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RESUMO: Interação genótipo por ambiente é uma questão extremamente importante no 
melhoramento genético de plantas e produção. A seleção e recomendação de genótipos 
superiores são dificultadas devido à constante ocorrência de interação, representa um grande 
desafio para os pesquisadores. Com isso, os ensaios multi-ambientais são essenciais para a 
seleção de linhagem eficaz e recomendação de cultivares. Existem vários modelos na literatura 
para análise de dados multi-ambientais, os modelos AMMI (Additive Maineffects and 

Multiplicative Interaction) e GGE (Genotype main effects + Genotype environment interaction) 
biplot são os mais utilizados. O modelo AMMI combina a análise de variância e a análise de 
componentes principais, para ajustar, respectivamente, os efeitos principais de genótipo e 
ambiente e os efeitos da interação. O GGE biplot é um método baseado na análise de 
componentes principais para explorar os ensaios multi-ambientais e é permitido as visualizações 
dos gráficos de biplot as relações entre os ambientes de teste, genótipos e interação genótipo por 
ambiente. Os principais objetivos deste trabalho com a utilização dos modelos AMMI e GGE 
biplot: 1) investigação mega-ambiente para a compreensão do ambiente de destino; 2) avaliação 
de genótipos e ambientes dentro de cada mega-ambiente; 3)compreender as causas da interação 
genótipo por ambiente; e 4) Criar um novo método para a comparação dos modelos AMMI com 
GGE biplot. 

� PALAVRAS-CHAVE: Interação genótipo por ambiente; modelo AMMI; GGE biplot; mega-
ambiente; análise de componentes principais. 
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1 Introdução 

A resposta diferencial de genótipos em ambientes é frequente em estudos de 
experimentos multi-ambientes (MET) e é conhecido como interação genótipo por 
ambiente (G × E), que reduz a correlação entre os valores fenotípicos e genotípicos e 
dificulta a seleção e recomendação de genótipos adaptados e estáveis (Camargo-Buitrago 
et al., 2011; Gauch, 2013). Dados de METs são conduzidos por vários anos para os 
principais produtos agrícolas no mundo, frequentemente resumidos em tabelas de duas 
entradas com genótipos nas linhas e ambientes (ou locais) nas colunas. Os METs são 
essenciais porque a presença da G × E, ou seja, a mudança na performance relativa de 
genótipos por meio de diferentes ambientes, complica a avaliação de cultivar. Se não 
existisse a G × E, um único cultivar prevaleceria no mundo inteiro e um único 
experimento bastaria para avaliação de cultivar (Gauch & Zobel, 1996; Rodrigues et al., 
2014). A G × E ocorre em várias formas, com a forma mais extrema que consiste em 
interações cruzada, na classificação de genótipos mudanças entre ambientes, por exemplo, 
um genótipo responde de maneira diferente às variações ambientais e nesta situação, os 
melhores genótipos em um local podem não o ser em necessariamente os melhores em 
outros locais.  

A G × E tem sido um foco de pesquisa entre biometristas e geneticistas quantitativos 
desde o início de 1900 (Yan & Kang, 2003). Com a noção de que a G × E é indesejável 
e/ou que confunde avaliação de genótipos, muito trabalho tem sido dedicada ao 
desenvolvimento de índices de estabilidade para quantificar e selecionar contra G × E. 
Diversos métodos estatísticos destinados à avaliação da G × E estão disponíveis no 
sentido de entender melhor este efeito e a escolha do método mais adequado depende dos 
dados experimentais, os estudos de G × E vêm se destacando e ganhando grande 
aplicabilidade nas duas últimas décadas (Hongyu et al., 2014; Arciniegas-Alarcón et al., 
2014).  

No melhoramento de plantas, os principais objetivos de ensaios multi-ambientes 
(METs) são: (i) estudo de G × E, (ii) avaliar a adaptabilidade e estabilidade genotípica, 
(iii) estabelecer relações entre os testes de ambientes, entre os genótipos, e entre genótipos 
e ambientes (ou locais) simultaneamente, e (iv) fazer predições do valor da reprodução de 
genótipos que vai permitir fazer uma seleção precisa dos país para o próximo ciclo de 
reprodução. A presença da G × E complica este processo e normalmente é expresso como 
respostas inconsistentes de alguns genótipos em relação a outros, devido à mudança de 
classificação genotípica, ou como mudanças nas diferenças absolutas entre genótipos sem 
mudança classificação (Araújo et al., 2012; Gauch, 2013).  

Há diversas teorias para a avaliação da adaptabilidade e estabilidade, as quais 
diferem quanto aos seus conceitos e procedimentos biométricos de estimação (Camargo-
Buitrago et al., 2011; Silva & Benin, 2012). Dentre as metodologias mais recentes, têm-se 
O modelo AMMI (Gauch, 1992) é um método estatístico para compreender a estrutura de 
interações entre genótipos e ambientes e o modelo GGE biplot, proposto por Yan et al. 
(2000), que considera o efeito principal de genótipo mais a interação genótipo e 
ambiente.Ambas as análises, baseadas em gráficos biplot, representam uma matriz de 
dados.  

A única diferença entre os modelos AMMI e GGE está na etapa inicial da análise, o 
modelo GGE analisa diretamente o efeito de G+ G × E, enquanto que a AMMI separa G 
da G × E e, na etapa final da análise com formação dos gráficos biplot para as duas 
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metodologias. No entanto, essa separação não é capaz de conferir superioridade à análise 
AMMI (Gauch, 2006; Yan et al., 2007). Comparando as metodologias AMMI e GGE 
Biplot na formação de mega-ambientes, Camargo-Buitrago et al. (2011) relataram 95,2% 
de coincidência nos resultados entre as metodologias. Assim, o modelo GGE biplot é mais 
indicado para a identificação de mega-ambientes, seleção de ambientes representativos e 
discriminativos e indicação de cultivares mais adaptadas e estáveis a ambientes 
específicos (Gauch et al., 2008; Yan, 2011). Por outro lado, a análise AMMI pode ser 
utilizada com eficiência na identificação de condições ambientais superiores para a 
exploração agrícola (seleção de locais de cultivo) e genótipos de superior desempenho 
médio (Gauch et al., 2008; Yan, 2011).  

O objetivo deste trabalho foi utilizar a técnica da análise de GGE biplot para os 
dados multi-ambientes (MET): 1) investigação mega-ambiente para a compreensão do 
ambiente de destino; 2) avaliação de genótipos e ambientes dentro de cada mega-
ambiente; 3)compreender as causas da interação genótipo por ambiente; e 4) Criar um 
novo método para a comparação dos modelos AMMI com GGE biplot. 

