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Binary Image Analy1i1 proble1111 can be aolved by ,et opera&on implemented u program,, for a 

Morphological Machine (MMach). Theae program, can be genera&ed automatically by the descrip­

tion of the goala of the uaer u a collection of input-output image pain and the estimation of the 

target operator rrom theae data. In thia paper, we present• ao(tware, installed as a Toolbox for 

the KHO ROS aystem, thal. implementa this technique and 11<>me impreuive results of applying thia 

tool in shape recognition for OCR. 
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1. Introduction 

Optical Character Recognition (OCR) refers to a process in which printed documents 

are transformed into ASCII files for the purpose of compact storage, editing, fast 

retrieval, and other file manipulatio'ns through the use of a computer [8). 

A key problem in OCR is the recognition of characters by their :;ha.pe:;. The 

techniques applied for this task must be robust and flexible to deal with different 

letter fonts in different contexts (distinct serifs, styles, noise, etc.) 

A natural model of a procedure for shape recognition is a set operator applied ou 

a Discrete Random Set (6]. Mathematical Morphology (MM) is a general framework 

to study set operators (2]. 
An importanL aspect of MM is the description of set operators hy ;i formal lan­

guage that is complete and expressive [3]. Since the sixties special machines, the 

Morphological Machines (MMach's), have been built to implement this language. 

However, designing useful MMach programs is not an elementary task. 

Recently, much research effort has been addressed to automating the programming 

of MMach's. The goal is to find suitable knowledge representation formalisms to 

describe operations over geometric structures and to translate them into MMach 

programs. We have proposed [4, 5] the use of Machine Learning theory [l, 11) as a 

framework for the automatic programming of MMach's. In this approach, the goals 

of the user are represented as a collection of input-output pairs of images and the 

target operator is estimated from these data. 

In t.his paper, we present a software that performs the automatic programming of 

MMach 's by Mac:hine Learning and some impressive results of applying this tool in 

' The authon have received partial •upport of Olivetti do Brasil, CNPq, grants PROTF.M-CC­

ANIMOMAT and PROTEM-CC-TCPAC, and Cooperation USP-COFECUB 
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shape recognition for OCR. 
Following this introduction, section 2 shows how to approach the problem of shape 

recognition by set operators. Sections 3 and 4 recall, respectively, the canonical rep­

resentation of set operators and the formulation of the problem of learning set operat­

ors. Section 5 describes the software developed. Section 6 describes the strategies of 

learning employed in the experiments. Section 7 presents some experimental results. 

Finally, we discuss some aspects of this work and present some possible future steps 

of this research . 

2. Shape Recognition by Set Operators 

Let 'P(E) be the collection of all subsets of a non empty subset E . The set E is 

assumed to be an Abelian group with respect to a binary operation denoted by +. 
The zero element of ( E, +) is called the origin of E and it is denoted o. 

Let W be a finite subset of E and lfw denote the set operators on 1'(E) that are 

translation invariant (t.i.) and locally defined (l.d.) within the window W, that is, 
J/; E tllw iff, VX E 'P(E) and Vh EE, 

and 
1/i(X + h) = 1"(X) + h 

h E 1/i(X) ~ he 1"(X n (W + h)). 

Let M be a finite subset of E. A shape Sin M is a collection of subsets of M. 
A set X E S is called a set of shape S. A classical problem in Image Analysis is the 
problem of shape recognition. 

Let / be a set of indices. Givep a collection of shapes {S; : i E /}, such that 

S; nSi = 0 for ii- j, i,j E /, and aset X, such that XE U{S,: i EI}, of unknown 

shape, what is the shape of X? 
A collection { 1/i; : i E I} of set operators can be used to solve t.his problem. A 

set operator TPi indicates if X is of shape S; or not, respectively, if it satisfies the 

properties: \";(X) i- 0, VX E Si, and 1/>;(X) = 0, VX E U{Si ; j E 1,j i- i}. 
The operator !J,i is called the marker of the shape Si. 
Let H-' and X be subsets of M. The model of X through W is the collection 

Xw = {W +linX, h EE}. A shape recognition problem is said to be of dimension W 

if. for all i E /. there exists Mi C 'P(W), M; f:. {0}, such that VX ES,, M; C Xw 

and Vj E /,ii:- j,VY E S;,M; ~ Yw. 
Thii1 condition implies that there P.Xists a collection of t.i. operators l.d. within 

the window W that can solve the shape recognition problem. 
The P.lements of 'P(W) will be called patterns. 

3. Set operators representation 

Let 1/J E 'llw. The set Kw(tb) = {XE -P(W) : o E ¢(X)} is called the kernel of 1"­
Lct A, BE 'P(W), such that A~ B. The set (A, BJ= {X E 'P(W) : A~ X ~ B} 

ts called a closed interval. 
The set of maximal intervals contained in A:w(tl•) is called the has,., of¢ and is 

denoted Bw(,J,). 

