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Abstract
Let f be a C1+bv circle diffeomorphism with irrational rotation number. As established by
Douady and Yoccoz in the eighties, for any given s > 0 there exists a unique automorphic
measureof exponent s for f . In the present paperweprove that the sameholds formulticritical
circle maps, and we provide two applications of this result. The first one, is to prove that
the space of invariant distributions of order 1 of any given multicritical circle map is one-
dimensional, spanned by the unique invariant measure. The second one, is an improvement
over the Denjoy–Koksma inequality for multicritical circle maps and absolutely continuous
observables.
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1 Introduction

Smooth one-dimensional dynamical systems can be studied from various viewpoints, such
as their topological classification, their smooth rigidity properties, the behaviour of their
individual orbits or their measure-theoretic and ergodic properties. A specific class of such
systems that has received a great deal of attention in recent years is the class of multicritical
circle maps.

A multicritical circle map is a C3 circle homeomorphism f : S1 → S1 having N ≥ 1
critical points (all of which are non-flat, see Sect. 2). We are only interested in maps of this
type having no periodic points, in other words, only in thosemaps that have irrational rotation
number. The classification of such maps up to topological conjugacy goes back to Yoccoz
[38], who proved that they are always minimal, hence topologically equivalent to a rotation
of the circle (see Theorem 2.4 below). The smooth rigidity of such maps—including the
preliminary step known as quasi-symmetric rigidity—has been the object of intense research
in recent decades; it is by now fairly well-understood, at least in the unicritical case, thanks to
the combined efforts of several mathematicians, see [3, 6, 11, 12, 16, 19, 20, 25, 26, 33–36],
or the book [8] and references therein (we note en passant that, quite recently, some rigidity
results for maps with more than one critical point have been established, see [4, 5, 37] and
the recent preprint [17]). The geometric behaviour of individual orbits of such maps was
examined in the recent paper [10].

From the measure-theoretic viewpoint, multicritical circle maps have also been studied in
detail. Having irrational rotation number, they are uniquely ergodic. Their unique invariant
probabilitymeasurewas shown to be purely singularwith respect to Lebesgue (Haar)measure
by Khanin [24] (see also [18]), and later it was shown to have zero Lyapunov exponent in [7].
In [9], the authors went a bit further and showed that such maps do not admit even σ -finite
absolutely continuous invariant measures.

In the present paper, we are interested in further ergodic-theoretic properties of multicriti-
cal circlemaps. In particular,we are interested in the question: “Does a (minimal)multicritical
circle map admit other invariant distributions besides its unique invariant probability mea-
sure?”. The analogous question in a more general setting seems to have been first asked by
Katok (for a general reference, see [23]). However, our main source of inspiration is the
remarkable paper by Avila and Kocsard [1], in which they give a fairly complete answer to
the corresponding question for smooth circle diffeomorphisms.

Here, we give a (partial) answer to the above question (see TheoremB below) by relating it
(following the paper [28], byNavas and Triestino) to the question of existence and uniqueness
of so-called automorphic measures for multicritical circle maps—a question to which we
give here a full answer (Theorem A).

Given s ∈ R, an automorphic measure of exponent s for f is a Borel probability measure
ν on S1 whose pullback f ∗ν is equivalent to ν, with Radon–Nikodym derivative given
by (D f )s . This concept is the analogue, for real one-dimensional maps, of the concept of
conformal measure introduced by Sullivan in [31] in the context of rational maps—which in
turn is inspired by a similar notion introduced by Patterson [29] and Sullivan himself [30] in
the context of Fuchsian and Kleinian groups.

The precise definition of automorphic measure is given in Sect. 3 (Definition 3.1). In the
eighties, it was proved by Douady and Yoccoz (but only published some years later, in [2]—
see also [13]) that, for every minimal C1+bv circle diffeomorphism and every real number s,
there exists a unique automorphic measure of exponent s. In the present paper we prove the
following result.
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Theorem A (Existence and uniqueness of automorphic measures) Let f be a multicritical
circle map. For any given s ≥ 0 there exists a unique automorphic measure of exponent s for
f . This measure has no atoms, is supported on the whole circle and it is ergodic under f .

1.1 Applications

In Sect. 7 of the present paper we provide a couple of applications of Theorem A, that we
now describe.

As usual, a 1-distribution is a continuous linear functional defined on the space of C1

real-valued functions of the circle (see Sect. 7.1 for precise definitions). As a consequence
of Theorem A, we have the following result.

Theorem B (No invariant distributions) Let f be a multicritical circle map with irrational
rotation number and unique invariant measure μ. Then the space D′

1 ( f ) of f -invariant
distributions of order at most 1 is spanned by μ, that is,

D′
1 ( f ) = Rμ.

In other words, f admits no invariant distributions of order at most 1 different from (a
scalar multiple of) its unique invariant measure. The proof of Theorem B will be given in
Sect. 7.1, and will follow the approach of Navas and Triestino developed in [28] for C1+bv-
diffeomorphisms. We would like to remark that this approach deals with distributions of
order at most 1. Since multicritical circle maps are assumed to be C3 smooth, it would be
desirable to also rule out invariant distributions up to order 3. Unfortunately, we do not know
how to do this. Moreover, if we consider C∞, or Cω, multicritical circle maps, we do not
know how to deal with higher order distributions. Let us be more precise: a C∞ dynamical
system is distributionally uniquely ergodic if it admits a single invariant distribution (up to
multiplication by a constant). In [1], Avila and Kocsard proved that every C∞ circle diffeo-
morphism with irrational rotation number is distributionally uniquely ergodic. We believe
that C∞ multicritical circle maps are distributionally uniquely ergodic too but, as already
mentioned, we do not know how to prove that. Nevertheless, to the best of our knowledge,
Theorem B provides the first examples of dynamics with no invariant distributions of order
at most 1 outside the realm of flows and diffeomorphisms. Finally, we would like to remark
that the non-flatness condition on each critical point of f (see Sect. 2 below) is crucial in
order to prove Theorem B. Indeed, the following holds.

Theorem C For any given irrational number ρ ∈ (0, 1) there exists a C∞ homeomorphism
f : S1 → S1, with rotation number ρ( f ) = ρ, having invariant distributions of order 1
(different from a scalar multiple of its unique invariant measure).

The examples of Theorem C are those constructed by Hall in [21], see Sect. 7.2 for the
details. They are uniquely ergodic, but they are not distributionally uniquely ergodic.

As it turns out, Theorem A implies the following improvement over the Denjoy–Koksma
inequality for absolutely continuous observables.

Theorem D (Improved Denjoy–Koksma) Let f be a multicritical circle map with irrational
rotation number ρ and unique invariant measure μ, and let φ : S1 → R be absolutely
continuous. If {qn} is the sequence of denominators for the rational approximations of ρ, we
have that

qn

∥
∥
∥
∥
∥
∥

1

qn

qn−1
∑

i=0

φ ◦ f i −
∫

S1
φ dμ

∥
∥
∥
∥
∥
∥

C0(S1)

−→ 0 as n goes to ∞.
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The proof of Theorem D will be given in Sect. 7.3, following the very same lines as that
of Avila and Kocsard [1, Section 3] and Navas [27, Section 2] for circle diffeomorphisms.

The paper is organized as follows: in Sect. 2, we present a recap of some topics from
the theory of critical circle maps. In Sect. 3, we define automorphic measures of positive
exponent, and explore some of their elementary properties; we remark that, at that point in
the paper, it is still not clear whether automorphic measures actually exist. This is done in
Sect. 4, where we show that automorphic measures indeed exist for all positive exponents.
In Sect. 5, we obtain fundamental bounds on automorphic measures, which may themselves
be of interest in future works. In Sect. 6, we use said bounds to show that any automorphic
measure is ergodic, and as a consequence, easily derive the uniqueness part of Theorem A.
Finally, in Sect. 7, we prove that Theorem A implies both Theorems B and D, and we briefly
explain the proof of Theorem C.

2 Multicritical circle maps

Let us now define the maps which are the main object of study in the present paper. We start
with the notion of non-flat critical point.

Definition 2.1 We say that a critical point c of a one-dimensional C3 map f is non-flat of
degree d > 1 if there exists a neighborhood Wc of the critical point and a C3 diffeomorphism
φc : Wc → φc(Wc) ⊂ R such that φc(c) = 0 and, for all x ∈ Wc,

f (x) = f (c) + φc(x) |φc(x)|d−1 .

This local form easily implies the following estimate (see [8, ch. 5]).

Proposition 2.2 Let c be a non-flat critical point of degree d of a one-dimensional C3 map f .

There exists an interval U = Uc ⊂ Wc that contains c such that, for any non-empty interval
J ⊂ U and x ∈ J ,

D f (x) ≤ 3d
| f (J )|

|J | , (2.1)

where |J | denotes the Euclidean length of an interval J .

Definition 2.3 A multicritical circle map is an orientation-preserving C3 circle homeomor-
phism having finitely many critical points, all of which are non-flat.

We refer the reader to [8, ch. 6], where examples of multicritical circle maps are discussed.
Being an orientation-preserving circle homeomorphism, a multicritical circle map f has a
well defined rotation number. We will focus on the case that f has no periodic orbits (i.e.,
ρ( f ) /∈ Q). As it turns out, these maps have no wandering intervals. More precisely, we have
the following fundamental result.

Theorem 2.4 Let f be a multicritical circle map with irrational rotation number ρ. Then
f is topologically conjugate to the rigid rotation Rρ, i.e., there exists a homeomorphism
h : S1 → S1 such that h ◦ f = Rρ ◦ h.

Theorem 2.4 was proved by Yoccoz in [38], see also [8, ch. 6].
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2.1 The Koebe distortion principle

Given two circle intervals M ⊂ T ⊂ S1 with M compactly contained in the interior of T
(written M � T ), we denote by L and R the two connected components of T \ M . The space
of M inside T is defined to be the number

τ = min

{ |L|
|M | ,

|R|
|M |

}

. (2.2)

Given circle intervals M, T with M � T and k ≥ 1 such that f k : T → f k(T ) is a C1

diffeomorphism onto its image, one can bound the distortion of f k inside M independently
of k as long as the intermediate images T , f (T ), . . . , f k−1(T ) satisfy a mild summability
condition and the space of f k(M) inside f k(T ) is bounded from below independently of
k. This is the content of the Koebe distortion principle, and, as one can expect, it is of
fundamental importance in controlling the geometric behavior of large iterates of the map f .

Lemma 2.5 (Koebe distortion principle) For each �, τ > 0 and each multicritical circle map
f : S1 → S1 there exists a constant K = K (�, τ, f ) > 1 with the following property. If
k ≥ 1, M ⊂ T ⊂ S1 are intervals, with M compactly contained in the interior of T , are
such that the intervals T , f (T ), . . . , f k−1(T ) contain no critical point of f ,

k−1
∑

j=0

∣
∣
∣ f j (T )

∣
∣
∣ ≤ � (2.3)

and the space of f k(M) inside f k(T ) is at least τ, then

K −1 ≤ D f k(x)

D f k(y)
≤ K for all x, y ∈ M . (2.4)

A proof of the Koebe distortion principle can be found in [14, p. 295].