2 Material e métodos 

2.1 Biplot para tabela de dupla entrada 

Foi utilizado neste trabalho o conjunto de dados MET sobre avaliação de 
produtividade de milho provenientes da empresa Criagene SK que fica no município de 
Casa Branca no estado de São Paulo. Os dados são relativos a experimentos com 15 
genótipos de milho, em 4 locais distribuídos em (A1: Vazante 720m/MG; A2: município 
de Casa Branca 680m/SP; A3: Guaíra 520m/SP e A4: Vazante 650m/MG). Os ensaios 
foram conduzidos na safrinha de 2011. Têm-se ainda que em cada experimento foi 
utilizado um delineamento em blocos ao acaso, com 2 blocos em cada experimento.  

O método biplot foi desenvolvido por Gabriel (1971) para representar graficamente 
resultados de análise de componentes principais ou de decomposição em valores 
singulares (DVS), no qual o valor de cada elemento de uma tabela de dupla entrada pode 
ser visualizado pelo produto de vetores e pelo cosseno do ângulo entre dois vetores (Yan 
& Kang, 2003). Quando duas matrizes apresentarem o mesmo número de linhas e 
colunas, é possível multiplicá-las. A nova matriz gerada da multiplicação das duas 
anteriores assume o mesmo número de linhas e colunas de ambas as matrizes.  

Qualquer matriz de dados de duas entradas Z, com elementos ���, em que i = 1,…, g 
linhas (genótipos) e j = 1,…, e colunas (ambientes), que pode ser decomposto por DVS 
em p componentes principais (PC): 

��� = ∑ ��
�
�	
 ������ + ���, (1) 

em que p ≤ min(e, g-1). Todo PC é composto pela matriz de escores genotípicos ���, 
matriz de escores ambientais ��� ,  valor singular ��e ���resíduo para o genótipo i no 
ambiente j que não é explicada pelo modelo. O modelo com algumas restrições: 
λ1≥λ2≥…≥λp≥ 0 e com ortonormalidade nas escores ��� , isto é, ∑ �������

�
�	
 = 1(se k= k′) 

e∑ �������
�
�	
 = 0(se k ≠ k′);  com as restrições semelhantes para��� (Yan, 2011). 
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Quando a matriz Z de posto p pode ser suficientemente aproximada por uma matriz 
de posto 2 (os primeiros dois componentes são os mais importantes, pois explicam 
maiores variações dos dados), isto é,        

 ��� = �
��
��
 +  �������� + ���, (2) 

Pode ser apresentada graficamente em um biplot de dimensão 2 após um 
particionamento em valor singular apropriado. 

 ��� = (�

�

��
)(�


��

��
) + (��
�

���)(��

��

���) + ���, (3) 

em que f = [0; 0,5; 1] é o fator de partição em valor singular (PVS).  
O biplot é construído por meio da representação gráfica�


�
��
como abcissa, 

��
�

���como ordenada para cada genótipo, e ao mesmo tempo traçando �


��

��
 como 

abcissa e ��

��

���como ordenada para cada ambiente (Yan & Kang, 2003; Yan, 2011). 
O expoente f é usado para redimensionar os escores de linhas e colunas para 

melhorar a interpretação visual do biplot para um propósito particular. No contexto de 
dados MET, os valores singulares são alocados inteiramente nos escores de genótipo 
(linha) se f=1, isto é “particionamento em valor singular centrada-genótipo” ou PVS = 1 
(Yan, 2002), ou inteiramente aos escores de ambiente (coluna) se f = 0 (“particionamento 
em valor singular centrada-ambiente” ou PVS = 2); e f= 0,5 alocará as raízes quadradas 
dos valores singulares ��para ambos os escores de genótipo e ambiente (“particionamento 
em valor singular simétrico” ou PVS = 3). 

Na análise biplot GGE, o partição em valor singular de genótipo-centrada e o 
ambiente-centrada são utilizados para avaliação de genótipos e ambiente de teste, 
respectivamente (Yan, 2011). Uma propriedade importante do biplot é que a aproximação 
de qualquer elemento da matriz original Z de posto 2 pode ser estimada visualmente por 
produto interno de vetores de genótipo e ambiente, respectivamente, e o cosseno do 
ângulo entre si. Isto é conhecido como a propriedade do produto interno do biplot (Yan & 
Holland, 2010; Yan, 2011). 

2.2 Construção de GGE biplot 

O modelo GGE biplot (Yan & Kang, 2003; Yan, 2011), que considera o efeito 
principal de genótipo mais a G × E, são baseadas em gráficos biplot, representa 
graficamente uma matriz de dados. Este Biplot é construído nos dois primeiros 
componentes principais de uma Análise de Componentes Principais (ACP) utilizando 
Modelos de Regressões Locais (SREG). A primeira componente, quando se encontra 
altamente correlacionada com o efeito principal do genótipo, representa a proporção do 
rendimento que se deve somente às características do genótipo. A segunda componente 
representa a parte do rendimento devida a G × E (Yan & Holland, 2010; Yan, 2011). 

Quando diferentes cultivares estão adaptadas as diferentes grupos de ambientes e a 
variação entre grupos é maior do que dentro do grupo, tem-se a formação de um mega-
ambiente (Yan & Kang, 2003). A definição de mega-ambientes e a relação entre os 
ambientes auxiliam os melhoristas de plantas na identificação de genótipos que possuam 
adaptação ampla ou específica a determinados ambientes ou grupos de ambientes (Silva & 
Benin, 2012). Na análise GGE biplot, quando se estuda mega-ambientes, a média no 
gráfico não está relacionada à média geral, mas sim à média do mega-ambiente e esta 
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abordagem auxilia na identificação de genótipos que possuam adaptação ampla ou 
específica a determinados ambientes ou grupos de ambientes (Yan & Kang, 2003; Yan & 
Tinker, 2006). 

Para um conjunto de dados MET, cada valor na tabela é a produtividade média de 
um genótipo em um ambiente (���), que é a soma da média geral (�), o efeito principal do 
genótipo (��) para o ambiente particular (��), e a interação específica (G× E) entre o 
genótipo e o ambiente (���), ignorando quaisquer erros aleatórios (Yan, 2011): 

��� = � + �� + �� + ���, (4) 

O modelo GGE biplot não separa os efeitos do genótipo e da G × E, mantendo-os 
juntos em dois termos multiplicativos, que podem ser visualizado na equação (4) da 
metodologia SREG. Desde que apenas o G e G × E são pertinentes à avaliação genótipo, 
avaliação ambiente de teste, e delineamento de mega-ambiente; o efeito principal do 
ambiente E e a média geral devem ser removida de cada elemento para apenas manter G e 
G × E na tabela de dupla entrada (Yan, 2011): 

��� − � − ��  = �� + ���, (5) 

Os dados MET ambiente-centrado, após dimensionamento apropriado dos dados, são 
submetidas à DVS e análise de biplot (Yan et al., 2000; Yan, 2011). 

