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Sensitivity of observables to coarse-graining size in heavy-ion collisions
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An open question in the field of heavy-ion collisions is to what extent the size of initial inhomogeneities in the
system affects measured observables. Here we present a method to smooth out these inhomogeneities with minimal
effect on global properties, to quantify the effect of short-range features of the initial state. We show a comparison
of hydrodynamic predictions with original and smoothened initial conditions for four models of initial conditions
and various observables. Integrated observables (integrated vn, scaled vn distributions, normalized symmetric
cumulants, event-plane correlations) as well as most differential observables [vn(pT )] show little dependence
on the inhomogeneity sizes and instead are sensitive only to the largest-scale geometric structure. However,
other differential observables such as the flow factorization ratio and subleading principal components are more
sensitive to the granularity and could be a good tool to probe the short-scale dynamics of the initial stages of a
heavy-ion collision, which are not currently well understood.
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I. INTRODUCTION

Relativistic heavy-ion collisions are being performed at
RHIC and the LHC to study the quark gluon plasma. The aim
is to extract its transport properties, phase diagram, and initial
state. Understanding its initial state, for instance, can help
clarify details of strong interactions away from equilibrium.
In the standard picture of a relativistic heavy-ion collision,
the system rapidly thermalizes and expands hydrodynamically
(for recent reviews, see Refs. [1–4]). Ultimately, the system
decouples and particles are emitted. However, the initial stages
of the collisions, before the system has sufficiently thermalized
to exhibit hydrodynamic behavior, are still poorly understood.
Hydrodynamic simulations therefore rely on models to provide
initial conditions, of which many exist, with various features
and levels of sophistication. There are differences in the source
of fluctuations in each of these different initial condition
models, for instance, contributions of the quarks and gluons
to fluctuations versus assuming only nucleonic fluctuations,
which translates into different scales of structure.

In models based on the Monte Carlo Glauber model [5–7],
nucleons follow straight-line trajectories and make collisions.
In coordinate space the positions of the wounded nucleons
are like δ function, thus, two-dimensional Gaussians are
used to smear the colliding nucleons. The usual source of
fluctuations is the position of the nucleons so the size of the
hot spots reflects roughly the radius of a proton (∼1 fm).
More recently an alternative to the standard wounded nucleon
picture was created using parameterized version of initial
conditions, TRENTO [8]. At this point in time, subnucleonic
degrees of freedom have not yet been included in the public
version.

More sophisticated models with nontrivial dynamics are
also employed such as NeXus [9], EPOS [10], UrQMD [11,12],

and AMPT [13]. These can involve various scales: In the
NeXus model [9], parton ladders are exchanged between nu-
cleons, fluctuations occur both at the nucleonic level—nucleon
positions fluctuate—and partonic level—energy sharing to
produce the ladders is probabilistic but the hot spot size also
reflects the nucleon size [14]. This is illustrated in the first row
of Fig. 1.

Models based on perturbative QCD combined with satura-
tion physics also exist, such as the EKRT model [15]. Finally,
there are models based on the color-glass-condensate effec-
tive theory, most notably MC-KLN [16] and IP-Glasma [17].
In the MC-KLN model [16], at a certain point in the transverse
plane (x,y) the energy density depends on the saturation scale,
which is related to the nuclear thickness functions through the
kt -factorization formula. Nucleonic fluctuations are considered
in mckln, although small uncorrelated hot spots appear in
certain versions, as shown in the bottom row of Fig. 1. In
the IP-Glasma model [17], fluctuations of nucleon positions as
well as subnucleonic fluctuations of color charges are included.
The resulting hot spot size is significantly smaller [17] than
other models.

Many of these models have been quite successful in repro-
ducing experimental data (for a few recent comparisons, see
Refs. [18–23]). However, each of these models has differences
in the macroscale—i.e., the shape and size of the initial con-
ditions, the size and location of the hot spots, and the strength
of the fluctuations, such that it is not always clear exactly
which features are essential for reproducing a given observ-
able. In particular, many observables can be simultaneously
reproduced by different initial condition models, providing
the transport properties and other relevant parameters are
properly adjusted. Significant work has been done in terms
of constraining the degree of fluctuations in initial conditions
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FIG. 1. Top: NeXus initial energy density in a midrapidity transverse plane without modification and modified by a cubic spline filter with
λ = 0.3 and 1 fm. This corresponds to a central Pb-Pb collision at

√
sNN = 2.76 TeV. Bottom: MC-KLN initial energy density in a midrapidity

transverse plane without modification and modified by a cubic spline filter with λ = 0.3 and 1 fm. This corresponds to a noncentral Pb-Pb
collision at

√
sNN = 2.76 TeV.

using multiparticle cumulants [21] and event-by-event flow
distributions [24].

One open question is whether the spatial extent of “hot
spots” in the initial system—which can be quite different in
different models—has a sizable effect on measured observ-
ables. This is an important question if we want to rule out
models for the initial state and elucidate the dynamics of the
strong interactions. Typically this is studied by smoothening
small-scale inhomogeneities in a particular model for the
initial state and comparing final observables to the unaltered
version. In this way, one can compare initial conditions that
have the same large-scale structure, but differ only at small
length scales, and therefore detect any dependence of measured
observables on small-scale features of the initial state.

Most commonly a Gaussian function is used to smooth out
small-scale fluctuations [24–33]. However, this procedure not
only smoothens small-scale inhomogeneities, but simultane-
ously increases the radius of the system. This changes the
global structure, making the initial conditions rounder [34], and
therefore makes it more difficult to discern a small dependence
on small structures from a well-understood dependence on
global eccentricities. More recently, cubic splines have been
used [35], which smooth out fluctuations to a finite radius,
thus, preserving the initial eccentricities to larger smoothing
scales [35].

It should be noted that the idea is not to study specific
dynamical processes that might naturally make the system
smoother [36], but instead to search for observables that might
be used to probe physics at small scales.

The objective of this paper is therefore the following: we
consider four initial state models and smooth the size of their
inhomogeneities on scale from 0.3 to 1 fm (we do not go further
since this is the typical range of nucleonic inhomogeneities).
We then compare predictions for observables for the original
model and its smoothed versions. We find that the differences
are in fact very small for a large range of observables:
integrated vn, scaled vn distributions, normalized symmetric
cumulants, event plane correlations, and vn(pT ). We observe
larger differences for the flow factorization ratios rn and the
subleading modes in a principal component analysis of the
two-particle correlation matrix, which are therefore the most
promising observables for probing scales smaller than the
system size.

The outline of this paper is as follows. In Sec. II, we
recall how to characterize the initial and final states through
eccentricities and harmonic flow coefficients. In Sec. III, we
describe our smoothing method. In Sec. IV, we present our
results for integrated and pT dependent quantities. Finally in
Sec. V, we discuss our findings.
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II. CHARACTERIZING THE INITIAL AND FINAL STATES

The initial conditions for hydrodynamic evolution consist of
the energy-momentum tensor at some initial time T μν(τ = τ0).
It is believed that the most important aspect of the initial
conditions for observables near midrapidity is the energy
density in the transverse plane ε(x,y) = T ττ (τ0,η ∼ 0,x,y).
Hydrodynamic evolution converts this geometry into the final
momentum distribution of detected particles.