Remark 2.6 Given a family of intervals F on S1 and a positive integer m, we say that F
has multiplicity of intersection at most m if each x ∈ S1 belongs to at most m elements
of F . For our purposes, the following (elementary) observation relating the hypotheses of
the Koebe distortion principle to multiplicity of intersection will be crucial: if the family
T , f (T ), . . . , f k−1(T ) has multiplicity of intersection at most m, then (2.3) holds with
� = m. This observation also holds in the context of arbitrary finite measures on S1: if ν is
a finite measure on the circle, m ≥ 1 and F is a family of circle intervals with intersection
multiplicity at most m, then

∑

I∈F
ν(I ) ≤ m ν(S1).

2.2 Combinatorics and real bounds

Throughout this paper, f : S1 → S1 will be a C3 multicritical circle map with irrational
rotation number. Furthermore, N ≥ 1 will be the number of critical points of f , Crit ( f ) =
{c1, . . . , cN } will be the set of critical points of f , and d1, . . . , dN their corresponding
criticalities.
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Let ρ be the rotation number of f . Being irrational, it has an infinite continued fraction
expansion, say

ρ( f ) = [a0, a1, . . .] = 1

a0 + 1

a1 + 1

. . .

.

Truncating the expansion at level n − 1, we obtain a sequence of fractions pn/qn which are
called the convergents of the irrational ρ.

pn

qn
= [a0, a1, . . . , an−1] = 1

a0 + 1

a1 + 1

. . .
1

an−1

.

Since each pn/qn is the best possible approximation to ρ by fractions with denominator at
most qn, we have

If 0 < q < qn then

∣
∣
∣
∣
ρ − pn

qn

∣
∣
∣
∣
<

∣
∣
∣
∣
ρ − p

q

∣
∣
∣
∣
, for any p ∈ Z.

The sequence of numerators satisfies

p0 = 0, p1 = 1, pn+1 = an pn + pn−1 for n ≥ 1.

Analogously, the sequence of the denominators, which we call the return times, satisfies

q0 = 1, q1 = a0, qn+1 = anqn + qn−1 for n ≥ 1.

For each point x ∈ S1 and each non-negative integer n, let In(x) be the closed interval
with endpoints x and f qn (x) containing f qn+2(x) (note that In(x) contains no other iterate
f j (x) with 1 ≤ j ≤ qn − 1). We write I j

n (x) = f j (In(x)) for all j and n.

Lemma 2.7 For each n ≥ 0 and each x ∈ S1, the collection of intervals

Pn(x) =
{

f i (In(x)) : 0 ≤ i ≤ qn+1 − 1
} ⋃ {

f j (In+1(x)) : 0 ≤ j ≤ qn − 1
}

is a partition of the unit circle (modulo endpoints), called the n-th dynamical partition
associated to the point x .

For a proof of this lemma, see [8, ch. 6]. The intervals of the form f i (In(x)) in Pn(x) are
called long, while the intervals of the form f j (In+1(x)) are called short. This nomenclature
is inspired by the rigid rotation, for which the long intervals indeed have longer (Lebesgue)
length than the short ones.

Note that, for each n, the partition Pn+1(x) is a (non-strict) refinement of Pn(x) (see
Fig. 1 below): the short intervals of Pn(x) become long intervals of Pn+1(x), while each of
the long intervals of Pn(x) are partitioned into one short interval at level n + 1 (an iterate of
In+2(x)) and an+1 long intervals at level n + 1 (iterates f j (In+1(x)) for qn ≤ j < qn+2).
Meanwhile, the partition Pn+2(x) is a strict refinement of Pn(x).
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Fig. 1 Moving down levels in dynamical partitions, short intervals become long, while long intervals are
subdivided

Theorem 2.8 (Real bounds) There exists a constant C = C( f ) > 1, depending only on f ,

such that the following holds for every critical point c of f . For all n ≥ 0 and for each pair
of adjacent atoms I , J ∈ Pn(c) we have

C−1 |J | ≤ |I | ≤ C |J | . (2.5)

Note that for a rigid rotation we have |In | = an+1|In+1| + |In+2|. If an+1 is large, then In

is much larger than In+1. Thus, even for rigid rotations, real bounds do not hold in general.
Theorem 2.8was obtained byHerman [22], based on estimates by Świa̧tek [32]. A detailed

proof can be found in [8, ch. 6].
Theorem 2.8 has the following consequence (see [8, ch. 8]).

Lemma 2.9 There exists C1 = C1( f ) > 0 such that, for each x ∈ S1 and all n ≥ 0, we have
D f qn (x) ≤ C1.

Yet another consequence of the real bounds that will be useful in the present paper (see
Sect. 4 below) is the following.

Lemma 2.10 (Zero Lyapunov exponent) Let f be a multicritical circle map with irrational
rotation number and unique invariant measure μ. Then log D f ∈ L1(μ) and

∫

S1
log D f dμ = 0.

A proof of Lemma 2.10 can be found in [7] (see also [8, section 8.3]).

2.2.1 On the notions of domination and comparability

To simplify both the understanding of and future calculations involving the real bounds, we
introduce the notions of domination and comparability modulo f .

Given two circle intervals I , J , we will say that I dominates J modulo f , and write
I ≥ J , if there exists a constant K > 1 depending only on f such that |J | ≤ K |I | . If both
I ≥ J and J ≥ I (i.e. if there is K = K ( f ) > 1 such that K −1 |I | ≤ |J | ≤ K |I |), we will
say that I and J are comparable modulo f (and write I � J ).

Thus, Theorem 2.8 states precisely that adjacent atoms of a dynamical partition are always
comparable.

Observe that neither domination or comparability are transitive relations: if we are given
a domination chain I1 ≥ I2 ≥ · · · ≥ Ik, we can only say that I1 ≥ Ik if the length k of the
chain is bounded by a constant that depends only on f (and similarly for comparability).
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3 Automorphic measures

In this section we define automorphic measures of non-negative exponent for multicritical
circle maps. We further prove that they have full support on the circle (Proposition 3.3) and
are non-atomic (Lemma 3.4).

Definition 3.1 (Automorphic measures) Let s ≥ 0. An automorphic measure of exponent s
for f (or f -automorphic measure of exponent s) is a Radon probability measure ν on S1

such that, for all continuous functions φ ∈ C0(S1),
∫

S1
φ dν =

∫

S1
(φ ◦ f ) (D f )s dν. (3.1)

We denote the set of f -automorphic measures of exponent s by As .

Equivalently (see Proposition 3.2 below), a Radon probability measure ν on S1 is f -
automorphic of exponent s if, and only if, the pullback measure f ∗ν is equivalent to ν, with
Radon–Nikodym derivative

d f ∗ν
dν

= (D f )s .

Observe that we leave out the possibility of negative exponents, i.e., s < 0. Though
automorphic measures of negative exponent make perfect sense and indeed always exist in
the case of diffeomorphisms,1 they are significantly more difficult to work with in the critical
case. Indeed, if s < 0, then (D f )s blows up at the critical points of f , so we cannot take for
granted that (φ ◦ f ) (D f )s will be ν-integrable for any φ ∈ C0(S1) and Radon probability
measure ν on S1.

We further remark that the notion of automorphic measures makes perfect sense on any
dimension, provided the one-dimensional derivative D f (x) is replaced by the Jacobian of f
at x, i.e., the absolute value of the determinant of the matrix D f (x). As we mentioned in the
introduction, for complex one-dimensional systems this is exactly the same as the notion of
conformal measure introduced by Sullivan in [31]. In the present paper, however, we will of
course only treat the real one-dimensional case.

Finally, observe that, in the case s = 0, an f -automorphic measure of exponent 0 is
simply an f -invariant probability measure. Therefore, the case s = 0 is well understood, and
Theorem A in this case is precisely the statement that f (just like any circle homeomorphism
with irrational rotation number) is uniquely ergodic. Therefore, for the rest of this paper, we
will focus on positive exponents. Thus, let s > 0 and ν ∈ As be fixed.

Proposition 3.2 For all φ ∈ L1(ν) and n ≥ 1, (φ ◦ f n)(D f n)s ∈ L1(ν) and
∫

S1
φ dν =

∫

S1
(φ ◦ f n)(D f n)s dν. (3.2)

Proof Observe that (3.2) holds trivially if φ is continuous, by applying (3.1) inductively. The
extension to L1 functions φ now follows from a standard argument, with the main difficulty
being to show that (φ ◦ f n)(D f n)s ∈ L1(ν) for all φ ∈ L1(ν). �

1 As it happens, the case s = −1 is suitable to understand both the variation of the rotation number along
generic 1-parameter families of circle diffeomorphisms [13], as well as to build the tangent space of the set
of C2 diffeomorphisms with a given irrational rotation number [2, Théorème 2]. See also the recent preprint
[15].
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Note in particular that, under forward iteration, the ν-measure of a Borel set A ⊂ S1

behaves according to the following rule:

ν
(

f n(A)
) =

∫

A
(D f n)s dν, for all n ∈ N. (3.3)

Proposition 3.3 The measure ν is supported on the entire circle.

Proof Since the pullbackmeasure f ∗ν is equivalent to ν, ν-null sets are mapped under f into
ν-null sets (see (3.3) above). But, since f is topologically conjugate to an irrational rotation,
the positive orbit of an open interval eventually covers the whole circle, and then this interval
must have positive ν-measure. �


We denote by

Crit± ( f ) =
N
⋃

j=1

O f (c j )

the union of the critical orbits of f , and its complement S1 \ Crit± ( f ) by 	. Observe that
	 is f -invariant and its complement is countable (but dense!).

Lemma 3.4 The measure ν has no atoms. In particular, 	 has full ν-measure on the circle.

Proof Arguing by contradiction, suppose there is some x0 ∈ S1 such that ν({x0}) = δ > 0,
and note that (3.3) implies

ν({x0}) = ν
( {

f −n(x0)
} ) (

D f n( f −n(x0))
)s for all n ∈ N.

In particular, x0 cannot be in the forward orbit of any critical point of f . Moreover, since ν

is a probability measure and f has no periodic orbits,

1 ≥
∞
∑

n=0

ν
({

f −n(x0)
}) = δ

∞
∑

n=0

1
(

D f n( f −n(x0))
)s ≥ δ

∞
∑

n=0

1
(

D f qn ( f −qn (x0))
)s .

However, by Lemma 2.9, we have D f qn ( f −qn (x0)) ≤ C1 for all n ≥ 0. Thus we obtain

1 ≥ δ

∞
∑

n=0

C−s
1 = ∞,

which is the desired contradiction. �


4 Existence

In this sectionwe show that, for all s > 0,As is non-empty (the existence part of TheoremA).
For the entire section, s will be a fixed positive number.

Let Ps, f : S1 → [0,∞] be the Poincaré series defined by2

Ps, f (x) =
∞
∑

n=0

(

D f n(x)
)s

. (4.1)

2 We use the expression Poincaré series by analogy with a similar series appearing in the study of Fuchsian
or Klenian groups (see for instance [30]).
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Observe that if f k(x) ∈ Crit ( f ) for some k ≥ 0, then Ps, f (x) < ∞, since it is just a finite
sum. Therefore, there is a dense subset of S1 (the union of the backward orbits of the critical
points) on which Ps, f is finite. However, as the following lemma shows, there are plenty of
points on the circle where Ps, f diverges.

