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Abstract

Let f be a C'*P circle diffeomorphism with irrational rotation number. As established by
Douady and Yoccoz in the eighties, for any given s > O there exists a unique automorphic
measure of exponent s for f. In the present paper we prove that the same holds for multicritical
circle maps, and we provide two applications of this result. The first one, is to prove that
the space of invariant distributions of order 1 of any given multicritical circle map is one-
dimensional, spanned by the unique invariant measure. The second one, is an improvement
over the Denjoy—Koksma inequality for multicritical circle maps and absolutely continuous
observables.
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1 Introduction

Smooth one-dimensional dynamical systems can be studied from various viewpoints, such
as their topological classification, their smooth rigidity properties, the behaviour of their
individual orbits or their measure-theoretic and ergodic properties. A specific class of such
systems that has received a great deal of attention in recent years is the class of multicritical
circle maps.

A multicritical circle map is a C3 circle homeomorphism f : ' — S! having N > 1
critical points (all of which are non-flat, see Sect. 2). We are only interested in maps of this
type having no periodic points, in other words, only in those maps that have irrational rotation
number. The classification of such maps up to topological conjugacy goes back to Yoccoz
[38], who proved that they are always minimal, hence topologically equivalent to a rotation
of the circle (see Theorem 2.4 below). The smooth rigidity of such maps—including the
preliminary step known as quasi-symmetric rigidity—has been the object of intense research
in recent decades; it is by now fairly well-understood, at least in the unicritical case, thanks to
the combined efforts of several mathematicians, see [3, 6, 11, 12, 16, 19, 20, 25, 26, 33-36],
or the book [8] and references therein (we note en passant that, quite recently, some rigidity
results for maps with more than one critical point have been established, see [4, 5, 37] and
the recent preprint [17]). The geometric behaviour of individual orbits of such maps was
examined in the recent paper [10].

From the measure-theoretic viewpoint, multicritical circle maps have also been studied in
detail. Having irrational rotation number, they are uniquely ergodic. Their unique invariant
probability measure was shown to be purely singular with respect to Lebesgue (Haar) measure
by Khanin [24] (see also [18]), and later it was shown to have zero Lyapunov exponent in [7].
In [9], the authors went a bit further and showed that such maps do not admit even o -finite
absolutely continuous invariant measures.

In the present paper, we are interested in further ergodic-theoretic properties of multicriti-
cal circle maps. In particular, we are interested in the question: “Does a (minimal) multicritical
circle map admit other invariant distributions besides its unique invariant probability mea-
sure?”. The analogous question in a more general setting seems to have been first asked by
Katok (for a general reference, see [23]). However, our main source of inspiration is the
remarkable paper by Avila and Kocsard [1], in which they give a fairly complete answer to
the corresponding question for smooth circle diffeomorphisms.

Here, we give a (partial) answer to the above question (see Theorem B below) by relating it
(following the paper [28], by Navas and Triestino) to the question of existence and uniqueness
of so-called automorphic measures for multicritical circle maps—a question to which we
give here a full answer (Theorem A).

Given s € R, an automorphic measure of exponent s for f is a Borel probability measure
v on S! whose pullback f*v is equivalent to v, with Radon—Nikodym derivative given
by (Df)*. This concept is the analogue, for real one-dimensional maps, of the concept of
conformal measure introduced by Sullivan in [31] in the context of rational maps—which in
turn is inspired by a similar notion introduced by Patterson [29] and Sullivan himself [30] in
the context of Fuchsian and Kleinian groups.

The precise definition of automorphic measure is given in Sect. 3 (Definition 3.1). In the
eighties, it was proved by Douady and Yoccoz (but only published some years later, in [2]—
see also [13]) that, for every minimal C ' circle diffeomorphism and every real number s,
there exists a unique automorphic measure of exponent s. In the present paper we prove the
following result.
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Theorem A (Existence and uniqueness of automorphic measures) Let f be a multicritical
circle map. For any given s > Q there exists a unique automorphic measure of exponent s for
f. This measure has no atoms, is supported on the whole circle and it is ergodic under f.

1.1 Applications

In Sect. 7 of the present paper we provide a couple of applications of Theorem A, that we
now describe.

As usual, a 1-distribution is a continuous linear functional defined on the space of C 1
real-valued functions of the circle (see Sect. 7.1 for precise definitions). As a consequence
of Theorem A, we have the following result.

Theorem B (No invariant distributions) Let f be a multicritical circle map with irrational
rotation number and unique invariant measure . Then the space Dy (f) of f-invariant
distributions of order at most 1 is spanned by |1, that is,

1 () =Ru.

In other words, f admits no invariant distributions of order at most 1 different from (a
scalar multiple of) its unique invariant measure. The proof of Theorem B will be given in
Sect. 7.1, and will follow the approach of Navas and Triestino developed in [28] for C!*bV-
diffeomorphisms. We would like to remark that this approach deals with distributions of
order at most 1. Since multicritical circle maps are assumed to be C 3 smooth, it would be
desirable to also rule out invariant distributions up to order 3. Unfortunately, we do not know
how to do this. Moreover, if we consider C*°, or C®, multicritical circle maps, we do not
know how to deal with higher order distributions. Let us be more precise: a C>° dynamical
system is distributionally uniquely ergodic if it admits a single invariant distribution (up to
multiplication by a constant). In [1], Avila and Kocsard proved that every C circle diffeo-
morphism with irrational rotation number is distributionally uniquely ergodic. We believe
that C°° multicritical circle maps are distributionally uniquely ergodic too but, as already
mentioned, we do not know how to prove that. Nevertheless, to the best of our knowledge,
Theorem B provides the first examples of dynamics with no invariant distributions of order
at most 1 outside the realm of flows and diffeomorphisms. Finally, we would like to remark
that the non-flatness condition on each critical point of f (see Sect. 2 below) is crucial in
order to prove Theorem B. Indeed, the following holds.

Theorem C For any given irrational number p € (0, 1) there exists a C° homeomorphism
f:SY — S, with rotation number p(f) = p, having invariant distributions of order 1
(different from a scalar multiple of its unique invariant measure).

The examples of Theorem C are those constructed by Hall in [21], see Sect. 7.2 for the
details. They are uniquely ergodic, but they are not distributionally uniquely ergodic.

As it turns out, Theorem A implies the following improvement over the Denjoy—Koksma
inequality for absolutely continuous observables.

Theorem D (Improved Denjoy—Koksma) Let f be a multicritical circle map with irrational
rotation number p and unique invariant measure i, and let ¢: S' — R be absolutely
continuous. If {qn} is the sequence of denominators for the rational approximations of p, we
have that

1 qn_l .
qn *Z‘Ijof’—/dniu —> 0 asn goes to 0o.
dn i—0 s1
= cosh
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The proof of Theorem D will be given in Sect. 7.3, following the very same lines as that
of Avila and Kocsard [1, Section 3] and Navas [27, Section 2] for circle diffeomorphisms.

The paper is organized as follows: in Sect. 2, we present a recap of some topics from
the theory of critical circle maps. In Sect. 3, we define automorphic measures of positive
exponent, and explore some of their elementary properties; we remark that, at that point in
the paper, it is still not clear whether automorphic measures actually exist. This is done in
Sect. 4, where we show that automorphic measures indeed exist for all positive exponents.
In Sect. 5, we obtain fundamental bounds on automorphic measures, which may themselves
be of interest in future works. In Sect. 6, we use said bounds to show that any automorphic
measure is ergodic, and as a consequence, easily derive the uniqueness part of Theorem A.
Finally, in Sect. 7, we prove that Theorem A implies both Theorems B and D, and we briefly
explain the proof of Theorem C.

2 Multicritical circle maps

Let us now define the maps which are the main object of study in the present paper. We start
with the notion of non-flat critical point.

Definition 2.1 We say that a critical point ¢ of a one-dimensional C3 map f is non-flat of
degree d > 1 if there exists a neighborhood W, of the critical point and a C3 diffeomorphism
¢c: We = ¢ (W,) C R such that ¢.(c) = 0 and, for all x € W,

[ = f(©)+ ¢e(x) lpe ()|
This local form easily implies the following estimate (see [8, ch. 5]).

Proposition 2.2 Let ¢ be a non-flat critical point of degree d of a one-dimensional C3 map f .
There exists an interval U = U, C W, that contains ¢ such that, for any non-empty interval
JCcUandx e J,

Lf (DI

Df(x) <3d T, 2.1

where |J| denotes the Euclidean length of an interval J .

Definition 2.3 A multicritical circle map is an orientation-preserving C* circle homeomor-
phism having finitely many critical points, all of which are non-flat.

We refer the reader to [8, ch. 6], where examples of multicritical circle maps are discussed.
Being an orientation-preserving circle homeomorphism, a multicritical circle map f has a
well defined rotation number. We will focus on the case that f has no periodic orbits (i.e.,
p(f) ¢ Q). As it turns out, these maps have no wandering intervals. More precisely, we have
the following fundamental result.

Theorem 2.4 Let f be a multicritical circle map with irrational rotation number p. Then
f is topologically conjugate to the rigid rotation Ry, i.e., there exists a homeomorphism

h: S'— S'suchthatho f = R, o h.

Theorem 2.4 was proved by Yoccoz in [38], see also [8, ch. 6].
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2.1 The Koebe distortion principle

Given two circle intervals M C T C S' with M compactly contained in the interior of T
(written M € T'), we denote by L and R the two connected components of 7 \ M. The space
of M inside T is defined to be the number

~[ILl IR]
t_mln{m,m}. 2.2)

Given circle intervals M, T with M € T and k > 1 such that f": T — fk(T) isaC!
diffeomorphism onto its image, one can bound the distortion of f¥ inside M independently
of k as long as the intermediate images T', f(T), ..., f¥ 1(T) satisfy a mild summability
condition and the space of f k(M) inside f k(T) is bounded from below independently of
k. This is the content of the Koebe distortion principle, and, as one can expect, it is of
fundamental importance in controlling the geometric behavior of large iterates of the map f.

