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1. Introduction

In this paper we are interested in characteristic subgroups and the Roo-property of
the virtual braid groups.

The virtual braid group V' B, is the natural companion to the category of virtual knots,
just as the Artin braid group is to usual knots and links. We note that a virtual knot
diagram is like a classical knot diagram with one extra type of crossing, called a virtual
crossing. The virtual braid groups have interpretations in terms of diagrams, see [22], [23]
and [36]. The notion of virtual knots and links was introduced by Kauffman together with
virtual braids in [23], and since then it has drawn the attention of several researchers.
Virtual braid groups have interesting quotients, among them we are interested here in
the welded braid group W B, and the unrestricted virtual braid group UV B,,. As in
the classical case for Artin braid groups, notable subgroups of VB,,, WB, and UV B,,
are the respective pure subgroups VP,,, WP, and UV P,,. For V B,, there is also another
notable subgroup that is an Artin group and will be denoted by K B,,. For the definitions
of all these groups see Subsection 2.1.

Let K be a subgroup of a group G. Recall that K is said to be a characteristic sub-
group of G if p(K) = K for every automorphism ¢ of G. The existence of characteristic
subgroups of a given group is in many cases useful. E.g. in this paper we will use char-
acteristic subgroups to study the Roo-property (see the definition below) for the virtual
braid groups as well for some quotients of it.

Let G, H be two groups. For every h € H we have the inner automorphism ¢, : H —
H, defined by cp(z) = hah~!. We say that two homomorphisms 1y, ¥2: G — H are
conjugate, and we denote it by 17 ~. s, if there exists an element h € H such that
by = cp, 01p1, which means that 19 (g) = hip1(g)h~1, for every g € G. We note that ~. is
an equivalence relation. Our first result is the following theorem which gives a condition
on the kernel of a homomorphism to be a characteristic subgroup.

Theorem 1. Let G and QQ be two groups. Let ¥ be the set of all surjective homomorphisms
from G onto Q, let T = X/~ be the set of equivalence classes of ¥ by ~. and let A be
a set of representatives of T. Let A € A be such that for all w € A such that Ker(w) is
isomorphic to Ker()\) it actually holds that Ker(\) = Ker(w).

Then, Ker(\) is a characteristic subgroup of G.

Our main result about characteristic subgroups of virtual braid groups and some of
its quotients is the following result.

Theorem 2. Let n > 2.

(a) The virtual pure braid group V P, is a characteristic subgroup of VB, if and only
if n > 4 and the group KB, is a characteristic subgroup of the virtual braid group
V B, if and only if n > 3.
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(b) The welded pure braid group WP, is a characteristic subgroup of the welded braid
group W B, if and only if n > 3.

(¢) The unrestricted virtual pure braid group UV P, is a characteristic subgroup of the
unrestricted virtual braid group UV B, if and only if n > 3.

We note that Theorem 2 is known for n > 5, but was not known for the case of
few strings, so in this work we complete the knowledge about pure subgroups being
characteristic in their respective virtual braid groups. Theorem 2 (for n > 5) was proved
for VB, in [3] using the explicit description of the automorphism group of V B,,, see |3,
Corollary 2.7); for WB,, (see [26, Remark 2.17]) and UV B,, (see [26, Proposition 2.15])
the description of the automorphism group was not used. However, we highlight that our
approach is different by using the general result in Theorem 1 for any number of strings:
instead of using explicitly the automorphism group of each of the groups involved we
use, up to conjugation, the set of surjective homomorphisms onto the symmetric group.
The description of these sets for small values of n is given in Section 3. It is worth to
notice that Theorem 2 will be used in the proof of Theorem 3 below.

Consider a group G and an endomorphism « of G. We say that two elements x and y of
G are twisted conjugate (via «) if and only if there exists a 2 € G such that x = zya(z) L.
It is easy to see that the relation of being twisted conjugate is an equivalence relation and
the number of equivalence classes (also referred to as Reidemeister classes) is called the
Reidemeister number R(a) of a. This Reidemeister number is either a positive integer
or oo.

Reidemeister numbers find their origins in algebraic topology and to be more precise
in Nielsen—Reidemeister fixed point theory. Here one is interested in the study of the fixed
point classes of a selfmap f of a space X. The number of fixed point classes of f is called
the Reidemeister number of f and is denoted by R(f). It is known that R(f) = R(f.),
where f.: m(X) — m1(X) is the induced endomorphism on the fundamental group
m1(X) of X.

There is currently a growing interest in the study of groups G having the R.,-property,
these are groups for which R(«) = oo for any automorphism « € Aut (G). The study of
groups with that property was initiated by Fel’shtyn and Hill [15].

Since the beginning of this century many authors have been studying this property
and for several families of groups it is known whether or not they have the Ro.-property.
Here are some families of groups with the R.-property: the non-elementary Gromov
hyperbolic groups [12,24], most of the Baumslag—Solitar groups [13] and groups quasi—
isometric to Baumslag—Solitar groups [34], generalized Baumslag—Solitar groups [25],
many linear groups [16,31] and also several families of lamplighter groups [19,35]. The
study of the Roo-property for braid groups and braid-type groups has been increasing
during the last years. For instance, in [14] it was shown that the Artin braid groups
B,, and the mapping class groups of closed orientable surfaces different from the sphere
have property Roo. In [8] the case of the pure Artin braid groups P, was considered,
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and they also share this property. More recently, the R.-property was studied for some
right angled Artin groups in [10] and for some Artin groups in [4].

In this paper we study the Ro-property for virtual braid groups and unrestricted
virtual braid groups. Since these groups are trivial when n = 1, we shall consider, in
general, n > 2. More precisely, the statement below summarises the main results in this
work about this property.

Theorem 3. Let n > 2. The following groups have the R..-property:

(a) The unrestricted virtual pure braid group UV P,
(b) the unrestricted virtual braid group UV B,
(c) the virtual braid group V B,.
Further, if n = 2,3 and 4 also the welded braid group W By, has the R.-property,
and for n = 2 also the virtual (V Py), welded (W Pa) and unrestricted (UV Py) pure
braid groups have the R, -property.