Lemma 4.1 The Poincaré series Ps, f diverges μ-almost everywhere.

Proof We show that the set

A:= {

x ∈ 	
∣
∣ Ps, f (x) = ∞ }

(4.2)

has full μ-measure. To do this, first observe that, for all x ∈ S1,

Ps, f (x) = 1 + (D f (x))s Ps, f ( f (x)).

It follows that A is f -invariant, so, by the ergodicity of μ, it suffices to show that μ(A) > 0.
For each n ≥ 0, (D f n)s ∈ C2(S1), so we may apply Jensen’s inequality to obtain

log

(∫

S1

(

D f n)s
dμ

)

≥
∫

S1
log

(

D f n)s
dμ = s

n−1
∑

i=0

∫

S1
log D f ◦ f i dμ.

Since μ is f -invariant,

log

(∫

S1

(

D f n)s
dμ

)

≥ s
n−1
∑

i=0

∫

S1
log D f dμ = 0, (4.3)

where we have used Lemma 2.10. Thus,
∫

S1

(

D f n)s
dμ ≥ 1

for all n ≥ 0, which implies in particular that

∫

S1

n−1
∑

k=0

(D f qk )s dμ ≥ n (4.4)

for all n ≥ 1.
We argue by contradiction. Suppose μ(A) = 0; then Ps, f must be finite μ-almost every-

where. Now, for each m ≥ 1, let

Xm := {

x ∈ S1
∣
∣ Ps, f (x) ≤ m

}

. (4.5)

Since we are assuming that Ps, f is finite μ-almost everywhere,

lim
m→∞ μ(Xm) = 1. (4.6)

Let 0 < ε < C−s
1 , where C1 = C1( f ) is the constant of Lemma 2.9. From (4.6), there

exists m0 ∈ N such that, for all m ≥ m0, μ(S1 \ Xm) ≤ ε.

But then, from (4.4), (4.5) and Lemma 2.9, we have that, for all n ≥ 1 and m ≥ m0,

n ≤
∫

S1

n−1
∑

k=0

(D f qk )s dμ =
∫

Xm

n−1
∑

k=0

(D f qk )s dμ +
∫

S1\Xm

n−1
∑

k=0

(D f qk )s dμ

≤
∫

Xm

Ps, f dμ +
n−1
∑

k=0

∫

S1\Xm

(D f qk )s dμ ≤ m μ(Xm) + n Cs
1 μ(S1 \ Xm)

≤ m + n Cs
1 ε, (4.7)
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which implies that m ≥ n (1− Cs
1 ε). Since 1− Cs

1 ε > 0, the contradiction arises by letting
n → ∞ while keeping m fixed. �


As it turns out, the only thing we will need in the proof below from the set A is the fact
that it is non-empty, which certainly follows from Lemma 4.1.

Proof of Theorem A, existence part Consider the Poincaré series Ps, f and the set A from
Lemma 4.1. Fix x ∈ A and, for each n ≥ 1, let

Sn(x) =
qn−1
∑

i=0

(D f i (x))s .

Consider

μs,x,n := 1

Sn(x)

qn−1
∑

i=0

(D f i (x))s δ f i (x),

which is an atomic probability measure. By compactness, there is a monotone sequence
(nk) ⊂ N and μs,x ∈ P(S1) such that, for all φ ∈ C0(S1),

∫

S1
φ dμs,x,nk −→

∫

S1
φ dμs,x .

In particular, since (φ ◦ f )(D f )s ∈ C0(S1),
∫

S1
(φ ◦ f )(D f )s dμs,x,nk −→

∫

S1
(φ ◦ f )(D f )s dμs,x

for all φ ∈ C0(S1). We claim that μs,x is automorphic of exponent s under f . Indeed, for all
k ≥ 1 and φ ∈ C0(S1), we have

∣
∣
∣
∣

∫

S1
[φ − (φ ◦ f )(D f )s] dμs,x,nk

∣
∣
∣
∣

= 1

Snk (x)

∣
∣
∣
∣
∣
∣

qnk −1
∑

i=0

(D f i (x))s [φ( f i (x)) − φ( f i+1(x))(D f ( f i (x)))s]
∣
∣
∣
∣
∣
∣

= 1

Snk (x)

∣
∣φ(x) − φ( f qnk (x)) (D f qnk (x))s

∣
∣

≤ ‖φ‖C0 [1 + (D f qnk (x))s] 1

Snk (x)
≤ ‖φ‖C0 (1 + Cs

1)
1

Snk (x)
,

where we have used Lemma 2.9. Consequently,
∣
∣
∣
∣

∫

S1
φ dμs,x −

∫

S1
(φ ◦ f )(D f )s dμs,x

∣
∣
∣
∣
= lim

k→∞

∣
∣
∣
∣

∫

S1
[φ − (φ ◦ f )(D f )s] dμs,x,nk

∣
∣
∣
∣

≤ ‖φ‖C0 (1 + Cs
1) lim

k→∞
1

Snk (x)
= 0,

since x ∈ A. Thus, μs,x is f -automorphic of exponent s, which concludes the proof. �

Remark 4.2 In [2, Section 3.2], Douady and Yoccoz prove the existence part of TheoremA in
the context of diffeomorphisms through a different approach. First, they define a continuous
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operator Us, f : M(S1) → M(S1) on the space M(S1) of signed finite Radon measures on
the circle (equipped with the weak∗ topology) by

∫

S1
φ d(Us, f ν):= 1

∫

S1 (D f )s dν

∫

S1
(φ ◦ f )(D f )s dν.

Clearly, the operatorUs, f leaves invariant the convex compact setP(S1) ofRadon probability
measures on the circle. The authors then use the Schauder–Tychonoff fixed point theorem to
conclude thatUs, f has a fixed pointμs ∈ P(S1), and through some estimates, they conclude
that this fixed point μs must be f -automorphic of exponent s, i.e.,

∫

(D f )s dμs = 1.
In the critical case, this approach fails. Indeed, if ν = δc is a point mass on a critical point

c of f , then Us, f ν is ill-defined, since
∫

S1
(D f )s dν = (D f (c))s = 0.

Furthermore, if we remove from P(S1) the point masses at the critical points of f , then we
lose compactness, which is essential to apply the Schauder–Tychonoff fixed point theorem.

5 Bounds for automorphic measures

In the previous section we have proved the existence part of Theorem A. Sections 5 and 6
are devoted to uniqueness. In this section, we dive further into the fine-scale structure of
f -automorphic measures of exponent s > 0. For this entire section, fix some s > 0 and
ν ∈ As, and let E ⊂ S1 be an arbitrary Borel f -invariant set.

In what follows, the ratio

ν(I ∩ E)

|I |s (5.1)

where I is an interval, will play a fundamental role. Hence we introduce the special notation

ω(I ):=ν(I ∩ E)

|I |s . (5.2)

The following theorem is the main result of this section.

Theorem 5.1 There exists a constant B = B( f , s) > 1 with the following property. For any
critical point c of f , sufficiently large n and �1,�2 ∈ Pn(c), we have

(a) If �1,�2 are both long atoms or both short atoms of Pn(c), then

B−1 ω(�2) ≤ ω(�1) ≤ B ω(�2). (5.3)

(b) If �1 is a short atom and �2 is a long atom of Pn(c), then

ω(�1) ≤ B ω(�2). (5.4)

5.1 Fundamental estimates on distortion

We must now introduce a bit of notation. For the rest of this paper, we fix a critical point c
of f , and we write simply Pn in place of Pn(c). Furthermore, if I ⊂ S1 is an interval, we

123



Automorphic measures and invariant distributions… Page 13 of 34    26 

Fig. 2 The intervals �∗, �̃ and �̂

write I k for f k(I ). For any n ≥ 0 and any atom � ∈ Pn, we write �∗ for the reunion of �

with its two adjacent atoms, L and R, in Pn . For example, if � = In, then

�∗ = In+1 ∪ In ∪ I qn
n .

We also write �̃ for the following interval. First write � as a reunion of atoms of Pn+2 and
let L1, R1 be the leftmost and rightmost atoms of Pn+2 in this reunion, respectively; we
then take �̃ = L2 ∪ � ∪ R2, where L2, R2 are the atoms of Pn+2 left-adjacent to L1 and
right-adjacent to R1, respectively. For example, if � = In, then

�̃ = In+3 ∪ In ∪ I qn
n+2. (5.5)

Lastly,wewrite �̂ for the following interval (Fig. 2). If�∗ = L∪�∪R, L∗ = (L)2∪L∪�

and R∗ = � ∪ R ∪ (R)2, we will write

�̂ = (L)∗2 ∪ � ∪ (R)∗2 = (L)3 ∪ (L)2 ∪ L ∪ � ∪ R ∪ (R)2 ∪ (R)3 ⊃ �∗. (5.6)

For example, if � = In and an ≥ 5, then

�̂ = I qn+1−2qn
n ∪ I qn+1−qn

n ∪ In+1 ∪ In ∪ I qn
n ∪ I 2qn

n ∪ I 3qn
n .

Of course, if n is small, it may be that Pn has at most 7 atoms, so in this case we would
have �̂ = S1. Thus, when dealing with �̂, we always assume that n is sufficiently large for
�̂ to be a proper interval.

To provide the bounds on distortion needed for the rest of this paper, we will need the
following combinatorial facts. Although their proofs are somewhat involved, the techniques
used are standard. Accordingly, we have decided to omit these proofs.

Recall from Sect. 2 that, given a family of intervals F on S1 and a positive integer m, we
say that F has multiplicity of intersection at most m if each x ∈ S1 belongs to at most m
elements of F .

Lemma 5.2 Let n ≥ 0, � ∈ Pn . Then:
(a) the collection

{

f k(�∗)
}qn+1−1

k=0 has intersection multiplicity at most 3;
(b) the collection

{

f k(�̃)
}qn+1−1

k=0 has intersection multiplicity at most 3;
(c) the collection

{

f k(�̂)
}qn+1−1

k=0 has intersection multiplicity at most 8.

We will need the following consequence of the Real Bounds.

Lemma 5.3 There exists a constant C2 = C2( f ) ≥ C > 1 with the following property. For
n ≥ 0, let

Cn :=
{

I j
n

}2qn+1

j=0
∪

{

I k
n+1

}qn+qn+1

k=0
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be the set of all atoms of Pn, together with their forward images under f up to iterate
qn+1 + 1. Then, for any J1, J2 ∈ Cn that share a common endpoint,

C−1
2 |J1| ≤ |J2| ≤ C2 |J1| . (5.7)

The following two lemmas contain the bounds on distortion needed for the rest of this
paper. Their proof is a standard application of Koebe’s distortion principle, with Lemmas 5.2
and 5.3 guaranteeing that the corresponding hypotheses on summability and space are satis-
fied (recall Sect. 2.1).