Lf't. A.BE -P(W). such that A~ B. The operator ~i.»l defined b~· 
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,\~,8 i(X) = {z EE: A+ z ~ X n (W + z) ~ B + z}, 

for all X E P(E), is called the locally defined sup-genemtor opemtor characterized 

by the pair ((A, B), W). 
Any operator f/J E IVw can be represented (2] as 

¢(X) = U{,\~,s)(X): (A,B] E Bw(¢)}, 

for all X E P(E). This representation is called the canonical repre.sentation of the 

operator ¢. 
Equivalently, the operator VJ can be represented by the Boolean function /,; 

defined by, for all X E P(W), 

J.,,(X) = 1 ~ 3(A, B] E Bw(f/J) : XE [A, B]. 

4. Machine Learning 

We understand a concept as a subset of objects in a predefined domain, structured 

by a probability distribution. An ezample of a concept is an object from the domain 

together with a label indicating whether the object belongs to the concept. If the 

object belongs to the concept it is a po.sitive ezample, otherwise it is a negative 

example. Concept learning is the process by which a learner constructs a good 

statistical approximation to an unknown concept, given a relatively small number of 

examples and some prior information about the concept to be learned [l, 11]. In the 

following, we formalize these ideas. 
Let 'D be a finite domain with a distribution µ. A concept c is a Boolean function 

from 1) to {0, l}. A particular concept is the function f. that represents the operator 

tJ, in the domain V = P(W). 
For an object X E V, an example (X, b) is a po.sitive ezample if b = 1 and a 

negative ezample if b = 0. 
The set of all possible concepts to be learned wiU be referred to as the hypothesu 

space and denoted by H. The concept t E H to be determined is called the target 

concept. The problem is to find a concept h EH, called hypothesis which is a good 

approximation for t. 
A training .sample of size m for a concept t is a sequence (X1, bi), ... , (Xrn,b,,.). 

A learning or training algorithm is simply a function L which assigns to any 

training samples for a target concept ta hypothesis h EH. We write h = Us) and 

call L(s) a training or learning. 
Let c and 6 be two real numbers in the open interval (0, l). The precision of an 

algorithm L applied on a training sample of size m is 

Prec(L, m, t) = P(µ(V(m)) < t), 

where V(m) = {X1 ,X2 , ••• ,Xm} and Pis the probability on vm inherited from the 

distributionµ on V. · 
For a pair ( c, 6) fixed, the size m of the training sample must be such that 

Prec(L, m, i) > l - 6. 

,\ training sample is consi.stent if X; = X; implies b; = b;. A learning algorithm 

L for II is consistent if, given any consistent training sample • for a target concept 

t e H, the output hypothesis agrees with t on the examples in •• that is, h(X;) = 
t(X; ), for all i E [I, m]. 
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When the algorithm L is consistent it is also called Probably Approximately Cor­
rect (PAC) [9] and a theoretical lower bound for m is 

l jl/j 
m(t,c5) = ;ln(6 ), 

where JHI denotes the cardinality of the set H. For approximately consii;tent sample 
sets, the theoretical lower bounds for m are even bigger, since they need to take into 
account the contradictions in the training sample. 

5. A Toolbox for the Automatic Programming of MMacb 's 

We have developed a software for the automatic programming of MMach's that was 
installed as a toolbox for the KHOROS system [7]. We briefly describe the software 
modules, as shown in figure 1: 

1. Sample acquisition: the modules vwin and vpat are to compile positive and 
negative examples. More specifically we have: (a) vwin: to specify the size and 
format of the window W; (b) vpat: to collect pairs (X,b) of positive and negative 
examples, where X is a pattern from Xi. 

2. Leaming: the modules vxpl, vinterv, and vlearn are to learn the operator t/J, 
from the examples acquired in the previous step. More specifically: (a) vxpl: to 
generate a reduced table of examples, i.e., eliminating pairs ( X, b) which occurred 
more than once or choose between contradictory ones; (b) vinterv: to generate the 
initilll intervals for the ISi learning algorithm (see [51); (c) vlearn: to learn the 
operator t/J using the ISi algorithm.The resulting intervals correspond to the learned 
operator basis. i.e., the sup-generators that constitute its minimal representation. 

3. Application on new inputs: tbe module vunisup is used to apply the learned 
operator t/J on new input.a Z. 

vpat 
,._ __ __.,. , ----

vwin 

......... •· 
Sample 

Acquisition 

.... I .. , .·· , , 
I 

' vinterv 
.... ______ 6' 

Leaming 

Fig. I. Software Modulea 

6. Shape Recognition for OCR 

Application 

Our goal is to learn a marker 1/J that separates the characters that represent the letter 
of interest from the others. The marker t/J will be learned from pages of a book and 
applied on other pages of the same book. 

