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1. Introduction

In this paper we are interested in characteristic subgroups and the R∞-property of 
the virtual braid groups.

The virtual braid group V Bn is the natural companion to the category of virtual knots, 
just as the Artin braid group is to usual knots and links. We note that a virtual knot 
diagram is like a classical knot diagram with one extra type of crossing, called a virtual 
crossing. The virtual braid groups have interpretations in terms of diagrams, see [22], [23]
and [36]. The notion of virtual knots and links was introduced by Kauffman together with 
virtual braids in [23], and since then it has drawn the attention of several researchers. 
Virtual braid groups have interesting quotients, among them we are interested here in 
the welded braid group WBn and the unrestricted virtual braid group UVBn. As in 
the classical case for Artin braid groups, notable subgroups of V Bn, WBn and UV Bn

are the respective pure subgroups V Pn, WPn and UV Pn. For V Bn there is also another 
notable subgroup that is an Artin group and will be denoted by KBn. For the definitions 
of all these groups see Subsection 2.1.

Let K be a subgroup of a group G. Recall that K is said to be a characteristic sub-
group of G if ϕ(K) = K for every automorphism ϕ of G. The existence of characteristic 
subgroups of a given group is in many cases useful. E.g. in this paper we will use char-
acteristic subgroups to study the R∞-property (see the definition below) for the virtual 
braid groups as well for some quotients of it.

Let G, H be two groups. For every h ∈ H we have the inner automorphism ch : H −→
H, defined by ch(x) = hxh−1. We say that two homomorphisms ψ1, ψ2 : G −→ H are 
conjugate, and we denote it by ψ1 ∼c ψ2, if there exists an element h ∈ H such that 
ψ2 = ch ◦ψ1, which means that ψ2(g) = hψ1(g)h−1, for every g ∈ G. We note that ∼c is 
an equivalence relation. Our first result is the following theorem which gives a condition 
on the kernel of a homomorphism to be a characteristic subgroup.

Theorem 1. Let G and Q be two groups. Let Σ be the set of all surjective homomorphisms 
from G onto Q, let T = Σ/ ∼c be the set of equivalence classes of Σ by ∼c and let Λ be 
a set of representatives of T . Let λ ∈ Λ be such that for all ω ∈ Λ such that Ker(ω) is 
isomorphic to Ker(λ) it actually holds that Ker(λ) = Ker(ω).

Then, Ker(λ) is a characteristic subgroup of G.

Our main result about characteristic subgroups of virtual braid groups and some of 
its quotients is the following result.

Theorem 2. Let n ≥ 2.

(a) The virtual pure braid group V Pn is a characteristic subgroup of V Bn if and only 
if n ≥ 4 and the group KBn is a characteristic subgroup of the virtual braid group 
V Bn if and only if n ≥ 3.
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(b) The welded pure braid group WPn is a characteristic subgroup of the welded braid 
group WBn if and only if n ≥ 3.

(c) The unrestricted virtual pure braid group UV Pn is a characteristic subgroup of the 
unrestricted virtual braid group UV Bn if and only if n ≥ 3.

We note that Theorem 2 is known for n ≥ 5, but was not known for the case of 
few strings, so in this work we complete the knowledge about pure subgroups being 
characteristic in their respective virtual braid groups. Theorem 2 (for n ≥ 5) was proved 
for V Bn in [3] using the explicit description of the automorphism group of V Bn, see [3, 
Corollary 2.7]; for WBn (see [26, Remark 2.17]) and UV Bn (see [26, Proposition 2.15]) 
the description of the automorphism group was not used. However, we highlight that our 
approach is different by using the general result in Theorem 1 for any number of strings: 
instead of using explicitly the automorphism group of each of the groups involved we 
use, up to conjugation, the set of surjective homomorphisms onto the symmetric group. 
The description of these sets for small values of n is given in Section 3. It is worth to 
notice that Theorem 2 will be used in the proof of Theorem 3 below.

Consider a group G and an endomorphism α of G. We say that two elements x and y of 
G are twisted conjugate (via α) if and only if there exists a z ∈ G such that x = zyα(z)−1. 
It is easy to see that the relation of being twisted conjugate is an equivalence relation and 
the number of equivalence classes (also referred to as Reidemeister classes) is called the 
Reidemeister number R(α) of α. This Reidemeister number is either a positive integer 
or ∞.

Reidemeister numbers find their origins in algebraic topology and to be more precise 
in Nielsen–Reidemeister fixed point theory. Here one is interested in the study of the fixed 
point classes of a selfmap f of a space X. The number of fixed point classes of f is called 
the Reidemeister number of f and is denoted by R(f). It is known that R(f) = R(f∗), 
where f∗ : π1(X) −→ π1(X) is the induced endomorphism on the fundamental group 
π1(X) of X.

There is currently a growing interest in the study of groups G having the R∞-property, 
these are groups for which R(α) = ∞ for any automorphism α ∈ Aut (G). The study of 
groups with that property was initiated by Fel’shtyn and Hill [15].

Since the beginning of this century many authors have been studying this property 
and for several families of groups it is known whether or not they have the R∞-property. 
Here are some families of groups with the R∞-property: the non-elementary Gromov 
hyperbolic groups [12,24], most of the Baumslag–Solitar groups [13] and groups quasi–
isometric to Baumslag–Solitar groups [34], generalized Baumslag–Solitar groups [25], 
many linear groups [16,31] and also several families of lamplighter groups [19,35]. The 
study of the R∞-property for braid groups and braid-type groups has been increasing 
during the last years. For instance, in [14] it was shown that the Artin braid groups 
Bn and the mapping class groups of closed orientable surfaces different from the sphere 
have property R∞. In [8] the case of the pure Artin braid groups Pn was considered, 



K. Dekimpe et al. / Journal of Algebra 663 (2025) 20–47 23
and they also share this property. More recently, the R∞-property was studied for some 
right angled Artin groups in [10] and for some Artin groups in [4].

In this paper we study the R∞-property for virtual braid groups and unrestricted 
virtual braid groups. Since these groups are trivial when n = 1, we shall consider, in 
general, n ≥ 2. More precisely, the statement below summarises the main results in this 
work about this property.

Theorem 3. Let n ≥ 2. The following groups have the R∞-property:

(a) The unrestricted virtual pure braid group UV Pn,
(b) the unrestricted virtual braid group UV Bn,
(c) the virtual braid group V Bn.

Further, if n = 2, 3 and 4 also the welded braid group WBn has the R∞-property, 
and for n = 2 also the virtual (V P2), welded (WP2) and unrestricted (UV P2) pure 
braid groups have the R∞-property.

For n ≥ 5, part (c) of Theorem 3 above was simultaneously obtained by N. Nanda 
([30]), using a different approach.

This paper is organized as follows. In the first subsection of Section 2 we will give 
the main definitions about the virtual braid groups that will be used in the text and 
in the second subsection we prove Theorem 1. In Section 3 we prove Theorem 2. To do 
that, we first treat the case n = 2 and thereafter we describe the set of homomorphisms, 
up to conjugation, from V Bn (and also from WBn and UV Bn) to Sn, for n = 3, 4. 
Then, in Subsection 3.4 we use this information and Theorem 1 to prove Theorem 2. 
We prove Theorem 3 in Section 4, its proof is given in several different steps and using 
different techniques. For n ≥ 2, the group UV Pn is isomorphic to a direct product of 
free groups and from Theorem 2 it is a characteristic subgroup of UV Bn. Using this, in 
Proposition 33, we prove item (a) and item (b) of Theorem 3. To prove Theorem 3 (c), 
for n ≥ 5, we show that the kernel of the natural projection of V Bn onto UV Bn is 
a characteristic subgroup and then we use item (b) of Theorem 3, this will be done in 
Theorem 36. For n = 3 or n = 4, we first show that the quotient V Bn/[V Pn, V Pn] has 
the R∞-property, where [V Pn, V Pn] is the commutator subgroup of the virtual pure 
braid group V Pn, see Theorems 28 and 31, respectively. Then the desired result for 
Theorem 3 (c) for the cases n = 3 and n = 4 is obtained in Corollaries 29 and 32, 
respectively.

We end this paper with an appendix explaining how the techniques of this paper can 
also be used to treat other braid-like groups such as the virtual twin groups.
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2. Preliminaries

In this section we give the definitions of virtual braid groups that we use in the text 
and we prove Theorem 1.

2.1. Virtual braid groups and forbidden relations

In this subsection, we recall the basic definitions of virtual braid groups. First, we 
write a presentation of the virtual braid group V Bn that will be very useful in this work. 
This presentation appears in [2] and it is a reformulation of the one given in [36, p.798].

Definition 4 ([2, Theorem 4]). Let n ≥ 2. The virtual braid group on n strings, denoted 
by V Bn, is the abstract group generated by σi (classical generators) and vi (virtual 
generators), for i = 1, 2, . . . , n − 1, with relations:

(AR1) σiσi+1σi = σi+1σiσi+1, i = 1, 2, . . . , n − 2;
(AR2) σiσj = σjσi, | i − j |≥ 2;
(PR1) vivi+1vi = vi+1vivi+1, i = 1, 2, . . . , n − 2;
(PR2) vivj = vjvi, | i − j |≥ 2;
(PR3) v2

i = 1, i = 1, 2, . . . , n − 1;
(MR1) σivj = vjσi, | i − j |≥ 2;
(MR2) vivi+1σi = σi+1vivi+1, i = 1, 2, . . . , n − 2.