Lemma 5.4 There exists B0 = B0( f ) > 1 with the following property. If � ∈ Pn and
0 ≤ j < k ≤ qn+1 + 1 are such that the intervals f j (�̃), f j+1(�̃), . . . , f k−1(�̃) do not
contain any critical point of f , then the map f k− j : f j (�) → f k(�) has distortion bounded
by B0, that is

B−1
0 ≤ D f k− j (x)

D f k− j (y)
≤ B0 for all x, y ∈ f j (�).

Lemma 5.5 There exists B1 = B1( f ) > 1 with the following property. If � ∈ Pn and
0 ≤ j < k ≤ qn+1 are such that the intervals f j (�̂), f j+1(�̂), . . . , f k−1(�̂) do not
contain any critical point of f , then the map f k− j : f j (�∗) → f k(�∗) has distortion
bounded by B1, that is

B−1
1 ≤ D f k− j (x)

D f k− j (y)
≤ B1 for all x, y ∈ f j (�∗).

We remark that �̂ and Lemma 5.5 will not be mentioned further in this section, but will
play a fundamental role in Sect. 6.

5.2 !-domination and comparability

To simplify both the statement and the proof of the remaining results in this section, we
introduce the notions of ω-domination and ω-comparability between intervals. If I , J ⊂ S1

are intervals, we will say that I ω-dominates J (and write I � J ) if there is some constant
K = K ( f , s) > 1 (depending only on f and s, but not on ν or B) such that

ω(J ) ≤ Kω(I ). (5.8)

Similarly, we say that I , J are ω-comparable (and write I ∼ J ) if I � J and J � I ; that is,
if there is some constant K = K ( f , s) > 1 such that

K −1ω(I ) ≤ ω(J ) ≤ Kω(I ). (5.9)

In what follows, when a constant K ( f , s) is written after an expression of ω-domination or
comparability between intervals, it is to be inferred that (5.8) or (5.9) hold for said constant
and intervals.

Definition 5.6 Let � ∈ Pn, 0 ≤ k < qn+1. We will say that k is a critical time of type 1 for
� if f k(�̃) ∩ Crit ( f ) �= ∅.

Since f has N critical points c1, . . . , cN and the collection
{

f k(�̃)
}qn+1−1

k=0 has intersection
multiplicity at most 3 (see Lemma 5.2), it follows that, for any n ≥ 0 and � ∈ Pn, there are
at most 3N critical times of type 1 for �.
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Remark 5.7 It follows easily from the minimality of f that there exists some level n0 =
n0( f ) ∈ N, depending only on f , such that, for all n ≥ n0, � ∈ Pn and 0 ≤ k < qn+1 a
critical time of type 1 for �, we have that: (i) f k(�̃) contains a single critical point of f ;
and (ii) f k(�̃) ⊂ U , where U is the interval about the critical point of f in f k(�̃) from
Proposition 2.2.

The following lemma tells us what happens to the ratiosω(I ) as we iterate f while staying
(combinatorially) far away from the critical points of f . Recall our use of the simplifying
notation I j := f j (I ) for intervals I ⊂ S1.

Lemma 5.8 Let n ≥ 0 and � ∈ Pn . Then, for any interval I ⊂ � and 0 ≤ j < k ≤ qn+1+1
such that the intervals f j (�̃), . . . , f k−1(�̃) do not contain any critical point of f ,

B−s
0 ω(I j ) ≤ ω(I k) ≤ Bs

0 ω(I j ). (5.10)

Proof Indeed, by Lemma 5.4, the distortion of f k− j in � j is bounded by B0. By the Mean
Value Theorem, there exists z ∈ I j such that

D f k− j (z) =
∣
∣I k

∣
∣

∣
∣I j

∣
∣
.

Thus, for any x ∈ � j ⊃ I j ,

B−1
0

∣
∣I k

∣
∣

∣
∣I j

∣
∣

≤ D f k− j (x) ≤ B0

∣
∣I k

∣
∣

∣
∣I j

∣
∣
. (5.11)

From Eq. (3.3), we have

ω(I k) =
∣
∣
∣I k

∣
∣
∣

−s
∫

I j ∩E
(D f k− j (x))s dν(x)

so, from (5.11), we get

B−s
0

∣
∣I k

∣
∣
s

∣
∣I j

∣
∣
s

∣
∣
∣I k

∣
∣
∣

−s
ν(I j ∩ E) ≤ ω(I k) ≤ Bs

0

∣
∣I k

∣
∣
s

∣
∣I j

∣
∣
s

∣
∣
∣I k

∣
∣
∣

−s
ν(I j ∩ E)

which is (5.10). �

The next result is now an easy corollary of Lemma 5.8:

Corollary 5.9 Let n ≥ 0, � ∈ Pn, and let 0 ≤ k1 < k2 < · · · < kr < qn+1 be the critical
times of type 1 for �. Then, for any interval I ⊂ �,

(a) I , I 1, . . . , I k1 are pairwise ω-comparable;
(b) For 1 ≤ j < r , I k j +1, I k j +2, . . . , I k j+1 are pairwise ω-comparable;
(c) I kr +1, . . . , I qn+1 are pairwise ω-comparable,

all with constant K ( f , s) = Bs
0 .

To proceed, we need to study the behaviour of ω close to the critical set of f . For this
purpose, recall that d > 1 denotes the maximum of the criticalities of the critical points of
f .

Lemma 5.10 Let n ≥ n0 (from Remark 5.7), � ∈ Pn, and let I ⊂ � be an interval.
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(a) If 0 ≤ j < qn+1 is a critical time of type 1 for �, I j � I j+1 with constant K ( f , s) =
(3d)s;

(b) if 0 ≤ �1 < �2 ≤ qn+1, I �1 � I �2 , with constant K ( f , s) = (3d B0)
4Ns .

Proof Observe that part (a) and Corollary 5.9 together imply (b), since we can join I �1 and
I �2 by a ω-domination chain as follows: let �1 ≤ ki < · · · < km < �2 be the critical times
of type 1 for � between �1 and �2. Then

I �1 ∼ I ki � I ki +1 ∼ I ki+1 � · · · ∼ I km � I km+1 ∼ I �2 .

Since there are at most 6N +2 atoms in this chain, it follows that I �1 � I �2 . To determine the
constant of ω-domination, we start with K ( f , s) = 1 and move along this chain, multiplying
by Bs

0 for every ∼ and by (3d)s for every � . There are m − i + 2 ∼’s and m − i + 1 �’s,
so (since m − i + 1 ≤ 3N ) we can take

K ( f , s) = (3d B0)
4Ns ≥ (3d)(m−i+1)s B(m−i+2)s

0 .

Thus, we only need to prove (a).
Observe that, from Eq. (3.3),

ω(I j+1) =
∫

I j ∩E (D f )s dν
∣
∣I j+1

∣
∣
s =

∣
∣I j

∣
∣
s

∣
∣I j+1

∣
∣
s

∫

I j ∩E (D f )s dν
∣
∣I j

∣
∣
s . (5.12)

Now, Proposition 2.2 implies that

(D f (x))s ≤ (3d)s

∣
∣I j+1

∣
∣
s

∣
∣I j

∣
∣
s for all x ∈ I j . (5.13)

Combining (5.12) and (5.13), we get

ω(I j+1) ≤ (3d)sω(I j ), (5.14)

which proves (a). �

Before moving forward to the proof of Theorem 5.1, we will first prove a lemma which

states, essentially, that long atoms ω-dominate short atoms. To simplify the proofs of this
lemma and of Theorem 5.1 below, we will denote all constants of ω-domination generically
by K = K ( f , s). It is worth noting that one could, in principle, keep track of all the constants
appearing of ω-domination in the following proofs and write them down explicitly.

Lemma 5.11 Let n ≥ n0, �1,�2 ∈ Pn ∪ {

I qn+1
n , I qn

n+1

}

. If �1 is a long atom (or I qn+1
n )

and �2, a short atom (or I qn
n+1), of Pn, then �1 � �2. Furthermore, if an+1 ≥ 2 or

an+1 = an+2 = 1, then �
k1
1 � �

k2
2 for any 0 ≤ k1, k2 ≤ qn+1.

Proof We split the proof in two parts: (i) that �1 � �2; and (ii) that �k1
1 � �

k2
2 if an+1 ≥ 2

or an+1 = an+2 = 1.
To prove (i), observe that, from Lemma 5.10, we have �1 � I qn+1

n and In+1 � �2.

Therefore, (i)will follow ifweprove that I qn+1
n � In+1.Since I qn+1

n ⊃ In+1 (so ν(In+1∩E) ≤
ν(I qn+1

n ∩E)), this is a consequence of the fact that these two intervals have comparable lengths
(see [8, Prop. 6.1]).

We now turn to the proof of (ii). From Lemma 5.10, we get �k1
1 � I 2qn+1−1

n and In+1 �
�

k2
2 . By applying either Lemma 5.8 or Lemma 5.10, depending on whether I 2qn+1−1

n ∩
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Fig. 3 Relative positions of the intervals In , In+1, I
qn+1−qn
n , I

qn+1
n , I qn

n+1, I
qn+1
n+1 , I

2qn+1
n , I

qn+qn+1
n+1 when

an+1 ≥ 2

Crit ( f ) = ∅ or not, we get I 2qn+1−1
n � I 2qn+1

n , from which it follows that �
k1
1 � I 2qn+1

n .

Thus, it suffices to show that I 2qn+1
n � In+1.

We first consider the case an+1 ≥ 2. For this end, observe from Fig. 3 that

I 2qn+1
n = I qn+1

n+1 ∪ In+1 ∪ [In \ (I qn
n+1 ∪ I qn+qn+1

n+1 )] (5.15)

with the unions disjoint modulo endpoints. Thus, I 2qn+1
n ⊃ In+1, which implies that

ω(In+1) ≤
⎛

⎝

∣
∣
∣I

2qn+1
n

∣
∣
∣

|In+1|

⎞

⎠

s

ω(I 2qn+1
n ). (5.16)

Now, we use the Real Bounds to bound

∣
∣
∣I

2qn+1
n

∣
∣
∣

|In+1| . From (5.15), we have:
∣
∣
∣I

2qn+1
n

∣
∣
∣

|In+1| =
∣
∣I qn+1

n+1

∣
∣

|In+1| + |In+1|
|In+1| + |In |

|In+1| −
∣
∣I qn

n+1

∣
∣

|In+1| −
∣
∣
∣I

qn+qn+1
n+1

∣
∣
∣

|In+1|

<

∣
∣I qn+1

n+1

∣
∣

|In+1| + 1 + |In |
|In+1|

≤ C + 1 + C = 1 + 2C < 3C (5.17)

since I qn+1
n+1 , In+1 are adjacent atoms of Pn+1, In, In+1 are adjacent atoms of Pn and C > 1.

Plugging (5.17) into (5.16), we get

ω(In+1) ≤ (3C)sω(I 2qn+1
n ) (5.18)

which proves that I 2qn+1
n � In+1.