We have performed the following steps to prepare the data : a 1) i;canning some 
pages of a book; a2) processing these data with gray-scale morphological operators 
in order to segment the images (i.e. transform the gray-scale image into a binary 
image, where the one pixels represent the characters and the zero pixels represent 
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the background); a3) separate some pages of the scanned data and extract by hand 
(i.e. using some image editing tools) all the occurrences of a given character. Each 
experiment consists of the following steps: bl) learning a set operator 1/J from the 
data prepared in a3; b2) estimating the precision of 1/J, from images not used in bl. 

In b2, we have defined two type of errors : missing errors and errors by excess. 
The former is verified when the learned operator misses (i.e. doesn't mark) a char­
acter that should be recognized and the second is verified when it marks a character 
that should not be recognized. The sum of these two types of error, in relation to 
the total of characters in the pages considered in b2, determines the relative error of 
the learned operator. 

Let / be a set of indices and let {X; : i E /} and {Y; : i E /} be the collection 
of images generated, respectively, in a2 and a3. A first marker ¢ 1 was learned from 
these data. This training considers as positive examples just the patterns that were 
observed in the sets of the shape of interest and were not observed in the sets of the 
other shapes. 

We have noticed that almost all errors observed in ¢ 1(X;) (where X; was not 
used in the training) were by excess. This fact led us to suggest a second training 
stage, based on the pairs of images (1/J1(Xi), Y;), where X; was not used to train ¢1, 
to get a second operator ¢2 that acts as a filter to reduce the errors by excess [10). 
In this case, the marker is 1/J = I/J21/J1. 

We have also noticed that we could apply a succession of filters to get improved 
results. We will generically use the term n-stage training to express the learning of 
a marker built by the composition of a first marker with (n - 1) filters. 

We have used two variants, Lt and L2, of the ISi algorithm (see (5)) to perform 
the training. These variants are such that L1(1)(X;) = L2(s)(X;), for all pattern X; 
in the training samples. However, they have different generalizations, that is, there 
exists a pattern YE P(W) such that L1(1)(Y) # L2(s)(Y). 

7. Experimental Results 

We have chosen two old books, referred to as Book l and 2 (written in Portuguese), 
to experiment our tools to solve the problem of shape recognition for OCR. We have 
performed some experiments on both books to recognize the lower case letters "s" 
and "a". Figure 2 shows images of these books. In this figure, the pixels in black 
are the markers produced by ¢. 

7 .1. ONE-STAGE TRAINING 

In tables I and II we describe the results of experiments with one-stage training 
performed with Book 1. In all the tables presented in this paper, the time of training 
was measured in hours(h), minutes(m) and seconds(s). 

One can notice the number of examples used in the training affects rightly the 
relative error (see rows 1,2 and 4 in table II). However, the time of training increases 
with the size of the training sample (see rows l and 2 in table 11). 

\Ve can observe in rows 2 and 4 in table I, or rows 3 and 5 or rows 2 and 6 in 
table II, that there is no conclusive relationship between the window size and the 
relative error. 
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r 
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parcial a t.e entao p 
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c.ana.is 
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ru; i n~onscit~ntem.Cfl 

para produzir a 
-,~ oonspirati1,'c~s, a 
o am pr~os pratic 

caua uma das em 
(a) (b) 

Fig. 2. a) Book 1. b) Book 2. 

window number of type of aize of time of relative 

size examples algorithm basis training error(%) 

5 X 5 270,267 2 1,560 5h20m 6.2 

5x5 79,049 3 -416 20m53a 7.66 

7 X 7 79,040 2 1,348 lh46m 14.85 

7x7 79,0-40 3 284 25m 5.12 

TABLE I 
Book 1 - letter ••" 

Furthermore. since the variants of ISi give different number of elements in the 

basia to the same training sample, it affects the relative error of the learned operator, 

as we can see in rows 3 and 4 in table I or in rows 2 and 3 or rows 5 and 6 in table II. 

We have repeated some of these ,xperiments to Book 2 and the best relative error 

obtained for it were 4.1 and 11.8, respectively, for the letters "s" and "a" . 

7 .2 . Mu1: r1PLE-STAGE TRAINING 

In multiple-stage lraining, we have performed some experiments with different num­

bers of stages. In each stage we used a square window, reduced by 2 pixels their sides 

in relation to the former stage. In tables III and IV we show some results concerned 

with multiple-stage training, extending the training described in 7. I. 