Remark 5. The letters AR, PR and MR that appear in Definition 4 are used to indicate 
the type of relations in the given presentation of V Bn: Artin Relations, Permutation 
Relations and Mixed Relations.

Let n ≥ 2. As in [3, Section 2], from the presentation of V Bn one can see that 
there are surjective homomorphisms πP : V Bn −→ Sn and πK : V Bn −→ Sn defined 
by πP (σi) = πP (vi) = τi = (i, i + 1) for all 1 ≤ i ≤ n − 1 and by πK(σi) = 1 and 
πK(vi) = τi = (i, i + 1) for all 1 ≤ i ≤ n − 1, respectively. The kernel of πP is called the 
virtual pure braid group and it is denoted by V Pn. A presentation of this group can be 
found in [1, Theorem 1]. The kernel of πK , denoted by KBn, is known to be an Artin 
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group (this follows from the presentation of KBn given in [2, Proposition 17]). This fact 
has been useful to obtain properties of the virtual braid group itself, for instance it was 
essential in determining the set of endomorphisms of V Bn in [3]. As mentioned in the 
first paragraph of Section 3 of [1] (resp. in [2, Section 6]) the virtual braid group admits 
a decomposition as semi-direct product V Bn = V Pn ⋊ Sn (resp. V Bn = KBn ⋊ Sn), 
with ι : Sn −→ V Bn given by ι(τi) = vi, for i = 1, . . . , n −1, being a section for πP (resp. 
for πK).

Definition 6. Consider, for i = 1, . . . , n − 2, the following so-called forbidden relations in 
the virtual braid group:

(a) viσi+1σi = σi+1σivi+1,
(b) vi+1σiσi+1 = σiσi+1vi.

The welded braid group, denoted by WBn, is the quotient of V Bn by the normal closure of 
the relations (a). The unrestricted virtual braid group, denoted by UV Bn, is the quotient 
of V Bn by the normal closure of the relations (a) and (b).

Remark 7. We note that the welded braid group WBn appears with other names in 
the literature, for example as the loop braid group, see [6]. Also in [6] one can find an 
extensive exposition of it.

Since the forbidden relations are preserved by πP : V Bn −→ Sn, we may define the 
homomorphisms πP : WBn −→ Sn and πP : UV Bn −→ Sn by πP (σi) = πP (vi) =
(i, i + 1) for all 1 ≤ i ≤ n − 1 and πP (σi) = πP (vi) = (i, i + 1) for all 1 ≤ i ≤ n − 1, 
respectively. The kernel of πP is called the welded pure braid group and it is denoted 
by WPn. The kernel of πP is called the unrestricted virtual pure braid group and it is 
denoted by UV Pn.

We note that, for n ≥ 3, is not possible to define a similar homomorphism 
πK : V Bn −→ Sn for the groups WBn and UV Bn since the forbidden relations are 
not preserved by πK .

2.2. On characteristic subgroups

In this subsection we prove a general result about characteristic subgroups of a group. 
Recall that two homomorphisms of groups ψ1, ψ2 : G −→ H are conjugate, denoted by 
ψ1 ∼c ψ2, if there exists η ∈ Inn (H) such that ψ2 = η ◦ ψ1. The following lemma is an 
easy observation.

Lemma 8. Let Σ be the set of all homomorphisms from G to H. Then ∼c is an equivalence 
relation on Σ.
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We note that Lemma 8 also holds if we restrict Σ to the set of all surjective homo-
morphisms from G to H.

Proof of Theorem 1. Let λ ∈ Λ such that for all ω ∈ Λ it holds that Ker(λ) = Ker(ω) as 
soon as they are isomorphic. Let ϕ : G −→ G be any automorphism of G. Since λ ◦ϕ ∈ Σ
then there is ζ ∈ Λ such that λ ◦ ϕ ∼c ζ, i.e. there exists an inner automorphism of Q, 
say η, such that λ ◦ ϕ = η ◦ ζ and the following square is commutative

G
ζ

ϕ ∼=

Q

η ∼=

G
λ

Q

It is easy to see that ϕ(Ker(ζ)) = Ker(λ) and so Ker(ζ) is isomorphic to Ker(λ). By the 
hypothesis, it follows that Ker(ζ) = Ker(λ), hence ϕ(Ker(λ)) = ϕ(Ker(ζ)) = Ker(λ).

So we proved that ϕ(Ker(λ)) = Ker(λ) for any automorphism of G, showing that 
Ker(λ) is a characteristic subgroup of G. �
Remark 9. The proof of Theorem 1 was in part motivated from the one given in [26] to 
prove that, for n ≥ 5, UV Pn is a characteristic subgroup of UV Bn, see [26, Proposi-
tion 2.15].

We finish this subsection with the following property about homomorphisms being 
conjugate.

Proposition 10. Let G be a quotient of a group G and p : G −→ G the natural projection. 
Consider two homomorphisms ζ1, ζ2 : G −→ H and define ζ1, ζ2 : G −→ H by ζi = ζi ◦p, 
for i = 1, 2. Then, ζ1 ∼c ζ2 if and only if ζ1 ∼c ζ2.

Proof. Suppose that ζ1 ∼c ζ2. By definition there is h ∈ H such that ζ1(g) = hζ2(g)h−1, 
for all g ∈ G. So, ζ1 ◦ p(g) = hζ2 ◦ p(g)h−1, for all g ∈ G, that is equivalent to ζ1(g) =
hζ2(g)h−1, for all g ∈ G. Hence, ζ1 ∼c ζ2.

The proof of the converse is similar. �
3. Characteristic subgroups of virtual braid groups

The main objective of this section is to prove that the pure virtual braid groups V Pn

are characteristic subgroups of V Bn for n ≥ 4 and that the groups KBn are characteristic 
subgroups of V Bn for n ≥ 3. We recall that a group homomorphism ψ : G −→ H is said 
to be abelian if its image ψ(G) is an abelian subgroup of H. The homomorphisms πP

and πK defined in Subsection 2.1 will be mentioned several times in this section.
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3.1. Two strings case

From the presentation of the virtual braid group V Bn and the definition of the groups 
WBn and UV Bn, see Section 2, it follows that

V B2 = WB2 = UV B2 =
〈
σ1, v1 | v2

1 = 1
〉 ∼= Z ∗ Z2.

Remark 11. In [26, Remark 2.6] the author constructed an automorphism α : V B2 −→
V B2 defined by α(σ1) = σ−1

1 v1 and α(v1) = v1. Using this automorphism she proved 
that V P2 = WP2 = UV P2 is not characteristic in V B2 = WB2 = UV B2.

We note that the same automorphism may be used to verify that KB2 is not charac-
teristic in V B2.

3.2. Homomorphisms from virtual braid groups to the symmetric group: three strings 
case

In this subsection we will use the following presentation of the virtual braid group 
with 3 strings (see Section 2 for a presentation of V Bn):

V B3 =
〈
σ1, σ2, v1, v2 | σ1σ2σ1 =σ2σ1σ2, v1v2v1 =v2v1v2, v1v2σ1 =σ2v1v2, v

2
1 =1, v2

2 =1
〉

(1)
and the presentation

S3 =
〈
τ1, τ2 | τ1τ2τ1 = τ2τ1τ2, τ

2
1 = 1, τ2

2 = 1
〉

(2)

of the symmetric group S3.
Define, for 1 ≤ i ≤ 8, the following homomorphisms ψi : V B3 −→ S3:

(a) ψ1(v1) = τ1, ψ1(v2) = τ1, ψ1(σ1) = τ2, ψ1(σ2) = τ2;
(b) ψ2(v1) = τ1, ψ2(v2) = τ2, ψ2(σ1) = τ1, ψ2(σ2) = τ2. In this case ψ2 is equal to the 

homomorphism πP ;
(c) ψ3(v1) = τ1, ψ3(v2) = τ2, ψ3(σ1) = τ2, ψ3(σ2) = τ1τ2τ1;
(d) ψ4(v1) = τ1, ψ4(v2) = τ2, ψ4(σ1) = τ1τ2τ1, ψ4(σ2) = τ1;
(e) ψ5(v1) = τ1, ψ5(v2) = τ2, ψ5(σ1) = τ1τ2, ψ5(σ2) = τ1τ2;
(f) ψ6(v1) = τ1, ψ6(v2) = τ2, ψ6(σ1) = τ2τ1, ψ6(σ2) = τ2τ1;
(g) ψ7(v1) = τ1, ψ7(v2) = τ2, ψ7(σ1) = 1, ψ7(σ2) = 1. In this case ψ7 is equal to the 

homomorphism πK ;
(h) ψ8(v1) = τ1, ψ8(v2) = τ1, ψ8(σ1) = τ1τ2, ψ8(σ2) = τ1τ2.

Remark 12. We note that the homomorphisms {ψi | 1 ≤ i ≤ 8} are pairwise non con-
jugate. Indeed, first we can see that the homomorphisms ψ1 and ψ8 are not conjugate 
to ψi for i = 2, 3, . . . , 7 because ψj(v1) = ψj(v2) for j = 1, 8 and this is not the case for 
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the ψi’s with i = 2, 3, . . . , 7. Moreover, ψ1 is not conjugate to ψ8 because ψ1(σ1) is an 
element of order 2, while ψ8(σ1) has order 3.