Finally, we address the case an+1 = an+2 = 1. Observe from Fig. 4 that I 2qn+1
n ⊃ I qn+1

n+2

and In+1 ⊂ I qn+1
n+2 ∪ I qn+1+qn+2

n+2 ; from Lemma 5.10, I qn+1
n+2 � I qn+1+qn+2

n+2 . By applying the
Real Bounds and Lemma 5.3, we obtain

I 2qn+1
n � I qn+1

n+2 � I qn+1
n+2 ∪ I qn+1+qn+2

n+2 � In+1

which finishes the proof. �

Though we expect Theorem 5.1 will prove more useful in future works, for our purposes

we will require the following stronger result, which clearly implies Theorem 5.1.
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Fig. 4 Relative positions of the intervals In , In+1, I
qn+1−qn
n , I

qn+1
n , I qn

n+1, I
qn+1
n+1 , I

2qn+1
n , I

qn+qn+1
n+1 , In+2,

I
qn+1
n+2 , I

qn+1+qn+2
n+2 when an+1 = an+2 = 1. By applying the real bounds and Lemma 5.3, one can see all

these intervals have comparable lengths

Theorem 5.12 There exists a constant B2 = B2( f , s) > 1 with the following property. For
any n ≥ n0 and �1,�2 ∈ Pn, we have:
(a) If �1,�2 are both long atoms or both short atoms of Pn, then

B−1
2 ω(�2) ≤ ω(�1) ≤ B2 ω(�2). (5.19)

(b) If �1 is a short atom and �2 is a long atom of Pn, then

ω(�1) ≤ B2 ω(�2). (5.20)

Furthermore, if an+1 ≥ 2 or an+1 = an+2 = 1, then �1,�2 can be respectively replaced
in the above inequalities by images �

k1
1 ,�

k2
2 , 0 ≤ k1, k2 ≤ qn+1 + 1.

Proof Observe that (b) is precisely the content of Lemma 5.11. Moreover, since all short
atoms of Pn become long atoms in Pn+1, it suffices to prove (a) for long �1,�2.

Assume that �1,�2 are both long atoms of Pn . We split the proof in two parts: (i) that
�1 � �2; and (ii) that �k1

1 � �
k2
2 if an+1 ≥ 2 or an+1 = an+2 = 1.

We first prove (i). It suffices to show that �1 ω-dominates �2, since then the ω-
comparability of the two follows by simply interchanging �1 and �2. Once more, from
Lemma 5.10, �1 � I qn+1

n and In � �2. Since In ⊂ I qn+1
n ∪ I qn

n+1, I qn+1
n � I qn

n+1
(by Lemma 5.11) and these intervals have pairwise comparable lengths, we conclude that
I qn+1
n � In . This finishes the proof of (i).
The proof of (ii) is essentially the same: we have �

k1
1 � I 2qn+1

n and In � �
k2
2 , so we need

only show that I 2qn+1
n � In . But In ⊂ I 2qn+1

n ∪ I qn+qn+1
n+1 ∪ I qn

n+1 and (from Lemma 5.11)

I 2qn+1
n � I qn

n+1 � I qn+qn+1
n+1 (5.21)

so, since these intervals have pairwise comparable lengths, we conclude that I 2qn+1
n � In .

This finishes the proof of (ii). �
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6 Ergodicity and uniqueness

In this section, we prove that automorphic measures for multicritical circle maps with irra-
tional rotation number are ergodic (Theorem 6.8 below). As a consequence, we will obtain
the uniqueness part of Theorem A (we would like to remark that the non-flatness condition
on each critical point of f is crucial in order to have uniqueness, see Sect. 7.2 below). In
particular, Lebesgue is the unique f -automorphic measure of exponent 1 (Corollary 6.10).

We further show that this uniqueness remains true (up to a scalar multiple) in the context
of continuous linear functionals on C0(S1) (Corollary 6.11). As we will see in Sect. 7,
Corollary 6.11, applied to Lebesgue measure (s = 1), is the core step towards proving
Theorem B.

6.1 The 0 ratio

We first introduce a bit of notation. Fix some s > 0 and ν ∈ As . For an interval I ⊂ S1 and
a Borel f -invariant set E ⊂ S1, we will denote by 
(I ; E) the ratio


(I ; E):=ν(I ∩ E)

ν(I )
. (6.1)

Observe that 
(I ; E) can be expressed as the quotient of two ω-ratios with respect to I
and different invariant sets. Indeed, in the numerator we take E as the f -invariant set, while
in the denominator we just take the whole circle.

By direct analogy with Lemma 5.8, we thus obtain the following result.

Lemma 6.1 Let n ≥ 0 and � ∈ Pn . Then, for any interval I ⊂ �∗ and 0 ≤ j < k ≤ qn+1

such that the intervals f j (�̂), . . . , f k−1(�̂) do not contain any critical point of f , the
following holds for all Borel f -invariant sets E ⊂ S1:

B−2s
1 
(I j ; E) ≤ 
(I k; E) ≤ B2s

1 
(I j ; E). (6.2)

Definition 6.2 Let � ∈ Pn, 0 ≤ k < qn+1. We will say that k is a critical time of type 2 for
� if f k(�̂) ∩ Crit ( f ) �= ∅.

Since f has N critical points c1, . . . , cN and the collection
{

f k(�̂)
}qn+1−1

k=0 has intersection
multiplicity at most 8 (Lemma 5.2), it follows that, for any n ≥ 0 and � ∈ Pn, there are at
most 8N critical times of type 2 for �.

Remark 6.3 By a direct analogy with Remark 5.7, there is some level n1 = n1( f ) ≥ n0( f ) ∈
N, depending only on f , such that, for all n ≥ n1,� ∈ Pn and 0 ≤ k < qn+1 a critical time of
type 2 for�,wehave that: (i) f k(�̂) contains a single critical point of f ; and (ii) f k(�̂) ⊂ U ,

where U is the interval about the critical point of f in f k(�̂) from Proposition 2.2.

With this terminology in mind, the following corollary is now an immediate consequence
of Lemma 6.1:

Corollary 6.4 Let n ≥ 0, � ∈ Pn, and let 0 ≤ k1 < k2 < · · · < kr < qn+1 be the critical
times of type 2 for �. Then, for any interval I ⊂ �, the following holds for all Borel
f -invariant sets E ⊂ S1:
(a) For any 0 ≤ j, � ≤ k1,

B−2s
1 
(I j ; E) ≤ 
(I �; E) ≤ B2s

1 
(I j ; E); (6.3)

123



   26 Page 20 of 34 E. de Faria et al.

(b) (6.3) also holds for any ki + 1 ≤ j, � ≤ ki+1, 1 ≤ i < r;
(c) (6.3) also holds for kr + 1 ≤ j, � ≤ qn+1.

As we did in Lemma 5.10 with the ω-ratio, we now turn to the problem of understanding
the behavior of 
 close to a critical point of f .

Lemma 6.5 There exists a constant B3 = B3( f , s) > 1 with the following property. Let
n ≥ n1 and � ∈ Pn . Assume that n is such that either an+1 ≥ 2 or an+1 = an+2 = 1. Then
the following holds for all Borel f -invariant sets E ⊂ S1: if 0 ≤ j < qn+1 is a critical time
of type 2 for �,


( f j+1(�∗); E) ≤ B3 
( f j (�∗); E). (6.4)

Remark 6.6 Note the hypotheses on the combinatorics of f at level n: an+1 ≥ 2 or an+1 =
an+2 = 1. These are necessary to allow for use of the sharpened version of Theorem 5.12.

Proof We begin with the following observation (see Lemma 5.3): for any one of the atoms
I of Pn that compose �̂ and 0 ≤ k ≤ qn+1, we have I k � f k(�∗). Further note that

((L)3 ∪ (L)2 ∪ L̃) ∩ (R̃ ∪ (R)2 ∪ (R)3) = ∅

so (from Remark 6.3) it cannot be that both f j ((L)3 ∪ (L)2 ∪ L̃) and f j (R̃ ∪ (R)2 ∪ (R)3)

contain a critical point of f . Since the other case is identical, we assume, without loss of
generality, that

f j ((L)3 ∪ (L)2 ∪ L̃) ∩ Crit ( f ) = ∅.

Now, since no two short atoms of Pn are adjacent, one of L, (L)2 is a long atom; once
more, since the other case is nearly identical, we assume, without loss of generality, that (L)2
is a long atom ofPn . Similarly, one of�, R is a long atom ofPn, so we may assume, without
loss of generality, that R is also a long atom of Pn .

It thus follows as a straightforward consequence of Theorem 5.12 that (L)
j
2 ∼ f j (�∗)

and (L)
j+1
2 ∼ f j+1(�∗). That is, there exists a constant K0 = K0( f , s) such that

K −1
0

ν((L)
j
2 ∩ E)

∣
∣
∣(L)

j
2

∣
∣
∣

s ≤ ν( f j (�∗) ∩ E)
∣
∣ f j (�∗)

∣
∣
s ≤ K0

ν((L)
j
2 ∩ E)

∣
∣
∣(L)

j
2

∣
∣
∣

s ,

K −1
0

ν((L)
j
2)

∣
∣
∣(L)

j
2

∣
∣
∣

s ≤ ν( f j (�∗))
∣
∣ f j (�∗)

∣
∣s

≤ K0
ν((L)

j
2)

∣
∣
∣(L)

j
2

∣
∣
∣

s ,

K −1
0

ν((L)
j+1
2 ∩ E)

∣
∣
∣(L)

j+1
2

∣
∣
∣

s ≤ ν( f j+1(�∗) ∩ E)
∣
∣ f j+1(�∗)

∣
∣s

≤ K0
ν((L)

j+1
2 ∩ E)

∣
∣
∣(L)

j+1
2

∣
∣
∣

s ,

K −1
0

ν((L)
j+1
2 )

∣
∣
∣(L)

j+1
2

∣
∣
∣

s ≤ ν( f j+1(�∗))
∣
∣ f j+1(�∗)

∣
∣s

≤ K0
ν((L)

j+1
2 )

∣
∣
∣(L)

j+1
2

∣
∣
∣

s . (6.5)

Therefore,

K −2
0 
((L)

j
2; E) ≤ 
( f j (�∗); E) ≤ K 2

0 
((L)
j
2; E),

K −2
0 
((L)

j+1
2 ; E) ≤ 
( f j+1(�∗); E) ≤ K 2

0 
((L)
j+1
2 ; E). (6.6)
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Now, since f j ((̃L)2) contains no critical point of f , from Lemma 5.4 and the mean value
theorem,

B−1
0

∣
∣
∣(L)

j+1
2

∣
∣
∣

∣
∣
∣(L)

j
2

∣
∣
∣

≤ D f (y) ≤ B0

∣
∣
∣(L)

j+1
2

∣
∣
∣

∣
∣
∣(L)

j
2

∣
∣
∣

for all y ∈ (L)
j
2 . (6.7)

Thus,


((L)
j+1
2 ; E) =

∫

(L)
j
2∩E

(D f )s dν
∫

(L)
j
2
(D f )s dν

≤
Bs
0

(∣
∣
∣(L)

j+1
2

∣
∣
∣

∣
∣
∣(L)

j
2

∣
∣
∣

)s
∫

(L)
j
2∩E

dν

B−s
0

(∣
∣
∣(L)

j+1
2

∣
∣
∣

∣
∣
∣(L)

j
2

∣
∣
∣

)s
∫

(L)
j
2

dν

= B2s
0 
((L)

j
2; E).(6.8)

Combining Eqs. (6.6) and (6.8), we get:


( f j+1(�∗); E) ≤ K 2
0 
((L)

j+1
2 ; E) ≤ K 2

0 B2s
0 
((L)

j
2; E) ≤ B2s

0 K 4
0 
( f j (�∗); E)(6.9)

which is (6.4), with B3:=B2s
0 K 4

0 . �

Combining Corollary 6.4 and Lemma 6.5, we get the following.