For n > 5, part (¢) of Theorem 3 above was simultaneously obtained by N. Nanda
([30]), using a different approach.

This paper is organized as follows. In the first subsection of Section 2 we will give
the main definitions about the virtual braid groups that will be used in the text and
in the second subsection we prove Theorem 1. In Section 3 we prove Theorem 2. To do
that, we first treat the case n = 2 and thereafter we describe the set of homomorphisms,
up to conjugation, from VB, (and also from WB, and UV B,) to S,, for n = 3,4.
Then, in Subsection 3.4 we use this information and Theorem 1 to prove Theorem 2.
We prove Theorem 3 in Section 4, its proof is given in several different steps and using
different techniques. For n > 2, the group UV P, is isomorphic to a direct product of
free groups and from Theorem 2 it is a characteristic subgroup of UV B,,. Using this, in
Proposition 33, we prove item (a) and item (b) of Theorem 3. To prove Theorem 3 (c),
for n > 5, we show that the kernel of the natural projection of VB, onto UV B, is
a characteristic subgroup and then we use item (b) of Theorem 3, this will be done in
Theorem 36. For n = 3 or n = 4, we first show that the quotient VB, /[V P,, V P,] has
the Roo-property, where [V P,, VP,] is the commutator subgroup of the virtual pure
braid group V P,, see Theorems 28 and 31, respectively. Then the desired result for
Theorem 3 (c) for the cases n = 3 and n = 4 is obtained in Corollaries 29 and 32,
respectively.

We end this paper with an appendix explaining how the techniques of this paper can
also be used to treat other braid-like groups such as the virtual twin groups.
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2. Preliminaries

In this section we give the definitions of virtual braid groups that we use in the text
and we prove Theorem 1.

2.1. Virtual braid groups and forbidden relations

In this subsection, we recall the basic definitions of virtual braid groups. First, we
write a presentation of the virtual braid group V B,, that will be very useful in this work.
This presentation appears in [2] and it is a reformulation of the one given in [36, p.798].

Definition 4 (/2, Theorem 4]). Let n > 2. The wvirtual braid group on n strings, denoted
by VB,, is the abstract group generated by o; (classical generators) and v; (virtual

MR].) 0;Vj = V04, | ) 7]. |Z 2,
MR2) ViVi410; = 04410Vi41, 1= 1, 2, NN 2.

generators), for i = 1,2,...,n — 1, with relations:
(AR1) 0i0,410; = 044100441, 1 =1,2,...,n — 2;
(AR2) 0,05 =0j0;, |1 —j|>2;
(PR1) vv;410; = 04100541, 1= 1,2, ... ,n — 2;
(PR2) viv; = vjv;, |1 —j > 2;
(PR3) v2=1,i=1,2,...,n— I;
(
(

Remark 5. The letters AR, PR and MR that appear in Definition 4 are used to indicate
the type of relations in the given presentation of V B,: Artin Relations, Permutation
Relations and Mized Relations.

Let n > 2. As in [3, Section 2], from the presentation of VB, one can see that
there are surjective homomorphisms np: VB, — S, and ng: VB, — 5, defined
by 7p(c;) = mp(v;)) =7 = (i,i+ 1) forall 1 < i < n—1and by 7x(0;) = 1 and
mr(vi) =7 = (i, i+ 1) for all 1 < i < n— 1, respectively. The kernel of 7p is called the
virtual pure braid group and it is denoted by V P,. A presentation of this group can be
found in [1, Theorem 1]. The kernel of 7k, denoted by K B,, is known to be an Artin
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group (this follows from the presentation of K B,, given in [2, Proposition 17]). This fact
has been useful to obtain properties of the virtual braid group itself, for instance it was
essential in determining the set of endomorphisms of VB,, in [3]. As mentioned in the
first paragraph of Section 3 of [1] (resp. in [2, Section 6]) the virtual braid group admits
a decomposition as semi-direct product VB, = VP, x S, (resp. VB, = KB, x S,),

with ¢: S, — V B,, given by «(7;) = v;, for i = 1,...,n—1, being a section for 7p (resp.
for 7).
Definition 6. Consider, for i = 1,...,n — 2, the following so-called forbidden relations in

the virtual braid group:

(a) V0410 = 04410;Vi41,
(b) Vi410:0i41 = 0;04410;.

The welded braid group, denoted by W B,,, is the quotient of V' B,, by the normal closure of
the relations (a). The unrestricted virtual braid group, denoted by UV B, is the quotient
of VB,, by the normal closure of the relations (a) and (b).

Remark 7. We note that the welded braid group W B,, appears with other names in
the literature, for example as the loop braid group, see [6]. Also in [6] one can find an
extensive exposition of it.

Since the forbidden relations are preserved by wp: VB, — S,, we may define the
homomorphisms 7p: WB, — S, and 7p: UVB,, — S, by 7p(0;) = 7p(vi) =
(i,i+1) forall1 <i<mn—1and Tp(o;) =7p(v;) = (i, i+ 1) forall 1 <i<n-—1,
respectively. The kernel of 7p is called the welded pure braid group and it is denoted
by WP,. The kernel of 7p is called the unrestricted virtual pure braid group and it is
denoted by UV P,,.

We note that, for n > 3, is not possible to define a similar homomorphism
nx: VB, — S, for the groups W B, and UV B,, since the forbidden relations are
not preserved by 7.

2.2. On characteristic subgroups

In this subsection we prove a general result about characteristic subgroups of a group.
Recall that two homomorphisms of groups 1, ¥2: G — H are conjugate, denoted by
1 ~c o, if there exists n € Inn (H) such that ¢ = o ;. The following lemma is an
easy observation.

Lemma 8. Let X be the set of all homomorphisms from G to H. Then ~. is an equivalence
relation on 3.
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We note that Lemma 8 also holds if we restrict X to the set of all surjective homo-
morphisms from G to H.