Yan & Tinker (2006) propôs uma “relação de informação (IR)” para avaliar a 
adequação de um biplot em exibir os padrões de uma tabela de dupla entrada. Suponha 
que esta tabela de dupla entrada tem g genótipos e ambientes. O número máximo de PCs é 
requerido para representar completamente esta tabela é k = min(e, g-1). Se não há 
correlação entre os ambientes, todos os k PCs devem ser completamente independentes e 
a proporção da variação total explicada por cada PC deve ser exatamente 1⁄k.  

Quando existir alguma correlação entre os ambientes, a proporção da variação 
explicada pelos os primeiros PCs deve ser maior do que 1⁄k, e a variação explicada por 
outros PCs deve ser inferior ou igual a 1⁄k (Yan & Tinker, 2006; Yan, 2011). A IR pode 
ser calculado para cada PC, que é a proporção da variação total explicada por cada PC 
multiplicado por k. A interpretação é a seguinte: um PC com IR ≥ 1 contém padrões 
(associações entre ambientes),   e um PC com IR < 1 não contém qualquer padrão ou 
informação. O biplot de dimensão 2 representa adequadamente os padrões nos dados, se 
apenas os dois primeiros PCs tem um IR ≥ 1 (Yan & Tinker, 2006). Todas as análises 
deste trabalho foram feitas por meio de rotinas computacionais implementadas no 
software R (R Development Core Team, 2014). 

2.3 Mega ambiente 

Quando diferentes cultivares estão adaptadas as diferentes grupos de ambientes e a 
variação entre grupos é maior do que dentro do grupo, tem-se a formação de um “mega-
ambiente” (Gauch & Zobel, 1997; Yan & Kang, 2003).A definição de mega-ambientes e a 
relação entre os ambientes auxiliam aos melhoristas de plantas na identificação de 
genótipos que possuam adaptação ampla ou específica a determinados ambientes ou 
grupos de ambientes (Silva & Benin, 2012).Na análise GGE biplot, quando se estuda 
mega-ambientes, a média no gráfico não está relacionada à média geral, mas sim à média 
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do mega-ambiente e esta abordagem auxilia na identificação de genótipos que possuam 
adaptação ampla ou específica a determinados ambientes ou grupos de ambientes (Yan & 
Kang, 2003; Yan & Tinker, 2006). 

O objetivo da análise de mega-ambiente é tentar dividir uma região de corte alvo, em 
sub-regiões significativas de modo que G × E possa ser explorada (Yan & Kang, 2003; 
Yan, 2011). Quando um GGE biplot de dimensão 2 é julgado como uma aproximação 
suficiente dos dados (também é chamado como “Which-won-where”) é uma ferramenta 
eficaz para análise de mega-ambiente.  

Este ponto de vista é constituído por um polígono irregular e um conjunto de linhas 
retas (iguais números de lados de polígono) que irradiam a partir da origem do biplot e 
intersectam cada um dos lados do polígono perpendicularmente. Os vértices do polígono 
são os marcadores de genótipos localizados mais longe da origem do biplot em todas as 
direções, de modo a que todos os genótipos estão contidos dentro do polígono (Yan, 
2011). Uma linha que cruza perpendicularmente um lado do polígono representa 
ambientes hipotéticos, em que os dois genótipos que definem esse lado do polígono 
apresentaram produtividades boas; a posição relativa dos dois genótipos seria invertida em 
ambientes em lados opostos da linha (G × E cruzado). Assim, as linhas que se irradiam 
dividem o biplot em setores, para cada setor, existe um genótipo no vértice, que 
apresentou melhor desempenho para ambientes que se enquadram nesse setor (Yan & 
Kang, 2003; Yan, 2011).  

2.4 Modelo AMMI 

O modelo AMMI combina dois métodos na sua análise: análise de variância e a 
decomposição por valor singular em um único modelo, componentes aditivos para os 
efeitos principais de genótipos (gi), ambientes (ej) e componentes multiplicativos para os 
efeitos da interação (ge)ij  para a resposta média do i-ésimo genótipo no j-ésimo ambiente 
sobre r blocos (repetições) foi adotado o modelo conforme a equação (Gauch, 1992; Dias 
& Krzanowski, 2006; Hongyu et al., 2014): 

 �� = � + !� + "� + ∑ ��������
#
�	
 + $�� + ���, 

 
em que: Yij é a média do i-ésimo genótipo no j-ésimo ambiente, com i=1, 2, ..., g e j=1, 2, 

..., e; µ é a média geral; gi e ej são os efeitos do i-ésimo genótipo e j-ésimo ambiente, 
respectivamente; �� é o k-ésimo valor singular da matriz (GE) e com �
 ≥ �� ≥ ⋯ ≥ �#; 
��� e ��� são elementos dos k-ésimos valores singulares correspondentes ao i-ésimo 
genótipo e j-ésimo ambiente respectivamente; $�� é o resíduo da interação G × E; n é o 
número de eixos ou componentes principais  retidos pelo modelo; r é o número de blocos 
e ��� é o erro médio experimental associado ao i-ésimo genótipo no j-ésimo ambiente, 

assumidos independentes, e ���~((0,
*+

,
).  

Na primeira fase os efeitos principais, na parte aditiva (média geral, efeitos de 
genótipos e ambientes), são ajustados por uma análise de variância comum aplicada à 
matriz de média ( (�×.)), resultando em um resíduo de não aditividade, isto é, na interação 
G × E, dada por (ge)ij, essa interação constitui a parte multiplicativa do modelo. Na 
segunda fase a interação é analisada pela decomposição por valores singulares (DVS) ou 
por análise de componentes principais da matriz de interações (GE(g×e)=[(ge)ij]) (Dias & 
Krzanowski, 2006). 
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A matriz GE é a matriz de interação entre os genótipos e os ambientes, (matriz de 
resíduo dos efeitos principais), em que cada elemento (ge)ij de GE são dados por (Hongyu 
et al., 2014): 

(!")�� =  �� −  �. −  .� +  .., 

 
em que  �� é a média das repetições do genótipo i no ambiente j, com i = 1,2, ..., g e j = 1, 

2, ..., e;  �. é a média do genótipo i;  .� é a média do ambiente j e  .. é a média geral do 
experimento. 

Existem várias técnicas para atribuir os graus de liberdade a um modelo AMMI, um 
dos procedimentos usuais consiste em determinar os grau de liberdade associados a cada 
parcela da SQG×E, ou seja, associada a ��

� , relacionada a cada membro da família de 
modelos AMMI, obtém-se o quadrado médio (QM) correspondente a cada parcela (ou 
modelo), em seguida, é obtido um teste F avaliando-se a significância de cada 
componente em relação ao QMErro médio. Isso resulta num quadro de análise de variância 
semelhante ao tradicional, com desdobramento para fonte de variação da interação G × E 
(Gauch, 2013).  