Corollary 6.7 There exists a constant B4 = B4( f , s) > 1 with the following property. Let
n ≥ n1 and � ∈ Pn . Assume that n is such that an+1 ≥ 2 or an+1 = an+2 = 1. Then, for
any Borel f -invariant set E ⊂ S1 and 0 ≤ �1 < �2 ≤ qn+1,


( f �2(�∗); E) ≤ B4 
( f �1(�∗); E). (6.10)

6.2 Ergodicity

We are now ready to prove the ergodicity of ν with respect to f .

Theorem 6.8 (Ergodicity) Let s > 0 and let ν ∈ As be an automorphic measure of exponent
s for f . Then ν is ergodic with respect to f .

Proof Let E ⊂ S1 be a Borel f -invariant set such that ν(E) < 1. Our aim is to show that, in
fact, ν(E) = 0. For x ∈ S1, consider the sequence

V(x) = {

�∗ ∣
∣ n ≥ 0,� ∈ Pn, x ∈ �

}

of triples of adjacent atoms from the dynamical partitions Pn such that x is contained in the
central atom of the triple. As n increases, the triples of level n in this family shrink to x
while maintaining definite space on both sides (by the Real Bounds). If x ∈ 	, then there is
a unique atom �n(x) ∈ Pn that contains x, and x is contained in its interior. Therefore, for
x ∈ 	, V(x) contains precisely one triple (�∗

n(x)) of each level n ≥ 0.
Since	\E has positive ν-measure, we claim that for any given ε > 0 there exist x ∈ 	\E

and n2 ≥ n1( f ) ≥ n0( f ) such that, for all n ≥ n2,


(�∗
n(x); E) = ν(�∗

n(x) ∩ E)

ν(�∗
n(x))

< ε. (6.11)

Indeed, note that since ν has no atoms and is supported on the whole circle (recall Sect. 3), the
map h : S1 → S1 given by h(x) = ∫

[0,x] dν is a circle homeomorphism, which identifies the
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measure ν with Lebesgue measure on S1. Thus, the existence of a point x satisfying (6.11)
follows from the standard Lebesgue Density Theorem.

Now, some necessary distinctions depending on the combinatorics of f must be made.
If ρ is the rotation number of f , ρ = [a0, a1, · · · ], then either we have an = 1 for every
sufficiently large n, or an ≥ 2 occurs infinitely often. In any case, we can choose n ≥ n2 such
that either an+1 = an+2 = 1 (in the first case) or an+1 ≥ 2 (in the latter case). We thus fix
some level n ≥ n2 that satisfies one of these conditions, so that both (6.11) and Corollary 6.7
hold simultaneously.

Observe that the collection
{

f i (�∗
n(x))

}qn+1

i=0 covers the circle and has intersection multi-
plicity at most 4 (see Lemma 5.2), so

ν(E) = ν

(qn+1⋃

i=0

f i (�∗
n(x)) ∩ E

)

≤
qn+1∑

i=0

ν( f i (�∗
n(x)) ∩ E)

=
qn+1∑

i=0

ν( f i (�∗
n(x))) 
( f i (�∗

n(x)); E) (6.12)

and furthermore,

qn+1∑

i=0

ν( f i (�∗
n(x))) ≤ 4 (6.13)

(see Remark 2.6).
From Corollary 6.7,


( f i (�∗
n(x)); E) ≤ B4 
(�∗

n(x)); E) (6.14)

so, plugging (6.14), (6.13) and (6.11) into (6.12):

ν(E) ≤
qn+1∑

i=0

ν( f i (�∗
n(x))) 
( f i (�∗

n(x)); E) ≤ B4 
(�∗
n(x); E)

qn+1∑

i=0

ν( f i (�∗
n(x)))

≤ 4 B4
ν(�∗

n(x) ∩ E)

ν(�∗
n(x))

< 4 B4 ε. (6.15)

By letting ε → 0, we get ν(E) = 0.
Thus, there is no Borel f -invariant set E ⊂ S1 such that 0 < ν(E) < 1, which proves

that ν is ergodic. �

For future reference (see Sect. 7.3 below) let us point out the following particular case of

Theorem 6.8, which is important in its own right.

Theorem 6.9 Any given multicritical circle map with irrational rotation number is ergodic
with respect to Lebesgue measure.

6.3 Uniqueness

We now show that ergodicity of f -automorphic measures of positive exponent implies that
there is a unique f -automorphic measure of exponent s for each s > 0. We further extend
this uniqueness statement to finite signed measures, i.e., continuous linear functionals on
C0(S1).
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Proof of Theorem A, uniqueness part Arguing by contradiction, suppose there is some s > 0
such that As contains two distinct measures, say ν1, ν2. First, suppose ν1 � ν2, and let
ψ ∈ L1(ν2) be the Radon–Nikodym derivative

ψ = dν1

dν2
.

As a simple calculation shows, ψ ◦ f = ψ ν2-almost everywhere, i.e., ψ is f -invariant
ν2-a.e. But, from Theorem 6.8, ν2 is ergodic for f , so ψ must be constant ν2-a.e. Since∫

S1 ψ dν2 = 1, we conclude that ψ = 1 ν2-a.e. But then ν1 = ν2, contradicting our
assumption that ν1, ν2 are distinct.

Finally, if ν1 is not absolutely continuous with respect to ν2, let ν3 = 1
2 (ν1 + ν2). Then

ν3 ∈ As (sinceAs can be easily verified to be convex) and ν2 � ν3, ν1 � ν3. Thus, from the
previous case, we must have ν1 = ν2 = ν3, once again in contradiction to our assumption
that ν1, ν2 are distinct. �


Thus, we have now given a complete proof of Theorem A. Correspondingly, for s > 0,
we will denote the unique f -automorphic measure of exponent s by μs .

Since Lebesgue measure is always f -automorphic of exponent 1, we have the following
immediate consequence of Theorem A:

Corollary 6.10 Lebesgue measure is the unique automorphic measure of exponent 1 for f .

We now show that the uniqueness statement of Theorem A (and in particular, Corol-
lary 6.10) remains true (up to a scalar multiple) in the context of continuous linear functionals
on C0(S1):

Corollary 6.11 Let s > 0. If L ∈ C0(S1)∗ is such that

〈L, φ〉 = 〈

L, (φ ◦ f )(D f )s 〉 (6.16)

for all φ ∈ C0(S1), then

L = 〈L, 1〉 μs . (6.17)

Proof The proof is reproduced almost verbatim from [2, Remarque 1]. From the Riesz Rep-
resentation Theorem, there is a unique signed finite Radon measure ν on S1 such that

〈L, φ〉 =
∫

S1
φ dν

for all φ ∈ C0(S1). Therefore, it suffices to show that

ν = ν(S1) μs . (6.18)

First, suppose ν is positive. Then ν̃:= ν
ν(S1)

∈ As, so

ν = ν(S1) ν̃ = ν(S1) μs .

Now, for the general case, let ν = ν+ − ν− be the Jordan decomposition of ν. We wish to
show that

∫

S1
φ dν+ =

∫

S1
(φ ◦ f )(D f )s dν+,

∫

S1
φ dν− =

∫

S1
(φ ◦ f )(D f )s dν− (6.19)
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for all φ ∈ C0(S1). Since the linear operator Us : C0(S1) → C0(S1) given by

Us(ψ) = (ψ ◦ f )(D f )s

is positive, for all φ ∈ C0(S1) with φ ≥ 0, we have
∫

S1
φ dν+ = sup

0≤ψ≤φ

∫

S1
ψ dν = sup

0≤ψ≤φ

∫

S1
(ψ ◦ f )(D f )s dν

= sup
0≤ψ≤Us (φ)

∫

S1
ψ dν =

∫

S1
Us(φ) dν+ (6.20)

and similarly for ν−. It follows that (6.19) holds for all continuous φ ≥ 0; by linearity, it
must hold for all φ ∈ C0(S1). Thus, applying the first case to ν+, ν−, we have

ν = ν+ − ν− = ν+(S1) μs − ν−(S1) μs = ν(S1) μs

which finishes the proof. �

Remark 6.12 It follows from (6.17) that all linear functionals L ∈ C0(S1)∗ that satisfy (6.16)
have a definite sign: if L = L+ − L− is its Jordan decomposition, then L+ = 0 or L− = 0,
depending on whether 〈L, 1〉 is negative, positive or zero (and in this last case, L = 0).

Remark 6.13 With uniqueness at hand, it is not difficult to prove continuity of automorphic
measures in theweak∗ topology. To bemore precise, let { fn} be a sequence ofC3 multicritical
circle maps converging, in the C1 topology, to a C3 multicritical circle map f . If sn → s in
[0,+∞), then μsn ( fn) converges weakly to μs( f ), the unique f -automorphic measure of
exponent s.

7 Applications

In this final section we prove Theorem B (Sect. 7.1), Theorem C (Sect. 7.2) and Theorem D
(Sect. 7.3). With these purposes, we first review some basic results regarding invariant dis-
tributions for dynamical systems on compact manifolds.

7.1 Cohomological equations and invariant distributions

Let M be a compact smooth manifold. For integer 0 ≤ r ≤ ∞, let Cr (M) be the space
of Cr functions u : M → R, equipped with its Cr topology. Recall that the Cr topology
turns Cr (M) into a Banach space for finite r and C∞(M) into a Fréchet space, and that
a distribution on M is simply an element of the continuous dual space C∞(M)∗; we will
denote the space of distributions on M byD′ (M) , and the value of a distribution T ∈ D′ (M)

acting on a function u ∈ C∞(M) by 〈T , u〉 .

Suppose T ∈ D′ (M) and 0 ≤ k < ∞ are such that there exists C > 0 with

|〈T , u〉| ≤ C ‖u‖k ∀ u ∈ C∞(M).

In this case, T has a unique continuous extension T̃ ∈ Ck(M)∗; we say that T has order at
most k. In fact, every T ∈ Ck(M)∗ is the unique continuous extension of a distribution on
M . Denoting Ck(M)∗ byD′

k (M) , we have the following chain of inclusions modulo unique
extensions:

D′
0 (M) ↪→ D′

1 (M) ↪→ · · · ↪→ D′ (M) .
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Observe that the Riesz Representation Theorem naturally identifies D′
0 (M) with the space

M(M) of signed finite Radon measures on M .

If T ∈ D′ (M) belongs to D′
k (M) for some finite k, we say that T has finite order, and

we define its order as the least such k. A noteworthy consequence of the compactness of M
is that all distributions on M have finite order, i.e.,

D′ (M) =
∞
⋃

k=0

D′
k (M) .

Now, let f : M → M be a Cr endomorphism of M, 0 ≤ r ≤ ∞.