Proof of Theorem 1. Let A\ € A such that for all w € A it holds that Ker(\) = Ker(w) as
soon as they are isomorphic. Let ¢: G — G be any automorphism of G. Since Aoy € %
then there is ( € A such that Ao ¢ ~, (, i.e. there exists an inner automorphism of @,
say 7, such that A o ¢ = 1o ( and the following square is commutative

o

It is easy to see that p(Ker(¢)) = Ker(A) and so Ker((¢) is isomorphic to Ker(A). By the
hypothesis, it follows that Ker(¢) = Ker()\), hence o(Ker(X\)) = ¢(Ker(C)) = Ker(\).
So we proved that ¢(Ker(\)) = Ker(\) for any automorphism of G, showing that

<
E—

IR

Q%Q

A
E—

Ker()\) is a characteristic subgroup of G. O

Remark 9. The proof of Theorem 1 was in part motivated from the one given in [26] to
prove that, for n > 5, UV P, is a characteristic subgroup of UV B,,, see [26, Proposi-
tion 2.15].

We finish this subsection with the following property about homomorphisms being
conjugate.

Proposition 10. Let G be a quotient of a group G and p: G — G the natural projection.
Consider two homomorphisms (,,(y: G — H and define C1,C2: G — H by ¢; =, 0p,
fori=1,2. Then, {1 ~¢ (o if and only if {1 ~c Cy.

Proof. Suppose that (; ~. (3. By definition there is h € H such that (;(g) = h(2(g)h ™1,
for all g € G. So, {; o p(g) = hly 0 p(g)h™?, for all g € G, that is equivalent to {,(g) =
h¢o(g)h™t, for all g € G. Hence, (; ~c Co.

The proof of the converse is similar. O

3. Characteristic subgroups of virtual braid groups

The main objective of this section is to prove that the pure virtual braid groups V P,
are characteristic subgroups of V' B,, for n > 4 and that the groups K B,, are characteristic
subgroups of V B,, for n > 3. We recall that a group homomorphism : G — H is said
to be abelian if its image ¥(G) is an abelian subgroup of H. The homomorphisms 7 p
and mx defined in Subsection 2.1 will be mentioned several times in this section.
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3.1. Two strings case

From the presentation of the virtual braid group V B,, and the definition of the groups
W B,, and UV B,,, see Section 2, it follows that

VBQ = WBQ = UVB2 = <0’1,7)1 | ”U% = 1> =7 *ZQ.

Remark 11. In [26, Remark 2.6] the author constructed an automorphism a: VBy —
V By defined by a(o1) = aflvl and «(vy) = v1. Using this automorphism she proved
that VP, = WP, = UV Ps is not characteristic in VBy = W By = UV Bs.

We note that the same automorphism may be used to verify that K By is not charac-
teristic in V Bs.

3.2. Homomorphisms from virtual braid groups to the symmetric group: three strings
case

In this subsection we will use the following presentation of the virtual braid group
with 3 strings (see Section 2 for a presentation of V B,,):

2 2
VB3=(01,02,01,v2 | 010201 =020102, 010201 =VaV10V2, V10201 = 0201V, v; = 1,05 =1)

(1)

and the presentation
Sy =(m1,72 | ITeT1 = TomiT2, Ty = 1,75 = 1) (2)

of the symmetric group Ss.
Define, for 1 < i < 8, the following homomorphisms ;: V B3 — S3:

(a) Y1(v1) = 11, Y1(v2) = 11, P1(01) = To, P1(02) = To;

(b) Pa(v1) = 71, Y2(v2) = Ta, Ya(o1) = 71, P¥a(02) = T2. In this case 1)y is equal to the
homomorphism 7p;

(c) ¥3(v1) = 71, P3(v2) = T2, ¥3(01)

(d) pa(vy) = 11, Ya(v2) = T2, Yu(01)

(e) ¥5(v1) =71, Y5(v2) = T2, ¥5(01) = 1172, P5(02) = T172;

(f) ve(v1) = 71, Y6(v2) = T2, Y6(01) = T271, Y6(02) = T2T1;

(9) ¥7(v1) = 11, Yr(v2) = T2, 7(01) = 1, ¥7(02) = 1. In this case 17 is equal to the
homomorphism 7;

(h) Yg(v1) = 11, Ys(v2) = 71, Ys(01) = T172, Ys(02) = T1To.

T2, 1/’3(02) = T17271;
1T, Pa(02) = T1;

01

01

I~ o~ o~ —~

Remark 12. We note that the homomorphisms {¢; | 1 < i < 8} are pairwise non con-
jugate. Indeed, first we can see that the homomorphisms ¢; and g are not conjugate
to ; for i = 2,3,...,7 because ¥;(v1) = ¢;(vs) for j = 1,8 and this is not the case for
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the v;’s with ¢ = 2,3,...,7. Moreover, ¢ is not conjugate to g because ¢ (o1) is an
element of order 2, while ¢g(01) has order 3.

Now assume that v; is conjugate to 1; with 3 < 4,7 <7 and let A € S3 be such that
P = cyothj. As ;(v1) = j(v1) = 71, it follows that A7y A~ = 71 and analogously from
¥;i(v2) = ¥j(va) = 7o we find that AA~! = 7. Hence A centralizes both 7 and 75 and
so A belongs to the centre of S3 (because S5 is generated by 71 and 73). But the centre
of S3 is trivial, so A = 1 from which we get that 1; = 1; and so i = j.

Theorem 13. Let ¢: V Bs — S3 be a homomorphism. Then, up to conjugation, one of
the following possibilities holds

(a) ¥ is abelian;
(b)) pe{yi|1<i<8}.

Proof. Let ¢: VB3 — S35 be a homomorphism and let ¢: S5 — V B3 be the natural
inclusion defined by ¢(71) = v1 and ¢(72) = ve. Then, 9 o ¢ is an endomorphism of
S3. It is straightforward to verify that, up to conjugation, i o ¢ is either the identity
homomorphism or im(ot) = (1) or im(por) = {1} (the trivial subgroup). To say that
1) o ¢ is abelian is equivalent to saying that v o ¢ is, up to equivalence, not the identity.