Dessa forma, a definição do número de eixos a serem retidos para explicar o padrão 
relacionado à interação leva em consideração a proporção da SQG×Eacumulada até o n-
ésimo eixo (∑ ��

�#
�	
 /234×5). O ponto de parada que determina a seleção do modelo 

(AMMI0, AMMI1, ..., ou AMMIF) baseia-se na significância do teste F para os 
sucessivos termos da interação.  O método de Gollob (1968) é um dos mais utilizados 
para atribuir graus de liberdades a um modelo AMMI, a expressão do método é: �6789

=

! + " − 1 − 2;, com k = 1, 2, ..., p,  p = min(g–1, e–1),  em que  PCk : o k-ésimo eixo de 
componente principal. 

Na análise AMMI, a DVS é aplicada à matriz de interações GE (matriz de posto 
conhecido p) (Hongyu et al., 2014): 

<=>(�×.) = ∑ ����
#
�	
 �′@ =  ABCDE′B , 

 
em que, AB (�×#) tem em suas colunas apenas os n primeiros vetores F(�×
); CD (#) é a matriz 
diagonal com os primeiros valores singulares:  �
, ��, … �7 (com n<p) e EB′(#×.) tem em 
suas primeiras linhas os n primeiros vetores H′(
×.). 

Assim, na análise AMMI tem-se a decomposição exata dada por <=(�×.) = ACEI =

AC
J

+C
J

+ EI = <KI e a decomposição aproximada por L componentes <=>(�×.) = ABCDEBI  =

<BKB I = ∑  (�
�

J

+ �
�

J

+)(�
�

J

+��
I  )#

�	
  sendo <B(�×.) efeitos de genótipos e KB (#×.)
I  efeitos de locais 

(Gauch, 1992; Gauch, 2013). 

3 Resultados e discussão 

3.1 GGE biplot para análise de dados MET 

De acordo com relação de informação (IR) dos quatro componentes (Tabela 1), 
apenas os dois primeiros PCs contêm padrões (IR1= 1,57 > 1 e IR2 = 1,00 = 1). Portanto, o 
biplot é considerado adequado para representar os padrões dos dados. O GGE biplot com 
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base neste conjunto de dados é apresentado na Figura 1, na abscissa do biplot apresentam
se os escores de PC1 e na ordenada os escores do PC2, dos genótipos e ambientes. 

Tabela 1 - Valor singular, proporção explicada e relação da informação (I
componentes principais (PCs)

PC 

1 
2 
3 
4 

 
Os 15 genótipos são rotulados como G1 a G15 e os quatro ambientes como A1 a A4. 

A linha reta traçada da origem do biplot para a colocação de um ambiente ou genótipo é 
chamado “vetor de ambiente” ou “vetor de genótipo”, de modo que a partir desses 
vetores, as interações específicas entre um genótipo e um ambiente (por exemplo, o 
desempenho de cada um dos genótipos em cada ambiente) possam ser visualizadas. A 
regra de interpretação é: 1) o desempenho de um genótipo de um ambiente é melhor do 
que a média, se o ângulo entre o seu e do ambiente é < 90
ângulo > 90o (porque o cosseno de um ângulo obtuso é menor do que 0); e que está 
próximo da média se o ângulo é aproximadamente 90

3.2 Análise mega-ambiente

A Figura 1 permite o agrupamento visual dos ambientes de teste com base em 
cruzamento G × E entre os melhores genótipos. O biplot foi construído no ambiente 
centrado (centralização = 2), (escala = 0) e (PVS = 2). Os vértices do polígono são 
formados pelos genótipos: G8, G9, G11, G4 e G2. Os quatros ambientes foram cortados 
em 3 grupos pelas linhas que saíram da origem do biplot, os grupos são formados por 
A1; (ii) A4; (iii) A2 e A3.

Figura 1 - O GGE Biplot (“Which
(kg/ha), quais dos genótipos apresentaram melhor desempenho em que 
ambientes. 
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base neste conjunto de dados é apresentado na Figura 1, na abscissa do biplot apresentam
se os escores de PC1 e na ordenada os escores do PC2, dos genótipos e ambientes. 

Valor singular, proporção explicada e relação da informação (I
componentes principais (PCs) 

Valor singular 
Variação 

Explicado (%) 
20,99 39,35 1,57
16,60 24,61 1,00
15,63 21,82 0,87
12,62 14,22 0,57

Os 15 genótipos são rotulados como G1 a G15 e os quatro ambientes como A1 a A4. 
linha reta traçada da origem do biplot para a colocação de um ambiente ou genótipo é 

chamado “vetor de ambiente” ou “vetor de genótipo”, de modo que a partir desses 
vetores, as interações específicas entre um genótipo e um ambiente (por exemplo, o 

ho de cada um dos genótipos em cada ambiente) possam ser visualizadas. A 
regra de interpretação é: 1) o desempenho de um genótipo de um ambiente é melhor do 
que a média, se o ângulo entre o seu e do ambiente é < 90o; é pior do que a média se o 

(porque o cosseno de um ângulo obtuso é menor do que 0); e que está 
próximo da média se o ângulo é aproximadamente 90o (Yan & Tinker, 2006; Yan, 2011). 

ambiente 

A Figura 1 permite o agrupamento visual dos ambientes de teste com base em 
mento G × E entre os melhores genótipos. O biplot foi construído no ambiente 

centrado (centralização = 2), (escala = 0) e (PVS = 2). Os vértices do polígono são 
formados pelos genótipos: G8, G9, G11, G4 e G2. Os quatros ambientes foram cortados 

pelas linhas que saíram da origem do biplot, os grupos são formados por 
iii) A2 e A3. 

 

O GGE Biplot (“Which-won-where") para os dados de produtividade de milho 
), quais dos genótipos apresentaram melhor desempenho em que 

.2, p.139-155, 2015 

base neste conjunto de dados é apresentado na Figura 1, na abscissa do biplot apresentam-
se os escores de PC1 e na ordenada os escores do PC2, dos genótipos e ambientes.  

Valor singular, proporção explicada e relação da informação (IR) dos quatro 

IR 

1,57 
1,00 
0,87 
0,57 

Os 15 genótipos são rotulados como G1 a G15 e os quatro ambientes como A1 a A4. 
linha reta traçada da origem do biplot para a colocação de um ambiente ou genótipo é 

chamado “vetor de ambiente” ou “vetor de genótipo”, de modo que a partir desses 
vetores, as interações específicas entre um genótipo e um ambiente (por exemplo, o 

ho de cada um dos genótipos em cada ambiente) possam ser visualizadas. A 
regra de interpretação é: 1) o desempenho de um genótipo de um ambiente é melhor do 

; é pior do que a média se o 
(porque o cosseno de um ângulo obtuso é menor do que 0); e que está 

Tinker, 2006; Yan, 2011).  