Lemma 2.5 (Koebe distortion principle) For each £, t > 0 and each multicritical circle map
f:8Y — S there exists a constant K = K (€, T, f) > 1 with the following property. If
k>1,M c T c S!are intervals, with M compactly contained in the interior of T, are

such that the intervals T, f(T), ..., f*=Y(T) contain no critical point of f,
=1
> ‘f’(T)‘ <¢ 2.3)
=0
and the space of f*(M) inside f*(T) is at least t, then
Dk
1< fk(x) <K forallx,ye M. (2.4)
Df*(y)

A proof of the Koebe distortion principle can be found in [14, p. 295].

Remark 2.6 Given a family of intervals F on S' and a positive integer m, we say that F
has multiplicity of intersection at most m if each x € S! belongs to at most m elements
of F. For our purposes, the following (elementary) observation relating the hypotheses of
the Koebe distortion principle to multiplicity of intersection will be crucial: if the family
T, f(T),..., fk_l(T) has multiplicity of intersection at most m, then (2.3) holds with
¢ = m. This observation also holds in the context of arbitrary finite measures on S': if v is
a finite measure on the circle, m > 1 and F is a family of circle intervals with intersection
multiplicity at most m, then

Z v(I) < mv(Sh.

IeF

2.2 Combinatorics and real bounds

Throughout this paper, f: S' — §' will be a C? multicritical circle map with irrational
rotation number. Furthermore, N > 1 will be the number of critical points of f, Crit (f) =
{c1,...,cn} will be the set of critical points of f, and dj, ..., dy their corresponding
criticalities.
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Let p be the rotation number of f. Being irrational, it has an infinite continued fraction
expansion, say

o(f) =lag,a1,...]=
ao + ———
a + —

Truncating the expansion at level n — 1, we obtain a sequence of fractions p, /g, which are
called the convergents of the irrational p.
Pn 1
— =lao, a1, ...,ap-11 = I
qn
ap +

L
PR
T

an—1

Since each p, /g, is the best possible approximation to p by fractions with denominator at
most g,, we have

Pn
o0 — —

qn

If0 < g < g, then

<‘p—£‘, forany p € Z.
q

The sequence of numerators satisfies

po=0, pir=1, putr1=aypny+ pu—1forn>1

Analogously, the sequence of the denominators, which we call the return times, satisfies

qo=1, q1=ao, qui1 = angn +qgn—1forn>1.

For each point x € S! and each non-negative integer n, let I, (x) be the closed interval
with endpoints x and f9 (x) containing f4+2(x) (note that I,,(x) contains no other iterate

fl(x)with1 < j < g, — 1). We write I} (x) = fJ(I,,(x)) for all j and n.
Lemma 2.7 For eachn > 0 and each x € S, the collection of intervals

o) = [ F ) : 020 < quir =1} U {7/ Gonro: 0= j < g0 -1

is a partition of the unit circle (modulo endpoints), called the n-th dynamical partition
associated to the point x.

For a proof of this lemma, see [8, ch. 6]. The intervals of the form f {(I,(x)) in Py, (x) are
called long, while the intervals of the form f J (141 (x)) are called short. This nomenclature
is inspired by the rigid rotation, for which the long intervals indeed have longer (Lebesgue)
length than the short ones.

Note that, for each n, the partition P,41(x) is a (non-strict) refinement of P, (x) (see
Fig. 1 below): the short intervals of P, (x) become long intervals of P, (x), while each of
the long intervals of P, (x) are partitioned into one short interval at level n + 1 (an iterate of
I,+2(x)) and a,41 long intervals at level n + 1 (iterates fi (In4+1(x)) for g, < j < gny2).
Meanwhile, the partition P, 42 (x) is a strict refinement of P, (x).
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In(x) T In+1(x)

o (Inta () 3 'fq””_q”“(fnﬂ(x))
fantint1 (Lo (z) Into(z)

Fig. 1T Moving down levels in dynamical partitions, short intervals become long, while long intervals are
subdivided

Theorem 2.8 (Real bounds) There exists a constant C = C(f) > 1, depending only on f,
such that the following holds for every critical point ¢ of f. For all n > 0 and for each pair
of adjacent atoms 1, J € Py(c) we have

c < <clil. (2.5)

Note that for a rigid rotation we have |I,,| = ay41|ly+1] + | Li42]. If a,41 is large, then I,
is much larger than 7,4 . Thus, even for rigid rotations, real bounds do not hold in general.

Theorem 2.8 was obtained by Herman [22], based on estimates by §wig1tek [32]. A detailed
proof can be found in [8, ch. 6].

Theorem 2.8 has the following consequence (see [8, ch. 8]).

Lemma 2.9 There exists C; = C1(f) > 0such that, for each x € Stand alln > 0, we have
Dfi(x) < Cy.

Yet another consequence of the real bounds that will be useful in the present paper (see
Sect. 4 below) is the following.

Lemma 2.10 (Zero Lyapunov exponent) Let f be a multicritical circle map with irrational
rotation number and unique invariant measure jv. Thenlog Df € L'(u) and

/ logDf du = 0.
Sl

A proof of Lemma 2.10 can be found in [7] (see also [8, section 8.3]).

2.2.1 On the notions of domination and comparability

To simplify both the understanding of and future calculations involving the real bounds, we
introduce the notions of domination and comparability modulo f.

Given two circle intervals 7, J, we will say that I dominates J modulo f, and write
1 > J, if there exists a constant K > 1 depending only on f such that |J| < K |I|. If both
I>Jand J > I (ie.if thereis K = K(f) > 1 suchthat K~!|I| < |J| < K |I]), we will
say that I and J are comparable modulo f (and write I < J).

Thus, Theorem 2.8 states precisely that adjacent atoms of a dynamical partition are always
comparable.

Observe that neither domination or comparability are transitive relations: if we are given
a domination chain /1 > I, > --- > [, we can only say that /1 > I if the length & of the
chain is bounded by a constant that depends only on f (and similarly for comparability).
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3 Automorphic measures

In this section we define automorphic measures of non-negative exponent for multicritical
circle maps. We further prove that they have full support on the circle (Proposition 3.3) and
are non-atomic (Lemma 3.4).

Definition 3.1 (Automorphic measures) Let s > 0. An automorphic measure of exponent s
for f (or f-automorphic measure of exponent s) is a Radon probability measure v on S'!
such that, for all continuous functions ¢ € CO(S1),

[ odv=[ @or @ry av G.1)
s N
We denote the set of f-automorphic measures of exponent s by As.

Equivalently (see Proposition 3.2 below), a Radon probability measure v on S! is f-
automorphic of exponent s if, and only if, the pullback measure f*v is equivalent to v, with
Radon-Nikodym derivative

df*v
dv

Observe that we leave out the possibility of negative exponents, i.e., s < 0. Though
automorphic measures of negative exponent make perfect sense and indeed always exist in
the case of diffeomorphisms,! they are significantly more difficult to work with in the critical
case. Indeed, if s < 0, then (D f)* blows up at the critical points of f, so we cannot take for
granted that (¢ o f) (Df)* will be v-integrable for any ¢ € C 0¢s1) and Radon probability
measure v on S'.

We further remark that the notion of automorphic measures makes perfect sense on any
dimension, provided the one-dimensional derivative Df (x) is replaced by the Jacobian of f
at x, i.e., the absolute value of the determinant of the matrix Df (x). As we mentioned in the
introduction, for complex one-dimensional systems this is exactly the same as the notion of
conformal measure introduced by Sullivan in [31]. In the present paper, however, we will of
course only treat the real one-dimensional case.

Finally, observe that, in the case s = 0, an f-automorphic measure of exponent O is
simply an f-invariant probability measure. Therefore, the case s = 0 is well understood, and
Theorem A in this case is precisely the statement that f (just like any circle homeomorphism
with irrational rotation number) is uniquely ergodic. Therefore, for the rest of this paper, we
will focus on positive exponents. Thus, let s > 0 and v € A be fixed.

(Df)’.

Proposition3.2 Forall¢p € L'(v) andn > 1, (¢ o f)(Df™) € LY(v) and
/ ¢dv = / (¢ o fYDF™’ dv. (3.2)
s1 Sl
Proof Observe that (3.2) holds trivially if ¢ is continuous, by applying (3.1) inductively. The

extension to L! functions ¢ now follows from a standard argument, with the main difficulty
being to show that (¢ o f")(Df™)* € L'(v) forall ¢ € L'(v). o

L As it happens, the case s = —1 is suitable to understand both the variation of the rotation number along
generic 1-parameter families of circle diffeomorphisms [13], as well as to build the tangent space of the set
of C2 diffeomorphisms with a given irrational rotation number [2, Théoréme 2]. See also the recent preprint
[15].
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Note in particular that, under forward iteration, the v-measure of a Borel set A C st
behaves according to the following rule:

v(f”(A)):/A(Df”)“dv, foralln € N. (33)

Proposition 3.3 The measure v is supported on the entire circle.

Proof Since the pullback measure f*v is equivalent to v, v-null sets are mapped under f into
v-null sets (see (3.3) above). But, since f is topologically conjugate to an irrational rotation,
the positive orbit of an open interval eventually covers the whole circle, and then this interval
must have positive v-measure. O

We denote by
N
critt () = | 0(e))

the union of the critical orbits of f, and its complement S' \ Crit™ (f) by A. Observe that
A is f-invariant and its complement is countable (but dense!).

Lemma 3.4 The measure v has no atoms. In particular, A has full v-measure on the circle.

Proof Arguing by contradiction, suppose there is some xo € S ! such that v({xp}) =8 > 0,
and note that (3.3) implies

v({xo) = v({f " (x0)}) (DF"(f " (x0)))" foralln € N.

In particular, xo cannot be in the forward orbit of any critical point of f. Moreover, since v
is a probability measure and f has no periodic orbits,

1 2 ”2::0 v ({f7 (XO) Z Dfn(f n(-x())) Z qu"(f q”(xO)))

However, by Lemma 2.9, we have Df9" (9" (x¢)) < C for all n > 0. Thus we obtain

[e.¢]
126> C' =
n=0

which is the desired contradiction. ]

4 Existence

In this section we show that, forall s > 0, A is non-empty (the existence part of Theorem A).
For the entire section, s will be a fixed positive number.
Let Py r: S I 5 [0, 0o] be the Poincaré series defined by2

oo

P px) =Y (Df" ()" (4.1)

n=0

2 We use the expression Poincaré series by analogy with a similar series appearing in the study of Fuchsian
or Klenian groups (see for instance [30]).
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Observe that if fk (x) € Crit (f) for some k > 0, then Py r(x) < 0o, since it is just a finite
sum. Therefore, there is a dense subset of S! (the union of the backward orbits of the critical
points) on which Ps ¢ is finite. However, as the following lemma shows, there are plenty of
points on the circle where Py  diverges.