Now assume that ψi is conjugate to ψj with 3 ≤ i, j ≤ 7 and let λ ∈ S3 be such that 
ψi = cλ ◦ψj . As ψi(v1) = ψj(v1) = τ1, it follows that λτ1λ−1 = τ1 and analogously from 
ψi(v2) = ψj(v2) = τ2 we find that λτ2λ−1 = τ2. Hence λ centralizes both τ1 and τ2 and 
so λ belongs to the centre of S3 (because S3 is generated by τ1 and τ2). But the centre
of S3 is trivial, so λ = 1 from which we get that ψi = ψj and so i = j.

Theorem 13. Let ψ : V B3 −→ S3 be a homomorphism. Then, up to conjugation, one of 
the following possibilities holds

(a) ψ is abelian;
(b) ψ ∈ {ψi | 1 ≤ i ≤ 8}.

Proof. Let ψ : V B3 −→ S3 be a homomorphism and let ι : S3 −→ V B3 be the natural 
inclusion defined by ι(τ1) = v1 and ι(τ2) = v2. Then, ψ ◦ ι is an endomorphism of 
S3. It is straightforward to verify that, up to conjugation, ψ ◦ ι is either the identity 
homomorphism or im(ψ ◦ ι) = 〈τ1〉 or im(ψ ◦ ι) = {1} (the trivial subgroup). To say that 
ψ ◦ ι is abelian is equivalent to saying that ψ ◦ ι is, up to equivalence, not the identity.

First suppose that ψ ◦ ι is not the identity. Hence, from the relations v2
1 = 1, v2

2 = 1
and v1v2v1 = v2v1v2 we have ψ(v1) = ψ(v2) = w1 ∈ S3 with w2

1 = 1. From the relation 
v1v2σ1 = σ2v1v2 we get ψ(σ1) = ψ(σ2) = w2 ∈ S3. Notice that, up to conjugacy, w1 is 
either 1 or τ1. Also if w1 = 1 or w2 = 1 then ψ is abelian.

So, we suppose that w1 = τ1 and that w2 is a non trivial element in S3. Now we 
analyse the possible values of w2 ∈ S3 such that ψ is a homomorphism.

• If ψ(v1) = τ1, ψ(v2) = τ1, ψ(σ1) = τ1, ψ(σ2) = τ1 then ψ is abelian.
• Suppose that ψ(v1) = τ1, ψ(v2) = τ1, ψ(σ1) = τ2, ψ(σ2) = τ2. This homomorphism 

is ψ1.
• If ψ(v1) = τ1, ψ(v2) = τ1, ψ(σ1) = τ1τ2, ψ(σ2) = τ1τ2 then ψ is ψ8.
• Suppose that ψ(v1) = τ1, ψ(v2) = τ1, ψ(σ1) = τ1τ2τ1, ψ(σ2) = τ1τ2τ1. Then ψ is 

conjugate to ψ1.
• Let ψ(v1) = τ1, ψ(v2) = τ1, ψ(σ1) = τ2τ1, ψ(σ2) = τ2τ1. Then ψ is conjugate to ψ8.

For any choice of w2 = ψ(σ1) = ψ(σ2) in S3 we obtain an abelian homomorphism or a 
homomorphism that is conjugate to ψ1 or ψ8.

Now, suppose that ψ ◦ ι is the identity homomorphism. This implies that

ψ(v1) = τ1 and ψ(v2) = τ2.

From the mixed relation v1v2σ1v2v1 = σ2 it follows that if we know ψ(σ1) then ψ(σ2) is 
completely determined. We analyse the possible values of ψ(σ1).



K. Dekimpe et al. / Journal of Algebra 663 (2025) 20–47 29
• Suppose that ψ(σ1) = 1, ψ(σ2) = 1. This homomorphism is ψ7 = πK .
• Suppose that ψ(σ1) = τ1. Then ψ(σ2) = τ1τ2τ1τ2τ1 = τ2. This homomorphism is 

ψ2 = πP .
• Let ψ(σ1) = τ2, then ψ(σ2) = τ1τ2τ2τ2τ1 = τ1τ2τ1. This homomorphism is ψ3.
• If ψ(σ1) = τ1τ2τ1, ψ(σ2) = τ1τ2τ2τ1τ2τ2τ1 = τ1. This homomorphism is ψ4.
• Let ψ(σ1) = τ1τ2. So, ψ(σ2) = τ1τ2τ1τ2τ2τ1 = τ1τ2. This homomorphism is ψ5.
• Suppose that ψ(σ1) = τ2τ1. Then ψ(σ2) = τ1τ2τ2τ1τ2τ1 = τ2τ1. This homomorphism 

is ψ6.

From the computations above we proved that, up to conjugation, ψ is abelian or ψ ∈
{ψi | 1 ≤ i ≤ 8}. �

Now we study the homomorphisms from the welded braid group WB3 and the 
unrestricted braid group UV B3 to the symmetric group S3. The study of these ho-
momorphisms follows the same lines as the proof of Theorem 13. Instead of repeating 
this method, we may verify which homomorphisms given in Theorem 13 respect the 
forbidden relations given in Definition 6.

Theorem 14. Let ω : WB3 −→ S3 be a homomorphism. Then, up to conjugation, one of 
the following possibilities holds

(a) ω is abelian;
(b) ω = ψ, where ψ ∈ {ψi | 1 ≤ i ≤ 5} as in Theorem 13 and ψ : WB3 −→ S3 is the 

induced homomorphism in the quotient of V B3 by adding the forbidden relation (a) 
of Definition 6.

Proof. Let ω : WB3 −→ S3 be a homomorphism. If ω is abelian there is nothing to prove. 
Suppose that ω is non-abelian. Let ψ : V B3 −→ S3 be a homomorphism that belongs to 
{ψi | 1 ≤ i ≤ 8} as in Theorem 13. We verify which of these homomorphisms satisfy the 
forbidden relation (a) of Definition 6.

Let ψ = ψ1. Then ψ1(v1σ2σ1) = τ1τ2τ2 = τ1 and ψ1(σ2σ1v2) = τ2τ2τ1 = τ1. Hence, 
ψ1 : WB3 −→ S3 is a homomorphism. Now, let ψ = ψ7. Recall that ψ7(v1) = τ1, 
ψ7(v2) = τ2, ψ7(σ1) = 1 and ψ7(σ2) = 1. Then ψ7(v1σ2σ1) = τ1 and ψ7(σ2σ1v2) = τ2. 
Hence, ψ7 does not induce a homomorphism in the quotient group WB3. The verification 
of the other homomorphisms ψ ∈ {ψi | 1 ≤ i ≤ 8} is similar and with this computation 
we obtain the result of this theorem. �

Using the same idea of the proof of the last theorem we get the following result about 
unrestricted virtual braid groups.

Theorem 15. Let μ : UV B3 −→ S3 be a homomorphism. Then, up to conjugation, one 
of the following possibilities holds
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(a) μ is abelian;
(b) μ = ψ, where ψ ∈ {ψi | 1 ≤ i ≤ 4} as in Theorem 13 and ψ : UV B3 −→ S3 is the 

induced homomorphism in the quotient of V B3 by adding the forbidden relations (a) 
and (b) of Definition 6.

Proof. The proof of this theorem is similar to the one of Theorem 14. �
Remark 16. It follows from Proposition 10 and Theorem 13 that the homomorphisms 
{ψi | 1 ≤ i ≤ 5} of Theorem 14(b) are pairwise non conjugate. Similarly for the homo-
momorphisms of Theorem 15(b).

3.3. Homomorphisms from virtual braid groups to the symmetric group: four strings 
case

In this subsection we will use the following presentation of the symmetric group

S4 =
〈
τ1, τ2, τ3 | τ1τ2τ1 = τ2τ1τ2, τ2τ3τ2 = τ3τ2τ3, τ1τ3 = τ3τ1, τ

2
1 = τ2

2 = τ2
3 = 1

〉
(3)

and the presentation of the virtual braid group with 4 strings (see Section 2 for a pre-
sentation of V Bn) with generators σ1, σ2, σ3, v1, v2, v3 and defining relations:

(AR) σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3, σ1σ3 = σ3σ1,
(PR) v1v2v1 = v2v1v2, v2v3v2 = v3v2v3, v1v3 = v3v1, v2

1 = 1, v2
2 = 1, v2

3 = 1,
(MR) σ1v3 = v3σ1, σ3v1 = v1σ3, v1v2σ1 = σ2v1v2, v2v3σ2 = σ3v2v3.

Let η : S4 −→ S4 be the homomorphism defined by η(τ1) = η(τ3) = τ1 and η(τ2) = τ2.

Lemma 17. Let ϕ : S4 −→ S4 be any endomorphism of S4. Then, up to conjugation, one 
of the following possibilities holds.

(a) ϕ is abelian,
(b) ϕ is the identity homomorphism,
(c) ϕ = η.

Proof. This follows from examining case by case all the possible images of the transposi-
tions. We note that if, for some i = 1, 2, 3, ϕ(τi) = 1 then ϕ is the trivial homomorphism. 
Hence, we do not consider this case. Also, we notice that if, for some i = 1, 2, 3, ϕ(τi)
is a product of different transpositions then ϕ is abelian with image the cyclic group of 
order 2.