First suppose that v o ¢ is not the identity. Hence, from the relations v? = 1, v3 = 1
and v1v2v] = Vo102 We have ¥(v1) = ¥(v2) = wy € S3 with w? = 1. From the relation
V1201 = 02v1v2 We get Y(o1) = ¥(o2) = we € Ss. Notice that, up to conjugacy, w; is
either 1 or 7. Also if w; =1 or we = 1 then v is abelian.

So, we suppose that wy; = 71 and that ws is a non trivial element in S3. Now we
analyse the possible values of wy € S3 such that ) is a homomorphism.

o Ifp(v1) =71, Y(v2) =71, Y(o1) = 71, P(02) = 71 then ¢ is abelian.

e Suppose that ¥ (vi) = 11, ¥(v2) = 71, ¥(01) = T2, ¥(02) = T2. This homomorphism
is 77/11.

o I p(v1) =71, ¥(v2) = 71, Y(01) = 172, Y(02) = 7172 then ¥ is ¢s.

e Suppose that ¥(v1) = 71, ¥(v2) = 11, Y(01) = 717271, Y(0o2) = T17271. Then ¥ is
conjugate to 1.

o Let ¢(v1) = 11, ¥(v2) = 71, ¥(01) = 1271, Y(02) = To71. Then 1) is conjugate to s.

For any choice of wa = ¥(01) = ¢(02) in S3 we obtain an abelian homomorphism or a
homomorphism that is conjugate to ¥, or .
Now, suppose that i o ¢ is the identity homomorphism. This implies that

Y(v1) =11 and P (ve) = To.

From the mixed relation vjvaoivav; = o9 it follows that if we know (o) then ¢ (03) is
completely determined. We analyse the possible values of ¢ (o).
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o Suppose that ¢(o1) = 1, ¥(02) = 1. This homomorphism is ¢y = mg.

o Suppose that ¥(o1) = 7. Then (03) = 7172717271 = T2. This homomorphism is
o = Tp.

o Let ¢p(01) = 7o, then t(02) = Ty TaTaT2e7 = T17271. This homomorphism is 3.

o IfY(01) = mimam1, ¥(02) = T oo TaTom = T1. This homomorphism is 9)y.

o Let ¥(01) = 1172. So, (02) = T1TaT1T2ToT1 = T172. This homomorphism is 5.

o Suppose that 1(o1) = 7o71. Then p(02) = 17272717271 = T271. This homomorphism

is ’(/)6.

From the computations above we proved that, up to conjugation, ¢ is abelian or ¥ €
{pi]1<i<8). O

Now we study the homomorphisms from the welded braid group W B3 and the
unrestricted braid group UV Bs to the symmetric group S3. The study of these ho-
momorphisms follows the same lines as the proof of Theorem 13. Instead of repeating
this method, we may verify which homomorphisms given in Theorem 13 respect the
forbidden relations given in Definition 6.

Theorem 14. Let w: W B3 — S3 be a homomorphism. Then, up to conjugation, one of
the following possibilities holds

(a) w is abelian;

(b) w =1, where ¢ € {1h; | 1 < i < 5} as in Theorem 13 and 1: W B3 — Ss is the
induced homomorphism in the quotient of V Bs by adding the forbidden relation (a)
of Definition 6.

Proof. Let w: W B3 — S35 be a homomorphism. If w is abelian there is nothing to prove.
Suppose that w is non-abelian. Let ¢): V B3 — S3 be a homomorphism that belongs to
{1; | 1 <i < 8} as in Theorem 13. We verify which of these homomorphisms satisfy the
forbidden relation (a) of Definition 6.

Let ¢ = 1. Then ¢1(v10901) = 117272 = 71 and ¢ (0901v2) = ToT97 = 71. Hence,
t1: WB3 — S3 is a homomorphism. Now, let ¢ = 7. Recall that 1 (vy) = 71,
Yr(v2) = 72, ¥7(01) = 1 and ¢7(02) = 1. Then Y7(vio201) = 71 and YP7(0201v2) = To.
Hence, 97 does not induce a homomorphism in the quotient group W Bs. The verification
of the other homomorphisms ¥ € {¢; | 1 <4 < 8} is similar and with this computation
we obtain the result of this theorem. O

Using the same idea of the proof of the last theorem we get the following result about
unrestricted virtual braid groups.

Theorem 15. Let y: UV B — S3 be a homomorphism. Then, up to conjugation, one
of the following possibilities holds
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(a) p is abelian; B

(b) =1, where p € {ah; | 1 < i < 4} as in Theorem 13 and ¢: UV Bz — S3 is the
induced homomorphism in the quotient of V Bs by adding the forbidden relations (a)
and (b) of Definition 6.

Proof. The proof of this theorem is similar to the one of Theorem 14. O

Remark 16. It follows from Proposition 10 and Theorem 13 that the homomorphisms
{ap; | 1 <i <5} of Theorem 14(b) are pairwise non conjugate. Similarly for the homo-
momorphisms of Theorem 15(b).

3.3. Homomorphisms from virtual braid groups to the symmetric group: four strings
case

In this subsection we will use the following presentation of the symmetric group
Sy = = = = Z_r2=r2=1 3
4= (T1,T2, T3 | TIT2T1 = TaT1To, ToTaTe = T3T2T3, TIT3 = T3T1, T} =Ty = T3 = (3)

and the presentation of the virtual braid group with 4 strings (see Section 2 for a pre-
sentation of V B,,) with generators o1, 09, 03, v1,v2,v3 and defining relations:

(AR) 010201 = 020102, 020302 = 030203, 0103 = 03071,

_ _ _ 2 _ 2 _ 2 _
(PR) v1v201 = 0201 V2, V2U3V2 = U3V2V3, U1V3 = U3V, V5 = 1, v5 =1, v =1,
(MR) 01v3 = 0301, 03V1 = V103, V1V201 = 02V1V2, V2U302 = 03V2V3.