Lemma 4.1 The Poincaré series Py y diverges ji-almost everywhere.
Proof We show that the set
A={x e A| P s(x) =00} (4.2)
has full p-measure. To do this, first observe that, for all x € S L
P (x) =14+ (Df(x))" Py, ¢ (f(x)).

It follows that A is f-invariant, so, by the ergodicity of w, it suffices to show that ;£(A) > 0.
Foreachn > 0, (Df™)* € C%(S'), so we may apply Jensen’s inequality to obtain

n—1
log (/SI (Df"y’ du> > /Sl log (Df")" du =5 /Sl log Df o fldpu.
i=0

Since p is f-invariant,

n—1
log </ (Df™y’ du) st/ logDf dp =0, 4.3)
sl st

where we have used Lemma 2.10. Thus,

/Sl (Df")" dp > 1

for all n > 0, which implies in particular that

n—1

/ > (DfY dp = n (4.4)
$' =0

foralln > 1.
We argue by contradiction. Suppose ((A) = 0; then P y must be finite 1-almost every-
where. Now, for each m > 1, let

Xp={xeS" | P sx)<m}. 4.5)
Since we are assuming that P; y is finite p-almost everywhere,

lim (X)) = 1. (4.6)
m—0oQ

Let0 < € < Cl_s, where C; = C1(f) is the constant of Lemma 2.9. From (4.6), there
exists mo € N such that, for all m > mg, u(S'\ X,) < e.
But then, from (4.4), (4.5) and Lemma 2.9, we have that, for all n > 1 and m > my,

n—1

n—1 n—1
ne [ S ormrdn= [ S oryans [ 3 0 du
st k=0 X Sh\X

m k=0 m k=0

IA

n—1
/ Ps',fdﬂ+2/l (quk)sdﬂSmM(Xm)‘i‘an/L(Sl \ Xm)
Xm k=0 SN\Xm

<m+nCye, 4.7)
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which implies that m > n (1 — C7 €). Since 1 — Cy € > 0, the contradiction arises by letting
n — oo while keeping m fixed. O

As it turns out, the only thing we will need in the proof below from the set A is the fact
that it is non-empty, which certainly follows from Lemma 4.1.

Proof of Theorem A, existence part Consider the Poincaré series P ; and the set A from
Lemma 4.1. Fix x € A and, foreachn > 1, let

qn—1
Su(x) = Y (Df (x))".

i=0
Consider

qn—1

1 i K
Ms,x,n::m ; (DfF(x) Sf[(x)’

which is an atomic probability measure. By compactness, there is a monotone sequence
(nx) C Nand ps € P(S1) such that, for all ¢ € CO(SY),

/ ¢dﬂx,x,nk — / ¢dﬂs,x~
st st
In particular, since (¢ o f)(Df)* € CO(Sh),
[ @0 DO dnsne — [ @0 D0 dies

forall ¢ € CO(S'). We claim that j;_, is automorphic of exponent s under f. Indeed, for all
k> 1land ¢ € CO(S!), we have

[ 10 6o 01V

anfl
1 S . ‘ 4 ‘
= D D) B 0)) = d(FH DS ()]
S (X) | =5
=5 |¢(x) = ([ (x)) (Df T (x))° |

1 s 1
S () < llgllco (1 + D) m,

where we have used Lemma 2.9. Consequently,

< l¢llco [T+ (Df9" (x))*]

/ b ditsx — / 60 )(DF) dusx| = lim ’ f 6 — @0 /D 1dtsxn,
Sl Sl k— o0 Sl

1
- 1+CY) lim —— =0,
=< I8llco 1 +C1) lim <=5

since x € A. Thus, s x is f-automorphic of exponent s, which concludes the proof. O

Remark 4.2 1In [2, Section 3.2], Douady and Yoccoz prove the existence part of Theorem A in
the context of diffeomorphisms through a different approach. First, they define a continuous
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operator Uy r: M(SH — M(SY) on the space M(SY of signed finite Radon measures on
the circle (equipped with the weak™ topology) by

/ ¢ d(Us, pv):= / (¢ o /)(DS) dv.
st st

1
Jsi (Df) dv

Clearly, the operator Uy, r leaves invariant the convex compact set P (S 1 of Radon probability
measures on the circle. The authors then use the Schauder—Tychonoff fixed point theorem to
conclude that Uy, 7 has a fixed point g € P(S 1), and through some estimates, they conclude
that this fixed point py must be f-automorphic of exponent s, i.e., f (Df)YSdus = 1.

In the critical case, this approach fails. Indeed, if v = 4. is a point mass on a critical point
cof f, then Uy yv is ill-defined, since

/S (DY dv = (D) =0

Furthermore, if we remove from P(S!) the point masses at the critical points of f, then we
lose compactness, which is essential to apply the Schauder—Tychonoff fixed point theorem.

5 Bounds for automorphic measures

In the previous section we have proved the existence part of Theorem A. Sections 5 and 6
are devoted to uniqueness. In this section, we dive further into the fine-scale structure of
f-automorphic measures of exponent s > (. For this entire section, fix some s > 0 and
v € A, and let E C S! be an arbitrary Borel f-invariant set.

In what follows, the ratio

v(INE)

5.1
& G.1

where / is an interval, will play a fundamental role. Hence we introduce the special notation

w(l)::%. (5.2)

The following theorem is the main result of this section.

Theorem 5.1 There exists a constant B = B(f,s) > | with the following property. For any
critical point ¢ of f, sufficiently large n and A1, Ay € Py(c), we have

(a) If A1, Ay are both long atoms or both short atoms of Py(c), then
B~ w(A2) < (A1) < Bw(Ay). (5.3)
(b) If Ay is a short atom and Ay is a long atom of Py(c), then

w (A1) < Bw(Ay). 5.4)

5.1 Fundamental estimates on distortion

We must now introduce a bit of notation. For the rest of this paper, we fix a critical point ¢
of f, and we write simply P, in place of P, (c). Furthermore, if I C S is an interval, we
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L L1 A R (R (R .
A
L A R
A*
Ly A Ry
A

Fig.2 The intervals A*, A and A

write I¥ for f¥(I). For any n > 0 and any atom A € P,, we write A* for the reunion of A
with its two adjacent atoms, L and R, in P,. For example, if A = I,,, then

A" =1, UL UL"

We also write A for the following interval. First write A as a reunion of atoms of P, and
let L1, Ry be the leftmost and rightmost atoms of P,; in this reunion, respectively; we
then take A = L> U AU R, where Ly, Ry are the atoms of P,; left-adjacent to L and
right-adjacent to Rj, respectively. For example, if A = I,,, then

A=1l3ULUI"

n2: (5-3)

Lastly, we write A forthe following interval (Fig. 2). If A* = LUAUR, L* = (L);ULUA
and R* = A U R U (R),, we will write

= (L); UAU(R); =(L)3U(L);ULUAURU(R);U(R)3 D A*. (5.6)
For example, if A = I, and a, > 5, then
Z — IgnJrl_ZQn U I’?n+l_4n U In-H U In U 1;1,]” U Inzﬂh U I,::’q”.

Of course, if n is small, it may be that at Py has at most 7 atoms, so in this case we would
have A = S!'. Thus, when dealing with A, we always assume that n is sufficiently large for
A tobea proper interval.

To provide the bounds on distortion needed for the rest of this paper, we will need the
following combinatorial facts. Although their proofs are somewhat involved, the techniques
used are standard. Accordingly, we have decided to omit these proofs.

Recall from Sect. 2 that, given a family of intervals F on S! and a positive integer m, we
say that F has multiplicity of intersection at most m if each x € S! belongs to at most m
elements of F.

Lemmab5.2 Letn >0, A € P,. Then:

(a) the collection {fk(A* }q,1+01—1 has intersection multiplicity at most 3;
(b) the collection {fk (A) }q"+1 has intersection multiplicity at most 3;

(c) the collection {fk(A)}Z':rol ! has intersection multiplicity at most 8.

We will need the following consequence of the Real Bounds.

Lemma 5.3 There exists a constant Cy; = C2(f) > C > 1 with the following property. For
n >0, let

j 2gn+1 k An+qn+1
Cni= {[" }j:() N {1"“ }k:O
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be the set of all atoms of P,, together with their forward images under f up to iterate
gqn+1 + 1. Then, for any J1, J, € Cy that share a common endpoint,

Cy I < 1l < Gl (5.7

The following two lemmas contain the bounds on distortion needed for the rest of this
paper. Their proof is a standard application of Koebe’s distortion principle, with Lemmas 5.2
and 5.3 guaranteeing that the corresponding hypotheses on summability and space are satis-
fied (recall Sect. 2.1).

Lemma 5.4 There exists Bo = Bo(f) > 1 with the following property. If A € Py and
0 <j <k < quy1+ 1 are such that the intervals f7(A), f/‘H(A), cees f"_](A) do not
contain any critical point of f, then the map f*=1: fi(A) — f¥(A) has distortion bounded
by By, that is

DY @) :

1 J
B, = DFFi(y) < By forallx,y e f/(A).

Lemma 5.5 There exists By = Bi(f) > 1 with the following property. If A € P, and
0 < j < k < guy1 are such that the intervals f-/(A), f-’“(A),...,fk’l(A) do not
contain any critical point of f, then the map f*=7: fi(A*) — fK(A*) has distortion
bounded by By, that is

1 _ Dff ) :
Bl < =2 < By forallx,y e f/(A%).
' T DRI
We remark that A and Lemma 5.5 will not be mentioned further in this section, but will
play a fundamental role in Sect. 6.