We would like to characterize this initial density distribution
in a way that is ordered according to length scale. The natural
way to do this is to switch to Fourier transformed coordinates,
such that small k represents large-scale structure and large k
represents small-scale structure.

Specifically, we define the transformed density via a 2D
Fourier transform [37],

ρ(�k) =
∫

d2xε(�x)e−i�k·�x, (1)

from which we create a cumulant generating function,

eW (�k) ≡ ρ(�k), (2)

that we expand in a power series around k ≡ |�k| = 0:

W (�k) =
∞∑

m=0

Wm(φk)km. (3)

It is useful to encode the dependence on azimuthal angle φk

in a Fourier series, to obtain a discrete set of coefficients that
contain all information about the distribution of energy density
ε(x,y),

W (�k) =
∞∑

m=0

∞∑
n=−∞

Wn,mkme−inφk . (4)

The coefficients with smallest m, therefore, represent infor-
mation about the largest-scale, global structure, while larger m
represents smaller-scale structures in the initial geometry. The
value of n represents the rotational property of each coefficient.

Note that nonzero coefficients must have m � n, and m − n
must be even. So for a given Fourier harmonic n, the lowest
cumulant is Wn,n.

This expression can be inverted to obtain explicit equations
for the coefficients Wn,m (called cumulants, since they have
the same relation to the distribution of energy as traditional
cumulants have to a probability distribution). We list a few of
the lowest cumulants here, defining the complex coordinate
z ≡ x + iy:

W0,0 = ln E, (5)

W1,1 ∝ 〈z〉, (6)

W0,2 ∝ 〈|z|2〉, − 〈z〉〈z̄〉, (7)

W2,2 ∝ 〈z2〉 − 〈z〉2, (8)

W1,3 ∝ 〈z2z̄〉 − 〈z2〉〈z̄〉 − 2〈|z|2〉〈z〉 + 2〈z〉2〈z̄〉,
W3,3 ∝ 〈z3〉 + 〈z〉(3〈z2〉 − 2〈z〉2), (9)

with

〈. . .〉 =
∫

d2xε(x) . . .∫
d2xε(x)

, (10)

and E is the total energy E = ∫
d2xε(x).

With this construction, all cumulants are invariant under
translations, except W1,1, which represents the center of the
system. They are therefore appropriate for making a connection
to the final momentum-space particle distributions, which do
not depend on the choice of coordinate center.

To study dimensionless observables such as anisotropic
flow, it is useful to define dimensionless ratios out of the lowest
cumulants for each azimuthal harmonic n, whose magnitude
and phase are the standard eccentricities εn and participant
planes �n:

E2 = ε2e
2i�n ≡ −2

W2,2

W0,2
= − 〈z2〉

〈|z|2〉 = −〈r2e2iφ〉
〈r2〉 , (11)

E3 ≡ −〈r3e3iφ〉
〈r3〉 , (12)

E1 ≡ −〈r3eiφ〉
〈r3〉 , (13)

etc., where it is understood that the center of coordinates is
chosen in each event such that W1,1 = 0, which significantly
simplifies the expressions.

If we also expand the final single-particle momentum
distribution in an azimuthal Fourier series,

dN

dφp

= N

2π

∑
n

Vne
−inφp , (14)

with

Vn ≡ vne
in
n = 1

N

∫
dφpeinφp

dN

dφp

, (15)

(Differential Vn(pT ,η) can be defined in a similar way.)
We can conjecture event-by-event vector relations such as

V2 ∝ E2,

V3 ∝ E3. (16)

It has been shown that these relations are quite accurate,
on an event-by-event basis [15,38,39] and for differential
measurements as well [40–42].

This is a very deep statement about the nature of hydrody-
namic behavior—the eccentricities εn represent only the lowest
in an infinite series of cumulants with harmonic n, representing
global properties at the largest length scales. Even in cases
where a nonlinear dependence on eccentricities is known (such
as v4 and v5 in noncentral collisions), the fact that it depends
only on eccentricitiesEn still indicates that the final observables
are dominated by structures in the initial energy density at the
longest length scales.

It is therefore known that momentum integrated, as well as
differential, flow depends mostly on the largest length scales, as
represented by eccentricities εn. However, the above relations
are not 100% precise, and there is room for some sensitivity to
structures in the initial state at smaller length scales.
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In this work, we investigate this possible sensitivity to the
granularity of the initial energy density profile in the trans-
verse plane and want to find observables that can best probe
these features. To do this, we must establish a dependence
of these observables on higher cumulants Wn,m, with m > n,
beyond any dependence on eccentricities, which only represent
global properties.

III. SMOOTHING METHOD

To investigate the influence of coarse-graining sizes on
observables, we modify the initial conditions for each event
using a filter. The aim is to smooth the energy density profile,
such that global properties (as represented by eccentricities
εn) are kept relatively unchanged, but small-scale structure
(quantified by higher cumulants with m > n) is different. This
allows us to investigate the dependence on the granularity of
the initial state.

The filter we use is based on cubic splines and was described
(for the two-dimensional case) in Ref. [35]. For completeness
we reproduce part of the discussion here. The idea is that the
transverse energy density value at some point is determined as a
weighted sum of energy density values at fixed points �rα around
it in the transverse plane, with nearest points contributing more.

ε(τ0,�r; λ) =
N∑

α=1

ε(τ0, �rα)W

( |�r − �rα|
λ

; λ

)
, (17)

where W is given by

W

( |�r|
λ

; λ

)
= 10

7πλ2
f

( |�r|
λ

)
(18)

and

f (ξ ) =

⎧⎪⎨
⎪⎩

1 − 3
2ξ 2 + 3

4ξ 3 if 0 � ξ < 1
1
4 (2 − ξ )3 if 1 � ξ � 2

0 if ξ > 2

, (19)

where α is the index of the points used for the approximation,
and N is their total number. As shown by Eq. (19), only
approximation points within 2 λ of the point at �r contribute
to its energy density. We use values τ0 = 1 fm and 0.6 fm,
respectively, for the codes NeXSPheRIO and v-USPhydro
(described in the next section). We note that W is peaked
at �r = 0, nonnegative, invariant under parity and satisfies∫

W ( |�r|
λ

; λ)d�r = 1 so the integral of ε(τ0,�r; λ) on the transverse
plane is not modified by a change in λ.

This procedure preserves the total energy of the system, but
can alter the entropy due to the nonlinear relationship between
the two quantities. However, we have checked that the entropy
of individual events is not substantially changed: for NeXus
initial conditions, the largest relative change was never more
than 4%.

The advantage of this filter is that it has a compact support
and we have a good control of its effect when changing the
value of the parameter λ.

Figure 1 shows the effect of the filters on a typical event
generated with NeXus. The cubic spline filter with λ = 1
fm maintains the locations of the main pikes and valleys but
smooth them so that their spatial extent increases. The cubic

FIG. 2. Cumulants Wn,m as a function of smoothing parameter
λ for NeXus events in the 20–25% centrality bin. Each cumulant is
normalized by its value without smoothing Wn,m(0).

spline filter with λ = 0.3 fm has little effect as expected since
the relevant scale for NeXus initial conditions is the nucleon
size. The effect of the cubic spline filter is also illustrated for
MC-KLN. Since the initial inhomogeneities occur on a smaller
scale, the effect of the filter is stronger for small values of λ.