Suppose that ϕ(τ1) = τ1. It follows from the relation τ1τ3 = τ3τ1 that ϕ(τ3) lies in 
{1, τ1, τ3, τ1τ3}, the centralizer of 〈τ1〉 in S4. By examining the possible images of τ3 we 
obtain, up to conjugation, that either ϕ is abelian, or ϕ is the identity homomorphism 
or ϕ = η. �
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Define, for 1 ≤ i ≤ 6, the following homomorphisms δi : V B4 −→ S4:

(a) δ1(v1) = τ1, δ1(v2) = τ2, δ1(v3) = τ1, δ1(σ1) = τ1, δ1(σ2) = τ2, δ1(σ3) = τ1;
(b) δ2(v1) = τ1, δ2(v2) = τ2, δ2(v3) = τ1, δ2(σ1) = τ3, δ2(σ2) = τ3τ2τ1τ2τ3, δ2(σ3) = τ3;
(c) δ3(v1) = τ1, δ3(v2) = τ2, δ3(v3) = τ3, δ3(σ1) = τ1, δ3(σ2) = τ2, δ3(σ3) = τ3. This δ3

is equal to the homomorphism πP ;
(d) δ4(v1) = τ1, δ4(v2) = τ2, δ4(v3) = τ3, δ4(σ1) = τ3, δ4(σ2) = τ3τ2τ1τ2τ3, δ4(σ3) = τ1;
(e) δ5(v1) = τ1, δ5(v2) = τ2, δ5(v3) = τ3, δ5(σ1) = 1, δ5(σ2) = 1, δ5(σ3) = 1. This δ5 is 

equal to the homomorphism πK ;
(f) δ6(v1) = τ1, δ6(v2) = τ2, δ6(v3) = τ1, δ6(σ1) = 1, δ6(σ2) = 1, δ6(σ3) = 1.

Remark 18. We note that the homomorphisms {δi | 1 ≤ i ≤ 6} are pairwise non conju-
gate.

Theorem 19. Let δ : V B4 −→ S4 be a homomorphism. Then, up to conjugation, one of 
the following possibilities holds

(a) δ is abelian;
(b) δ ∈ {δi | 1 ≤ i ≤ 6}.

Proof. Let δ : V B4 −→ S4 be a homomorphism and let ι : S4 −→ V B4 be the natural 
inclusion defined by ι(τ1) = v1, ι(τ2) = v2 and ι(τ3) = v3. Then, δ◦ι is an endomorphism 
of S4. From Lemma 17, up to conjugation, δ ◦ ι is abelian or it is η or it is the identity 
homomorphism.

We claim that when δ ◦ ι is abelian then δ is abelian. The proof given for [3, Theo-
rem 2.1] in the case in which the composition is abelian works for n = 4, proving our 
claim.

Suppose that δ ◦ ι = η. Therefore

δ(v1) = τ1, δ(v2) = τ2 and δ(v3) = τ1.

From the mixed relations v1v2σ1v2v1 = σ2 and v2v3σ2v3v2 = σ3 we see that δ(σ2) and 
δ(σ3) are completely determined by δ(σ1). We analyse the possible values of δ(σ1). From 
the relation σ1v3 = v3σ1 and δ(v3) = τ1 it follows that δ(σ1) lies in the centralizer of 
〈τ1〉 in S4, i.e. δ(σ1) ∈ {1, τ1, τ3, τ1τ3}.

• Suppose that δ(σ1) = 1, then δ(σ2) = 1 and δ(σ3) = 1. This homomorphism is δ6.
• Suppose that δ(σ1) = τ1. Then δ(σ2) = τ1τ2τ1τ2τ1 = τ2 and δ(σ3) = τ2τ1τ2τ1τ2 = τ1. 

This homomorphism is δ1.
• Suppose that δ(σ1) = τ3. Then δ(σ2) = τ1τ2τ3τ2τ1 = τ3τ2τ1τ2τ3 and δ(σ3) =

τ2τ1τ1τ2τ3τ2τ1τ1τ2 = τ3. This homomorphism is δ2.
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• Finally, if δ(σ1) = τ1τ3 we do not get a homomorphism since the relation σ1σ2σ1 =
σ2σ1σ2 is not preserved.

Now, suppose that δ ◦ ι is the identity homomorphism. This implies that

δ(v1) = τ1, δ(v2) = τ2 and δ(v3) = τ3.

As before, from the mixed relations v1v2σ1v2v1 = σ2 and v2v3σ2v3v2 = σ3 it follows that 
δ(σ1) determines δ(σ2) and δ(σ3) completely. Moreover the relation σ1v3 = v3σ1 implies 
that δ(σ1) ∈ {1, τ1, τ3, τ1τ3} the centralizer of 〈τ3〉 in S4. We analyse the possible values 
of δ(σ1).

• Suppose that δ(σ1) = 1, then δ(σ2) = 1 and δ(σ3) = 1. This homomorphism is 
δ5 = πK .

• Suppose that δ(σ1) = τ1. Then δ(σ2) = τ1τ2τ1τ2τ1 = τ2 and δ(σ3) = τ2τ3τ2τ3τ2 = τ3. 
This homomorphism is δ3 = πP .

• Suppose that δ(σ1) = τ3. Then δ(σ2) = τ1τ2τ3τ2τ1 = τ3τ2τ1τ2τ3 and δ(σ3) =
τ2τ3τ3τ2τ1τ2τ3τ3τ2 = τ1. This homomorphism is δ4.

• Finally, if δ(σ1) = τ1τ3 we do not get a homomorphism since the relation σ1σ2σ1 =
σ2σ1σ2 is not preserved.

From the computations above we proved that, up to conjugation, δ is abelian or 
δ ∈ {δi | 1 ≤ i ≤ 6}. �

Similar to the case n = 3, we verify which homomorphisms given in Theorem 19
respect the forbidden relations given in Definition 6.

Theorem 20. Let ω : WB4 −→ S4 be a homomorphism. Then, up to conjugation, one of 
the following possibilities holds

(a) ω is abelian;
(b) ω = δ, where δ ∈ {δi | 1 ≤ i ≤ 4} as in Theorem 19 and δ : WB4 −→ S4 is the 

induced homomorphism in the quotient of V B4 by adding the forbidden relation (a) 
of Definition 6.

Proof. The proof is completely similar to the one given for Theorem 14. �
Finally we get the result for unrestricted virtual braid groups.

Theorem 21. Let μ : UV B4 −→ S4 be a homomorphism. Then, up to conjugation, one 
of the following possibilities holds

(a) μ is abelian;
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(b) μ = δ, where δ ∈ {δi | 1 ≤ i ≤ 4} as in Theorem 19 and δ : UV B4 −→ S4 is the 
induced homomorphism in the quotient of V B4 by adding the forbidden relations (a) 
and (b) of Definition 6.

Proof. The proof is completely similar to the one given for Theorem 15. �
Remark 22. It follows from Proposition 10 and Theorem 19 that the homomorphisms 
{δi | 1 ≤ i ≤ 4} of Theorem 20(b) are pairwise non conjugate. Similarly for the homo-
morphisms of Theorem 21(b).

3.4. Proof of Theorem 2

We will use Theorem 1 to prove that for n ≥ 4 (resp. n ≥ 3) the pure subgroup 
of the virtual braid group (resp. the welded braid group and the unrestricted virtual 
braid group) is characteristic in the virtual braid group (resp. the welded braid group 
and the unrestricted virtual braid group). In the previous subsections we computed, up 
to conjugation, all surjective homomorphisms from V Bn to Sn (and also for WBn and 
UV Bn), for n = 3, 4. In the next two lemmas we will compare some kernels of these 
maps.

We will use the following notation. Let G be a group, the abelianization of G will be 
denoted by GAb, i.e. GAb = G/[G, G].

Lemma 23. Let n ≥ 3.

(a) The groups V Pn and KBn are not isomorphic.
(b) Let n = 3 and let ψ ∈ {ψi | 1 ≤ i ≤ 8} as in Theorem 13.

• The group KB3 = Ker(ψ7) is not isomorphic to Ker(ψi) for 1 ≤ i ≤ 8 with 
i �= 7.

(c) Let n = 4 and let δ ∈ {δi | 1 ≤ i ≤ 6} as in Theorem 19.
• The group V P4 = Ker(δ3) is not isomorphic to Ker(δi) for 1 ≤ i ≤ 6 with i �= 3.
• The group KB4 = Ker(δ5) is not isomorphic to Ker(δi) for 1 ≤ i ≤ 6 with i �= 5.