Let n: S4 — Sy be the homomorphism defined by 7(71) = n(73) = 71 and n(12) = 7.

Lemma 17. Let p: Sy — Sy be any endomorphism of Sy. Then, up to conjugation, one
of the following possibilities holds.

(a) o is abelian,
(b) @ is the identity homomorphism,
(c) o=

Proof. This follows from examining case by case all the possible images of the transposi-
tions. We note that if, for some i = 1,2, 3, ¢(7;) = 1 then ¢ is the trivial homomorphism.
Hence, we do not consider this case. Also, we notice that if, for some i = 1,2,3, o(7;)
is a product of different transpositions then ¢ is abelian with image the cyclic group of
order 2.

Suppose that ¢(71) = 71. It follows from the relation 7173 = 7371 that ¢(73) lies in
{1,71, 73,7173}, the centralizer of (11) in S4. By examining the possible images of 73 we
obtain, up to conjugation, that either ¢ is abelian, or ¢ is the identity homomorphism
orpo=mn. 0O
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Define, for 1 < i < 6, the following homomorphisms §;: V. By — Sy:

(a) 61(v1) = 71, 01(v2) = T2, 61(v3) = 71, d1(01) = 71, 01(02) = 72, 01 (03) = T1;

(b) b2(v1) = 71, 62(v2) = T2, 02(v3) = 71, 02(01) = T3, 62(02) = T3T2T1T2T3, G2(03) = T3;

(C) 63(’1)1) = T1, 53("02) = T2, 63(’113) = 73, 63(01) = T1, 53(02) = T2, 63(03) = T3. ThlS 53
is equal to the homomorphism 7p;

(d) 64(v1) = 71, da(v2) = 7o, da(v3) = T3, 04(01) = T3, 04(02) = T3T2T1T2T3, 04(03) = T1;

(6) 65(’[)1) = T1, 55(1)2) = Ta, 55(03) = T3, 55(0’1) = 1, 55(0’2) = 1, 55(03) =1. ThlS 65 is
equal to the homomorphism 7;

(f) d6(vi) = 71, 06(v2) = T2, 06(v3) = T1, d(01) = 1, d6(02) = 1, d¢(03) = 1.

Remark 18. We note that the homomorphisms {J; | 1 < ¢ < 6} are pairwise non conju-
gate.

Theorem 19. Let §: V By — Sy be a homomorphism. Then, up to conjugation, one of
the following possibilities holds

(a) § is abelian;
(b) 6 €{0;|1<i<6}.

Proof. Let §: VBy — S; be a homomorphism and let ¢: Sy — V B4 be the natural
inclusion defined by ¢(71) = v1, t(12) = vy and ¢(73) = v3. Then, Jo¢ is an endomorphism
of S4. From Lemma 17, up to conjugation, § o ¢ is abelian or it is 7 or it is the identity
homomorphism.

We claim that when ¢ o ¢ is abelian then ¢ is abelian. The proof given for [3, Theo-
rem 2.1] in the case in which the composition is abelian works for n = 4, proving our
claim.

Suppose that § ot = 1. Therefore

d(v1) = 711,0(v2) = 72 and d(vs) = 71.

From the mixed relations v1ve01v9v17 = 02 and vovsoavsvy = 03 we see that 0(o2) and
d(o3) are completely determined by §(o1). We analyse the possible values of 6(o1). From
the relation o1v3 = vsoy and d(vs) = 71 it follows that §(oq) lies in the centralizer of
(1) in Sy, ie. 8(o1) € {1, 71,73, 7173}

o Suppose that §(o1) = 1, then §(o2) = 1 and §(o3) = 1. This homomorphism is dg.

o Suppose that 6(c1) = 7. Then §(02) = T TaT1T2T1 = T2 and §(03) = 2T T2T1T2 = T1.
This homomorphism is d7.

o Suppose that 6(c1) = 73. Then §(02) = TTem3™2T = T37aT 7273 and §(o3) =
ToTIT1ToT3ToT1T1 Ty = T3. This homomorphism is d5.



32 K. Dekimpe et al. / Journal of Algebra 663 (2025) 20—47

o Finally, if (o) = 7173 we do not get a homomorphism since the relation o10901 =
090109 is not preserved.

Now, suppose that § o ¢ is the identity homomorphism. This implies that
d(v1) = 11,0(v2) = 72 and §(v3) = 73.

As before, from the mixed relations v1v901v2v7 = 09 and vov302v3v2 = o3 it follows that
d(o1) determines 6(o2) and 6(o3) completely. Moreover the relation o1v3 = v3oq implies
that d(o1) € {1, 71,73, 7173} the centralizer of (75) in S;. We analyse the possible values
of 5(0’1 ) .

e Suppose that d(oy) = 1, then §(o2) = 1 and 6(o3) = 1. This homomorphism is
55 =TK.

e Suppose that §(o1) = 7. Then §(02) = i7aT1 72T = T2 and 0(03) = ToT3TaT3T2 = T3.
This homomorphism is d3 = 7p.

e Suppose that §(c1) = 73. Then §(02) = T3 = 7372717273 and 0(o3) =
ToT3T3ToT1ToT3T3Ty = T1. This homomorphism is d,.

o Finally, if 6(01) = 7173 we do not get a homomorphism since the relation oy0301 =
090109 is not preserved.

From the computations above we proved that, up to conjugation, § is abelian or
de{s|1<i<6}. O

Similar to the case n = 3, we verify which homomorphisms given in Theorem 19
respect the forbidden relations given in Definition 6.

Theorem 20. Let w: W By — Sy be a homomorphism. Then, up to conjugation, one of
the following possibilities holds

(a) w is abelian;

(b) w =06, where § € {6; | 1 < i < 4} as in Theorem 19 and 6: WBy — S, is the
induced homomorphism in the quotient of V By by adding the forbidden relation (a)
of Definition 6.