Definition 7.1 (C�-coboundary) Let 0 ≤ � ≤ ∞ and φ ∈ C�(M). We say that φ is a
C�-coboundary for f if the cohomological equation

u ◦ f − u = φ (7.1)

has a solution u ∈ C�(M).

For integer 0 ≤ � ≤ ∞, the set of C�-coboundaries for f forms a vector subspace of
C�(M), which we will denote by B

(

f , C�(M)
)

.

Definition 7.2 (Invariant distribution) We say that T ∈ D′
r (M) is f -invariant if

〈T , u ◦ f 〉 = 〈T , u〉 (7.2)

for all u ∈ C∞(M).

Remark 7.3 Let the manifold M be the unit circle S1. An f -automorphic measure ν of
exponent 1 naturally induces an f -invariant distribution T ∈ D′

1

(

S1
)

by letting

〈T , u〉 =
∫

S1
u′ dν

for all u ∈ C1(S1). Indeed, note that

〈T , u ◦ f 〉 =
∫

S1
(u ◦ f )′ dν =

∫

S1
(u′ ◦ f ) D f dν =

∫

S1
u′ dν = 〈T , u〉 .

Of course, Lebesgue measure (which is automorphic of exponent 1 for any C1 circle home-
omorphism) induces the null distribution 〈T , u〉 = 0. However, automorphic measures of
exponent 1 different from Lebesgue provide non-trivial invariant distributions, see Sect. 7.2
below.

For all integer 0 ≤ k ≤ r , the set D′
k ( f ) of f -invariant distributions of order at most k

forms a vector subspace of D′
k (M) . In fact, Eqs. (7.1) and (7.2) (by unique extension to Ck

functions) identify D′
k ( f ) with the (continuous) annihilator of B

(

f , Ck(M)
)

.

Thus, by the Hahn–Banach separation theorem,

clk B
(

f , Ck(M)
)

=
⋂

T ∈D′
k ( f )

ker T (7.3)

where clk denotes closure in the Ck topology.
Furthermore, we have the chain of inclusions

D′
0 ( f ) ↪→ D′

1 ( f ) ↪→ · · · ↪→ D′
r ( f )
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and also

D′
r ( f ) =

r
⋃

k=0

D′
k ( f ) . (7.4)

The following proposition is a simple but crucial consequence of (7.3).

Proposition 7.4 Let f : M → M be a Cr endomorphism of a compact smooth manifold M,

0 ≤ r ≤ ∞, and let μ be an f -invariant Radon probability measure on M . Let 0 ≤ k ≤ r
be an integer. Then

D′
k ( f ) = Rμ

if, and only if, the following holds. For any φ ∈ Ck(M) with
∫

M φ dμ = 0, there is a
sequence {φn = un ◦ f − un}n≥1 ⊂ B

(

f , Ck(M)
)

of Ck-coboundaries for f converging to
φ in the Ck topology.

With the above criterion at hand, we are ready to prove that Theorem A implies Theo-
rem B. The proof given below is taken almost verbatim from [28]. We reproduce it here for
the sake of completeness as well as to indicate the points of the proof in which estimates
depending on the bounded variation of log D f for C1+bv-diffeomorphisms must be replaced
by estimates suitable formulticritical circlemaps andwhere results from [2]must be replaced
by consequences of Theorem A. From Proposition 7.4, it suffices to show that Theorem A
implies the following lemma.

Lemma 7.5 Let u ∈ C1(S1) have zero μ-mean, that is,
∫

S1 u dμ = 0. Then there is a
sequence vn of C1 functions S1 → R such that

vn ◦ f − vn −→ u (7.5)

and

(v′
n ◦ f )D f − v′

n −→ u′ (7.6)

uniformly.

Let u ∈ C1(S1),
∫

S1 u dμ = 0, be fixed. The construction of the sequence vn from
Lemma 7.5 will be derived as a consequence of the following fact.

Proposition 7.6 There exists a sequence {wn}n≥1 ⊂ C0(S1) such that

(wn ◦ f )D f − wn −→ u′ (7.7)

uniformly, and such that
∫

S1 wn dm = 0 for all n ≥ 1, where m denotes the Lebesgue
measure in the unit circle.

Indeed, assume that Proposition 7.6 is true, and for each n ≥ 1, let vn : S1 → R be defined
by

vn(x) =
∫

[0,x]
wn(y) dy,

where [0, x] is the positively oriented closed circle interval with endpoints 0, x .

Observe that, since
∫

S1 wn dm = 0, vn is well-defined as a Z-periodic function from R

to R (i.e., vn ∈ C0(S1)). Furthermore, vn ∈ C1(S1) and v′
n = wn, so

(v′
n ◦ f )D f − v′

n = (wn ◦ f )D f − wn .
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Thus, Proposition 7.6 implies that the sequence vn we have just defined satisfies (7.6). It
remains to show that the vn ◦ f − vn also converge uniformly to u.

Well, for any x ∈ S1, we have

vn( f (x)) − vn(x) − u(x) =
∫

[0, f (x)]
wn(y) dy −

∫

[0,x]
wn(y) dy

−
(

u(0) +
∫

[0,x]
u′(y) dy

)

=
∫

[0,x]
[

(wn( f (y))D f (y) − wn(y)) − u′(y)
]

dy − cn(7.8)

where cn :=u(0) − ∫

[0, f (0)] wn(y) dy. Thus,

‖(vn ◦ f − vn + cn) − u‖C0 ≤ ∥
∥[(wn ◦ f )D f − wn] − u′∥∥

C0 . (7.9)

Now, from Proposition 7.6, the right-hand side in (7.9) converges to 0, so the sequence
{vn ◦ f − vn + cn}n≥1 converges uniformly to u. Consequently, since μ is f -invariant,

cn =
∫

S1
(vn ◦ f − vn + cn) dμ −→

∫

S1
u dμ = 0 (7.10)

so we conclude that (7.5) holds for the sequence {vn} as well. This finishes the proof of
Lemma 7.5, assuming Proposition 7.6.

With the knowledge that Proposition 7.6 implies Lemma 7.5 (which in turn implies The-
orem B), we now show that Theorem A implies this proposition. First, a technical lemma,
which consists of Proposition 7.6 in the special case u = f − Id .

Lemma 7.7 There exists a sequence
{

ŵk
}

k≥1 ⊂ C0(S1), with (ŵk ◦ f )D f − ŵk converging

uniformly to D f − 1, such that, for all k ≥ 1,
∫

S1 ŵk dm = 0.

Proof For k ≥ 1, let ŵk ∈ C0(S1) be defined by

ŵk = 1 − 1

qk

qk−1
∑

i=0

D f i . (7.11)

Observe that
∫

S1
D f i dm = 1,

so
∫

S1
ŵk dm = 1 − 1

qk

qk−1
∑

i=0

∫

S1
D f i dm = 1 − 1 = 0. (7.12)

Furthermore,
∥
∥
[

(ŵk ◦ f )D f − ŵk
] − (D f − 1)

∥
∥

C0

=
∥
∥
∥
∥
∥
∥

⎡

⎣

⎛

⎝D f − 1

qk

qk−1
∑

i=0

(D f i ◦ f )D f

⎞

⎠ − 1 + 1

qk

qk−1
∑

i=0

D f i

⎤

⎦ − D f + 1

∥
∥
∥
∥
∥
∥

C0

= 1

qk

∥
∥1 − D f qk

∥
∥

C0 ≤ 1 + ‖D f qk ‖C0

qk
. (7.13)
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Now, from Lemma 2.9,

∥
∥
[

(ŵk ◦ f )D f − ŵk
] − (D f − 1)

∥
∥

C0 ≤ 1 + ‖D f qk ‖C0

qk
≤ 1 + C1

qk
−→ 0 (7.14)

since qk −→ ∞. Equations (7.14) and (7.12) prove the lemma. �

Remark 7.8 Themain difference between the proofs of Lemma 7.7 above (in the critical case)
and the corresponding lemma in [28, p. 317] (in the diffeomorphism case) is the use of Lemma
2.9 to bound ‖D f qn ‖C0 , instead of the standard Denjoy inequality (see [8, Section 3.2]).
Furthermore, in our case the ŵk are not only continuous, but in fact C2, since we require f
to be at least C3.

The proof of Proposition 7.6 given below depends essentially on the crucial fact that, if
L ∈ C0(S1)∗ satisfies

〈L, (φ ◦ f )D f − φ〉 = 0 (7.15)

for all φ ∈ C0(S1), then L is a scalar multiple of Lebesgue measure. In the diffeomorphism
case, this fact is a consequence of [2, Théorème 1], while in the critical case, it follows from
Theorem A (recall Corollary 6.11).

Proof of Proposition 7.6 The proof will result from two claims.
Claim #1: There is a sequence {w̄n}n≥1 ⊂ C0(S1) such that

(w̄n ◦ f )D f − w̄n −→ u′ (7.16)

uniformly.
Indeed, consider the continuous linear operator U1 : C0(S1) → C0(S1) given by

U1 w = (w ◦ f )D f − w (7.17)

and let M be the image of U1. If no sequence w̄n satisfying (7.16) exists, then u′ /∈ cl0 M,

so the Hahn–Banach separation theorem implies the existence of a linear functional L ∈
C0(S1)∗ such that L is identically null on M and

〈

L, u′〉 = 1. But the fact that L is null on M
is easily seen to be equivalent to (7.15), so L must be a multiple of Lebesgue measure; this
contradicts the fact that

∫

S1 u′ dm = 0 (since u is Z-periodic). Thus, a sequence {w̄n}n≥1
satisfying (7.16) must exist. For each n ≥ 1, let

cn :=
∫

S1
w̄n dm, w̃n :=w̄n − cn .

and choose kn ∈ N such that

|cn | ∥∥[(ŵkn ◦ f )D f − ŵkn

] − (D f − 1)
∥
∥

C0 ≤ 2−n

(Lemma 7.7 guarantees that this is possible). Finally, define

wn :=w̃n + cnŵkn = w̄n + cn(ŵkn − 1). (7.18)

Observe that
∫

S1 wn dm = 0.
Claim # 2:

(wn ◦ f )D f − wn −→ u′ (7.19)

uniformly. Observe that proving claim # 2 will finish the proof.
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To prove the claim, let ε > 0 be arbitrary, and choose n0 ∈ N such that 2−n0 < ε
2 and

∥
∥(w̄n ◦ f )D f − w̄n − u′∥∥

C0 <
ε

2
for all n ≥ n0.

Thus, for all n ≥ n0,
∥
∥(wn ◦ f )D f − wn − u′∥∥

C0

≤ ∥
∥(w̄n ◦ f )D f − w̄n − u′∥∥

C0 + |cn | ∥∥[(ŵkn − 1) ◦ f
]

D f − (ŵkn − 1)
∥
∥

C0

<
ε

2
+ |cn | ∥∥[(ŵkn ◦ f )D f − ŵkn

] − (D f − 1)
∥
∥

C0

≤ ε

2
+ 2−n <

ε

2
+ ε

2
= ε (7.20)

which proves the claim. �

We have thus proved Theorem B.