A Figura 1 permite o agrupamento visual dos ambientes de teste com base em 
mento G × E entre os melhores genótipos. O biplot foi construído no ambiente 

centrado (centralização = 2), (escala = 0) e (PVS = 2). Os vértices do polígono são 
formados pelos genótipos: G8, G9, G11, G4 e G2. Os quatros ambientes foram cortados 

pelas linhas que saíram da origem do biplot, os grupos são formados por (i) 

where") para os dados de produtividade de milho 
), quais dos genótipos apresentaram melhor desempenho em que 
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O genótipo G2 é o vértice do setor em que o ambiente A4 é colocado, 
portanto, é o genótipo que teve melhor desempenho neste ambiente; o G8 é 
o vértice no setor em que A2 e A3 são colocados, logo, é o genótipo mais 
adaptado nestes ambientes e é o
A1 (Figura 1). Nos setores de G9, G1, G11, G12 G10 e G13 que não 
contêm ambientes, significa que estes genótipos não eram produtivos em 
nenhum ambiente, ou seja, estes genótipos são os piores genótipos em 
relação à produtividade em alguns ou em todos os ambientes. 

3.3 Avaliação de genótipos baseada em GGE biplot

Um “ideótipo” é uma forma ideal de planta ou genótipo para determinado ambiente 
e objetivo de cultivo, portanto, o ideótipo é
médio e alta estabilidade por meio de um mega
“Média versus Estabilidade” é uma ferramenta eficaz para a avaliação de genótipos em 
ambos os aspectos (Yan et al
representa o “ambiente
ambientes de teste no biplot. 

Figura 2 - O GGE Biplot (“Média versus Estabilidade") com eixo do ambiente
(EAM) para mostrar o desempenho médio e estabilidade dos genótipos.

A linha reta com uma única seta que passa pela origem do biplot e do ambiente
média é referido como o “eixo do ambiente
maior desempenho médio para os genótipos. A linha com duas setas que passa pela 
origem do biplot e é perpendicular ao EAM, com as setas apontam para a maior 
variabilidade de desempenho (menor estabilidade) em ambas as direções. Este biplot é 
baseado em (PVS = 1), ou seja, os valores singulares são totalmente compartimentados 
para as escores genotípicos 

., São Paulo, v.33, n.2, p.139-155, 2015 

G2 é o vértice do setor em que o ambiente A4 é colocado, 
portanto, é o genótipo que teve melhor desempenho neste ambiente; o G8 é 
o vértice no setor em que A2 e A3 são colocados, logo, é o genótipo mais 
adaptado nestes ambientes e é o mesmo caso do genótipo G4 no ambiente 

). Nos setores de G9, G1, G11, G12 G10 e G13 que não 
contêm ambientes, significa que estes genótipos não eram produtivos em 
nenhum ambiente, ou seja, estes genótipos são os piores genótipos em 

odutividade em alguns ou em todos os ambientes.  

Avaliação de genótipos baseada em GGE biplot 

“ideótipo” é uma forma ideal de planta ou genótipo para determinado ambiente 
, portanto, o ideótipo é um genótipo que apresenta alto 

médio e alta estabilidade por meio de um mega-ambiente. A visualização do GGE biplot 
“Média versus Estabilidade” é uma ferramenta eficaz para a avaliação de genótipos em 
ambos os aspectos (Yan et al., 2007; Yan, 2011). Na Figura 2, o pequeno cír
representa o “ambiente-média” e é definido pelas coordenadas médias de todos os 
ambientes de teste no biplot.  

 

O GGE Biplot (“Média versus Estabilidade") com eixo do ambiente
(EAM) para mostrar o desempenho médio e estabilidade dos genótipos.

A linha reta com uma única seta que passa pela origem do biplot e do ambiente
média é referido como o “eixo do ambiente-média” ou EAM. A seta aponta para um 
maior desempenho médio para os genótipos. A linha com duas setas que passa pela 

é perpendicular ao EAM, com as setas apontam para a maior 
variabilidade de desempenho (menor estabilidade) em ambas as direções. Este biplot é 
baseado em (PVS = 1), ou seja, os valores singulares são totalmente compartimentados 
para as escores genotípicos (Yan, 2002; Yan, 2011). 
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G2 é o vértice do setor em que o ambiente A4 é colocado, 
portanto, é o genótipo que teve melhor desempenho neste ambiente; o G8 é 
o vértice no setor em que A2 e A3 são colocados, logo, é o genótipo mais 

mesmo caso do genótipo G4 no ambiente 
). Nos setores de G9, G1, G11, G12 G10 e G13 que não 

contêm ambientes, significa que estes genótipos não eram produtivos em 
nenhum ambiente, ou seja, estes genótipos são os piores genótipos em 

“ideótipo” é uma forma ideal de planta ou genótipo para determinado ambiente 
alto desempenho 

ambiente. A visualização do GGE biplot 
“Média versus Estabilidade” é uma ferramenta eficaz para a avaliação de genótipos em 

, o pequeno círculo 
média” e é definido pelas coordenadas médias de todos os 

O GGE Biplot (“Média versus Estabilidade") com eixo do ambiente-média 
(EAM) para mostrar o desempenho médio e estabilidade dos genótipos. 

A linha reta com uma única seta que passa pela origem do biplot e do ambiente-
média” ou EAM. A seta aponta para um 

maior desempenho médio para os genótipos. A linha com duas setas que passa pela 
é perpendicular ao EAM, com as setas apontam para a maior 

variabilidade de desempenho (menor estabilidade) em ambas as direções. Este biplot é 
baseado em (PVS = 1), ou seja, os valores singulares são totalmente compartimentados 
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Assim, os genótipos são classificados de acordo com sua produtividade média da 
seguinte forma: G8 > G2 > G14 > G15 > G5 >… > G3 > média geral > G4 > G10 >… > 
G1 > G11 > G9; O G8 foi altamente instável, pois tinha rendimento inferior
em ambiente A1, enquanto produziram relativamente bem em A2, A3 e A4; O G2 não foi 
estável, mas apresentou um desempenho bem superior em comparação aos outros 
genótipos em relação à produtividade, produzindo bem nos ambientes A1, A2 e A4, 
exceto no A3. O G7 foi estável e com produtividade pouco acima da média, já o genótipo 
G14 teve produtividade bem acima da média (terceiro melhor
2). Note-se que, se o biplot explica apenas uma proporção da variação total, alguns 
genótipos aparentemente estáveis podem não ser verdadeiramente estáveis como as suas 
variações não podem ser completamente explicadas neste biplot. 

Um ideótipo na Figura 2
o EAM, no sentido positivo e tem um comprimento do vetor igual aos vetores mais longos 
dos genótipos sobre o lado positivo do EAM, isto é, mais
3). Portanto, os genóti
mais desejáveis do que outros. Assim, G14 foi o 
seguida, os melhores foram os genótipos G15 e G5. Embora G8 e G2 tiveram rendimento 
médio superior, não foram estáveis, de acordo com Figura 4, o G12 foi mais desejável que 
o G8; os piores genótipos para recomendação foram G11 e G9. Os genótipos G13 e G11 
são altamente estáveis (Figura 
rendimentos bons, significa apenas que o desempenho relativo do G13 e G11 foram 
consistentes, mas estão longe de ser um genótipos ideais. 