Proof. (a) This item is the same as [2, Proposition 21].
(b) Let n = 3 and let ψ ∈ {ψi | 1 ≤ i ≤ 8} as in Theorem 13. We used the GAP System 

[17] to compute the abelianization of the groups involved. We elucidate the routine 
used in the computations for the case n = 3:

f4:=FreeGroup("x","y","a","b");;
AssignGeneratorVariables(f4);;
r:=ParseRelators([x,y,a,b],"xyx=yxy,aba=bab,a^2=1,b^2=1,bayab=x");;
g:= f4/r; # g is the virtual braid group on 3 strings
p1:=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
[(2,3), (2,3), (1,2), (1,2)]); AbelianInvariants(Kernel(p1));
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[ f1, f2, f3, f4 ] -> [ (2,3), (2,3), (1,2), (1,2) ]
[ 0, 0, 0, 0, 3, 3, 3 ]
p2:=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
[(1,2), (2,3), (1,2), (2,3)]); AbelianInvariants(Kernel(p2));
[ f1, f2, f3, f4 ] -> [ (1,2), (2,3), (1,2), (2,3) ]
[ 0, 0, 0, 0, 0, 0 ]
p3:=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
[(2,3), (1,2)*(2,3)*(1,2), (1,2), (2,3)]); AbelianInvariants(Kernel(p3));
[ f1, f2, f3, f4 ] -> [ (2,3), (1,3), (1,2), (2,3) ]
[ 0, 0, 0, 0, 0, 0 ]
p4:=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
[(1,2)*(2,3)*(1,2), (1,2), (1,2), (2,3)]); AbelianInvariants(Kernel(p4));
[ f1, f2, f3, f4 ] -> [ (1,3), (1,2), (1,2), (2,3) ]
[ 0, 0, 0, 0, 0, 0 ]
p5:=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
[(1,2)*(2,3), (1,2)*(2,3), (1,2), (2,3)]); AbelianInvariants(Kernel(p5));
[ f1, f2, f3, f4 ] -> [ (1,3,2), (1,3,2), (1,2), (2,3) ]
[ 0, 0, 2, 2, 2, 2 ]
p6:=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
[(2,3)*(1,2), (2,3)*(1,2), (1,2), (2,3)]); AbelianInvariants(Kernel(p6));
[ f1, f2, f3, f4 ] -> [ (1,2,3), (1,2,3), (1,2), (2,3) ]
[ 0, 0, 2, 2, 2, 2 ]
p7:=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
[(), (), (1,2), (2,3)]); AbelianInvariants(Kernel(p7));
[ f1, f2, f3, f4 ] -> [ (), (), (1,2), (2,3) ]
[ 0, 0 ]
p8:=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
[(1,2)*(2,3), (1,2)*(2,3), (1,2), (1,2)]);AbelianInvariants(Kernel(p8));
[ f1, f2, f3, f4 ] -> [ (1,3,2), (1,3,2), (1,2), (1,2) ]
[ 0, 0, 0, 0, 3 ]

Summarising, we get

• (Ker(ψ1))Ab ∼= Z4 ⊕ (Z3)3
• (Ker(ψ2))Ab = (V P3)Ab ∼= Z6

• (Ker(ψ3))Ab ∼= Z6

• (Ker(ψ4))Ab ∼= Z6

• (Ker(ψ5))Ab ∼= Z2 ⊕ (Z2)4
• (Ker(ψ6))Ab ∼= Z2 ⊕ (Z2)4
• (Ker(ψ7))Ab = (KB3)Ab ∼= Z2

• (Ker(ψ8))Ab ∼= Z4 ⊕ Z3

From this we conclude that the group KB3 = Ker(ψ7) is not isomorphic to Ker(ψi)
for 1 ≤ i ≤ 8 with i �= 7.

(c) Let n = 4 and let δ ∈ {δi | 1 ≤ i ≤ 6} as in Theorem 19. We use the same idea of 
the previous item. From the computations using GAP we get
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• (Ker(δ1))Ab ∼= Z3 ⊕ (Z2)2
• (Ker(δ2))Ab ∼= Z6 ⊕ (Z2)8
• (Ker(δ3))Ab = (V P4)Ab ∼= Z12

• (Ker(δ4))Ab ∼= Z6 ⊕ (Z2)2
• (Ker(δ5))Ab = (KB4)Ab ∼= Z

• (Ker(δ6))Ab ∼= Z ⊕ (Z2)2

From these computations we conclude that the group V P4 = Ker(δ3) is not 
isomorphic to Ker(δi) for 1 ≤ i ≤ 6 with i �= 3 and also that the group KB4 =
Ker(δ5) is not isomorphic to Ker(δi) for 1 ≤ i ≤ 6 with i �= 5. �

In the next result we consider the cases of welded and unrestricted virtual braid groups 
with few strings.

Lemma 24.

(a) Let n = 3
• Let ψi : WB3 −→ S3 as in Theorem 14, where {ψi | 1 ≤ i ≤ 5} are the homomor-

phisms given in Theorem 13. The pure welded braid subgroup WP3 = Ker(ψ2) is 
not isomorphic to Ker(ψi), for any 1 ≤ i ≤ 5 with i �= 2.

• Let ψi : UV B3 −→ S3 as in Theorem 15, where {ψi | 1 ≤ i ≤ 4} are the ho-
momorphisms given in Theorem 13. The pure unrestricted virtual braid subgroup 
UV P3 = Ker(ψ2) is not isomorphic to Ker(ψi), for any 1 ≤ i ≤ 4 with i �= 2.

(b) Let n = 4.
• Let δi : WB4 −→ S4 as in Theorem 20, where {δi | 1 ≤ i ≤ 4} are 

the homomorphisms given in Theorem 19. The pure welded braid subgroup 
WP4 = Ker(δ3) is not isomorphic to Ker(δi), for any 1 ≤ i ≤ 4 with 
i �= 3.

• Let δi : UV B4 −→ S4 as in Theorem 21, where {δi | 1 ≤ i ≤ 4} are the 
homomorphisms given in Theorem 19. The pure unrestricted virtual braid sub-
group UV P4 = Ker(δ3) is not isomorphic to Ker(δi), for any 1 ≤ i ≤ 4 with 
i �= 3.

Proof. The proof of this result is similar to the previous one in which we use GAP 
[17] to compute the abelizanization of the kernel of each homomorphism. We just 
list below the abelianizations of the groups involved from which we conclude this re-
sult.

(a) Let n = 3

• (Ker(ψ1))Ab ∼= Z2 ⊕ (Z3)3
• (Ker(ψ2))Ab ∼= Z6

• (Ker(ψ3))Ab ∼= Z4

• (Ker(ψ4))Ab ∼= Z4

• (Ker(ψ ))Ab ∼ Z ⊕ (Z )5

• (Ker(ψ1))Ab ∼= Z2 ⊕ (Z3)2
• (Ker(ψ2))Ab ∼= Z6

• (Ker(ψ3))Ab ∼= Z2 ⊕ Z3
• (Ker(ψ4))Ab ∼= Z2 ⊕ Z3
5 = 3
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(b) Let n = 4

• (Ker(δ1))Ab ∼= Z3 ⊕ (Z2)2
• (Ker(δ2))Ab ∼= Z3 ⊕ (Z2)8
• (Ker(δ3))Ab ∼= Z12

• (Ker(δ4))Ab ∼= Z3 ⊕ (Z2)3

• (Ker(δ1))Ab ∼= Z3 ⊕ (Z2)2
• (Ker(δ2))Ab ∼= Z3 ⊕ (Z2)6
• (Ker(δ3))Ab ∼= Z12

• (Ker(δ4))Ab ∼= Z3 ⊕ (Z2)3 �
Remark 25. Given a group homomorphism ξ : G −→ H and γ ∈ Aut (H), then Ker (ξ) =
Ker (γ ◦ ξ).

With the above information we can now determine exactly when the virtual pure 
braid group is characteristic in the virtual braid group.

Proof of Theorem 2. The case n = 2 follows from Remark 11.
Let n ≥ 3. We first show that V P3 is not characteristic in V B3. Let α : V B3 −→ V B3

be the homomorphism determined by

α(v1) = v1, α(v2) = v2, α(σ1) = v1v2σ1v2v1 = σ2 and α(σ2) = v1v2σ2v2v1.

We leave it to the reader to check that this α preserves the relations of the presentation (1)
of V B3 and so indeed determines a homomorphism. Moreover, as v1v2 is an element of 
order 3, we have that

α3(vi) = vi and α3(σi) = v1v2v1v2v1v2σiv2v1v2v1v2v1 = σi, i = 1, 2,

hence α3 is the identity on V B3 from which we conclude that α is an automorphism 
of V B3. Note that πP (v1σ1) = 1 so v1σ1 ∈ V P3, but πP (α(v1σ1)) = πP (v2σ1v2v1) =
τ2τ1τ2τ1 = τ1τ2 �= 1 showing that α(V P3) �= V P3 and so V P3 is not a characteristic 
subgroup of V B3.

We will apply Theorem 1 to show that in the other cases we do obtain characteristic 
subgroups. Recall that Out (Sn) is trivial for n �= 6 and that Out (S6) is a cyclic group 
of order 2. In [3] the authors used the notation ν6 for the automorphism such that 
its class generates Out (S6), see [3, Introduction] for an explicit definition of this outer 
automorphism.

(a) Let Σn be the set of all surjective homomorphisms from V Bn onto Sn, let Tn =
Σn/ ∼c be the set of equivalence classes of Σn by ∼c. We choose the following set of 
representatives Λn of Tn:
• Λ3 = {ψi | 1 ≤ i ≤ 8}, from Theorem 13,
• Λ4 = {δi | 1 ≤ i ≤ 6}, from Theorem 19,
• Λ6 = {πK , πP , ν6 ◦ πK , ν6 ◦ πP }, from [3, Theorem 2.1], and
• Λn = {πK , πP }, for n ≥ 5 and n �= 6 from [3, Theorem 2.1].
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If n = 6, from Remark 25, Ker(ν6◦πK) = Ker(πK) and Ker(ν6◦πP ) = Ker(πP ). 
Then, from Lemma 23 and Theorem 1 we get that V Pn is characteristic in V Bn when 
n ≥ 4 and that KBn is characteristic in V Bn when n ≥ 3.