Proof. The proof is completely similar to the one given for Theorem 14. O

Finally we get the result for unrestricted virtual braid groups.

Theorem 21. Let p: UV By — Sy be a homomorphism. Then, up to conjugation, one
of the following possibilities holds

(a) w is abelian;
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(b) p= 5, where § € {6; | 1 <i <4} as in Theorem 19 and 5: UVBy — Sy is the
induced homomorphism in the quotient of V By by adding the forbidden relations (a)
and (b) of Definition 6.

Proof. The proof is completely similar to the one given for Theorem 15. O

Remark 22. It follows from Proposition 10 and Theorem 19 that the homomorphisms
{0; | 1 < i < 4} of Theorem 20(b) are pairwise non conjugate. Similarly for the homo-
morphisms of Theorem 21(b).

8.4. Proof of Theorem 2

We will use Theorem 1 to prove that for n > 4 (resp. n > 3) the pure subgroup
of the virtual braid group (resp. the welded braid group and the unrestricted virtual
braid group) is characteristic in the virtual braid group (resp. the welded braid group
and the unrestricted virtual braid group). In the previous subsections we computed, up
to conjugation, all surjective homomorphisms from VB, to S,, (and also for WB,, and
UV B,,), for n = 3,4. In the next two lemmas we will compare some kernels of these
maps.

We will use the following notation. Let G be a group, the abelianization of G will be
denoted by G4 ie. GA* = G/[G, G].

Lemma 23. Let n > 3.

(a) The groups VP, and KB, are not isomorphic.
(b) Let n =3 and let 1 € {¢p; | 1 < i <8} as in Theorem 13.
o The group KBs = Ker(7) is not isomorphic to Ker(y;) for 1 < i < 8 with
i #£T.
(¢) Let n =4 and let 6 € {6; | 1 < i <6} as in Theorem 19.
o The group V Py = Ker(d3) is not isomorphic to Ker(d;) for 1 <i <6 with i # 3.
o The group KBy = Ker(ds) is not isomorphic to Ker(d;) for 1 <1i <6 with i # 5.

Proof. (a) This item is the same as [2, Proposition 21].

(b) Let n =3 and let ¢ € {¢); | 1 <i < 8} as in Theorem 13. We used the GAP System
[17] to compute the abelianization of the groups involved. We elucidate the routine
used in the computations for the case n = 3:

f4:=FreeGroup("x","y","a","b");;

AssignGeneratorVariables(f4);;
r:=ParseRelators([x,y,a,b],"xyx=yxy,aba=bab,a”~2=1,b"2=1,bayab=x") ;;

g:= f4/r; # g is the virtual braid group on 3 strings
pl:=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
[(2,3), (2,3), (1,2), (1,2)]); AbelianInvariants(Kernel(pl));
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[ £f1, £2, £3, £4 1 -> [ (2,3), (2,3), (1,2), (1,2) ]

[o, 0, 0, 0, 3, 3, 3]

p2:=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
[(1,2), (2,3), (1,2), (2,3)]); AbelianInvariants(Kernel(p2));

[ £f1, £2, £3, £4 1 -> [ (1,2), (2,3), (1,2), (2,3) ]

[0, 0, 0, 0, 0,01

p3:=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
[(2,3), (1,2)*(2,3)*(1,2), (1,2), (2,3)]); AbelianInvariants(Kernel(p3));
[ £f1, £2, £3, £4 1 -> [ (2,3), (1,3), (1,2), (2,3) ]

[0, 0, 0, 0, 0,0 01

p4:=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
[(1,2)x(2,3)*(1,2), (1,2), (1,2), (2,3)]); AbelianInvariants(Kernel(p4));
[ £f1, £2, £3, £4 1 -> [ (1,3), (1,2), (1,2), (2,3) ]

[0, 0, 0, 0, 0, 0]

p5:=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
[(1,2)x(2,3), (1,2)*(2,3), (1,2), (2,3)]); AbelianInvariants(Kernel(p5));
[ £f1, £2, £3, f4 1 > [ (1,3,2), (1,3,2), (1,2), (2,3) ]
[0,0,2,2,2,2]

p6 :=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
[(2,3)x(1,2), (2,3)*(1,2), (1,2), (2,3)]); AbelianInvariants(Kernel(p6));
[ £f1, £2, £3, f4 1 -> [ (1,2,3), (1,2,3), (1,2), (2,3) ]
[0,0,2,2,2,2]

p7 :=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
(O, O, (1,2), (2,3)]); AbelianInvariants(Kernel(p7));

[ f1, £2, £3, f4 1 > [ O, O, (1,2), (2,3) ]

[0, 01

p8:=GroupHomomorphismByImages(g, SymmetricGroup(3), [g.1,g.2, g.3, g.4],
[(1,2)*(2,3), (1,2)*(2,3), (1,2), (1,2)]1);AbelianInvariants(Kernel(p8));
[ £f1, £2, £3, f4 ] > [ (1,3,2), (1,3,2), (1,2), (1,2) ]

[0, 0, 0, 0, 31

Summarising, we get

o (Ker(y1)?* =2 (Zs) o (Ker(ys)*" = 2° @ (Z,)*

o (Ker(y2))?" = (VPy)* = Z° o (Ker(ve)™" = Z* @ (Z»)*

o (Ker(ys)? = Z° o (Ker(yr)?" = (KBs)" = Z°
o (Ker(yq)?* = Z° o (Ker(ys)* 220 Z;

From this we conclude that the group K B3 = Ker(17) is not isomorphic to Ker(;)
for 1 <i <8 withi#T7.

(¢) Let n =4 and let § € {§; | 1 < i < 6} as in Theorem 19. We use the same idea of
the previous item. From the computations using GAP we get
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o (Ker(0)))* 273 @ (Zy)? o (Ker(04))* =275 @ (Z4)?
o (Ker(0))4 275 @ (Z5)8 o (Ker(ds))4t = ( )Ab ~7
o (Ker(d3))4 = (VRy)Ab =712 o (Ker(5s)" = Z o (Z2)?