In Fig. 2, we show the effect of the smoothing on cumulants
Wn,m for a set of NeXus events in the 20–25% centrality
bin. We can see the lowest anisotropic cumulants Wn,n are
essentially unaffected by smoothing, while higher cumulants
depend on the value of the smoothing parameter λ, with
increasing sensitivity for cumulants of larger m, as expected.

Note, however, that the smoothing process does have a small
effect on n = 0 cumulants—i.e., the size of the system—as
shown in the bottom plot of Fig. 3. The average radius of
the system increases by ∼2.5% when the smoothing param-
eter is changed from 0 to 1 fm, or 〈rn〉 → 1.025n〈rn〉. The
corresponding eccentricities therefore decrease by roughly
n × 2.5%. This is illustrated in the top plot of Fig. 3.

Any effect that can be explained by this decrease is therefore
not a dependence on initial state granularity but only on the
well-known dependence on large-scale structure. For example,
if a quantity scales with eccentricity, only changes by more than
n times the relevant factor are indicative of a dependence on
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FIG. 3. Top: 〈εn〉 as a function of smoothing parameter λ for
NeXus events in the 20–25% centrality bin. Each 〈εn〉 is normalized
by its value without smoothing 〈εn(0)〉. Bottom: Similar plots for 〈rn〉.
small scale. If a ratio of two quantities scaling with eccentricity
is considered, any change (greater than statistical uncertainty)
can be indicative of a dependence on small scale.

Because of this, it is important to use a smoothing procedure
that does not significantly increase the size of the system, and
this is why in this work we use a filter with compact support.

For MC-KLN, a similar decrease of eccentricities with λ is
observed [35].

IV. RESULTS FOR OBSERVABLES

In this paper, we perform simulations with two codes.
Both use the smoothed particle hydrodynamics Lagrangian
algorithm developed in Ref. [43].

NeXSPheRIO (the first event-by-event code developed for
relativistic heavy-ion collisions) solves the perfect fluid hydro-
dynamic equations in 3+1 dimensions. The initial conditions
are obtained event-by-event with the NeXus generator [9].
The equation of state matches lattice data at zero baryonic
potential and has a critical point added in a phenomenological
way [44]. Isothermal Cooper-Frye freeze-out is used with
temperatures chosen in each centrality window to match
observables. At top RHIC energies, this code has successfully
reproduced a number of data [45–52]. An extension to LHC
energies (

√
sNN = 2.76 TeV Pb+Pb collisions) was developed

in Ref. [53] and is used here. The code was tested against known
solutions in Ref. [43]. There is a 2+1 version of NeXSPheRIO
with longitudinal boost invariance that is used here to facilate
comparison with the second code described below.

This second code, v-USPhydro [54,55], solves viscous
fluid hydrodynamic equations in 2+1 dimensions assuming
longitudinal boost invariance. Here it is used to calculate the
flow harmonics from MC-KLN initial conditions (for

√
sNN =

2.76 TeV Pb+Pb collisions). Both (temperature dependent)
bulk and shear viscosities can be considered [54,55]. For
simplicity’s sake, only constant shear viscosity is assumed
and adjusted to obtain a reasonable description of LHC data.
The lattice-based equation of state S95n-v1 from [56] and

an isothermal Cooper-Frye freezeout are used (although this
choice may affect η/s at high energies [20]). v-USPhydro was
shown to reproduce TECHQM test [57] as well as both the
analytical and semi-analytical radially expanding solutions of
Israel-Stewart hydrodynamics [58].

Note that in the following we also show results from
smoothing out IP-Glasma and MC-Glauber initial conditions
but do not run them through hydrodynamics.

A. Integrated observables

As we have seen in Fig. 3, the eccentricities are little affected
by the smoothing length for NeXus initial conditions, changing
at most by n × 2.5%. Due to the strong event-by-event corre-
lation between final flow and initial eccentricity Eq. (16), we
expect a similar change in integrated flow observables.

To test this, in Fig. 4 we show the ratio 〈vn〉/〈εn〉 using
different smoothing lengths. Most of the change in integrated
vn is compensated by the change in εn, with only a slight
residual dependence, in particular for v4, which is known to
not follow eccentricity scaling. There is no indication of a
significant dependence on small-scale structure, and instead
the results are determined by the global structure of the initial
conditions.

We can make even more precise tests by considering scaled
observables that are approximately independent of the small
change in system size from our smoothing procedure.

Therefore, we next consider event-by-event distributions of
anisotropic flow P (vn) [59–61]. Equation (16) suggests that
a uniform change in eccentricity should result in a uniform
change in the distribution of vn. If we divide the distribution
by the mean, the result P (vn/〈vn〉) should then be independent
of such a rescaling of eccentricity.

This is the reason, for example, that scaled distributions of
flow coefficients depend little on viscosity, and instead directly
probe the initial conditions [15,38]. Because of this, one can
immediately see that some models are incompatible with
measured data [59,60], while others [15,62,63] agree with data
(the latter includes the NeXus model used in this work [64]).

To study the effect of smoothing, we first consider the
P (εn/〈εn〉) distributions. Results for NeXus initial conditions
and ideal hydrodynamics are shown for the 20–25% centrality
window in Fig. 5. No dependence on the value of λ is seen,

FIG. 4. Comparison of original and filtered eccentricity scaled
flow harmonics 〈vn〉/〈εn〉 for the 20–25% centrality window.
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FIG. 5. Comparison of original and filtered scaled εn probability distributions for NeXus initial condition in the 20–30% windows.

indicating that smoothing essentially corresponds to a uniform
rescaling of εn (in turn caused by a uniform scaling of the
system size 〈rn〉).

One might think that these small differences are due to the
fact that in NeXus the typical inhomogeneities have nucleonic
size, which is comparable to the maximum λ considered.
More striking results are shown in Fig. 6. The original and
filtered (λ = 1 fm) eccentricity distributions for IP-Glasma
[17], MC-KLN [16], and MC-Glauber [5–7] models were
obtained for the 20–30% centrality window. One sees that
for these models, the scaled eccentricity distributions are
insensitive to the smoothing length below 1 fm. Similar results
hold for other centralities.

However deviation from Eq. (16) are known to happen;
e.g., elliptic flow v2 does not grow perfectly linearly with ε2

for noncentral collisions [15,38,39,65].
Therefore it is important to compute vn distributions, to

determine whether the small deviation from linearity is due to
higher cumulants and small-scale structure, or simply a nonlin-
ear dependence on eccentricities, so that only global properties
are important. The most interesting case is a noncentral bin
for n = 2 since it was observed [24,60] that v2 distributions
for central collisions as well as v3 and v4 distributions for all
centralities do not depend on the details of the initial conditions.
The scaled v2 distributions for the original and filtered initial
conditions are compared for MC-KLN in Fig. 7 for the 20–30%
centrality window. They too are independent of the value of λ.

We conclude that integrated flow vn{2} and event-by-event
distributions of anisotropic flow coefficients have little depen-
dence on the smoothing length for the four models considered

in this paper, and instead depend only on global features of the
initial conditions. To continue our search for variables that de-
pend on the coarse-graining size, we note that vn distributions
contain information only about a single Fourier harmonic n.
It is then interesting to study mixed harmonic observables, in
particular those that are experimentally measurable [66,67] or
may be obtained at RHIC [68].