(b) Let Σn be the set of all surjective homomorphisms from WBn onto Sn, let T n =
Σn/ ∼c be the set of equivalence classes of Σn by ∼c. We choose the following set of 
representatives Λn of T n:
• Λ3 = {ψi | 1 ≤ i ≤ 5}, from Theorem 14,
• Λ4 = {δi | 1 ≤ i ≤ 4}, from Theorem 20,
• Λ6 = {πP , ν6 ◦ πP }, from [26, Remark 2.8], and
• Λn = {πP }, for n ≥ 5 and n �= 6 from [26, Remark 2.8].

If n = 6, from Remark 25, Ker(ν6 ◦ πP ) = Ker(πP ). Then, from Lemma 24 and 
Theorem 1 we get the result of the second item.

(c) The proof of this item is similar to the last one. For the proof we use Theorem 15, 
Theorem 21, [26, Theorem 1], Lemma 24 and Theorem 1. �

4. Virtual braid groups and the R∞-property

In this section we prove Theorem 3. It will be solved case by case, in three subsections, 
and using slightly different approaches. We note that from the presentation of the virtual 
braid group it follows that

V B2 = WB2 = UV B2 =
〈
σ1, v1 | v2

1 = 1
〉 ∼= Z ∗ Z2.

Hence, V B2 = WB2 = UV B2 has the R∞-property, see [18]. We start by recalling a 
result that we will use repeatedly to prove Theorem 3.

Lemma 26 ([27, Lemma 6]). Consider an exact sequence of groups

1 −→ K −→ G −→ Q −→ 1

where K is a characteristic subgroup of G. Then,

(a) If Q has the R∞-property, then so does G.
(b) If Q is finite and K has the R∞-property, then G so does.

In the sequel we will also make use of some facts about crystallographic groups (see 
e.g. [7] and [33] for more details on these groups). A n-dimensional crystallographic group 
Γ is a group which fits in a short exact sequence

1 −→ Zn −→ Γ −→ F −→ 1

where F is a finite group and Zn is maximal abelian in Γ. Such a short exact sequence 
induces a representation ϕ : F −→ GLn(Z) which is called the holonomy representation. 
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In fact, requiring that Zn is maximal abelian in Γ is equivalent to asking that ϕ is 
a faithful representation. It is known (see e.g. [32, Lemma 2.4]) that Zn is then the 
unique normal and maximal abelian subgroup of Γ and hence Zn is characteristic in Γ.
For such a n-dimensional crystallographic group Γ there exists an embedding ρ : Γ −→
Aff (Rn) = Rn

⋊ GLn(R) with ρ(Γ) ∩ Rn = ρ(Zn) = Zn. After identifying Γ with its 
image ρ(Γ) in Aff (Rn), the second Bieberbach theorem implies that any automorphism 
ψ ∈ Aut (Γ) can be realised as an affine conjugation, i.e. ∃(d, D) ∈ Aff (Rn) such that 
ψ(γ) = (d, D)γ(d, D)−1 for all γ ∈ Γ (see also [11, Remark 3.2]).

4.1. The case of 3 strings

We use the presentation of the virtual braid group with 3 strings given in equation (1).

Lemma 27. The normal closure of the coset of the element v1v2 in V B3/[V P3, V P3]
(resp. in V B3/[KB3, KB3]) is a characteristic subgroup of V B3/[V P3, V P3] (resp. of 
V B3/[KB3, KB3]).

Proof. We recall from [5, Theorem 3.3 and equation (8)] that there is a decomposition 
V B3/[V P3, V P3] ∼= V P3/[V P3, V P3] ⋊ S3 where V P3/[V P3, V P3] is the free abelian 
group of rank 6 generated by {λi,j | 1 ≤ i �= j ≤ 3}, the symmetric group is generated 
by two transpositions v1, v2, and such that the action is given by permutation of indices. 
So, we may write a presentation for V B3/[V P3, V P3] with generators v1, v2 and λi,j for 
1 ≤ i �= j ≤ 3 and defining relations given by

• v1v2v1 = v2v1v2, v2
1 = 1, v2

2 = 1,
• [λi,j , λk,l] = 1 for 1 ≤ i �= j ≤ 3 and 1 ≤ k �= l ≤ 3,
• vk · λi,j · vk = λvk(i),vk(j), for 1 ≤ i �= j ≤ 3 and k = 1, 2.

Let γ = v1v2 ∈ V B3/[V P3, V P3]. Hence γ has order 3 in V B3/[V P3, V P3]. Let N
be the normal closure of the element γ in V B3/[V P3, V P3]. Since every element in 
V B3/[V P3, V P3] of order 3 is conjugate to γ (see [5, Corollary 3.8]) we get that N is a 
characteristic subgroup of V B3/[V P3, V P3].

Now, we prove the result for V B3/[KB3, KB3]. Proposition 17 and Corollary 18 of [2]
show that V B3 can be seen as a semidirect product V B3 = KB3⋊S3, where KB3 can be 
viewed as a group generated by 6 generators xi,j with 1 ≤ i �= j ≤ 3 subject to 6 relations 
xi,kxk,jxi,k = xk,jxi,kxk,j (for {i, j, k} = {1, 2, 3}) and where S3 acts on the generators 
by permuting the indices. In the proof of Proposition 19 of [2] it was shown that in the 
quotient V B3/[KB3, KB3] these relations lead to an equality of cosets x1,2 = x2,3 = x3,1

and x1,3 = x3,2 = x2,1 (which we abusively also denote by the same symbols). Hence, 
from [2, Proposition 19], the group KB3/[KB3, KB3] is a free abelian group of rank 2 
generated by the cosets of the elements x1,2 and x1,3 and we obtain a split extension
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1 −→ KB3/[KB3, KB3] ∼= Z2 −→ V B3/[KB3, KB3]
πK−→ S3 −→ 1

where πK is the homomorphism induced from πK : V B3 −→ S3 (see Subsection 2.1). We 
consider now the following presentation of S3, S3 = 〈a, b | a3 = 1, b2 = 1, (ba)2 = 1〉, 
where a = v1v2 and b = v1. By using the method described in [21, Chapter 10] we find a 
presentation of the group V B3/[KB3, KB3] with generators a, b, x1,2, x1,3 and defining 
relations

• a3 = 1; b2 = 1; (ba)2 = 1;
• [x1,2, x1,3] = 1;
• bx1,2b

−1 = x1,3; bx1,3b
−1 = x1,2;

• ax1,2a
−1 = x1,2; ax1,3a

−1 = x1,3.

We consider now the following extension

1 −→ KB3/[KB3, KB3] −→ πK
−1(Z3)

πK−→ Z3 −→ 1

where Z3 is the group generated by a = v1v2. Notice that πK
−1(Z3) is isomorphic to 

Z ⊕Z ⊕Z3 generated by the set {x1,2, x1,3, a}. From the above we obtain the extension

1 −→ Z⊕ Z⊕ Z3 −→ V B3/[KB3, KB3] −→ Z2 −→ 1

where Z2 is the group generated by b = v1. From this extension we see that the torsion 
subgroup of Z ⊕Z ⊕Z3 is the unique subgroup of order 3 in V B3/[KB3, KB3]. So this sub-
group, which is generated by v1v2 is a characteristic subgroup of V B3/[KB3, KB3]. �

Lemma 27 is useful to prove the next result.

Theorem 28. The quotient groups V B3/[V P3, V P3] and V B3/[KB3, KB3] have the R∞-
property.

Proof. Let N be the normal closure of the coset of v1v2 in V B3/[V P3, V P3]. We consider 
the quotient G = (V B3/[V P3, V P3])/N that has a presentation given by the one of 
V B3/[V P3, V P3] (see the proof of Lemma 27) adding the relation v1v2 = 1, which is 
equivalent to the relation v1 = v2 since v1 and v2 are transpositions. From v1 = v2 and 
the relations vk · λi,j · vk = λvk(i),vk(j), for 1 ≤ i �= j ≤ 3 and k = 1, 2 we conclude that 
G ∼= Z2

⋊Z2 has a presentation with generators λ1,2, λ2,1 and v1 and defining relations

• v2
1 = 1,

• [λ1,2, λ2,1] = 1,
• v1λ1,2v1 = λ2,1,
• v1λ2,1v1 = λ1,2.

Let M be the normal closure of the coset of v1v2 in V B3/[KB3, KB3] (which is 
actually the group of order 3 generated by v1v2) and let H = (V B3/[KB3, KB3])/M . 
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Table 1
The character table of S4.