5.2 @-domination and comparability

To simplify both the statement and the proof of the remaining results in this section, we
introduce the notions of w-domination and w-comparability between intervals. If I, J C S!
are intervals, we will say that I w-dominates J (and write I = J) if there is some constant
K = K(f,s) > 1 (depending only on f and s, but not on v or B) such that

o(J) < Ko(). (5.8)

Similarly, we say that I, J are w-comparable (and write [ ~ J)if I = J and J = I; thatis,
if there is some constant K = K (f, s) > 1 such that

K 'o) <o) < Ko(l). (5.9)

In what follows, when a constant K (f, s) is written after an expression of w-domination or
comparability between intervals, it is to be inferred that (5.8) or (5.9) hold for said constant
and intervals.

Definition 5.6 Let A € Py, 0 < k < gn41. We will say that k is a critical time of type I for
Aif fR(A) N Crit (f) # @.

Since f has N critical pointscy, .. ., ¢y and the collection { f* (A) }Z':O' ~! has intersection
multiplicity at most 3 (see Lemma 5.2), it follows that, for any n > 0 and A € P,, there are
at most 3N critical times of type 1 for A.
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Remark 5.7 1t follows easily from the minimality of f that there exists some level ng =
no(f) € N, depending only on f, such that, foralln > ng, A € P, and0 < k < ¢g,41 a
critical time of type 1 for A, we have that: (i) f* (Z) contains a single critical point of f;
and (i) f k(Z) C U, where U is the interval about the critical point of f in f k(K) from
Proposition 2.2.

The following lemma tells us what happens to the ratios w (/) as we iterate f while staying
(combinatorially) far away from the critical points of f. Recall our use of the simplifying
notation I/:= f7(I) for intervals I c S'.

Lemma5.8 Letn > Oandé € Py. Then,fvorany interval | C Aand0 < j <k < gp+1+1
such that the intervals f1(A), ..., f¥"Y(A) do not contain any critical point of f,

By w(I’) < w(I*) < By w(17). (5.10)

Proof Indeed, by Lemma 5.4, the distortion of f k=J in A/ is bounded by By. By the Mean
Value Theorem, there exists z € I/ such that

. Ik
Df*=i(z) = i1'||
Thus, for any x € A>T,
a1l DI () < Bom (5.11)
O 1] = iz '

From Eq. (3.3), we have
oth =" [ e ave
I'NE

so, from (5.11), we get

S

0

k75 i k [+
I ‘ v(I' N E) < w1’ < B i

k -5 .
; I ‘ w(I/ N E)

|17]
which is (5.10). O
The next result is now an easy corollary of Lemma 5.8:

Corollary 5.9 Letn > 0, A € P,, andlet 0 < k; < ko < -+ < ky < quy1 be the critical
times of type 1 for A. Then, for any interval [ C A,

(a) I, I, ..., 1% gre pairwise w-comparable;
(b) Forl < j <, I[NTY [kit2 [Ki+1 are pairwise w-comparable;
(c) [l [t gre pairwise w-comparable,

all with constant K (f,s) = Bj.

To proceed, we need to study the behaviour of w close to the critical set of f. For this
purpose, recall that d > 1 denotes the maximum of the criticalities of the critical points of

f.

Lemma5.10 Letn > ng (from Remark 5.7), A € Py, and let | C A be an interval.
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@) If0 < j < quy1 is a critical time of type 1 for A, I = I't\ with constant K (f, s) =
Bad)*;
() if0 < €1 < £ < guy1, 1Y = 1%, with constant K (f, 5) = (3d Bo)*M*.

Proof Observe that part (a) and Corollary 5.9 together imply (b), since we can join ¢! and
& by a w-domination chain as follows: let £1 < k; < --- < k;, < £, be the critical times
of type 1 for A between ¢ and £7. Then

18 ~ Iki - Iki-‘rl ~ Iki+| e~ Ikm . Ikm+1 ~ Il

Since there are at most 6N +2 atoms in this chain, it follows that 77! 3= 12, To determine the
constant of w-domination, we start with K (f, s) = 1 and move along this chain, multiplying
by B for every ~ and by (3d)* for every »= . Therearem —i +2 ~’sandm —i + 1 =’s,
so (sincem — i + 1 < 3N) we can take

K(f.5) = (3dB)*"* > (3d)"~T+1s p{"~1+28,

Thus, we only need to prove (a).
Observe that, from Eq. (3.3),

w(11+1)=f1m5 Dfydv U] [ring (Df) dv (5.12)
|If+]|s |I/+1}S |If|s . .

| s

Now, Proposition 2.2 implies that

|]j+1 |5 .
(Df(x))* < (3d)* ‘IJ'|S forallx € I'. (5.13)
Combining (5.12) and (5.13), we get
oI’ < GdY’ w(l), (5.14)
which proves (a). ]

Before moving forward to the proof of Theorem 5.1, we will first prove a lemma which
states, essentially, that long atoms w-dominate short atoms. To simplify the proofs of this
lemma and of Theorem 5.1 below, we will denote all constants of w-domination generically
by K = K(f, s).Itis worth noting that one could, in principle, keep track of all the constants
appearing of w-domination in the following proofs and write them down explicitly.

Lemma5.11 Let n > ng, Ay, Ay € Py UL I} If Ay is a long atom (or I"™)

and Ay, a short atom (or I:ffl_l), of Py, then Ay = Ay. Furthermore, if a,11 > 2 or
ant+1 = any2 = 1, then Allq = Alﬁzfor any 0 < ki, k2 < qny1.

Proof We split the proof in two parts: (i) that A| > Aj; and (ii) that Allc' = Agz ifa,;1>2
Or apt1 = ap42 = 1.

To prove (i), observe that, from Lemma 5.10, we have A > I and Lit1 = Ag.
Therefore, (i) will follow if we prove that ) I,,41.Since It S Iyy1 (sov(l4+1NE) <
v(II"' NE)), this is a consequence of the fact that these two intervals have comparable lengths
(see [8, Prop. 6.1]).

We now turn to the proof of (ii). From Lemma 5.10, we get A]f‘ p 1,12""“71

and [, =

Agz. By applying either Lemma 5.8 or Lemma 5.10, depending on whether IﬂZqu—l N
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I;]ln-klf(]n In+1 In

2
]nqn+1 [TH-I

— 2, +
41 I"linJrl l]n’ 1,?”+1, IQn 1‘171+1 I dn+1 an dn+1 when

Fig.3 Relative positions of the intervals I,;, I, 1 Tyl > In e

apy1 =2

Crit (f) = @ or not, we get I+ ™1 » 129"+! from which it follows that A]f‘ e 12

Thus, it suffices to show that I,%q"“ = Doy,
We first consider the case a;,1 > 2. For this end, observe from Fig. 3 that

2 n n n n n
L = [0 Ly UL, \ (I U 10y (5.15)

with the unions disjoint modulo endpoints. Thus, I,,2 In+l 1,41, which implies that

’Ir%quH
24y
w(ln-‘rl) < w(lnq +l)- (516)
|In+1|
13‘1’1+l
Now, we use the Real Bounds to bound T From (5.15), we have:
2n+1 n " Gntqn+1
In _ ‘I:t]++ll| [ 1411 |1, . ‘Ir(lz+1‘ . [”+l
[Ln+11 [Liv1l  Hpal Mgt Hpgal [Ln+1]
qn
Ll 1nl
|]n+1| |In+1|
<C+1+C=1+42C <3C (5.17)

since I:l’_’fl' , I,+1 are adjacent atoms of Py, 41, I,,, I,+1 are adjacent atoms of P, and C > 1.
Plugging (5.17) into (5.16), we get

o) < BCY (1) (5.18)

which proves that I,,zanrl =Tyl
Finally, we address the case a;, 11 = a,4+2 = 1. Observe from Fig. 4 that 1,12anrl o1 Zle

and I,y C I"5 U1 +442 from Lemma 5.10, AR KN +in2 By applying the

Real Bounds and Lemma 5.3, we obtain

In+1+qn+2

2 I n n
In511+l = 1‘1 +1 = I;li-;a] ul i = In+l

n+2 n

which finishes the proof. O

Though we expect Theorem 5.1 will prove more useful in future works, for our purposes
we will require the following stronger result, which clearly implies Theorem 5.1.
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1—
I Lo L
* * *
I I I
| | |
ns1 ! I L an I
Ly B b
I I I
' T 1 H
1 ! ! 1
| ! ! |
2 1 qn+tqn+1
: Inan\r : ]n+1 :
| I I |
L g *
| ! | !
I ! I !
! dn+1 : Qn+1‘ :
: In+1 I In+2 : I
I ! I !
IfIn+1+‘In+2
n+2

— 2 +
Illzin_H ‘]n’ Ir‘li;l+] Il]n 1(1n+1 Vi qn+1’ Iy‘l]:;.] dn+1 ,

Fig.4 Relative positions of the intervals 1, 1,41, 142,

> In4+1 fntl 00
+ .
I:fizl , Ian:_'gl 942 \when ay4 = an4s = 1. By applying the real bounds and Lemma 5.3, one can see all

these intervals have comparable lengths

Theorem 5.12 There exists a constant By = By (f,s) > 1 with the following property. For
any n > ng and Ay, Ay € Py, we have:

(a) If A1, Ay are both long atoms or both short atoms of P, then
B, o(A2) < 0(A) < Byo(A2). (5.19)
(b) If Ay is a short atom and A; is a long atom of Py, then
o (A1) < Byw(Ap). (5.20)

Furthermore, if apy1 > 2 or ay41 = ap42 = 1, then Ay, Ay can be respectively replaced
in the above inequalities by images Alfl, A?, 0<ki,ky <qn+1+1.

Proof Observe that (b) is precisely the content of Lemma 5.11. Moreover, since all short
atoms of P, become long atoms in P, 1, it suffices to prove (a) for long Ay, Aj.

Assume that Ay, A, are both long atoms of P,. We split the proof in two parts: (i) that
Ay = Ay; and (ii) that AII(' = Agz ifa,4 1 >2o0ra, 1 =ayn = 1.

We first prove (i). It suffices to show that A; w-dominates Aj, since then the w-
comparability of the two follows by simply interchanging A; and A,. Once more, from
Lemma 5.10, A; = L' and I, = A,. Since I, C LI"' U If_':_l, I Iff;_l
(by Lemma 5.11) and these intervals have pairwise comparable lengths, we conclude that
I+« I,. This finishes the proof of (i).