We consider normalized symmetric cumulants:

NSC(n,m) =
〈
v2

nv
2
m

〉 − 〈
v2

n

〉〈
v2

m

〉
〈
v2

n

〉〈
v2

m

〉 . (20)

We note that the connection between these quantities and
their equivalent ones computed with eccentricities is not one-
to-one. In Ref. [69], it was argued that NSC(2,3) and NSC(3,4)
depend little on the initial conditions while NSC(2,4) does. In
Fig. 8, one can see that the precise coarse-graining size does
not matter even for NSC(2,4) for NeXus and MC-KLN initial
conditions.

We can go a step further and consider event plane corre-
lations which mix both magnitude and event planes and have
been measured by ATLAS [70]. However, we also found no
dependence on the smoothing length for these observables.

B. Differential observables

From λ = 0.3–1 fm no clear evidence of a sensitivity to
coarse-graining could be found in pT integrated observables of
all charged particles. Additional information can be obtained
from differential quantities, which we now consider. Trans-
verse momentum spectra for different coarse-graining sizes

FIG. 6. Comparison of original and filtered scaled εn probability distributions for various models of initial conditions in the 20–30%
windows. In the legend, lines 1, 3, and 6 indicate the symbols for the original initial conditions and lines 2, 4, and 6 for their respective filtered
λ = 1 f m versions.
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FIG. 7. Comparison of original and filtered scaled v2 probability distributions for MC-KLN initial conditions.

were computed in Refs. [25,35] (respectively, with URQMD
and MC-KLN initial conditions) and exhibit little difference
(for coarse-graining size below 1 fm). Harmonic flow vn(pT )’s
were studied in Refs. [25,27,35], small changes were found
when the coarse-graining size was varied below 1 fm and other
parameters were held fixed. To find observables that depend on
the smoothing length, we turn to another quantity, azimuthal
correlations. The simplest is a pair correlation:

〈
dNpairs

d3p1d3p2

〉
∝

{
1 +

∞∑
n=1

2Vn�(p1,p2) cos[n(φ1 − φ2)]

}
.

(21)
In principle, the Fourier coefficients Vn�(p1,p2) depend on

two momenta, p1 and p2, which can be varied independently,
and the full matrix has been measured (see, e.g., Ref. [71]).

Since we have already studied the effect of the overall
magnitude of anisotropic flow, through momentum integrated
measurements, it is convenient to consider a ratio that removes
the trivial dependence on εn. To that end, we consider the flow
factorization ratio [72], which was studied in several works
[18,73,74]:

rn(p1,p2) = Vn�(p1,p2)√
Vn�(p1,p1)Vn�(p2,p2)

. (22)

Data for rn were obtained by CMS [75] and ALICE [76].
This quantity is a good candidate to discriminate smoothing

lengths since it was shown in Ref. [73] that rn could be sensitive
to the coarse-graining size but less so to shear viscosity (on

FIG. 8. Comparison of NSC(2,4) for NeXus and MC-KLN orig-
inal and smoothed initial conditions.

this last point see also Refs. [74] and [23] for details on bulk
viscosity and hadronic rescattering).

Results for the flow factorization ratios are shown for NeXus
and MC-KLN initial conditions in Figs. 9 and 10. Recall that
a value rn = 1 is obtained in the absence of pT -dependent
fluctuations. The deviation from unity is therefore a measure
of the size of such fluctuations. Thus, we indeed observe a
significant dependence on the value of the smoothing scale λ
on the size of pT -dependent fluctuations, and therefore rn.

FIG. 9. Flow factorization ratio for NeXus original and smoothed
initial conditions in the 20–25% centrality window and 2.5 GeV <

pb
T < 3.0 GeV.
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FIG. 10. Flow factorization ratio for MC-KLN original and
smoothed initial conditions in the 20–30% centrality window and
pb

T = 3.0 GeV.

In Eq. (22), the trivial decrease of the eccentricity with
λ should approximately cancel between numerator and de-
nominator. Therefore, the difference (of order 15% in the
most favorable case) is a genuine dependence on smaller scale
structures in the initial energy density.

As a final step to search for observables sensitive to coarse-
graining size, we perform a principal component analysis
(PCA). PCA is a method used in statistics to study data that
are possibly correlated. It was suggested to apply it to the
matrix formed by the coefficients Vn�(p1,p2) (with a different
normalization than above) in Ref. [69]. A generalization to
correlations involving different flow harmonics was proposed
in Ref. [77]. Further investigations on the connection with
initial geometry were done in Refs. [78,79] and data from CMS
have become recently available [80].

FIG. 11. Leading and subleading components for NeXus original
and smoothed initial conditions in the 25–30% centrality class for
n = 2–4.

We show for n = 2–4 the leading principal flow vector
(divided by the multiplicity average in the pT bin) v(1)

n (pT ) in
Fig. 11 for the 25–30% centrality bin. The leading components
exhibit a small dependence on the smoothing length, consistent
with the change in eccentricity. This is expected since they
contain similar information to vn{2}(pT ) [69], which are not
very sensitive to coarse-graining sizes [25,27,35].

We also show for n = 2–4 the subleading principal flow
vector (again divided by the multiplicity average in the pT

bin) v(2)
n (pT ) in Fig. 11. They exhibit a small dependence on

the smoothing length [81]. A dependence is not unexpected
since the subleading component is caused by pT -dependent
fluctuations (and has a direct relation to factorization breaking)
[69]. While the effect does not appear to be large, it is of
measureable size.

V. CONCLUSION

In this paper, to investigate the influence of coarse-graining
sizes on observables, we propose a filter to modify the initial

064919-8
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conditions: it smooths the energy density profile in such a
way that global properties (as represented by eccentricities εn)
are kept relatively unchanged, but small-scale structure varies.
We consider four models of initial conditions (NeXus, MC-
Glauber, MC-KLN, and IP-Glasma) that have very different
size of fluctuations. We found that when the smoothing length
increases from 0.3 to 1 fm, the eccentricities decrease by n
times a few percent, due only to the small increase in system
size of the smoothing procedure. Therefore, to find a signal of
the coarse-graning sizes in observables scaling with eccentric-
ity, larger changes than that should be seen. In ratio of quantities
scaling with eccentricity any dependence may be genuine.

We note that the focus of this paper has been on small-
scale structure in large PbPb collisions. Recently, it has been
shown that small systems such as pPb and pp may provide
more clues about small-scale structure [35,82–85]. We leave a
deeper study on small systems for a later work.

We use ideal and viscous hydrodynamics and compute a
range of observables. We find that integrated vn values, scaled
vn distributions, normalized symmetric cumulants, event-plane
correlations, leading component in a principal component
analysis [and therefore vn(pT )] do not have a significant de-
pendence on small-scale structure. However the factorization
breaking ratio and subleading principle components exhibit
nontrivial dependence on the smoothing length. Since the
factorization breaking ratio depends little on viscosity, it is

the best observable we found to discriminate models that have
different fluctuation sizes.