Representation / 
Conjugacy class 
representative and size

( ) Identity 
element (Size 1)

(1, 2)(3, 4)
(Size 3)

(1, 2)
(Size 6)

(1, 2, 3, 4)
(Size 6)

(1, 2, 3)
(Size 8)

Trivial representation χ1 1 1 1 1 1
Sign representation χ2 1 1 -1 -1 1
Irreducible representation 
of degree two with kernel of 
order four χ3

2 2 0 0 -1

Standard representation χ4 3 -1 1 -1 0
Product of standard and 
sign representation χ5

3 -1 -1 1 0

From the proof of Lemma 27 is clear that H is isomorphic to the group G above in this 
proof.

We note that G and H are isomorphic to the crystallographic group of dimension 
2 of Case 5 of the list of all 17 wallpaper groups given in [20, Section 3] (there it was 
denoted by G2

1). Hence, from [20, Section 3], it follows that G and H have the R∞-
property. Therefore, from Lemma 26 and Lemma 27, we have that V B3/[V P3, V P3] and 
V B3/[KB3, KB3] also have the R∞-property. �

With the last result we may prove that V B3, WB3 and UV B3 have the R∞-property.

Corollary 29. The virtual braid group V B3, the welded braid group WB3 and the unre-
stricted virtual braid group UV B3 have the R∞-property.

Proof. From Theorem 28 we know that the groups V B3/[V P3, V P3] and V B3/[KB3,

KB3] have the R∞-property. From [5, Theorem 5.1] the group V B3/[V P3, V P3] is iso-
morphic to WB3/[WP3, WP3] as well as to UV B3/[UV P3, UV P3]. Then, by applying 
Lemma 26 and Theorem 2 we get this result. �
4.2. The case of 4 strings

Let Z12
⋊S4 be a crystallographic group such that the generators of Z12 are denoted 

by λi,j for 1 ≤ i �= j ≤ 4 and such that the action of w ∈ S4 on λi,j is given by 
w · λi,j = λw−1(i),w−1(j) for all 1 ≤ i �= j ≤ 4 and where for us the operation τμ
in S4 means μ ◦ τ (so first τ , then μ). This is then a left action of S4 on Z12. Let 
ϕ : S4 −→ GL12(Z) be the holonomy representation of Z12

⋊ S4. From the natural 
homomorphism GL12(Z) ↪→ GL12(Q) we shall view the holonomy representation as 
ϕ : S4 ↪→ GL12(Q).

First, we describe the S4-module structure of Q12 using character theory. We record 
in Table 1 the character table of S4.

Let χ be the character of the representation ϕ : S4 ↪→ GL12(Q). Recall that, for an 
element τ ∈ S4, the number χ(τ) = Tr(ϕ(τ)) is equal to the number of generators λi,j
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Table 2
The character χ : S4 −→ GL12(Q).

( ) Identity element 
(Size 1)

τ = (1, 2)(3, 4)
(Size 3)

τ = (1, 2)
(Size 6)

τ = (1, 2, 3, 4)
(Size 6)

τ = (1, 2, 3)
(Size 8)

χ(1) = 12 χ(τ) = 0 χ(τ) = 2 χ(τ) = 0 χ(τ) = 0

that are fixed by τ . In Table 2 we show the character χ evaluated in each of the five 
conjugacy classes of elements in S4, given by representatives.

Now, we compute the components of the character χ:

(χ | χ1) = 1
24 (12 · 1 + 6 · 2 · 1) = 1

(χ | χ2) = 1
24 (12 · 1 + 6 · 2 · (−1)) = 0

(χ | χ3) = 1
24 (12 · 2 + 6 · 2 · 0) = 1

(χ | χ4) = 1
24 (12 · 3 + 6 · 2 · 1) = 2

(χ | χ5) = 1
24 (12 · 3 + 6 · 2 · (−1)) = 1

Hence, the character χ has the decomposition

χ = χ1 + χ3 + 2χ4 + χ5. (4)

Let V ⊆ Q12 be the submodule of Q12 corresponding to χ1 + χ3 + 2χ4. Then, V ′ =
V ∩Z12 is a submodule of Z12 and so a normal subgroup of Z12

⋊ S4 such that Z12/V ′

is torsion-free.
It follows that, as groups, we can write Z12 = V ′ ⊕ W ′ where both V ′ ∼= Z9 and 

W ′ ∼= Z3 are free abelian.

Lemma 30. The group V ′ is a characteristic subgroup of Z12
⋊ S4.

Proof. Let {e1, e2, . . . , e12} be a generating set of Z12 such that {e1, e2, . . . , e9} generates 
V ′. Let w ∈ S4. With respect to this generating set we can write ϕ(w) as a 12 ×12 matrix 
and since V ′ is a submodule, we have that

ϕ(w) =
(
σ1(w) α(w)

0 σ2(w)

)

with σ1 : S4 −→ GL9(Z) corresponding to χ1 + χ3 + 2χ4 and σ2 : S4 −→ GL3(Z) corre-
sponding to χ5.

We can embed Z12
⋊S4 into Aff

(
R12) = R12

⋊GL12(R) by mapping (z, w) to (z, ϕ(w)). 
Let ψ ∈ Aut

(
Z12

⋊ S4
)
. Recall that Z12 is characteristic (see page 38). So, ψ induces 

an automorphism ψ on S4. We know that Aut (S4) = Inn (S4). Hence, there is an inner 
automorphism μ ∈ Inn

(
Z12

⋊ S4
)

such that ψ ◦ μ induces the identity on S4.
As V ′ � Z12

⋊ S4 we know that μ(V ′) = V ′. So, we may assume from now on-
wards that ψ induces the identity on S4. As mentioned before (see page 38) ψ is 
realized by an affine conjugation. So, there exists an element (d, D) ∈ Aff

(
R12) so 
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that ψ(z, ϕ(w)) = (d, D)(z, ϕ(w))(d, D)−1. As ψ induces the identity on S4, we must 
have that Dϕ(w)D−1 = ϕ(w), for all w ∈ S4.

Write D as 
(
D1 D2
D3 D4

)
. Therefore,

(
D1 D2
D3 D4

)(
σ1(w) α(w)

0 σ2(w)

)
=

(
σ1(w) α(w)

0 σ2(w)

)(
D1 D2
D3 D4

)

and so

D3σ1(w) = σ2(w)D3, for all w ∈ S4. (5)

Notice that D3 is a 3 × 9 matrix and can be viewed as a map D3 : Q9 −→ Q3, with 
Q9 an S4-module via σ1 and Q3 an S4-module via σ2. Equation (5) shows that D3 is 
an S4-module map from Q9 to Q3, where Q3 is an irreducible module and Q9 does not 

contain a submodule isomorphic to Q3 and so D3 = 0. Hence D =
(
D1 D2
0 D4

)
.

It now follows that for z ∈ V ′ we have that

ψ(z) = (d,D)(z, 1)(d,D)−1

= (d + Dz,D)(−D−1d,D−1)
= (d + Dz − d, 1)
= (Dz, 1).

But, since D =
(
D1 D2
0 D4

)
it follows that Dz ∈ V ′. �

Theorem 31. The group Z12
⋊ S4 has the R∞-property.

Proof. The quotient of Z12
⋊S4 by the characteristic subgroup V ′ of Lemma 30 satisfies

Z12/V ′
⋊ S4 ∼= Z3

⋊ S4

where the action is faithful (it corresponds to χ5). Then it is a 3-dimensional crystal-
lographic group. From [9, Theorem 4.2] we know that this group has the R∞-property. 
Hence, from Lemma 26 the result follows. �
Corollary 32. The virtual braid group V B4, the welded braid group WB4 and the unre-
stricted virtual braid group UV B4 have the R∞-property.

Proof. We note that the group V B4/[V P4, V P4] is isomorphic to the group Z12
⋊ S4 of 

Theorem 31 (see [5, Theorem 3.3]), so by Theorem 31 it has the R∞-property. From 
[5, Theorem 5.1] V B4/[V P4, V P4] is isomorphic to WB4/[WP4, WP4] as well as to 
UV B4/[UV P4, UV P4]. Then, from Lemma 26 and Theorem 2 we conclude the result 
for this corollary. �



K. Dekimpe et al. / Journal of Algebra 663 (2025) 20–47 43
4.3. General cases

In the next proposition we show that, for n ≥ 2, the R∞-property holds for the 
unrestricted virtual braid group UV Bn and its pure subgroup UV Pn. Then we use it to 
prove the result for the virtual braid group V Bn, with n ≥ 5.

Proposition 33. Let n ≥ 2. The unrestricted virtual pure braid group UV Pn and the 
unrestricted virtual braid group UV Bn have the R∞-property.

Proof. The case n = 2 for UV Bn was mentioned in the first paragraph of this section. 
From [26, Remark 2.10] it follows that, for n ≥ 2, UV Pn is isomorphic to the direct 
product of n(n −1)/2 copies of the free group of rank 2. Hence, from [10, Example 5.1.8]
we conclude that UV Pn has the R∞-property.

Now, let n ≥ 3. From Theorem 2, the group UV Pn is a characteristic subgroup of 
UV Bn (see also [26, Proposition 2.15] for n ≥ 5). Then, from Lemma 26 applied to the 
short exact sequence 1 −→ UV Pn −→ UV Bn −→ Sn −→ 1 we obtain the result for 
UV Bn. �
Remark 34. We note that, for n = 3 and 4, we also proved the R∞-property for UV Bn

in Corollaries 29 and 32, respectively, but using different techniques.