From these computations we conclude that the group VP = Ker(ds) is not

isomorphic to Ker(d;) for 1 < i < 6 with ¢ # 3 and also that the group KBy =
Ker(ds) is not isomorphic to Ker(d;) for 1 <i <6 withi#5. O

In the next result we consider the cases of welded and unrestricted virtual braid groups

with few strings.

Lemma 24.

(a) Let n =3
o Letp;: WBs — S3 as in Theorem 1/, where {¢; | 1 <i < 5} are the homomor-

phisms given in Theorem 13. The pure welded braid subgroup W Ps = Ker(1)s) is
not isomorphic to Ker(i;), for any 1 <i <5 with i # 2.

Let 1p;: UV By — Sz as in Theorem 15, where {1; | 1 < i < 4} are the ho-
momorphisms given in Theorem 13. The pure unrestricted virtual braid subgroup
UV Py = Ker(is) is not isomorphic to Ker(1;), for any 1 <i < 4 with i # 2.

(b) Let n =4.
e Let 6;: WBy — Sy as in Theorem 20, where {6; | 1 < i < 4} are

the homomorphisms given in Theorem 19. The pure welded braid subgroup
WP, = Ker(d3) is not isomorphic to Ker(5;), for any 1 < i < 4 with
i F# 3.

Let 0;: UVBy — Sy as in Theorem 21, where {6; | 1 < i < 4} are the
homomorphisms given in Theorem 19. The pure unrestricted virtual braid sub-
group UV Py = Ker(83) is not isomorphic to Ker(5;), for any 1 < i < 4 with

i # 3.

Proof. The proof of this result is similar to the previous one in which we use GAP

[17] to compute the abelizanization of the kernel of each homomorphism. We just

list below the abelianizations of the groups involved from which we conclude this re-

sult.
(a) Let n =
o« (Ker(gn)* = 22 @ (Z3)? . (Ker(d))* =22 @ (Zy)
o (Ker(yp))*t =125 o (Ker(yy))Ab =76
o (Ker(is))At = 7 o (Ker(ds)? =720 2,
o (Ker(n))? = z* o (Ker(a)*=72017,
o (Ker(gs) = Z & (Zs3)°



36 K. Dekimpe et al. / Journal of Algebra 663 (2025) 20—47

(b) Let n =4
o (Ker(0))" = Z° & (Z,)? o (Ker(3)" = Z° & (Z,)
o (Ker(52))" = 2° & (Z2)® o (Ker(5))" = Z° & (Z)°
o (Ker(3)* = 212 o (Ker(3y)™ = 212
o (Ker(61))" = 2° & (Z2)® o (Ker(bn))" =2’ (Z2)° O

Remark 25. Given a group homomorphism £: G — H and v € Aut (H), then Ker (§) =
Ker (y0&).

With the above information we can now determine exactly when the virtual pure
braid group is characteristic in the virtual braid group.

Proof of Theorem 2. The case n = 2 follows from Remark 11.
Let n > 3. We first show that V P5 is not characteristic in V Bs. Let a: VB3 — V B3
be the homomorphism determined by

Oé(’Ul) = V1, 04(1)2) = V2, 05(01) = V1V2010V2V1 = 02 and OZ(CTQ) = VU1V2020V271.

We leave it to the reader to check that this o preserves the relations of the presentation (1)
of VB3 and so indeed determines a homomorphism. Moreover, as v1vy is an element of
order 3, we have that

?(v;) = v; and @3(0;) = V1V2V1 V2V V20 VV1V2VIVaVL = Ty, G = 1,2,

hence o2 is the identity on VB3 from which we conclude that a is an automorphism
of VB3. Note that mp(vio1) = 1 so vio1 € VP, but wp(a(vio1)) = mp(vaoivavy) =
ToT1TaT) = T1T2 # 1 showing that a(VP;) # VP; and so V P3 is not a characteristic
subgroup of V Bs.

We will apply Theorem 1 to show that in the other cases we do obtain characteristic
subgroups. Recall that Out (S,,) is trivial for n # 6 and that Out (Sg) is a cyclic group
of order 2. In [3] the authors used the notation vg for the automorphism such that
its class generates Out (Sg), see [3, Introduction] for an explicit definition of this outer
automorphism.

(a) Let 3, be the set of all surjective homomorphisms from VB, onto S,, let 7, =
Y./ ~c be the set of equivalence classes of 3, by ~.. We choose the following set of
representatives A, of Ty:

o As={y;|1<i<8} from Theorem 13,
e Ay ={6; |1 <i<6}, from Theorem 19,
o AN¢ ={mk,mp,vs 0Tk, Vs 0Tp}, from [3, Theorem 2.1], and
o A, ={mk,mp}, for n > 5 and n # 6 from [3, Theorem 2.1].
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If n = 6, from Remark 25, Ker(vgong) = Ker(rmk) and Ker(vgonp) = Ker(mp).
Then, from Lemma 23 and Theorem 1 we get that V' P, is characteristic in V B,, when
n > 4 and that K B,, is characteristic in V B,, when n > 3.

(b) Let 3, be the set of all surjective homomorphisms from W B, onto S, let T, =
3,/ ~. be the set of equivalence classes of ¥,, by ~.. We choose the following set of
representatives A, of T p:

e Az ={¢;|1<i <5}, from Theorem 14,
o Ay= {5_1 | 1 <i <4}, from Theorem 20,
o Ao = {7p, v oTp}, from [26, Remark 2.8], and
o A, = {7p}, for n > 5 and n # 6 from [26, Remark 2.8].
If n =6, from Remark 25, Ker(vg o mp) = Ker(7p). Then, from Lemma 24 and
Theorem 1 we get the result of the second item.