ACKNOWLEDGMENTS

We thank J.-Y. Ollitrault for very helpful discussions
on the PCA method. J.N.H. acknowledges the use of the
Maxwell Cluster and the advanced support from the Center
of Advanced Computing and Data Systems at the University
of Houston. F.G. acknowledges support from Fundação de
Amparo à Pesquisa do Estado de São Paulo (FAPESP Grants
No. 2015/00011-8, No. 2015/50438-8, No. 2016/03274-2),
USP-COFECUB (Grant No. Uc Ph 160-16 2015/13), Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq
Grant No. 310141/2016-8), and project INCT-FNA Proc. No.
464898/2014-5. F.G.G. was supported by Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq Grants
No. 449694/2014-3 and No. 312203/2015-2) and FAPEMIG
(Grant No. APQ-02107-16). F.G.G. and P.M. acknowledge
computing time provided on the PdCluster made available
by L. F. R. Turci and E. Aguilar (Universidade de Federal
de Alfenas/Poços de Caldas). P.I. thanks support from Co-
ordenação de Aperfeiçoamento de Pessoal de Nível Superior
(CAPES). M.L. acknowledges support from FAPESP Projects
No. 2016/24029-6 and No. 2017/05685-2, and project INCT-
FNA Proc. No. 464898/2014-5.

[1] U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123
(2013).

[2] C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28,
1340011 (2013).

[3] R. D. de Souza, T. Koide, and T. Kodama, Prog. Part. Nucl. Phys.
86, 35 (2016).

[4] S. Jeon and U. Heinz, Quark gluon plasma 5 (World Scientific
Publishing Co., 2016), arXiv:1503.03931.

[5] M. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Ann. Rev.
Nucl. Part. Sci. 57, 205 (2007).

[6] B. Alver, M. Baker, C. Loizides, and P. Steinberg,
arXiv:0805.4411.

[7] C. Loizides, J. Nagle, and P. Steinberg, SoftwareX 1/2, 13 (2015).
[8] J. S. Moreland, J. E. Bernhard, and S. A. Bass, Phys. Rev. C 92,

011901 (2015).
[9] H. J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, and K.

Werner, Phys. Rept. 350, 93 (2001).
[10] T. Pierog, I. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner,

Phys. Rev. C 92, 034906 (2015).
[11] M. Bleicher et al., J. Phys. G 25, 1859 (1999).
[12] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).
[13] B. Zhang, C. M. Ko, B.-A. Li, and Z.-w. Lin, Phys. Rev. C 61,

067901 (2000).
[14] H. J. Drescher, F. M. Liu, S. Ostapchenko, T. Pierog, and K.

Werner, Phys. Rev. C 65, 054902 (2002).
[15] H. Niemi, K. J. Eskola, and R. Paatelainen, Phys. Rev. C 93,

024907 (2016).
[16] H.-J.Drescher and Y. Nara, Phys. Rev. C 75, 034905 (2007).
[17] B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. Lett.

108, 252301 (2012).

[18] C. Shen, Z. Qiu, and U. Heinz, Phys. Rev. C 92, 014901 (2015).
[19] J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, and U. Heinz,

Phys. Rev. C 94, 024907 (2016).
[20] P. Alba, V. M. Sarti, J. Noronha, J. Noronha-Hostler, P. Parotto,

I. P. Vazquez, and C. Ratti, arXiv:1711.05207.
[21] G. Giacalone, J. Noronha-Hostler, M. Luzum, and J.-Y. Olli-

trault, Phys. Rev. C 97, 034904 (2018).
[22] K. J. Eskola, H. Niemi, R. Paatelainen, and K. Tuominen, Phys.

Rev. C 97, 034911 (2018).
[23] S. McDonald, C. Shen, F. Fillion-Gourdeau, S. Jeon, and C. Gale,

Phys. Rev. C 95, 064913 (2017).
[24] T. Renk and H. Niemi, Phys. Rev. C 89, 064907 (2014).
[25] H. Petersen, C. Coleman-Smith, S. A. Bass, and R. Wolpert,

J. Phys. G 38, 045102 (2011).
[26] C. E. Coleman-Smith, H. Petersen, and R. L. Wolpert, J. Phys.

G 40, 095103 (2013).
[27] Md. R. Haque, V. Roy, and A. K. Chaudhuri, Phys. Rev. C 86,

037901 (2012).
[28] A. Bzdak, B. Schenke, P. Tribedy, and R. Venugopalan, Phys.

Rev. C 87, 064906 (2013).
[29] S. Floerchinger and U. A. Wiedemann, Phys. Lett. B 728, 407

(2014).
[30] S. Floerchinger and U. A. Wiedemann, Phys. Rev. C 88, 044906

(2013).
[31] S. Floerchinger and U. A. Wiedemann, Phys. Rev. C 89, 034914

(2014).
[32] E. Retinskaya, M. Luzum, and J.-Y. Ollitrault, Phys. Rev. C 89,

014902 (2014).
[33] V. P. Konchakovski, W. Cassing, and V. D. Toneev, J. Phys. G

42, 055106 (2015).