There is a considerable decrease of relative error from stage l to stage 2. while 

the increase of time (spent to train 1/12) and of the basis size (due to the basis of 1JJ2) 

11re not significant. Here, we note that the initial window size affects the final relative 

window numb<'rof 

~ize example• 
7x7 270.192 

7 X 7 79,040 

7x7 79,040 

i X 7 37,201 

9 X \I 79.019 

9x9 79,019 

type of size of 

algorithm ba.ais 

2 5,059 

2 2,311 

3 64-4 

2 1,447 

3 551 

2 2,798 

TABLE II 
Book 1 - letter --a" 

time of relative 

training error(%) 

267hl2m 15.5 

19h20m 25.56 

2h47m28a 10.4 

5hl8m 35.31 
' 

3h45m 12.75 

14h42m :.Jl.45 

a ... 
.. 

• I 
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• 
first stage number of 

window size examples 

5x5 79,049 

5 X 5 86,111 

7 X 7 79,040 

7 X 7 llJ.237 

7 X 1 87,288 

first •tage number of 

window size example• 

7x7 79,040 

7x7 88,333 

7x7 96,532 

9x9 79,019 

9x9 88,275 

9x9 96,121 

9x9 103,530 

nu~rof total size 

5tages of basis 

I 116 

2 429 

I 284 

'}. 354 

3 388 

TABLE Ill 
Book I - leu.cr "s" 

number of total size 

st.ages of baaia 

1 644 

2 726 

3 762 

I 551 

2 700 

3 160 

4 781 

TABLE IV 
Book 1 • letter "a• 

time of relative 

training error(%) 

20m53s i.66 

20m54s 1.31 

24m31s 5.12 

24m49s 0.49 

24m50s 0.35 

time of relative 

iraining error(%) 

2h47m28a 10.4 

2h47m55s 1.38 

2h47m56a o.so 
3h◄Sm 12.75 

3h47m52s 0.80 

3h48ml3a 0.47 

3h48m14a 0 .38 

error (see rows 2 and 4 in table III or rows 2 and 5 in table IV). 

j 

We have repeated &Orne of theSf! experiments to Book 2, and we achieved the 

relative errors 0.39 in stage 3 and 0.15 in stage 2, respectively, for the letters "a" and 

·s" . In the case of letter ·s", a third stage presented a significant increase of missing 

errors in relation to a small decrease of errors by excess, resulting in a realtive error 

0.16. This fact establishes a limit to the number of stages applicable to multiple-stage 

training. 
WP have concluded that a multiple-stage training is a very suitable and efficient 

way to improve the results without increase the sample size, despite of the limitation 

on the number of training stages. 

8. Discussion 

We have gotten exceptionai results {more than 99.5 % correct) applying learning 

algorithms to the design of MMach programs for character recognition. 

Analysing these results a number of natural questions arise: Why the relative 

:;;mall number of examples used are enough to get such a performance"! Why the 

multi-stage learning is much better than the one-stage learning? How to ch008e the 

size of the windows? How to define the number of stages? !low 1.0 estimate the 

1111mb<'r of examples needed? How to d1oose good generalizations? 

.-\nswering all these questions with solid mathematical arguments is fundamental 

for the <ievelopment of a strong ~1athematical theory for the design of 1\1 Mach pro­

grams from examples. Our attempts to answer them indicate they are hard problems 

and. for th,. moment, all that we can give 11.re some informal comments, as follows : 

-
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At first, we observe the distance between realistic bounds and the theoretical 
bounds for the sample size. The training samples that we have used are not consist­
i>nt, but just to give an idea of the discrepancy let us compare the bound for PAC 
algorithms with the size of the training samples that we have used. For example, 
using a ix 7 image window (i.e. IWI = 49) and adopting c = o = 0.25, the theoretical 
bound is 

I 22" 
m(c,o) = 0.25 ln(0.25) ~ 10n, 

while in the corresponding experiment we have used m( c, o) = 270, 000 and got an 
equivalent precision. 

It seems that the reason for this discrepancy comes from the fact that the domain 
of a single book is a very restricted context A~ 1'(W), because the letters have just 
particular patterns and not all the possible patterns in -P(W). This should imply 
in extraordinary reductions in the size of the hypothesis space H. Another point is 
that even restricted to A there are extremely rare shapes that have practically no 
influence in the precision rates. 

The multi-stage training is another fundamental and intriguing point. It seems 
that each stage reduces the context making easier the work of the next stage. This 
reduction of context is so remarkable that even the size of the training sample dimin­
ishes dramatically relative to the one-stage training. Besides this method gives hybrid 
representations (parallel-sequential) that are much simpler (use a smaller number of 
sup-generating operators) than the strictly parallel ones. 

We hope that these examples have shown the enormous potential of the automatic 
programming of MMach's by learning algorithms and motivate other researchers to 
work on these fundamental and intrJguing questions. 
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