A Figura 3 ilustra um conceito importante em relação à estabilidade, o termo 
“estabilidade elevada” só tem sentido quando associado ao 
genótipo estável é desejado apenas quando apresenta alta performance média (Yan &
Tinker, 2006; Yan, 2011).

 

Figura 3 - O GGE Biplot com eixo do ambiente
genótipos em relação ao 
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Assim, os genótipos são classificados de acordo com sua produtividade média da 
seguinte forma: G8 > G2 > G14 > G15 > G5 >… > G3 > média geral > G4 > G10 >… > 
G1 > G11 > G9; O G8 foi altamente instável, pois tinha rendimento inferior
em ambiente A1, enquanto produziram relativamente bem em A2, A3 e A4; O G2 não foi 
estável, mas apresentou um desempenho bem superior em comparação aos outros 
genótipos em relação à produtividade, produzindo bem nos ambientes A1, A2 e A4, 

to no A3. O G7 foi estável e com produtividade pouco acima da média, já o genótipo 
G14 teve produtividade bem acima da média (terceiro melhor) e foi o mais estável (Figura 

se que, se o biplot explica apenas uma proporção da variação total, alguns 
genótipos aparentemente estáveis podem não ser verdadeiramente estáveis como as suas 
variações não podem ser completamente explicadas neste biplot.  

ideótipo na Figura 2 pode ser um ponto (centro dos círculos concêntricos)
o EAM, no sentido positivo e tem um comprimento do vetor igual aos vetores mais longos 
dos genótipos sobre o lado positivo do EAM, isto é, mais alto desempenho médio (Figura 

). Portanto, os genótipos localizados mais perto do centro dos círculos concêntricos
mais desejáveis do que outros. Assim, G14 foi o ideótipo neste conjunto de dados, em 
seguida, os melhores foram os genótipos G15 e G5. Embora G8 e G2 tiveram rendimento 

foram estáveis, de acordo com Figura 4, o G12 foi mais desejável que 
o G8; os piores genótipos para recomendação foram G11 e G9. Os genótipos G13 e G11 
são altamente estáveis (Figura 2 e 3), isso não significa que estes genótipos tiveram 

significa apenas que o desempenho relativo do G13 e G11 foram 
consistentes, mas estão longe de ser um genótipos ideais.  

ilustra um conceito importante em relação à estabilidade, o termo 
“estabilidade elevada” só tem sentido quando associado ao desempenho médio; o 
genótipo estável é desejado apenas quando apresenta alta performance média (Yan &
Tinker, 2006; Yan, 2011). 

 

O GGE Biplot com eixo do ambiente-média (EAM) para classificar os 
genótipos em relação ao ideótipo (no centro dos círculos concêntricos).

.2, p.139-155, 2015 

Assim, os genótipos são classificados de acordo com sua produtividade média da 
seguinte forma: G8 > G2 > G14 > G15 > G5 >… > G3 > média geral > G4 > G10 >… > 
G1 > G11 > G9; O G8 foi altamente instável, pois tinha rendimento inferior ao esperado 
em ambiente A1, enquanto produziram relativamente bem em A2, A3 e A4; O G2 não foi 
estável, mas apresentou um desempenho bem superior em comparação aos outros 
genótipos em relação à produtividade, produzindo bem nos ambientes A1, A2 e A4, 

to no A3. O G7 foi estável e com produtividade pouco acima da média, já o genótipo 
) e foi o mais estável (Figura 

se que, se o biplot explica apenas uma proporção da variação total, alguns 
genótipos aparentemente estáveis podem não ser verdadeiramente estáveis como as suas 

entro dos círculos concêntricos) sobre 
o EAM, no sentido positivo e tem um comprimento do vetor igual aos vetores mais longos 

alto desempenho médio (Figura 
entro dos círculos concêntricos são 

neste conjunto de dados, em 
seguida, os melhores foram os genótipos G15 e G5. Embora G8 e G2 tiveram rendimento 

foram estáveis, de acordo com Figura 4, o G12 foi mais desejável que 
o G8; os piores genótipos para recomendação foram G11 e G9. Os genótipos G13 e G11 

), isso não significa que estes genótipos tiveram 
significa apenas que o desempenho relativo do G13 e G11 foram 

ilustra um conceito importante em relação à estabilidade, o termo 
desempenho médio; o 

genótipo estável é desejado apenas quando apresenta alta performance média (Yan & 

média (EAM) para classificar os 
ncêntricos). 
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3.4 Avaliação do ambiente de t

O objetivo da avaliação do ambiente de teste
utilizados para selecionar genótipos superiores de forma eficaz para um mega
A seleção de um ambiente de teste 
representatividade. A visualização no GGE biplot (Figura 
finalidade.  

Quando o biplot GGE baseia
no ambiente (Escala = 0), o comp
desvio padrão das médias de genótipos (SD), que é igual à raiz quadrada da variância 
fenotípica (σp) em ambiente de teste, o qual pode ser utilizado como uma medida do poder 
de discriminação do ambiente (YA
longos são mais discriminantes em relação aos genótipos. Aqueles ambientes com um 
vetor curto são menos discriminantes, o que significa que todos os genótipos tendem a 
executar de forma semelhante e pouca ou
genotípicas podem ser reveladas em tal ambiente, portanto, não devem ser utilizados 
como ambientes de teste. Um curto vetor também pode significar que o ambiente não é 
bem representada por PC1 e PC2 se o biplot não e
dados. Todos os ambientes (A1, A2, A3 e A4) apresentaram vetores longos, significando 
que são mais discriminantes em relação aos genótipos (Figura 

 

Figura 4 - O GGE biplot “discriminação e representatividade” para mostrar a cap
discriminação e de representatividade dos ambientes de teste.

Uma segunda utilidade da Figura 
ambiente teste. Os ambientes de teste que têm pequenos ângulos com EAM (eixo do 
ambiente-média), por exempl
aqueles que têm ângulos maiores, por exemplo, A1 e A3. Portanto, os ambientes de teste 
que são discriminantes e representativos (por exemplo, A4 e A2) são ambientes de teste 
ideal para a seleção de genó

., São Paulo, v.33, n.2, p.139-155, 2015 

Avaliação do ambiente de teste 

O objetivo da avaliação do ambiente de teste é identificar ambientes que podem ser 
utilizados para selecionar genótipos superiores de forma eficaz para um mega

ambiente de teste deve apresentar maior discriminação dos genót
. A visualização no GGE biplot (Figura 4) foi projetada

Quando o biplot GGE baseia-se fora de escala (não padronizado), dados centrados 
no ambiente (Escala = 0), o comprimento do vetor de um ambiente é proporcional ao 
desvio padrão das médias de genótipos (SD), que é igual à raiz quadrada da variância 

) em ambiente de teste, o qual pode ser utilizado como uma medida do poder 
de discriminação do ambiente (YAN, 2011). Os ambientes de teste com vetores mais 
longos são mais discriminantes em relação aos genótipos. Aqueles ambientes com um 
vetor curto são menos discriminantes, o que significa que todos os genótipos tendem a 
executar de forma semelhante e pouca ou nenhuma informação sobre as diferenças 
genotípicas podem ser reveladas em tal ambiente, portanto, não devem ser utilizados 
como ambientes de teste. Um curto vetor também pode significar que o ambiente não é 
bem representada por PC1 e PC2 se o biplot não exibir adequadamente o G + GE dos 
dados. Todos os ambientes (A1, A2, A3 e A4) apresentaram vetores longos, significando 
que são mais discriminantes em relação aos genótipos (Figura 4).  