064919-9

https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1016/j.ppnp.2015.09.002
https://doi.org/10.1016/j.ppnp.2015.09.002
https://doi.org/10.1016/j.ppnp.2015.09.002
https://doi.org/10.1016/j.ppnp.2015.09.002
http://arxiv.org/abs/arXiv:1503.03931
https://doi.org/10.1146/annurev.nucl.57.090506.123020
https://doi.org/10.1146/annurev.nucl.57.090506.123020
https://doi.org/10.1146/annurev.nucl.57.090506.123020
https://doi.org/10.1146/annurev.nucl.57.090506.123020
http://arxiv.org/abs/arXiv:0805.4411
https://doi.org/10.1016/j.softx.2015.05.001
https://doi.org/10.1016/j.softx.2015.05.001
https://doi.org/10.1016/j.softx.2015.05.001
https://doi.org/10.1016/j.softx.2015.05.001
https://doi.org/10.1103/PhysRevC.92.011901
https://doi.org/10.1103/PhysRevC.92.011901
https://doi.org/10.1103/PhysRevC.92.011901
https://doi.org/10.1103/PhysRevC.92.011901
https://doi.org/10.1016/S0370-1573(00)00122-8
https://doi.org/10.1016/S0370-1573(00)00122-8
https://doi.org/10.1016/S0370-1573(00)00122-8
https://doi.org/10.1016/S0370-1573(00)00122-8
https://doi.org/10.1103/PhysRevC.92.034906
https://doi.org/10.1103/PhysRevC.92.034906
https://doi.org/10.1103/PhysRevC.92.034906
https://doi.org/10.1103/PhysRevC.92.034906
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1103/PhysRevC.61.067901
https://doi.org/10.1103/PhysRevC.61.067901
https://doi.org/10.1103/PhysRevC.61.067901
https://doi.org/10.1103/PhysRevC.61.067901
https://doi.org/10.1103/PhysRevC.65.054902
https://doi.org/10.1103/PhysRevC.65.054902
https://doi.org/10.1103/PhysRevC.65.054902
https://doi.org/10.1103/PhysRevC.65.054902
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1103/PhysRevC.75.034905
https://doi.org/10.1103/PhysRevC.75.034905
https://doi.org/10.1103/PhysRevC.75.034905
https://doi.org/10.1103/PhysRevC.75.034905
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevC.92.014901
https://doi.org/10.1103/PhysRevC.92.014901
https://doi.org/10.1103/PhysRevC.92.014901
https://doi.org/10.1103/PhysRevC.92.014901
https://doi.org/10.1103/PhysRevC.94.024907
https://doi.org/10.1103/PhysRevC.94.024907
https://doi.org/10.1103/PhysRevC.94.024907
https://doi.org/10.1103/PhysRevC.94.024907
http://arxiv.org/abs/arXiv:1711.05207
https://doi.org/10.1103/PhysRevC.97.034904
https://doi.org/10.1103/PhysRevC.97.034904
https://doi.org/10.1103/PhysRevC.97.034904
https://doi.org/10.1103/PhysRevC.97.034904
https://doi.org/10.1103/PhysRevC.97.034911
https://doi.org/10.1103/PhysRevC.97.034911
https://doi.org/10.1103/PhysRevC.97.034911
https://doi.org/10.1103/PhysRevC.97.034911
https://doi.org/10.1103/PhysRevC.95.064913
https://doi.org/10.1103/PhysRevC.95.064913
https://doi.org/10.1103/PhysRevC.95.064913
https://doi.org/10.1103/PhysRevC.95.064913
https://doi.org/10.1103/PhysRevC.89.064907
https://doi.org/10.1103/PhysRevC.89.064907
https://doi.org/10.1103/PhysRevC.89.064907
https://doi.org/10.1103/PhysRevC.89.064907
https://doi.org/10.1088/0954-3899/38/4/045102
https://doi.org/10.1088/0954-3899/38/4/045102
https://doi.org/10.1088/0954-3899/38/4/045102
https://doi.org/10.1088/0954-3899/38/4/045102
https://doi.org/10.1088/0954-3899/40/9/095103
https://doi.org/10.1088/0954-3899/40/9/095103
https://doi.org/10.1088/0954-3899/40/9/095103
https://doi.org/10.1088/0954-3899/40/9/095103
https://doi.org/10.1103/PhysRevC.86.037901
https://doi.org/10.1103/PhysRevC.86.037901
https://doi.org/10.1103/PhysRevC.86.037901
https://doi.org/10.1103/PhysRevC.86.037901
https://doi.org/10.1103/PhysRevC.87.064906
https://doi.org/10.1103/PhysRevC.87.064906
https://doi.org/10.1103/PhysRevC.87.064906
https://doi.org/10.1103/PhysRevC.87.064906
https://doi.org/10.1016/j.physletb.2013.12.025
https://doi.org/10.1016/j.physletb.2013.12.025
https://doi.org/10.1016/j.physletb.2013.12.025
https://doi.org/10.1016/j.physletb.2013.12.025
https://doi.org/10.1103/PhysRevC.88.044906
https://doi.org/10.1103/PhysRevC.88.044906
https://doi.org/10.1103/PhysRevC.88.044906
https://doi.org/10.1103/PhysRevC.88.044906
https://doi.org/10.1103/PhysRevC.89.034914
https://doi.org/10.1103/PhysRevC.89.034914
https://doi.org/10.1103/PhysRevC.89.034914
https://doi.org/10.1103/PhysRevC.89.034914
https://doi.org/10.1103/PhysRevC.89.014902
https://doi.org/10.1103/PhysRevC.89.014902
https://doi.org/10.1103/PhysRevC.89.014902
https://doi.org/10.1103/PhysRevC.89.014902
https://doi.org/10.1088/0954-3899/42/5/055106
https://doi.org/10.1088/0954-3899/42/5/055106
https://doi.org/10.1088/0954-3899/42/5/055106
https://doi.org/10.1088/0954-3899/42/5/055106


FERNANDO G. GARDIM et al. PHYSICAL REVIEW C 97, 064919 (2018)

[34] R. S. Bhalerao, M. Luzum, and J.-Y. Ollitrault, Phys. Rev. C 84,
054901 (2011).

[35] J. Noronha-Hostler, J. Noronha, and M. Gyulassy, Phys. Rev. C
93, 024909 (2016).

[36] L. Keegan, A. Kurkela, A. Mazeliauskas, and D. Teaney, J. High
Energy Phys. 08 (2016) 171.

[37] D.Teaney and L.Yan, Phys. Rev. C 83, 064904 (2011).
[38] H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen, Phys.

Rev. C 87, 054901 (2013).
[39] J. Fu, Phys. Rev. C 92, 024904 (2015).
[40] J. Noronha-Hostler, B. Betz, J. Noronha, and M. Gyulassy, Phys.

Rev. Lett. 116, 252301 (2016).
[41] J. Noronha-Hostler, B. Betz, M. Gyulassy, M. Luzum, J.

Noronha, I. Portillo, and C. Ratti, Phys. Rev. C 95, 044901
(2017).

[42] C. A. G. Prado, J. Noronha-Hostler, R. Katz, A. A. P. Suaide, J.
Noronha, and M. G. Munhoz, Phys. Rev. C 96, 064903 (2017).

[43] C. Aguiar, T. Kodama, T. Osada, and Y. Hama, J. Phys. G 27,
75 (2001).

[44] Y. Hama, R. P. Andrade, F. Grassi, O. S. Jr., T. Kodama, B.
Tavares, and S. S. Padula, Nucl. Phys. A 169, 774 (2006).

[45] W. L. Qian, R. Andrade, F. Grassi, J. O. Socolowski, T. Kodama,
and Y. Hama, Int. J. Mod. Phys. E 16, 1877 (2007).

[46] R. P. G. Andrade, F. Grassi, Y. Hama, T. Kodama, and J. O.
Socolowski, Phys. Rev. Lett. 97, 202302 (2006).

[47] R. P. G. Andrade, F. Grassi, Y. Hama, T. Kodama, and W. L.
Qian, Phys. Rev. Lett. 101, 112301 (2008).

[48] R. P. G. Andrade, A. dos Reis, F. Grassi, Y. Hama, W. Qian,
T. Kodama, and J.-Y. Ollitrault, Acta Phys. Polon. B 40, 993
(2009).

[49] F. G. Gardim, F. Grassi, Y. Hama, M. Luzum, and J. Y. Ollitrault,
Phys. Rev. C 83, 064901 (2011).

[50] F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault, Phys.
Rev. Lett. 109, 202302 (2012).

[51] J. Takahashi, B. M. Tavares, W. L. Qian, R. Andrade, F. Grassi,
Y. Hama, T. Kodama, and N. Xu, Phys. Rev. Lett. 103, 242301
(2009).

[52] W.L.Qian, R. P. G. Andrade, F. Gardim, F. Grassi, and Y. Hama,
Phys. Rev. C 87, 014904 (2013).

[53] M. V. Machado, Event-by-event Hydrodynamics for the LHC,
Master’s thesis, Universidade de São Paulo, Brazil, 2015.

[54] J. Noronha-Hostler, G. S. Denicol, J. Noronha, R. P. G. Andrade,
and F. Grassi, Phys. Rev. C 88, 044916 (2013).

[55] J. Noronha-Hostler, J. Noronha, and F. Grassi, Phys. Rev. C 90,
034907 (2014).