7.2 Wandering intervals and invariant distributions

Before entering the proof of Theorem D, let us briefly explain why Theorem C holds.
For any given irrational number ρ ∈ (0, 1), Hall was able to construct in [21] a C∞

homeomorphism f : S1 → S1, with rotation number ρ( f ) = ρ, having a wandering inter-
val I (i.e., I is an open interval such that f n(I ) is disjoint from f m(I ) whenever n �= m
in Z). These examples, so-called Hall’s examples, present a single critical point c which is
flat: the successive derivatives of f (of all orders) vanish at c. Note that this critical point
necessarily belongs to the invariant Cantor set of f (otherwise, a C∞ perturbation supported
on the wandering interval containing c would produce a C∞ diffeomorphism with irrational
rotation number andwandering intervals). In particular, f n : I → f n(I ) is a diffeomorphism
for all n ∈ Z.

To these Hall’s examples, we will apply the following general remark.

Lemma 7.9 Let f : S1 → S1 be an orientation-preserving homeomorphism with a wander-
ing interval I ⊂ S1 such that f n : I → f n(I ) is a C1 diffeomorphism for all n ∈ Z. Then,

the series
∑

n∈Z
D f n(x)

is finite for Lebesgue almost every x ∈ I .

Proof Since D f is non-negative on the whole circle, the function x �→ ∑

n∈Z D f n(x) is
the pointwise limit of a monotone sequence of measurable functions,3 and therefore it is
measurable. Hence, by the Monotone Convergence Theorem,

∫

I

∑

n∈Z
D f n dm =

∑

n∈Z

∫

I
D f n dm.

But
∑

n∈Z

∫

I
D f n dm =

∑

n∈Z

∣
∣ f n(I )

∣
∣ ≤ 1,

3 To wit, the functions x �→ ∑

|n|≤N D f n(x) with N = 1, 2, . . . .
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since I is a wandering interval and f n : I → f n(I ) is a C1 diffeomorphism for all n ∈ Z.

Thus, we have
∫

I

∑

n∈Z
D f n dm ≤ 1,

and therefore the integrand has to be finite at Lebesgue almost every x ∈ I . �


Proof of Theorem C Let f : S1 → S1 be a Hall’s example as above, having a wandering
interval I ⊂ S1. Pick some x ∈ I such that S = ∑

n∈Z D f n(x) is finite (recall that, by
Lemma 7.9, this series is finite for Lebesgue almost every x outside the f -invariant Cantor
set). Following [2, Section 3.1], we consider the probability measure

ν = 1

S

∑

n∈Z
D f n(x) δ f n(x).

We see at once that ν is f -automorphic of exponent 1 (note, in particular, that the uniqueness
part of TheoremA breaks down if we remove the non-flatness condition on the critical points
of f ). Now we consider T ∈ D′

1

(

S1
)

given by

〈T , u〉 =
∫

S1
u′ dν.

As explained in Remark 7.3 above, the distribution T is f -invariant. Finally, to prove that T
is not a scalar multiple of the unique f -invariant probability measure μ is straightforward
(compare [28, Section 3]). Indeed, let u : S1 → R be of classC1, supported on the wandering
interval I , and such that x is not a critical point of u. Then, on one hand, we have

〈T , u〉 =
∫

S1
u′ dν = 1

S
u′(x) �= 0.

On the other hand, since the support of u is disjoint from the non-wandering set of f , we
certainly have

∫

S1 u dμ = 0. This finishes the proof of Theorem C. �


7.3 Denjoy–Koksma inequality improved

We finish this paper by proving Theorem D. In fact, we will present two different proofs
of Theorem D. The first proof works only when the observable φ is of class C1, whereas
the second works in the general case, i.e., when φ is absolutely continuous with respect to
Lebesgue. The former follows [1, pages 513–514], and relies on the absence of invariant
distributions of order 1 (obtained in Theorem B), while the latter follows [27, pages 379–
381], and it only uses the ergodicity of the Lebesgue measure under a multicritical circle map
(as established in Theorem 6.9).

Proof of TheoremD forC1 observables For any given φ ∈ C1(S1), φ − ∫

S1 φ dμ belongs to
kerμ. Combining Theorem B with Proposition 7.4 we have that, for any given ε > 0, there
exists u ∈ C1(S1) such that

∥
∥
∥
∥

(

u ◦ f − u
) − (

φ −
∫

S1
φ dμ

)
∥
∥
∥
∥

C1
≤ ε

2
.
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Let φ̃ ∈ C1(S1) be given by φ̃ = u ◦ f − u + ∫

S1 φ dμ, so that
∥
∥φ̃ − φ

∥
∥

C1 ≤ ε/2. Since μ

is f -invariant, we have
∫

S1 φ̃ dμ = ∫

S1 φ dμ. Now for any given x ∈ S1,

∣
∣
∣
∣
∣
∣

qn−1
∑

i=0

φ
(

f i (x)
) − qn

∫

S1
φ dμ

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

qn−1
∑

i=0

(

φ − φ̃
)(

f i (x)
) − qn

∫

S1

(

φ − φ̃
)

dμ

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

qn−1
∑

i=0

φ̃
(

f i (x)
) − qn

∫

S1
φ̃ dμ

∣
∣
∣
∣
∣
∣

.

Let us estimate both terms at the right side of this inequality. On one hand, by the standard
Denjoy–Koksma inequality (see for instance [8, Thm. 3.3]),

∣
∣
∣
∣
∣
∣

qn−1
∑

i=0

(

φ − φ̃
)(

f i (x)
) − qn

∫

S1

(

φ − φ̃
)

dμ

∣
∣
∣
∣
∣
∣

≤ ∥
∥φ̃ − φ

∥
∥

C1 ≤ ε/2.

On the other hand,

qn−1
∑

i=0

φ̃
(

f i (x)
) − qn

∫

S1
φ̃ dμ =

qn−1
∑

i=0

[

u
(

f i+1(x)
) − u

(

f i (x)
) +

∫

S1
φ dμ

]

− qn

∫

S1
φ̃ dμ

= u
(

f qn (x)
) − u(x) + qn

(∫

S1
φ dμ −

∫

S1
φ̃ dμ

)

= u
(

f qn (x)
) − u(x).

In particular,
∣
∣
∣
∣
∣
∣

qn−1
∑

i=0

φ̃
(

f i (x)
) − qn

∫

S1
φ̃ dμ

∣
∣
∣
∣
∣
∣

≤ ‖u‖C1 ‖ f qn − Id ‖C0 .

By minimality of f , we can choose n0 ∈ N such that ‖u‖C1 ‖ f qn − Id ‖C0 < ε/2 for all

n ≥ n0. Therefore,
∣
∣
∣

∑qn−1
i=0 φ

(

f i (x)
) − qn

∫

S1 φ dμ

∣
∣
∣ < ε for all x ∈ S1 and n ≥ n0. Since

ε is arbitrary, this finishes the proof. �

Let us now give a proof of Theorem D that works in general, following [27, Section 2].

With this purpose, we will need the following lemma.

Lemma 7.10 If v ∈ L1(m) is a Lebesgue-integrable function on the circle such that
∫

S1 v dm = 0, then there exists a sequence vn of Lebesgue-integrable functions on the
circle such that

∫

S1 vn dm = 0 for all n and

(vn ◦ f )D f − vn −→ v

in the L1 sense.

Proof Consider the continuous linear operator U : L1(m) → L1(m) given by Uw = (w ◦
f )D f − w, and let M be the image of U . First, assume that v /∈ cl M; then, by the Hahn–
Banach theorem, there exists L ∈ L1(m)∗ such that L is identically null on M and 〈L, v〉 = 1.
By identification of L1(m)∗ with L∞(m), there exists an L∞ function φ such that

〈L, w〉 =
∫

S1
φ w dm
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for all w ∈ L1(m). But then, for all w ∈ L1(m),

0 =
∫

S1
φ [(w ◦ f )D f − w] dm =

∫

S1
(φ ◦ f −1)w dm −

∫

S1
φ w dm.

Since the previous equality holds for all Lebesgue-integrable w, we conclude that φ is f -
invariant m-almost everywhere. But, as proved in Sect. 6.2, f is ergodic with respect to
Lebesgue (Theorem 6.9). Therefore, φ must be almost everywhere constant, i.e., there exists
some constant β such that φ = β m-almost everywhere. But then

1 = 〈L, v〉 =
∫

S1
v φ dm = β

∫

S1
v dm,

contradicting the fact that v ∈ kerm. Thus, v ∈ cl M, and there is some sequence w̄n of L1

functions for which

(w̄n ◦ f )D f − w̄n −→ v

in the L1 sense.
Now, recall the functions ŵk from Lemma 7.7: we have that

(ŵk ◦ f )D f − ŵk −→ D f − 1

uniformly. If we define cn := ∫

S1 w̄n dm, then the desired sequence wn is given by

wn :=w̄n − cn + cn ŵkn ,

where the kn are chosen as in the proof of Proposition 7.6. �

Proof of TheoremD For any given φ ∈ AC(S1), we have that its derivative v:=φ′ exists
m-almost everywhere, and furthermore,

∫

S1 v dm = 0 (since φ is Z-periodic). Let ε > 0 be
fixed. By Lemma 7.10, there exists w ∈ L1(m), w ∈ kerm, such that

u:=v − [(w ◦ f )D f − w] (7.21)

satisfies
∫

S1
|u| dm ≤ ε

2
. (7.22)

Now, let ψ, ξ ∈ AC(S1) be given by

ψ(x) =
∫

[0,x]
w dm, ξ = φ − ψ ◦ f + ψ −

∫

S1
φ dμ.

Then

φ = ξ + ψ ◦ f − ψ +
∫

S1
φ dμ, (7.23)

and it is immediate from the f -invariance of μ that
∫

S1 ξ dμ = 0. Furthermore,

ξ ′ = φ′ − (ψ ′ ◦ f )D f + ψ ′ = v − (w ◦ f )D f + w = u.

By a telescoping sum, we have from (7.23) that

qn−1
∑

i=0

φ ◦ f i − qn

∫

S1
φ dμ =

qn−1
∑

i=0

ξ ◦ f i + ψ ◦ f qn − ψ. (7.24)
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We now proceed to estimate the right hand side of the above equation. On one hand, by the
standard Denjoy–Koksma inequality and (7.22),

∥
∥
∥
∥
∥
∥

qn−1
∑

i=0

ξ ◦ f i

∥
∥
∥
∥
∥
∥

C0

≤ var(ξ) ≤ ∥
∥ξ ′∥∥

L1(m)
= ‖u‖L1(m) ≤ ε

2
. (7.25)

On the other hand, by the minimality of f ,

∥
∥ψ ◦ f qn − ψ

∥
∥

C0 ≤ ε

2
(7.26)

for sufficiently large n. By the triangle inequality, Eqs. (7.24)–(7.26) together show that, for
sufficiently large n,

∥
∥
∥
∥
∥
∥

qn−1
∑

i=0

φ ◦ f i − qn

∫

S1
φ dμ

∥
∥
∥
∥
∥
∥

C0

≤ ε. (7.27)

Since ε is arbitrary, this concludes the proof of Theorem D. �
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