The proof of (ii) is essentially the same: we have A]fl = I,fq”“ and I, = AI;, so we need

only show that I”2qn+| =1,.But I, C I,%q"“ U IZ_’;_T']"“ U IZI’H and (from Lemma 5.11)

2 n +
InL7n+l = I,(,i+l . ij;_]‘]n+l (521)

so0, since these intervals have pairwise comparable lengths, we conclude that I,,2 dntl s 1.
This finishes the proof of (ii). m]
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6 Ergodicity and uniqueness

In this section, we prove that automorphic measures for multicritical circle maps with irra-
tional rotation number are ergodic (Theorem 6.8 below). As a consequence, we will obtain
the uniqueness part of Theorem A (we would like to remark that the non-flatness condition
on each critical point of f is crucial in order to have uniqueness, see Sect. 7.2 below). In
particular, Lebesgue is the unique f-automorphic measure of exponent 1 (Corollary 6.10).

We further show that this uniqueness remains true (up to a scalar multiple) in the context
of continuous linear functionals on CO(S!) (Corollary 6.11). As we will see in Sect. 7,
Corollary 6.11, applied to Lebesgue measure (s = 1), is the core step towards proving
Theorem B.

6.1 The T ratio

We first introduce a bit of notation. Fix some s > 0 and v € A,. For an interval / ¢ S' and
a Borel f-invariantset E C S 1 we will denote by I'(1; E) the ratio
v(INE
r'; E)::Q. 6.1)
v(I)

Observe that I'(/; E) can be expressed as the quotient of two w-ratios with respect to /
and different invariant sets. Indeed, in the numerator we take E as the f-invariant set, while
in the denominator we just take the whole circle.

By direct analogy with Lemma 5.8, we thus obtain the following result.

Lemma6.1 Letn > 0 and A € P,. Then, for any interval I C A* and 0 < j < k < gu41

such that the intervals f'/(Z), N (3) do not contain any critical point of f, the
following holds for all Borel f-invariant sets E C S
B/®T(I/; E) <TU" E) < B T(I/; E). (6.2)

Definition 6.2 Let A € P, 0 < k < gn+1. We will say that k is a critical time of type 2 for
Aif f¥(A) N Crit (f) £ @.

Since f has N critical points ¢y, . .., ¢y and the collection { f k (Z) }Z:’Ol ! has intersection
multiplicity at most 8 (Lemma 5.2), it follows that, for any n > 0 and A € P,, there are at
most 8N critical times of type 2 for A.

Remark 6.3 By a direct analogy with Remark 5.7, there is some level ny = n1(f) > no(f) €
N, depending only on f, such that, foralln > ny, A € P, and0 < k < g, acritical time of
type 2 for A, we have that: (i) f k (Z) contains a single critical point of f; and (ii) f k (Z) cU,
where U is the interval about the critical point of f in f¥(A) from Proposition 2.2.

With this terminology in mind, the following corollary is now an immediate consequence
of Lemma 6.1:

Corollary 6.4 Letn > 0, A € Py, andlet 0 < k; < ko < -+ < ky < quy41 be the critical
times of type 2 for A. Then, for any interval I C A, the following holds for all Borel
f-invariant sets E C S

(a) Forany0 < j, £ <k,
BI®T(I; E) <T(% E) < BET(; E); 6.3)
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(b) (6.3) also holds forany k; +1 < j, £ <kjy1, 1 <i <r;
(c) (6.3) also holds fork, +1 < j, £ < gny1.

As we did in Lemma 5.10 with the w-ratio, we now turn to the problem of understanding
the behavior of I close to a critical point of f.

Lemma 6.5 There exists a constant B3 = B3(f,s) > 1 with the following property. Let
n >nyand A € P,. Assume that n is such that either ay+1 > 2 or ap+1 = apn+2 = 1. Then
the following holds for all Borel f-invariant sets E C S': if 0 < j < qn41 is a critical time
of type 2 for A,

C(fIT(A%); E) < By T(f/(A%); E). (6.4)

Remark 6.6 Note the hypotheses on the combinatorics of f at level n: a,+1 > 2 or ay+1 =
an4+2 = 1. These are necessary to allow for use of the sharpened version of Theorem 5.12.

Proof We begin with the following observation (see Lemma 5.3): for any one of the atoms
I of P, that compose A and 0 < k < ¢, +1, we have I* =< fk(A*). Further note that

((L)3 U (L) UL)N(RU (R)2 U (R)3) = @

so (from Remark 6.3) it cannot be that both £/ ((L)3 U (L) U Z) and f/ (E U (R)2 U(R)3)
contain a critical point of f. Since the other case is identical, we assume, without loss of
generality, that

FIL); UL UL NCrit (f) = 2.

Now, since no two short atoms of P, are adjacent, one of L, (L), is a long atom; once
more, since the other case is nearly identical, we assume, without loss of generality, that (L),
is along atom of P,. Similarly, one of A, R is along atom of P,, so we may assume, without
loss of generality, that R is also a long atom of P,,.

It thus follows as a straightforward consequence of Theorem 5.12 that (L)é ~ f J(A*)
and (L){H ~ fIT1(A*). That is, there exists a constant Ko = Ko(f, s) such that

UWINE) _v(IANNE) v N E)
gl T Per T wf

L)) oA v
0 = =< - 5 = Ko 5
’(L)é |f1(am)] ‘(L)é

Ko

’

(W NE)  w(fIt AN N E) v N E)
KO o < NN =< Ko G
I N T T

Jj+l j+1 0 A * Jj+l
1 VT vy w@)th ©5)

- s = : s = A0 : s
0 ’(L)éH’ | fit1(an)| ‘(L)é-kl‘
Therefore,
K;2T((L)); E) < T(f/(A%); E) < K} T((L)): E),
K;2T(L)T E) < (/A E) < KT E). (6.6)
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Now, since f J((L)7) contains no critical point of f, from Lemma 5.4 and the mean value
theorem,

, Jws]

" el

i)

Tl

< Df(y) < By forall y € (L)}. 6.7)

Thus,

G\ S
s Bs LL)Z/JT ‘ f Jj dv
f(L)éﬁE (Df)* dv B 0 ‘(L)§| (Ly;NE

f(L)j (DfYdv = [yt *
2 BOS ‘ ‘ f(L)é dv

o]

rL)y™ e = = BXT((L)}; E6.8)

Combining Egs. (6.6) and (6.8), we get:
DT AM; B) < KITWDT B) < K3 B3 T((L); E) < B K§T(f/(A%); Kp.9)
which is (6.4), with B3:=B3* K. o
Combining Corollary 6.4 and Lemma 6.5, we get the following.

Corollary 6.7 There exists a constant By = Ba(f,s) > 1 with the following property. Let
n > nyand A € P,. Assume that n is such that a,+1 > 2 or a1 = an+2 = 1. Then, for
any Borel f-invariant set E C S' and 0 < £y < €3 < quy1,

T(f2(A%); E) < By T(fY(A%); E). (6.10)

6.2 Ergodicity

We are now ready to prove the ergodicity of v with respect to f.

Theorem 6.8 (Ergodicity) Let s > 0 and let v € Ag be an automorphic measure of exponent
s for f. Then v is ergodic with respect to f.

Proof Let E C S' be aBorel f-invariant set such that v(E) < 1. Our aim is to show that, in
fact, v(E) = 0. For x € S!, consider the sequence

V@) ={A* |n>0,AeP,xeA}

of triples of adjacent atoms from the dynamical partitions P, such that x is contained in the
central atom of the triple. As n increases, the triples of level n in this family shrink to x
while maintaining definite space on both sides (by the Real Bounds). If x € A, then there is
a unique atom A, (x) € P, that contains x, and x is contained in its interior. Therefore, for
x € A, V(x) contains precisely one triple (A (x)) of each level n > 0.

Since A\ E has positive v-measure, we claim that for any given € > Othereexistx € A\ E
and ny > n1(f) > no(f) such that, for all n > ny,

V(A*(x) N E)
V(A (X))

Indeed, note that since v has no atoms and is supported on the whole circle (recall Sect. 3), the
maph: S' — S' givenby h(x) = f[o Xl dv is a circle homeomorphism, which identifies the

L(A,(x); E) = 6.11)
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measure v with Lebesgue measure on S!. Thus, the existence of a point x satisfying (6.11)
follows from the standard Lebesgue Density Theorem.

Now, some necessary distinctions depending on the combinatorics of f must be made.
If p is the rotation number of f, p = [ag, ai, - - - ], then either we have a,, = 1 for every
sufficiently large n, or a,, > 2 occurs infinitely often. In any case, we can choose n > n, such
that either a,,+1 = a,4+2 = 1 (in the first case) or a,+1 > 2 (in the latter case). We thus fix
some level n > n; that satisfies one of these conditions, so that both (6.11) and Corollary 6.7
hold simultaneously.

Observe that the collection { Vi (A (x)) }?:(')1 covers the circle and has intersection multi-
plicity at most 4 (see Lemma 5.2), so

dn+1 ) qn+1 )
V(E) = v (U FHALe N E) <3 v AL NE)

i=0 i=0
qn+1 ) )
= Z V(f (AN T(f (A (x)); E) (6.12)
i=0
and furthermore,
qn+1 )
Y v anm) <4 (6.13)
i=0
(see Remark 2.6).
From Corollary 6.7,
T(f (A%(x); E) < B4 T(A%(x)); E) (6.14)

so, plugging (6.14), (6.13) and (6.11) into (6.12):

qn+1 qn+1
V(E) < Y v(ff (AN T (A5 (x); E) < B4T(AF(x); E) Y v(f (A5(x)))
i=0 i=0
V(AX(x)NE)

By letting ¢ — 0, we get v(E) = 0.
Thus, there is no Borel f-invariant set E C S I such that 0 < v(E) < 1, which proves
that v is ergodic. O

For future reference (see Sect. 7.3 below) let us point out the following particular case of
Theorem 6.8, which is important in its own right.

Theorem 6.9 Any given multicritical circle map with irrational rotation number is ergodic
with respect to Lebesgue measure.