[56] P. Huovinen and P. Petreczky, Nucl. Phys. A 837, 26 (2010).
[57] TECHQM, https://wiki.bnl.gov/TECHQM/index.php/Code_

checking_list.
[58] H. Marrochio, J. Noronha, G. S. Denicol, M. Luzum, S. Jeon,

and C. Gale, Phys. Rev. C 91, 014903 (2015).

[59] J. Jia (ATLAS collaboration), Nucl. Phys. A 904-905, 421c
(2013).

[60] G. Aad et al. (ATLAS collaboration), J. High Energy Phys. 11
(2013) 183.

[61] A. R. Timmins (ALICE collaboration), J. Phys. Conf. Ser. 446,
012031 (2013).

[62] C. Gale, S. Jeon, B. Schenke, P. Tribedy, and R. Venugopalan,
Phys. Rev. Lett. 110, 012302 (2013).

[63] W. Zhao, H.-j. Xu, and H. Song, Eur. Phys. J. C 77, 645 (2017).
[64] L. Barbosa, F. Gardim, F. Grassi, P. Ishida, M. Luzum, and M.

V. Machado (unpublished).
[65] J. Noronha-Hostler, L. Yan, F. G. Gardim, and J.-Y. Ollitrault,

Phys. Rev. C 93, 014909 (2016).
[66] Y. Zhou et al. (ALICE collaboration), Nucl. Phys. A 956, 296

(2016).
[67] J. Adam et al. (ALICE collaboration), Phys. Rev. Lett. 117,

182301 (2016).
[68] F. G. Gardim, F. Grassi, M. Luzum, and J. Noronha-Hostler,

Phys. Rev. C 95, 034901 (2017).
[69] R. S. Bhalerao, J.-Y. Ollitrault, S. Pal, and D. Teaney, Phys. Rev.

Lett. 114, 152301 (2015).
[70] G. Aad et al. (ATLAS collaboration), Phys. Rev. C 90, 024905

(2014).
[71] K. Aamodt et al. (ALICE collaboration), Phys. Lett. B 708, 249

(2012).
[72] F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault, Phys.

Rev. C 87, 031901(R) (2012).
[73] I. Kozlov, M. Luzum, G. Denicol, S. Jeon, and C. Gale,

arXiv:1405.3976.
[74] U. Heinz, Z. Qiu, and C. Shen, Phys. Rev. C 87, 034913

(2013).
[75] V. Khachatryan et al. ( CMS), Phys. Rev. C 92, 034911

(2015).
[76] S. Acharya et al. (ALICE), J. High Energy Phys. 09 (2017) 032.
[77] P. Bożek, Phys. Rev. C 97, 034905 (2018).
[78] A. Mazeliauskas and D. Teaney, Phys. Rev. C 91, 044902 (2015).
[79] A. Mazeliauskas and D. Teaney, Phys. Rev. C 93, 024913 (2016).
[80] A. M. Sirunyan et al. (CMS), Phys. Rev. C 96, 064902 (2017).
[81] We leave a detailed comparison of CMS data with 3+1 hydro to

a future work.
[82] K. Welsh, J. Singer, and U. W. Heinz, Phys. Rev. C 94, 024919

(2016).
[83] J. L. Albacete, H. Petersen, and A. Soto-Ontoso, Phys. Lett. B

778, 128 (2018).
[84] G. Giacalone, J. Noronha-Hostler, and J.-Y. Ollitrault, Phys. Rev.

C 95, 054910 (2017).
[85] J. S. Moreland, J. E. Bernhard, W. Ke, and S. A. Bass, in Proceed-

ings of the 26th International Conference on Ultrarelativistic
Nucleus-Nucleus Collisions (Quark Matter 2017), Nucl. Phys.
A 967, 361 (2017).