 

O GGE biplot “discriminação e representatividade” para mostrar a cap
discriminação e de representatividade dos ambientes de teste. 

Uma segunda utilidade da Figura 4 é indicar ambientes de representatividade do 
. Os ambientes de teste que têm pequenos ângulos com EAM (eixo do 

média), por exemplo, A4 e A2, são ambientes mais representativos
aqueles que têm ângulos maiores, por exemplo, A1 e A3. Portanto, os ambientes de teste 
que são discriminantes e representativos (por exemplo, A4 e A2) são ambientes de teste 
ideal para a seleção de genótipos adaptados. Os ambientes de teste discriminante, mas não 
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é identificar ambientes que podem ser 
utilizados para selecionar genótipos superiores de forma eficaz para um mega-ambiente. 

discriminação dos genótipos e 
projetada para esta 

se fora de escala (não padronizado), dados centrados 
rimento do vetor de um ambiente é proporcional ao 

desvio padrão das médias de genótipos (SD), que é igual à raiz quadrada da variância 
) em ambiente de teste, o qual pode ser utilizado como uma medida do poder 

N, 2011). Os ambientes de teste com vetores mais 
longos são mais discriminantes em relação aos genótipos. Aqueles ambientes com um 
vetor curto são menos discriminantes, o que significa que todos os genótipos tendem a 

nenhuma informação sobre as diferenças 
genotípicas podem ser reveladas em tal ambiente, portanto, não devem ser utilizados 
como ambientes de teste. Um curto vetor também pode significar que o ambiente não é 

xibir adequadamente o G + GE dos 
dados. Todos os ambientes (A1, A2, A3 e A4) apresentaram vetores longos, significando 

O GGE biplot “discriminação e representatividade” para mostrar a capacidade 

resentatividade do 
. Os ambientes de teste que têm pequenos ângulos com EAM (eixo do 

representativos do que 
aqueles que têm ângulos maiores, por exemplo, A1 e A3. Portanto, os ambientes de teste 
que são discriminantes e representativos (por exemplo, A4 e A2) são ambientes de teste 

tipos adaptados. Os ambientes de teste discriminante, mas não 
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representativos (por exemplo, A1 e A3) são úteis para a seleção de genótipos adaptados 
especificamente em mega-ambientes; ou para seleção de genótipos instáveis se o ambiente 
teste é um único mega-ambiente (Figura 4).  

3.5 Análise AMMI para análise de dados MET 

Os resultados da análise de variância conjunta relativa à produtividade de milho 
(kg/ha) mostraram que o efeito de genótipo, ambiente e o efeito da interação foram 
significativos (p<0,01). Esses resultados indicam que os genótipos apresentaram 
comportamento diferenciado nos ambientes, o que justifica estudo mais aprofundado 
sobre o comportamento dos genótipos para identificar suas magnitudes de interação com 
os ambientes. O coeficiente de variação (CV%) do experimento mostrou-se de baixa 
magnitude (8,7199%), permitindo inferir que os experimentos foram bem conduzidos 
(Tabela 2). 

Tabela 2 - Análise de variância conjunta dos experimentos para a produtividade de milho 
e decomposição das somas de quadrados da interação (G × E) 

Fonte de Variação GL SQ QM F Valor-p 
Blocos/Ambiente 4 1555492 388873 0,4721 0,756 
Ambiente(E) 3 304154907 101384969 260,7149 4,846e-05*** 
Genótipo(G) 14 124525440 8894674 10,7984 2,712e-11*** 
Interação(G×E) 42 109478996 2606643 3,1645 3,370e-05*** 
PC1 16 68311642 4269478 5,18 0,0000*** 
PC2 14 26963397 1925957 2,32 0,0126* 
PC3 12 14203957 1183663 1,44 0,1758NS 

Resíduo 56 46127517 823706 - - 
Total 300 695321348 - - - 
Média Geral 10408,13     
CV(%) 8,7199     
NS: Não significativo; **Significativo a 0,01 de probabilidade; *** Significativo a 0,001 de probabilidade e * 
Significativo a 0,05 de probabilidade. 

Na análise AMMI a soma de quadrados da interação (SQG×E = 109478996) 
corresponde exatamente à soma dos autovalores (∑ ��

�#
�	
 ) (Tabela 2), que pode estar 

inflacionado devido à presença de ruídos (variação não explicável) na variável resposta, 
em virtude disto, faz-se necessário realizar um ajuste da interação por decomposição em 
valores singulares, aplicada à matriz de interação GE, ou seja, pode ser decomposta em 
três componentes principais.Pela Tabela 2, o primeiro componente principal (PC1) foi 
significativo com (p<0,01) pelo teste F de Gollob (1968), explicou 62,4% 
(68311642/109478996%) da variação da SQG×E e com 16 graus de liberdade. O PC2 foi 
significativo com (p<0,05), explicou 24,6% (26963397/109478996%) da variação da 
SQG×E e com 14 graus de liberdade. 

A não significância para o PC3 é desprezível e contém apenas ruído (variação 
aleatória não relacionada com o fenômeno da interação), que pode diminuir a eficiência 
da interpretação da estabilidade dos genótipos e ambientes na análise gráfica. Assim, a 
interpretação gráfica, considerando apenas as variações contidas nos dois eixos das 
componentes principais para avaliar a estabilidade dos genótipos e ambientes. 
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Os genótipos G2, G15, G14, G5, G3, G7 e G14 apresentaram
da média em ordem decrescente 
ser cultivados em todos os locais onde for
apenas os genótipos G2, G5 e G3 apresentaram produtividade acima da média geral e 
estão entre os dois grupos (produtivos e estáveis), indicando que esses genótipos 
associaram adaptabilidade com estabilidade. O 
todos os genótipos, em relação de estabilidade e adaptabilidade (Figura 
portanto, pode ser considerado como 
escolhido para recomendação pelos pesquisador
 

Figura 5 - Biplot AMMI1 para os dados de produtividade de milho (
(G) e quatro ambientes (A)

Figura 6 - Biplot para o modelo AMMI2 para os dados de produtividade de milho (kg
para os quinze genótipos (G) e quatro ambientes (A)

., São Paulo, v.33, n.2, p.139-155, 2015 

G2, G15, G14, G5, G3, G7 e G14 apresentaram produtividades acima 
em ordem decrescente e os mais estáveis foram G2, G9, G5, e G3

ser cultivados em todos os locais onde foram feitos os estudos (Figura 5)
apenas os genótipos G2, G5 e G3 apresentaram produtividade acima da média geral e 
estão entre os dois grupos (produtivos e estáveis), indicando que esses genótipos 
associaram adaptabilidade com estabilidade. O G2 apresentou o melhor desempenho entre 
todos os genótipos, em relação de estabilidade e adaptabilidade (Figura 5

considerado como ideótipo (maior Estabilidade e produtividade) e 
escolhido para recomendação pelos pesquisadores.  