All possible homomorphisms from V Bn to V Bm were determined in [3, Theorem 2.3], 
for n ≥ 5, m ≥ 2 and n ≥ m. In particular, for n ≥ 5, Out (V Bn), the outer automor-
phism group of V Bn, is isomorphic to Z2 ×Z2 and is generated by the classes of ζ1 and 
ζ2 where

• ζ1 : V Bn −→ V Bn is defined by ζ1(σi) = viσivi and ζ1(vi) = vi;
• ζ2 : V Bn −→ V Bn is defined by ζ2(σi) = σ−1

i and ζ2(vi) = vi;

for i = 1, . . . , n − 1, see [3, Corollary 2.5].

Lemma 35. Let n ≥ 5. The normal closure K of the set

{viσi+1σivi+1σ
−1
i σ−1

i+1; vi+1σiσi+1viσ
−1
i+1σ

−1
i | i = 1, . . . , n− 2}

is a characteristic subgroup of V Bn.

Proof. We shall use the presentation of V Bn given in Definition 4. Recall that, for all 
i = 1, . . . , n − 1, vi = v−1

i in V Bn. In the following computations we use the mixed 
relation (MR2) vivi+1σi = σi+1vivi+1 of V Bn, for i = 1, 2, . . . , n − 2, which is equivalent 
to σivi+1vi = vi+1viσi+1 or to vivi+1σ

−1
i = σ−1

i+1vivi+1 or to σ−1
i vi+1vi = vi+1viσ

−1
i+1.
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ζ1(viσi+1σivi+1σ
−1
i σ−1

i+1) = vivi+1σi+1vi+1viσivivi+1viσ
−1
i vivi+1σ

−1
i+1vi+1

= vivi+1σi+1vi+1viσivi+1vivi+1σ
−1
i vivi+1σ

−1
i+1vi+1

= vivi+1σi+1vi+1vivi+1viσi+1viσ
−1
i+1vivi+1vivi+1σ

−1
i+1vi+1

= vivi+1σi+1vivi+1σi+1viσ
−1
i+1vi+1viσ

−1
i+1vi+1

= vivi+1vivi+1σiσi+1viσ
−1
i+1σ

−1
i vi+1vivi+1

= vi+1vivi+1 · vi+1σiσi+1viσ
−1
i+1σ

−1
i · vi+1vivi+1

ζ1(vi+1σiσi+1viσ
−1
i+1σ

−1
i ) = vi+1viσivivi+1σi+1vi+1vivi+1σ

−1
i+1vi+1viσ

−1
i vi

= vi+1viσivivi+1σi+1vivi+1viσ
−1
i+1vi+1viσ

−1
i vi

= vi+1viσivivi+1vivi+1σivi+1σ
−1
i vi+1vivi+1viσ

−1
i vi

= vi+1viσivi+1viσivi+1σ
−1
i vivi+1σ

−1
i vi

= vi+1vivi+1viσi+1σivi+1σ
−1
i σ−1

i+1vivi+1vi
= vivi+1vi · viσi+1σivi+1σ

−1
i σ−1

i+1 · vivi+1vi

ζ2(viσi+1σivi+1σ
−1
i σ−1

i+1) = viσ
−1
i+1σ

−1
i vi+1σiσi+1

= (vi+1σiσi+1)−1vi+1σiσi+1viσ
−1
i+1σ

−1
i (vi+1σiσi+1)

ζ2(vi+1σiσi+1viσ
−1
i+1σ

−1
i ) = vi+1σ

−1
i σ−1

i+1viσi+1σi

= (viσi+1σi)−1viσi+1σivi+1σ
−1
i σ−1

i+1(viσi+1σi) �
We recall that the unrestricted virtual braid group UV Bn is the quotient group 

V Bn/K of the virtual braid group, see Definition 6.

Theorem 36. Let n ≥ 5. The virtual braid group V Bn has the R∞-property.

Proof. From Lemma 35 we know that K is characteristic in V Bn. The quotient V Bn/K

is the unrestricted virtual braid group UVBn that, from Proposition 33, has the R∞-
property. The desired result then follows by applying Lemma 26. �
Remark 37.

(a) To the best of our knowledge, for n ≥ 5, it is not known if the welded braid group 
WBn has the R∞-property.

(b) From the presentation of V Pn (see [1, Theorem 1]) we get V P2 ∼= Z ∗ Z, which we 
know it has the R∞-property. Since V P2 = WP2 = UV P2, these groups have the 
R∞-property. For n ≥ 3, as far as we know it is unknown if the R∞-property holds 
or not for virtual pure braid groups and for the welded pure braid groups.

As explained at the end of the introduction, Theorem 3 is now proved by collecting 
all the results of this section.
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Appendix A

We note that the technique used in this work to prove that some subgroups of virtual 
braid groups are characteristic may be applied to other braid-like groups. We exemplify 
it in this section by showing that some remarkable subgroups of virtual twin groups are 
characteristic. For more details about these groups see [28] and [29] and the references 
therein.

The virtual twin group V Tn, n ≥ 2, admits a presentation with generators σi, ρi for 
i = 1, . . . , n − 1 and defining relations:

• σ2
i = 1 for i = 1, 2, . . . , n − 1.

• σiσj = σjσi for |i − j| ≥ 2.
• ρ2

i = 1 for i = 1, . . . , n − 1.
• ρiρj = ρjρi for |i − j| ≥ 2.
• ρiρi+1ρi = ρi+1ρiρi+1, for i = 1, 2, . . . , n − 2.
• ρiσj = σjρi, for |i − j| ≥ 2.
• ρiρi+1σi = σi+1ρiρi+1, for i = 1, . . . , n − 2.

Let n ≥ 2. For 1 ≤ i ≤ n − 1 let τi = (i, i + 1) as before. Let πP : V Tn −→ Sn

be the homomorphism defined by πP (σi) = πP (ρi) = τi for i = 1, . . . , n − 1. The pure 
virtual twin group PV Tn is defined to be the kernel of πP . Let πK : V Tn −→ Sn be the 
homomorphism defined by πK(σi) = 1 and πK(ρi) = τi for i = 1, . . . , n − 1. The kernel 
of πK will be denoted by KTn.

Theorem 38. Let n ≥ 2.

(a) The groups PV Tn and KTn are not isomorphic.
(b) The virtual pure twin group PV Tn is a characteristic subgroup of the virtual twin 

group V Tn if and only if n �= 3 and the group KTn is a characteristic subgroup of 
V Tn if and only if n ≥ 3.

Proof. Let n ≥ 2.

(a) From [28] the pure virtual twin group PV Tn is a right-angled Artin group (hence it 
is torsion free) and from [29] the group KTn is a right-angled Coxeter group (so it 
has finite order elements), hence they are not isomorphic.

(b) The proof of this item follows the same lines as the proof of Theorem 2, so we just 
indicate some steps of the proof.

Claim 1 : There are, up to conjugation,

(i) 3 surjective homomorphisms from V T2 to S2;
(ii) 5 surjective homomorphisms from V T3 to S3;
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(iii) 6 surjective homomorphisms from V T4 to S4;
(iv) 4 surjective homomorphisms from V T6 to S6; and
(v) 2 surjective homomorphisms from V Tn to Sn, for n ≥ 5 and n �= 6.

The proof of Claim 1 for n ≥ 5 may be found in [29]. For the cases n = 2, 3, 4 the 
verification is done as in Section 3 for the virtual braid group.

Claim 2 : It is clear that the image of KT2 by the automorphism ψ : V T2 −→ V T2
defined by ψ(σ1) = ρ1 and ψ(ρ1) = σ1 is not KT2. Also, it is not difficult to 
verify that the image of PV T3 by the automorphism ϕ : V T3 −→ V T3 defined by 
ϕ(σ1) = σ2, ϕ(σ2) = ρ1ρ2σ2ρ2ρ1, ϕ(ρ1) = ρ1 and ϕ(ρ2) = ρ2 is not PV T3. Therefore, 
the group KT2 (resp. PV T3) is not a characteristic subgroup of V T2 (resp. V T3).

Claim 3 : The groups PV T2, PV T4, KT3 and KT4 are not isomorphic to the 
kernels of the other homomorphisms (for the same number of strings) from Claim 1. 
The verification of this claim can be done along the same lines as we did for V Bn in 
Section 3.

Then, applying Theorem 1, we get that for n �= 3 (resp. n ≥ 3) the groups PV Tn

(resp. KTn) are characteristic subgroups of V Tn. �
An application of Theorem 38 is the following result.

Corollary 39. Let n ≥ 2. The virtual twin group V Tn has the R∞-property.

Proof. Since V T2 is isomorphic to Z2 ∗ Z2 then from [20, Proposition 2.8] (see also 
[18, Lemma 2]) it has the R∞-property. From the presentation of KTn given in [29, 
Theorem 3.3] we get the isomorphism KT3 ∼= Z2 ∗ Z2 ∗ Z2 ∗ Z2 ∗ Z2 ∗ Z2. From [18, 
Lemma 2] the group KT3 has the R∞-property and since it is a characteristic subgroup 
of V T3 (Theorem 38) then from Lemma 26 the latter group also has the R∞-property. 
For n ≥ 4 the pure virtual twin group PV Tn has the R∞-property, see [28]. Then, from 
Lemma 26 and Theorem 38, the virtual twin group V Tn has the R∞-property. �
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