6.3 Uniqueness

We now show that ergodicity of f-automorphic measures of positive exponent implies that
there is a unique f-automorphic measure of exponent s for each s > 0. We further extend
this uniqueness statement to finite signed measures, i.e., continuous linear functionals on
co(sh.
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Proof of Theorem A, uniqueness part Arguing by contradiction, suppose there is some s > 0
such that .4 contains two distinct measures, say vi, vy. First, suppose v; < vp, and let
¥ € L' (1) be the Radon-Nikodym derivative

_ d V1

T dvy
As a simple calculation shows, ¥ o f = ¥ vy-almost everywhere, i.e., ¥ is f-invariant
1p-a.e. But, from Theorem 6.8, vy is ergodic for f, so ¥ must be constant v>-a.e. Since
f51 Y dvy = 1, we conclude that v = 1 vy-a.e. But then v; = v, contradicting our
assumption that vy, v are distinct.

Finally, if v; is not absolutely continuous with respect to v, let vz = %(vl + vo). Then
v3 € A (since Ay can be easily verified to be convex) and vy < v3, v; < v3. Thus, from the
previous case, we must have v; = v, = v3, once again in contradiction to our assumption
that vy, vy are distinct. ]

Thus, we have now given a complete proof of Theorem A. Correspondingly, for s > 0,
we will denote the unique f-automorphic measure of exponent s by /.

Since Lebesgue measure is always f-automorphic of exponent 1, we have the following
immediate consequence of Theorem A:

Corollary 6.10 Lebesgue measure is the unique automorphic measure of exponent 1 for f.

We now show that the uniqueness statement of Theorem A (and in particular, Corol-
lary 6.10) remains true (up to a scalar multiple) in the context of continuous linear functionals
on CO(S1):

Corollary 6.11 Lets > 0. If L € CO(S")* is such that
(L,¢) =L, (@0 [)Df)) (6.16)
forall ¢ € CO(SY), then
L=(L,1) us. (6.17)

Proof The proof is reproduced almost verbatim from [2, Remarque 1]. From the Riesz Rep-
resentation Theorem, there is a unique signed finite Radon measure v on S' such that

(L,¢) = f ¢dv
51
forallp € C 0(S"). Therefore, it suffices to show that
v =v(S") us. (6.18)

First, suppose v is positive. Then v:= € Ay, so

v
v(Sh
v=v(SH D =v(S") .

Now, for the general case, let v = vy — v_ be the Jordan decomposition of v. We wish to
show that

/ pdvy = / 60 )Df) dvs.
Sl Sl

[S L pdv = /S (@0 S)Df) dv- (6.19)
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for all ¢ € CO(S"). Since the linear operator Uy : cosh —» cosh given by
Us(¥) = (Y o /)(DSf)’

is positive, for all ¢ € CO(SI) with ¢ > 0, we have

pdvy= swp | wdv= sup /S o DY dv

sl O<y<¢ JS! O<y=<¢
= sup / de=/ Us(¢)dvy (6.20)
0<y<Us(¢) /S! s!

and similarly for v_. It follows that (6.19) holds for all continuous ¢ > 0; by linearity, it
must hold for all ¢ € CO(S"). Thus, applying the first case to v, v_, we have

v=vp — v = v (S g —v_(S") s = v (ST s
which finishes the proof. O

Remark 6.12 1t follows from (6.17) that all linear functionals L € C°(S!)* that satisfy (6.16)
have a definite sign: if L = Ly — L_ is its Jordan decomposition, then Ly =0 or L_ =0,
depending on whether (L, 1) is negative, positive or zero (and in this last case, L = 0).

Remark 6.13 With uniqueness at hand, it is not difficult to prove continuity of automorphic
measures in the weak™ topology. To be more precise, let { f;,} be a sequence of C3 multicritical
circle maps converging, in the C! topology, to a C3 multicritical circle map f. If 5, — s in
[0, +00), then py, (f,) converges weakly to ug(f), the unique f-automorphic measure of
exponent s.

7 Applications

In this final section we prove Theorem B (Sect. 7.1), Theorem C (Sect. 7.2) and Theorem D
(Sect. 7.3). With these purposes, we first review some basic results regarding invariant dis-
tributions for dynamical systems on compact manifolds.

7.1 Cohomological equations and invariant distributions

Let M be a compact smooth manifold. For integer 0 < r < oo, let C" (M) be the space
of C" functions u: M — R, equipped with its C” topology. Recall that the C” topology
turns C" (M) into a Banach space for finite » and C*°(M) into a Fréchet space, and that
a distribution on M is simply an element of the continuous dual space C*°(M)*; we will
denote the space of distributions on M by D’ (M) , and the value of a distribution T € D’ (M)
acting on a function u € C*°(M) by (T, u) .

Suppose T € D' (M) and 0 < k < oo are such that there exists C > 0 with

KT, u)l < Clluly YueCM).

In this case, T has a unique continuous extension T e Ck(M)*; we say that 7" has order at
most k. In fact, every T € C¥(M)* is the unique continuous extension of a distribution on
M. Denoting C¥(M)* by D, (M) , we have the following chain of inclusions modulo unique
extensions:

DYy (M) < D, (M) < - < D' (M).
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Observe that the Riesz Representation Theorem naturally identifies Dy, (M) with the space
M(M) of signed finite Radon measures on M.

If T € D' (M) belongs to D,’( (M) for some finite k, we say that 7 has finite order, and
we define its order as the least such k. A noteworthy consequence of the compactness of M
is that all distributions on M have finite order, i.e.,

o0
D'(M) =] Dy (M).
k=0
Now, let f: M — M be a C" endomorphism of M, 0 < r < co.

Definition 7.1 (C¢-coboundary) Let 0 < ¢ < oo and ¢ € CY(M). We say that ¢ is a
C*-coboundary for f if the cohomological equation

uof—u=4¢ (1.1
has a solution u € Ct(M).

For integer 0 < ¢ < oo, the set of C*‘-coboundaries for f forms a vector subspace of
CY(M), which we will denote by B (f, C*(M)) .

Definition 7.2 (Invariant distribution) We say that T € D, (M) is f-invariant if
(Tyuo fy=(T,u) (7.2)
forallu € C®°(M).

Remark 7.3 Let the manifold M be the unit circle S'. An f-automorphic measure v of
exponent 1 naturally induces an f-invariant distribution T € D] (S ') by letting

(T,u):/ u' dv
sl

for all u € C'(S"). Indeed, note that
(T,uo f) =/ (uof)’dv:/ (u’of)Dfdv:f w' dv={(T,u).
N N Sl

Of course, Lebesgue measure (which is automorphic of exponent 1 for any C' circle home-
omorphism) induces the null distribution (7', u) = 0. However, automorphic measures of
exponent 1 different from Lebesgue provide non-trivial invariant distributions, see Sect. 7.2
below.

For all integer 0 < k < r, the set D,/C (f) of f-invariant distributions of order at most k
forms a vector subspace of D,’{ (M) . In fact, Egs. (7.1) and (7.2) (by unique extension to C k
functions) identify D]/( (f) with the (continuous) annihilator of B ( f,.C km )) .

Thus, by the Hahn—-Banach separation theorem,

cly B (f, Ck(M)) = () kerT (1.3)
TeD}(f)

where cl; denotes closure in the C* topology.
Furthermore, we have the chain of inclusions

Dy (f) = Dy (f) = = D, (f)
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and also

D, (f) = DL (). (7.4)

k=0

The following proposition is a simple but crucial consequence of (7.3).

Proposition 7.4 Let f: M — M be a C" endomorphism of a compact smooth manifold M ,
0 <r < o0, and let u be an f-invariant Radon probability measure on M. Let 0 < k <r
be an integer. Then

Dy (f) =Ru
if, and only if, the following holds. For any ¢ € C*(M) with fM ¢dp = 0, there is a

sequence {¢p =up o f —uu},>; CB (f, ck (M)) of Ck-coboundaries for f converging to
¢ in the C* topology.

With the above criterion at hand, we are ready to prove that Theorem A implies Theo-
rem B. The proof given below is taken almost verbatim from [28]. We reproduce it here for
the sake of completeness as well as to indicate the points of the proof in which estimates
depending on the bounded variation of log Df for C'+"-diffeomorphisms must be replaced
by estimates suitable for multicritical circle maps and where results from [2] must be replaced
by consequences of Theorem A. From Proposition 7.4, it suffices to show that Theorem A
implies the following lemma.

Lemma7.5 Let u € CH(SY) have zero J-mean, that is, fs‘ udpu = 0. Then there is a
sequence v, of C' functions S' — R such that

vpof—v, —u (7.5)
and
(v, 0 f)Df —v, — o’ (7.6)
uniformly.

Let u € Cl(SY, f gt udp = 0, be fixed. The construction of the sequence v, from
Lemma 7.5 will be derived as a consequence of the following fact.

Proposition 7.6 There exists a sequence {wy},> C CO(SY such that
(wp o IDf —wy —> ' (7.7)

uniformly, and such that fsl wy, dm = 0 for all n > 1, where m denotes the Lebesgue
measure in the unit circle.

Indeed, assume that Proposition 7.6 is true, and foreachn > 1, let v, : S! — Rbedefined
by

vy (x) = / wy(y) dy,
[0,x]

where [0, x] is the positively oriented closed circle interval with endpoints 0, x.
Observe that, since f 51 Wn dm = 0, v, is well-defined as a Z-periodic function from R
toR (ie, v, € CO(SI)). Furthermore, v, € CI(SI) and v, = wy, so

(W, 0 /)Df = vy = (wy 0 )Df — wy.
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Thus, Proposition 7.6 implies that the sequence v,, we have just defined satisfies (7.6). It
remains to show that the v, o f — v, also converge uniformly to u.
Well, for any x € S! we have

U (f (X)) — vp(x) —u(x) = / wy () dy —/ wy(y) dy
[0, £ (x)] [0,x]

- (u<0>+ / W (y) dy)
[0,x]

- /[0 ] [ (FONDF () = wa () — ' (M)] dy — €(7.8)
where ¢,:=u(0) — f[o’f(())] wy (y) dy. Thus,

1 o f = va +cn) —ulleo < [[wn 0 HDF = wal —u']| o - (7.9)

Now, from Proposition 7.6, the right-hand side in (7.9) converges to 0, so the sequence
{vn o f — vy + cn}y>y converges uniformly to u. Consequently, since u is f-invariant,

Cn:/ (Unof_vn+cn)dﬂ—>/ udpu =0 (7.10)
st s!

so we conclude that (7.5) holds for the sequence {v,} as well. This finishes the proof of
Lemma 7.5, assuming Proposition 7.6.