064919-10

https://doi.org/10.1103/PhysRevC.84.054901
https://doi.org/10.1103/PhysRevC.84.054901
https://doi.org/10.1103/PhysRevC.84.054901
https://doi.org/10.1103/PhysRevC.84.054901
https://doi.org/10.1103/PhysRevC.93.024909
https://doi.org/10.1103/PhysRevC.93.024909
https://doi.org/10.1103/PhysRevC.93.024909
https://doi.org/10.1103/PhysRevC.93.024909
https://doi.org/10.1007/JHEP08(2016)171
https://doi.org/10.1007/JHEP08(2016)171
https://doi.org/10.1007/JHEP08(2016)171
https://doi.org/10.1007/JHEP08(2016)171
https://doi.org/10.1103/PhysRevC.83.064904
https://doi.org/10.1103/PhysRevC.83.064904
https://doi.org/10.1103/PhysRevC.83.064904
https://doi.org/10.1103/PhysRevC.83.064904
https://doi.org/10.1103/PhysRevC.87.054901
https://doi.org/10.1103/PhysRevC.87.054901
https://doi.org/10.1103/PhysRevC.87.054901
https://doi.org/10.1103/PhysRevC.87.054901
https://doi.org/10.1103/PhysRevC.92.024904
https://doi.org/10.1103/PhysRevC.92.024904
https://doi.org/10.1103/PhysRevC.92.024904
https://doi.org/10.1103/PhysRevC.92.024904
https://doi.org/10.1103/PhysRevLett.116.252301
https://doi.org/10.1103/PhysRevLett.116.252301
https://doi.org/10.1103/PhysRevLett.116.252301
https://doi.org/10.1103/PhysRevLett.116.252301
https://doi.org/10.1103/PhysRevC.95.044901
https://doi.org/10.1103/PhysRevC.95.044901
https://doi.org/10.1103/PhysRevC.95.044901
https://doi.org/10.1103/PhysRevC.95.044901
https://doi.org/10.1103/PhysRevC.96.064903
https://doi.org/10.1103/PhysRevC.96.064903
https://doi.org/10.1103/PhysRevC.96.064903
https://doi.org/10.1103/PhysRevC.96.064903
https://doi.org/10.1088/0954-3899/27/1/306
https://doi.org/10.1088/0954-3899/27/1/306
https://doi.org/10.1088/0954-3899/27/1/306
https://doi.org/10.1088/0954-3899/27/1/306
https://doi.org/10.1142/S0218301307007167
https://doi.org/10.1142/S0218301307007167
https://doi.org/10.1142/S0218301307007167
https://doi.org/10.1142/S0218301307007167
https://doi.org/10.1103/PhysRevLett.97.202302
https://doi.org/10.1103/PhysRevLett.97.202302
https://doi.org/10.1103/PhysRevLett.97.202302
https://doi.org/10.1103/PhysRevLett.97.202302
https://doi.org/10.1103/PhysRevLett.101.112301
https://doi.org/10.1103/PhysRevLett.101.112301
https://doi.org/10.1103/PhysRevLett.101.112301
https://doi.org/10.1103/PhysRevLett.101.112301
https://doi.org/10.1103/PhysRevC.83.064901
https://doi.org/10.1103/PhysRevC.83.064901
https://doi.org/10.1103/PhysRevC.83.064901
https://doi.org/10.1103/PhysRevC.83.064901
https://doi.org/10.1103/PhysRevLett.109.202302
https://doi.org/10.1103/PhysRevLett.109.202302
https://doi.org/10.1103/PhysRevLett.109.202302
https://doi.org/10.1103/PhysRevLett.109.202302
https://doi.org/10.1103/PhysRevLett.103.242301
https://doi.org/10.1103/PhysRevLett.103.242301
https://doi.org/10.1103/PhysRevLett.103.242301
https://doi.org/10.1103/PhysRevLett.103.242301
https://doi.org/10.1103/PhysRevC.87.014904
https://doi.org/10.1103/PhysRevC.87.014904
https://doi.org/10.1103/PhysRevC.87.014904
https://doi.org/10.1103/PhysRevC.87.014904
https://doi.org/10.1103/PhysRevC.88.044916
https://doi.org/10.1103/PhysRevC.88.044916
https://doi.org/10.1103/PhysRevC.88.044916
https://doi.org/10.1103/PhysRevC.88.044916
https://doi.org/10.1103/PhysRevC.90.034907
https://doi.org/10.1103/PhysRevC.90.034907
https://doi.org/10.1103/PhysRevC.90.034907
https://doi.org/10.1103/PhysRevC.90.034907
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://wiki.bnl.gov/TECHQM/index.php/Code_checking_list
https://doi.org/10.1103/PhysRevC.91.014903
https://doi.org/10.1103/PhysRevC.91.014903
https://doi.org/10.1103/PhysRevC.91.014903
https://doi.org/10.1103/PhysRevC.91.014903
https://doi.org/10.1016/j.nuclphysa.2013.02.039
https://doi.org/10.1016/j.nuclphysa.2013.02.039
https://doi.org/10.1016/j.nuclphysa.2013.02.039
https://doi.org/10.1016/j.nuclphysa.2013.02.039
https://doi.org/10.1007/JHEP11(2013)183
https://doi.org/10.1007/JHEP11(2013)183
https://doi.org/10.1007/JHEP11(2013)183
https://doi.org/10.1007/JHEP11(2013)183
https://doi.org/10.1088/1742-6596/446/1/012031
https://doi.org/10.1088/1742-6596/446/1/012031
https://doi.org/10.1088/1742-6596/446/1/012031
https://doi.org/10.1088/1742-6596/446/1/012031
https://doi.org/10.1103/PhysRevLett.110.012302
https://doi.org/10.1103/PhysRevLett.110.012302
https://doi.org/10.1103/PhysRevLett.110.012302
https://doi.org/10.1103/PhysRevLett.110.012302
https://doi.org/10.1140/epjc/s10052-017-5186-x
https://doi.org/10.1140/epjc/s10052-017-5186-x
https://doi.org/10.1140/epjc/s10052-017-5186-x
https://doi.org/10.1140/epjc/s10052-017-5186-x
https://doi.org/10.1103/PhysRevC.93.014909
https://doi.org/10.1103/PhysRevC.93.014909
https://doi.org/10.1103/PhysRevC.93.014909
https://doi.org/10.1103/PhysRevC.93.014909
https://doi.org/10.1016/j.nuclphysa.2016.01.018
https://doi.org/10.1016/j.nuclphysa.2016.01.018
https://doi.org/10.1016/j.nuclphysa.2016.01.018
https://doi.org/10.1016/j.nuclphysa.2016.01.018
https://doi.org/10.1103/PhysRevLett.117.182301
https://doi.org/10.1103/PhysRevLett.117.182301
https://doi.org/10.1103/PhysRevLett.117.182301
https://doi.org/10.1103/PhysRevLett.117.182301
https://doi.org/10.1103/PhysRevC.95.034901
https://doi.org/10.1103/PhysRevC.95.034901
https://doi.org/10.1103/PhysRevC.95.034901
https://doi.org/10.1103/PhysRevC.95.034901
https://doi.org/10.1103/PhysRevLett.114.152301
https://doi.org/10.1103/PhysRevLett.114.152301
https://doi.org/10.1103/PhysRevLett.114.152301
https://doi.org/10.1103/PhysRevLett.114.152301
https://doi.org/10.1103/PhysRevC.90.024905
https://doi.org/10.1103/PhysRevC.90.024905
https://doi.org/10.1103/PhysRevC.90.024905
https://doi.org/10.1103/PhysRevC.90.024905
https://doi.org/10.1016/j.physletb.2012.01.060
https://doi.org/10.1016/j.physletb.2012.01.060
https://doi.org/10.1016/j.physletb.2012.01.060
https://doi.org/10.1016/j.physletb.2012.01.060
https://doi.org/10.1103/PhysRevC.87.031901
https://doi.org/10.1103/PhysRevC.87.031901
https://doi.org/10.1103/PhysRevC.87.031901
https://doi.org/10.1103/PhysRevC.87.031901
http://arxiv.org/abs/arXiv:1405.3976
https://doi.org/10.1103/PhysRevC.87.034913
https://doi.org/10.1103/PhysRevC.87.034913
https://doi.org/10.1103/PhysRevC.87.034913
https://doi.org/10.1103/PhysRevC.87.034913
https://doi.org/10.1103/PhysRevC.92.034911
https://doi.org/10.1103/PhysRevC.92.034911
https://doi.org/10.1103/PhysRevC.92.034911
https://doi.org/10.1103/PhysRevC.92.034911
https://doi.org/10.1007/JHEP09(2017)032
https://doi.org/10.1007/JHEP09(2017)032
https://doi.org/10.1007/JHEP09(2017)032
https://doi.org/10.1007/JHEP09(2017)032
https://doi.org/10.1103/PhysRevC.97.034905
https://doi.org/10.1103/PhysRevC.97.034905
https://doi.org/10.1103/PhysRevC.97.034905
https://doi.org/10.1103/PhysRevC.97.034905
https://doi.org/10.1103/PhysRevC.91.044902
https://doi.org/10.1103/PhysRevC.91.044902
https://doi.org/10.1103/PhysRevC.91.044902
https://doi.org/10.1103/PhysRevC.91.044902
https://doi.org/10.1103/PhysRevC.93.024913
https://doi.org/10.1103/PhysRevC.93.024913
https://doi.org/10.1103/PhysRevC.93.024913
https://doi.org/10.1103/PhysRevC.93.024913
https://doi.org/10.1103/PhysRevC.96.064902
https://doi.org/10.1103/PhysRevC.96.064902
https://doi.org/10.1103/PhysRevC.96.064902
https://doi.org/10.1103/PhysRevC.96.064902
https://doi.org/10.1103/PhysRevC.94.024919
https://doi.org/10.1103/PhysRevC.94.024919
https://doi.org/10.1103/PhysRevC.94.024919
https://doi.org/10.1103/PhysRevC.94.024919
https://doi.org/10.1016/j.physletb.2018.01.011
https://doi.org/10.1016/j.physletb.2018.01.011
https://doi.org/10.1016/j.physletb.2018.01.011
https://doi.org/10.1016/j.physletb.2018.01.011
https://doi.org/10.1103/PhysRevC.95.054910
https://doi.org/10.1103/PhysRevC.95.054910
https://doi.org/10.1103/PhysRevC.95.054910
https://doi.org/10.1103/PhysRevC.95.054910
https://doi.org/10.1016/j.nuclphysa.2017.05.054
https://doi.org/10.1016/j.nuclphysa.2017.05.054
https://doi.org/10.1016/j.nuclphysa.2017.05.054
https://doi.org/10.1016/j.nuclphysa.2017.05.054



