2. MULTIPLE-STAGE TRAINING

In multiple-stage training, we have performed some experiments with different num-
bers of stages. In each stage we used a square window, reduced by 2 pixels their sides
in relation to the former stage. In tables I1I and IV we show some results concerned
with multiple-stage training, extending the training described in 7.1.

There is a considerable decrease of relative error from stage 1 to stage 2. while
the increase of time (spent to train ¥;) and of the basis size (due to the basis of wa)
are not significant. Here, we note that the initial window size affects the final relative

window | number of type of size of time of relative
size examples | algorithin | basis training | error (%)
Tx7 270.192 2 §,059 267h12m 15.5
Tx7 79,040 2 2,311 19h20m 25.56
Tx7 79,040 3 644 2h47m28s 10.4
TxT 37,201 2 1,447 5h18m 35.31
| 9x9 79,019 3 551 3h45m 12.75 |
| I9x9 79,019 2 2,798 14h42m 3145 |
TABLE 11

Book 1 - letter “a”
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first stage | number of | numberof | totalsize [ time of relative
window size | examples stages of basis | training | error (%)
5x5 79,049 1 116 20m53s 7.66
5x5 86,111 2 429 20mb54s 1.31
Tx7 79,040 1 284 24m31s 5.12
Tx7 33,237 2 354 24m49s 0.49
Tx? 87,288 3 388 24m50s 0.35
TABLE II1I
Book 1 - letter “s”
first stage number of | number of | total size time of relative
window size | examples stages of basis training | error (%)
= P 79,040 1 644 2h47m28s 10.4
X7 88,333 2 726 2h47m55s 1.38
Tx7 96,532 3 762 2h47m56s 0.50
9x9 79,019 1 551 3h45m 12.75
9x9 88,275 2 700 3h47m52s 0.80
9x9 96,121 3 760 3h48m13s 047
9x9 103,530 4 781 3h48mids 0.38
TABLE IV

Book 1 - letter “a”

error (see rows 2 and 4 in table I1I or rows 2 and 5 in table IV).

We have repeated some of thesg experiments to Book 2, and we achieved the
relative errors 0.39 in stage 3 and 0.15 in stage 2, respectively, for the letters “a” and
“s” In the case of letter “s”, a third stage presented a significant increase of missing
errors in relation to a small decrease of errors by excess, resulting in a realtive error
0.16. ‘This fact establishes a limit to the number of stages applicable to multiple-stage
training.

We have concluded that a multiple-stage training is a very suitable and efficient
way to improve the results without increase the sample size, despite of the limitation
on the number of training stages.

8. Discussion

We have gotten exceptionai results (more than 99.5 % correct) applying learning
algorithms to the design of MMach programs for character recognition.

Analysing these results a number of natural questions arise: Why the relative
small number of examples used are enough to get such a performance? Why the
multi-stage learning is much better than the one-stage learning? How to choose the
size of the windows? How to define the number of stages? tow to estimate the
number of examples needed? How to choose good generalizations?

Answering all these questions with solid mathematical arguments is fundamental
for the development of a strong Mathematical theory for the design of MMach pro-
grams fromn examples. Our atiempts to answer them indicate they are hard problems
and. for the moment, all that we can give are some informal comments, as follows :
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At first, we observe the distance between realistic bounds and the theoretical
bounds for the sample size. The training samples that we have used are not cousist-
ent, but just to give an idea of the discrepancy let us compare the bound for PAC
algorithms with the size of the training samples that we have used. For example,
using a 7 x 7 image window (i.e. |W| = 49) and adopting ¢ = § = 0.25, the theoretical
bound is -

1 2%
m(e, ) = 025 ln(0 25) ~ 109,
while in the corresponding experiment we have used m(e,d) = 270,000 and got an

equivalent precision.

It seems that the reason for this discrepancy comes from the fact that the domain
of a single book is a very restricted context A C P(W), because the letters have just
particular patterns and not all the possible patterns in P(W). This should imply
in extraordinary reductions in the size of the hypothesis space H. Another point is
that even restricted to .4 there are extremely rare shapes that have practically no
influence in the precision rates.

The multi-stage training is another fundamental and intriguing point. It seems
that each stage reduces the context making easier the work of the next stage. This
reduction of context is so remarkable that even the size of the training sample dimin-
ishes dramatically relative to the one-stage training. Besides this method gives hybrid
representations (parallel-sequential) that are much simpler (use a smaller number of
sup-generating operators) than the strictly parallel ones.

We hope that these examples have shown the enormous potential of the automatic
programming of MMach’s by learning algorithms and motivate other researchers to
work on these fundamental and intriguing questions.
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