With the knowledge that Proposition 7.6 implies Lemma 7.5 (which in turn implies The-
orem B), we now show that Theorem A implies this proposition. First, a technical lemma,
which consists of Proposition 7.6 in the special case u = f —1d.

Lemma 7.7 There exists a sequence {’bk}k>1 c CO(SY, with (W o f)Df — Wy converging
uniformly to Df — 1, such that, for all k > 1, fSl wrdm = 0.

Proof Fork > 1, let W € CO(S!) be defined by

qr—1

1 )
by =1-— > Df'. (7.11)
9k i=0
Observe that
/ Dffdm=1,
Sl
SO
1 qr—1 .
/ ﬁ)kdmzl——Z/ Dfidm=1-1=0. (7.12)
St qk St
i=0
Furthermore,

|[Gx o £)Df — iix] = (D = 1) o

qr—1 qr—1

1 . 1 .
=|[|pf == > (Dff o )Df | =1+ — > Df' | -Df +1
a = qr
cO
1 1 Dk
= —|1=Df%| 0 < Ll halrey (7.13)
9k Gk
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Now, from Lemma 2.9,

(i o /DS — ix] — (Df — D < Pleo _1+C g1
I ] lov = 2 p

since gy —> oo. Equations (7.14) and (7.12) prove the lemma. ]

Remark 7.8 The main difference between the proofs of Lemma 7.7 above (in the critical case)
and the corresponding lemmain [28, p. 317] (in the diffeomorphism case) is the use of Lemma
2.9 to bound || Df9 | o, instead of the standard Denjoy inequality (see [8, Section 3.2]).
Furthermore, in our case the iy are not only continuous, but in fact C2, since we require f
to be at least C3.

The proof of Proposition 7.6 given below depends essentially on the crucial fact that, if
L € CO(SH* satisfies

(L, (¢of)Df —¢)=0 (7.15)

for all ¢ € CO(S), then L is a scalar multiple of Lebesgue measure. In the diffeomorphism
case, this fact is a consequence of [2, Théoreme 1], while in the critical case, it follows from
Theorem A (recall Corollary 6.11).

Proof of Proposition 7.6 The proof will result from two claims.
Claim #1: There is a sequence {wy},>; C C%(SY) such that

(Wn o f)Df — Wy —> ' (7.16)

uniformly.
Indeed, consider the continuous linear operator U] : cosh —» ¢co%sh given by

Uw=(wo f)Df —w (7.17)

and let M be the image of Uj. If no sequence w, satisfying (7.16) exists, then u’ ¢ cly M,
so the Hahn—-Banach separation theorem implies the existence of a linear functional L €
C%(SH* such that L is identically null on M and (L, u’) = 1. But the fact that L is null on M
is easily seen to be equivalent to (7.15), so L must be a multiple of Lebesgue measure; this
contradicts the fact that |, g1 u'dm = 0 (since u is Z-periodic). Thus, a sequence {0, },>
satisfying (7.16) must exist. For each n > 1, let

cn::/ Wydm, Wp:=w, — cy.
s1
and choose k;, € N such that
leal [ [k, © £)DF = bt ] = (Df = Do <27
(Lemma 7.7 guarantees that this is possible). Finally, define
Wy =Wy + CpWi, = Wy + cp (Wi, — 1). (7.18)

Observe that ¢ w, dm = 0.
Claim # 2:

(wy o f)Df —wy, —> o’ (7.19)

uniformly. Observe that proving claim # 2 will finish the proof.
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€

To prove the claim, let € > 0 be arbitrary, and choose ny € N such that 270 < 5 and

€

[ @0 HYDF =0 =’ co < 5

forall n > nyg.
Thus, for all n > ny,

”(wn o f)Df —wy — u/”CO
< | @0 HIDf = By — | o + leal [k, — 1) 0 £] DF = (g, — D co
< 5 +lel [y, o HDF =iy, ] = (DF = D] o

€ € €
<-42"< -4+ - = 7.20
=3 + < > + > € ( )
which proves the claim. O

We have thus proved Theorem B.

7.2 Wandering intervals and invariant distributions

Before entering the proof of Theorem D, let us briefly explain why Theorem C holds.

For any given irrational number p € (0, 1), Hall was able to construct in [21] a C*
homeomorphism f: S! — S!, with rotation number p(f) = p, having a wandering inter-
val [ (i.e., [ is an open interval such that f"([I) is disjoint from f”*(I) whenever n # m
in Z). These examples, so-called Hall’s examples, present a single critical point ¢ which is
flat: the successive derivatives of f (of all orders) vanish at ¢. Note that this critical point
necessarily belongs to the invariant Cantor set of f (otherwise, a C* perturbation supported
on the wandering interval containing ¢ would produce a C*° diffeomorphism with irrational
rotation number and wandering intervals). In particular, f": I — f"(I)is a diffeomorphism
foralln € Z.

To these Hall’s examples, we will apply the following general remark.

Lemma7.9 Let f: S' — S! be an orientation-preserving homeomorphism with a wander-
ing interval I C S' such that f": I — f"(I) is a C' diffeomorphism for all n € 7. Then,

the series
> Df"(x)

nez

is finite for Lebesgue almost every x € 1.

Proof Since Df is non-negative on the whole circle, the function x +— >
the pointwise limit of a monotone sequence of measurable functions,’
measurable. Hence, by the Monotone Convergence Theorem,

/IZDf" dm:Z/IDf" dm.

nez nez

nez Df"(x) is
and therefore it is

But

> [ prram=Y |ra] <1,

nez nez

3 To wit, the functions x > Z\nISN Df"(x)with N =1,2,....
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since I is a wandering interval and f": I — f"(I)is a C! diffeomorphism for all n € Z.
Thus, we have

/IZDf" dm <1,

nez

and therefore the integrand has to be finite at Lebesgue almost every x € I. O

Proof of Theorem C Let f: S' — S! be a Hall’s example as above, having a wandering
interval I C S!. Pick some x € I such that § = D nez Df"(x) is finite (recall that, by
Lemma 7.9, this series is finite for Lebesgue almost every x outside the f-invariant Cantor
set). Following [2, Section 3.1], we consider the probability measure

1
V= D DF"(x) 8-

nez

We see at once that v is f-automorphic of exponent 1 (note, in particular, that the uniqueness
part of Theorem A breaks down if we remove the non-flatness condition on the critical points
of f). Now we consider T € D] (Sl) given by

(T,u):/ u' dv.
sl

As explained in Remark 7.3 above, the distribution 7 is f-invariant. Finally, to prove that T’
is not a scalar multiple of the unique f-invariant probability measure p is straightforward
(compare [28, Section 3]). Indeed, let u: S' — Rbeof class C!, supported on the wandering
interval 7/, and such that x is not a critical point of . Then, on one hand, we have

(T, u) :/ u' dv = ! u'(x) #0.
Sl S

On the other hand, since the support of u is disjoint from the non-wandering set of f, we
certainly have [ udp = 0. This finishes the proof of Theorem C. O

7.3 Denjoy-Koksma inequality improved

We finish this paper by proving Theorem D. In fact, we will present two different proofs
of Theorem D. The first proof works only when the observable ¢ is of class C!, whereas
the second works in the general case, i.e., when ¢ is absolutely continuous with respect to
Lebesgue. The former follows [1, pages 513-514], and relies on the absence of invariant
distributions of order 1 (obtained in Theorem B), while the latter follows [27, pages 379—
381], and it only uses the ergodicity of the Lebesgue measure under a multicritical circle map
(as established in Theorem 6.9).

Proof of Theorem D for C' observables For any given ¢ € C'(S"), ¢ — [s1 ¢ dpu belongs to
ker . Combining Theorem B with Proposition 7.4 we have that, for any given ¢ > 0, there
exists u € C1(S1) such that

(os =)= (- [ oan)

&
<.
a2
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Let$ € C'(SY) be givenby ¢ =uo f —u+ [ pdp, so that |¢ — ¢ o1 < &/2. Since p
is f-invariant, we have [ ddu = fs1 ¢ d. Now for any given x € st

gn—1 qn—1

>t W) —ai [ el <X 6=d) (@) =an [ (6-d)d

i=0
qn_l 5 . 5
Lo ) = [ b,
i=0

Let us estimate both terms at the right side of this inequality. On one hand, by the standard
Denjoy—Koksma inequality (see for instance [8, Thm. 3.3]),

qn—1

> @- D)= [ (6= du| <[l <e/2

i=0
On the other hand,

qn—1

q}’l
X (7 ) —a /qﬁdu— [u(f"*‘m)—u(ff<x>)+fy¢du]—qn [ b

=u(f?(x)) — ux) + qn (/Sl ¢d“_/51 &du)
=u(f?x) — ux).

In particular,

gn—1

> b @) =g [ Bdn| < luler 1 = o
i=0

By minimality of f, we can choose ng € N such that |lu| 1 || f9 —1d||co < &/2 for all
n > ng. Therefore, ’Zq” lq{)(f (X)) = qn [ ¢du‘ < ¢eforallx € S' and n > ng. Since
¢ is arbitrary, this finishes the proof. O

Let us now give a proof of Theorem D that works in general, following [27, Section 2].
With this purpose, we will need the following lemma.

Lemma7.10 If v € L'(m) is a Lebesgue-integrable function on the circle such that
f gt vdm = 0, then there exists a sequence v, of Lebesgue-integrable functions on the
circle such that fsl v, dm = 0 for all n and

(vpo f/IDf —v, — v
in the L' sense.