 

Biplot AMMI1 para os dados de produtividade de milho (kg/ha) com quinze genótipos 
(G) e quatro ambientes (A). 

 

para o modelo AMMI2 para os dados de produtividade de milho (kg
para os quinze genótipos (G) e quatro ambientes (A). 
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produtividades acima 
oram G2, G9, G5, e G3, estes podem 

). Entre estes, 
apenas os genótipos G2, G5 e G3 apresentaram produtividade acima da média geral e 
estão entre os dois grupos (produtivos e estáveis), indicando que esses genótipos 

G2 apresentou o melhor desempenho entre 
5 e Figura 6), 

ideótipo (maior Estabilidade e produtividade) e 

) com quinze genótipos 

para o modelo AMMI2 para os dados de produtividade de milho (kg/ha) 
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Os ambientes mais favoráveis para a produtividade dos genótipos foram A2 (Casa 
Branca, SP - 680m) em seguida A1 (Vazante, MG - 720m), apresentaram maior produção 
entre todos e o ambiente menos favoráveis para produtividade foi A4 (Varante - MG 
650m). E também há formação de dois grupos de ambientes: Grupo 1 formado pelos 
locais A4 e A3 e outro por A1 e A2, sendo que estes grupos apresentam características 
opostas (Figura 5).  

Em relação às adaptações específicas dos genótipos em ambientes, verifica-se que os 
genótipos G4, G14 e G15 foram mais adaptados ao ambiente A3; G8 e G10 ao ambiente 
A4; G11, G7 e G13 ao ambiente A1, G1 e G3 ao ambiente A2 (Figura 6). Observa-se que 
os vetores relativos a esses genótipos apontam para uma direção comum, que pode ser 
orientada pelos ambientes (Gauch, 1992). Além disso, constata-se falta de adaptação dos 
genótipos G4, G14 e G15 ao ambiente A1, dos genótipos G8 e G12 ao ambiente A2, do 
genótipo G1 ao ambiente A4 e G11 ao A3 (Figura 6). 

3.6 Comparação dos modelos AMMI com GGE biplot 

Na Tabela 3 são apresentados os valores singulares dos quatro componentes 
principais das análises AMMI e GGE biplot. Para este conjunto de dados de MET, esses 
valores foram fundamentais para fazer a comparação entre os dois modelos.   
 

Tabela 3 - Valores singulares dos quatro componentes principais (PCs) para os modelos 
AMMI e GGE biplot 

Modelos 
Valores singulares 

1 2 3 4 

AMMI 1561,95 981,32 712,24 5,91×10-6 

GGE biplot 21 16,61 15,63 12,62 

 
Calculando a correlação entre os valores singulares dos componentes principais dos 

dois modelos com r = 0,9834. Na comparação dos modelos existe uma forte correlação (r 
>0,95) (Camargo-Buitragoet al., 2011) de PCs entre genótipo e a produtividade média em 
todos os ambientes. Portanto, os modelos AMMI e GGE biplot são muito semelhantes em 
relação à análise deste conjunto de dados MET. 

Pela relação de informação (IR ≥ 1) para os dois modelos que contêm os padrões nos 
componentes principais, o IR1=2,49 no AMMI vs IR1 = 1,57 do GGE biplot, logo, o PC1 
do AMMI explicou maior proporção da variação dos dados do que o PC1 do GGE biplot. 

Na análise AMMI, os dois primeiros componentes (PC1 e PC2) explicaram 87% da 
variação total da G × E, já na análise GGE biplot, os dois primeiros componentes 
explicaram 63,96 % da variação total.O AMMI foi o melhor modelo para neste conjunto 
de dados, explicou maiores variações com os dois primeiros componentes, portanto, as 
interpretações dos gráficos de biplot são as mais confiáveis para representar os padrões 
nos dados sobre genótipos e ambientes. 
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Conclusões 

A utilização conjunta dos modelos AMMI e GGE Biplot tornam mais eficazes a 
exploração da interação genótipo × ambiente e efetivamente resolveram os quarto 
principais objetivos para os dados multi-ambientes (MET). 

Na comparação dos modelos para os dados MET provenientes da empresa Criagene 
SK, mostraram que os modelos são muito semelhantes em relação à análise de dados 
MET, pois são altamente correlacionados entre si. O AMMI foi o melhor e explicou a 
maior variação com os dois primeiros componentes (87%), portanto, as interpretações dos 
gráficos biplot são as mais confiáveis para representar os padrões nos dados sobre 
genótipos e ambientes. 

 
HONGYU, K.; SILVA, F. S.; OLIVEIRA, A. C. S.; SARTI, D. A.; ARAÚJO, L. B.; 
DIAS, C. T. S. Comparison between AMMI models and GGE biplot for 
multi-environment trials. Rev. Bras. Biom., São Paulo, v.33, n.2, p.139-155, 2015. 

 

� ABSTRACT: Genotype by environment interactions is an extremely important issue in plant 

breeding and production. The selection and recommendation of superior genotypes are 

hampered due to the constant occurrence of interaction, represents a major challenge for 

researchers. Thus, the multi-environment trials are essential for the selection of effective strain 

and recommendation of cultivars. There are several models in the literature for analysis of multi-

environmental data, models AMMI (Additive Main effects and Multiplicative Interaction) and 

GGE (Genotype main effects + Genotype environment interaction) biplot are the most used. The 

AMMI model combines the analysis of variance and principal component analysis, to adjust, 

respectively, the main effects of genotype and environment and the effects of interaction. The 

GGE biplot is a method based on principal component analysis to explore the multi-environment 

trials and allowed the views of the biplot graphs relationships between test environments, 

genotypes and genotype by environment. The main objectives of this study with the use of models 

AMMI and GGE biplot: 1) mega-environment research for understanding the target 

environment; 2) evaluation of genotypes and environments within each mega-environment; 3) 

understand the causes of genotype by environment; and 4) Create a new method for comparing 

the AMMI models with GGE biplot. 

� KEYWORDS: Genotype by environment interaction; AMMI model; biplot GGE; mega-

environments; principal component analysis. 
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