Proof Consider the continuous linear operator U : L'(m) = L'(m) given by Uw = (w o
f)Df — w, and let M be the image of U. First, assume that v ¢ cl M; then, by the Hahn—
Banach theorem, there exists L € L' (m)* such that L is identically nullon M and (L, v) = 1.
By identification of L!(m)* with L>(m), there exists an L™ function ¢ such that

(L, w) = dwdm
sl
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for all w € L(m). But then, for all w € L!(m),

0=/ ¢[(w0f)Df—w]dm:/ (¢0f71)wdm—/ dwdm.
Sl sl sl

Since the previous equality holds for all Lebesgue-integrable w, we conclude that ¢ is f-
invariant m-almost everywhere. But, as proved in Sect. 6.2, f is ergodic with respect to
Lebesgue (Theorem 6.9). Therefore, ¢ must be almost everywhere constant, i.e., there exists
some constant B such that ¢ = g m-almost everywhere. But then

1:(L,v):/ v¢dm:,8/ vdm,
st st

contradicting the fact that v € ker m. Thus, v € cl M, and there is some sequence w,, of L!
functions for which

(wp o fIDf —wy —> v

in the L! sense.
Now, recall the functions wy from Lemma 7.7: we have that

(g o f)Df — i — Df —1
uniformly. If we define ¢,:= [ g1 Wy dm, then the desired sequence w,, is given by
Wy =Wy — Cp + Cn Wi,
where the &, are chosen as in the proof of Proposition 7.6. O

Proof of Theorem D For any given ¢ € AC(S'), we have that its derivative v:=¢' exists
m-almost everywhere, and furthermore, f gl Vv dm = 0 (since ¢ is Z-periodic). Let € > 0 be
fixed. By Lemma 7.10, there exists w € L! (m), w € ker m, such that

u:=v —[(wo f)Df —w] (7.21)
satisfies
/ ul dm < <. (7.22)
Sl 2
Now, let ¥, & € AC(SY) be given by
v = [ wim e=p-vor+v- [ sau
[0,x] st
Then
¢=E+¢fof—w+fsl¢du, (7.23)
and it is immediate from the f-invariance of u that |, g1 & dp = 0. Furthermore,
£ =¢'—Wof)IDf+v¥' =v—(wo fIDf +w=u.

By a telescoping sum, we have from (7.23) that

gn—1 gn—1

> dof —a [ pdu=3 tof +ior—v. (7.24)
i=0 i=0
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We now proceed to estimate the right hand side of the above equation. On one hand, by the
standard Denjoy—Koksma inequality and (7.22),

qn—1
P €
Yoo f| =var®) < €] 1 = el < 5 (7.25)
— o
On the other hand, by the minimality of f,
€
[ o fim =) eo <= (7.26)

2
for sufficiently large n. By the triangle inequality, Eqs. (7.24)—(7.26) together show that, for
sufficiently large n,

qn_l

> dosi-ai [ san| =e (27)
i=0 s!

= o

Since € is arbitrary, this concludes the proof of Theorem D. O

Acknowledgements We would like to thank Andrés Navas and Michele Triestino for pointing to us the recent
paper [27].

References

1. Avila, A., Kocsard, A.: Cohomological equations and invariant distributions for minimal circle diffeo-
morphisms. Duke Math. J. 158(3), 501-536 (2011)

2. Douady, R., Yoccoz, J.-C.: Nombre de rotation des difféomorphismes du cercle et mesures automorphes
(Rotation number of diffeomorphisms of the circle and automorphic measures). Regul. Chaotic Dyn. 4(4),
3-24(1999)

3. Estevez, G., de Faria, E.: Real bounds and quasisymmetric rigidity of multicritical circle maps. Trans.
Am. Math. Soc. 370(8), 5583-5616 (2018)

4. Estevez, G., Guarino, P.: Renormalization of bicritical circle maps. Arnold Math. J. 9(1), 69-104 (2023)

5. Estevez, G., Smania, D., Yampolsky, M.: Renormalization of analytic multicritical circle maps with
bounded type rotation numbers. Bull. Braz. Math. Soc. 53(3), 1053-1071 (2022)

6. de Faria, E.: Asymptotic rigidity of scaling ratios for critical circle mappings. Ergod. Theory Dyn. Syst.
19, 995-1035 (1999)

7. de Faria, E., Guarino, P.: Real bounds and Lyapunov exponents. Discrete Contin. Dyn. Syst. 36(4), 1957—
1982 (2016)

8. de Faria, E., Guarino, P.: Dynamics of Circle Mappings, 330 Coléquio Brasileiro de Matemdtica. IMPA
Mathematical Publications (2021). https://impa.br/wp-content/uploads/2023/12/33CBM14-eBook.pdf

9. de Faria, E., Guarino, P.: There are no o-finite absolutely continuous invariant measures for multicritical
circle maps. Nonlinearity 34(10), 6727-6749 (2021)

10. de Faria, E., Guarino, P.: Quasisymmetric orbit-flexibility of multicritical circle maps. Ergod. Theory
Dyn. Syst. 42(11), 3271-3310 (2022)

11. de Faria, E., de Melo, W.: Rigidity of critical circle mappings. I. J. Eur. Math. Soc. 1(4), 339-392 (1999)

12. de Faria, E., de Melo, W.: Rigidity of critical circle mappings II. J. Am. Math. Soc. 13, 343-370 (2000)

13. de Melo, W., Pugh, C.: The c! Brunovsky hypothesis. J. Differ. Equ. 113(2), 300-337 (1994)

14. de Melo, W., van Strien, S.: One-Dimensional Dynamics, vol. 25. Springer, Berlin (1993)

15. Goncharuk, N., Yampolsky, M.: Renormalization of circle maps and smoothness of Arnold tongues (2023)

16. Gorbovickis, I., Yampolsky, M.: Rigidity, universality, and hyperbolicity of renormalization for critical
circle maps with non-integer exponents. Ergod. Theory Dyn. Syst. 40, 1282—1334 (2020)

17. Gorbovickis, 1., Yampolsky, M.: Rigidity of analytic and smooth bi-cubic multicritical circle maps with
bounded type rotation numbers (2021)

18. Graczyk, J., Swiatek, G.: Singular measures in circle dynamics. Commun. Math. Phys. 157, 213-230
(1993)

@ Springer


https://impa.br/wp-content/uploads/2023/12/33CBM14-eBook.pdf

26  Page 34 of34 E. de Faria et al.

19. Guarino, P, Martens, M., de Melo, W.: Rigidity of critical circle maps. Duke Math. J. 167(11),2125-2188
(2018)

20. Guarino, P., de Melo, W.: Rigidity of smooth critical circle maps. J. Eur. Math. Soc. 19(6), 1729-1783
(2017)

21. Hall, G.: A C* Denjoy counterexample. Ergod. Theory Dyn. Syst. 1, 261-272 (1981)

22. Herman, M.: Conjugaison quasi-symmétrique des homéomorphismes du cercle a des rotations (Qua-
sisymmetric conjugacy of analytic circle hoemomorphisms to rotations) (1988)

23. Katok, A., Robinson Jr., E.A.: Cocycles, Cohomology and Combinatorial Constructions in Ergodic The-
ory. American Mathematical Society (AMS), Providence (2001), pp. 107-173

24. Khanin, K.: Universal estimates for critical circle mappings. Chaos 1(2), 181-186 (1991)

25. Khanin, K., Teplinsky, A.: Robust rigidity for circle diffeomorphisms with singularities. Invent. Math.
169, 193-218 (2007)

26. Khmelev, D., Yampolsky, M.: The rigidity problem for analytic critical circle maps. Mosc. Math. J. 6,
317-351 (2006)

27. Navas, A.: On conjugates and the asymptotic distortion of one-dimensional C I+bv diffeomorphisms. Int.
Math. Res. Not. (1), 372-405 (2023)

28. Navas, A., Triestino, M.: On the invariant distributions of 2 circle diffeomorphisms of irrational rotation
number. Math. Z. 274(1-2), 315-321 (2013)

29. Patterson, S.J.: The limit set of a Fuchsian group. Acta Math. 136(3—4), 241-273 (1976)

30. Sullivan, D.: The density at infinity of a discrete group of hyperbolic motions. Inst. Hautes Etudes Sci.
Publ. Math. (50), 171-202 (1979)

31. Sullivan, D.: Conformal dynamical systems. In: Geometric Dynamics (Rio de Janeiro, 1981). Lecture
Notes in Mathematics, vol. 1007. Springer, Berlin, pp. 725-752 (1983)

32. Swiatek, G.: Rational rotation numbers for maps of the circle. Commun. Math. Phys. 119(1), 109-128
(1988)

33. Yampolsky, M.: Complex bounds for renormalization of critical circle maps. Ergod. Theory Dyn. Syst.
19, 227-257 (1999)

34. Yampolsky, M.: The attractor of renormalization and rigidity of towers of critical circle maps. Commun.
Math. Phys. 218, 537-568 (2001)

35. Yampolsky, M.: Hyperbolicity of renormalization of critical circle maps. Publ. Math. THES 96, 1-41
(2002)

36. Yampolsky, M.: Renormalization horseshoe for critical circle maps. Commun. Math. Phys. 240, 75-96
(2003)

37. Yampolsky, M.: Renormalization of bi-cubic circle maps. C. R. Math. Acad. Sci. Soc. R. Can. 41(4),
57-83(2019)

38. Yoccoz, J.-C.: Il n’y a pas de contre-exemple de Denjoy analytique. (There are no analytic Denjoy
counterexamples). C. R. Acad. Sci. Paris Sér. I 298, 141-144 (1984)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer



	Automorphic measures and invariant distributions for circle dynamics
	Abstract
	1 Introduction
	1.1 Applications

	2 Multicritical circle maps
	2.1 The Koebe distortion principle
	2.2 Combinatorics and real bounds
	2.2.1 On the notions of domination and comparability


	3 Automorphic measures
	4 Existence
	5 Bounds for automorphic measures
	5.1 Fundamental estimates on distortion
	5.2 ω-domination and comparability

	6 Ergodicity and uniqueness
	6.1 The Γ ratio
	6.2 Ergodicity
	6.3 Uniqueness

	7 Applications
	7.1 Cohomological equations and invariant distributions
	7.2 Wandering intervals and invariant distributions
	7.3 Denjoy–Koksma inequality improved

	Acknowledgements
	References