(¢) The proof of this item is similar to the last one. For the proof we use Theorem 15,

Theorem 21, [26, Theorem 1], Lemma 24 and Theorem 1. O

4. Virtual braid groups and the R.-property

In this section we prove Theorem 3. It will be solved case by case, in three subsections,
and using slightly different approaches. We note that from the presentation of the virtual
braid group it follows that

VBy =WBy =UVBy = {(oy,v1 | 0] =1) X Z* L.

Hence, VBy = W By = UV B; has the Roo-property, see [18]. We start by recalling a
result that we will use repeatedly to prove Theorem 3.

Lemma 26 (/27, Lemma 6]). Consider an exact sequence of groups
1 —K—G—Q—1

where K is a characteristic subgroup of G. Then,

(a) If Q has the R -property, then so does G.
(b) If Q is finite and K has the Roo-property, then G so does.

In the sequel we will also make use of some facts about crystallographic groups (see
e.g. [7] and [33] for more details on these groups). A n-dimensional crystallographic group
I" is a group which fits in a short exact sequence

1—72" —T —F—1

where F' is a finite group and Z" is maximal abelian in I'. Such a short exact sequence
induces a representation ¢: F' — G L, (Z) which is called the holonomy representation.
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In fact, requiring that Z" is maximal abelian in I" is equivalent to asking that ¢ is
a faithful representation. It is known (see e.g. [32, Lemma 2.4]) that Z™ is then the
unique normal and maximal abelian subgroup of I' and hence Z™ is characteristic in I".
For such a n-dimensional crystallographic group I' there exists an embedding p: I' —
Aff(R™) = R™ x GL,(R) with p(T') NR™ = p(Z™) = Z". After identifying I with its
image p(T') in Aff (R™), the second Bieberbach theorem implies that any automorphism
1 € Aut (T') can be realised as an affine conjugation, i.e. 3(d, D) € Aff(R™) such that
() = (d, D)y(d, D)~! for all y € T (see also [11, Remark 3.2]).

4.1. The case of 8 strings

We use the presentation of the virtual braid group with 3 strings given in equation (1).

Lemma 27. The normal closure of the coset of the element vivy in V Bs/[V Ps, V Ps]
(resp. in VBs/|KBs, KBs)) is a characteristic subgroup of V Bs/[V P, V Ps] (resp. of
VB;/|KBs, KBsj]).

Proof. We recall from [5, Theorem 3.3 and equation (8)] that there is a decomposition
VB;/[VP;, VP;] 2 VP3/[VPs, VP3] x S3 where VP3/[V P3, VP3| is the free abelian
group of rank 6 generated by {X;; | 1 <1 # j < 3}, the symmetric group is generated
by two transpositions v1, vs, and such that the action is given by permutation of indices.
So, we may write a presentation for V Bs/[V Ps, V Ps] with generators vq, v3 and A, ; for
1 <4 # j <3 and defining relations given by

* VU1VU2V1 = V2V1V2, U% =1, U% =1,
o Ny Adpg]=1for1<i#j<3andl<k#I[<3,
* Vg /\i,j Vg = )‘vk(i),vk(j)v for 1 < i 7&] < 3and k = 1,2.

Let v = vjvy € VB3/[V P3, VPs]. Hence v has order 3 in VB3/[VP;, VP;]. Let N
be the normal closure of the element v in VBs/[V Ps, V Ps]. Since every element in
V B3 /[V P3, V Ps] of order 3 is conjugate to v (see [5, Corollary 3.8]) we get that N is a
characteristic subgroup of VB3 /[V P3, V P3].

Now, we prove the result for V Bs/[K Bs, K Bs]. Proposition 17 and Corollary 18 of [2]
show that V' B3 can be seen as a semidirect product V B3 = K B3 x.S3, where K B3 can be
viewed as a group generated by 6 generators x; ; with 1 <7 # j < 3 subject to 6 relations
T KTk, i Tik = Tk, T KTk, (for {i,7,k} = {1,2,3}) and where S5 acts on the generators
by permuting the indices. In the proof of Proposition 19 of [2] it was shown that in the
quotient V Bs/[K Bs, K B3] these relations lead to an equality of cosets z1 2 = #2353 = x31
and z1,3 = x32 = %21 (which we abusively also denote by the same symbols). Hence,
from [2, Proposition 19], the group K B3/[K B3, K Bs] is a free abelian group of rank 2
generated by the cosets of the elements x; 2 and x1 3 and we obtain a split extension
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1 —s KBs/|KBs, KBs] = 7> — VB3 /[K B3, KBs] =% S5 —» 1

where Tx is the homomorphism induced from 7x: VB3 — S3 (see Subsection 2.1). We
consider now the following presentation of Sz, S3 = (a, b | a® = 1,b* = 1, (ba)? = 1),
where a = v1v9 and b = v;. By using the method described in [21, Chapter 10] we find a
presentation of the group V Bs/[K Bs, K Bs] with generators a, b, 21 2, 21,3 and defining
relations

e a®=1;0%=1; (ba)? = 1;
o [r12, m3] =1,
o bryob ™! =y 3; by zb! = 2y 05

o aripa”! =m0 azrizaTt = 113,
We consider now the following extension
1 — KBs/|KBs, KBs| — 75 “(Z3) =5 Zs — 1

where Z3 is the group generated by a = vjvs. Notice that Tx !(Zs3) is isomorphic to
Z & Z & L3 generated by the set {x1 2, 21,3, a}. From the above we obtain the extension

1—>Z@Z@Z3—>VB3/[K33,K33]—>Z2—>1

where Zs is the group generated by b = v;. From this extension we see that the torsion
subgroup of ZBZ P Z5 is the unique subgroup of order 3 in V Bs /[K Bs, K Bs]. So this sub-
group, which is generated by vyv, is a characteristic subgroup of VB3 /[K B3, KBs]. O

Lemma 27 is useful to prove the next result.

Theorem 28. The quotient groups V Bs/[V P3, V P3] and V Bs /| K Bs, K B3] have the R -
property.

Proof. Let N be the normal closure of the coset of vivg in VB3 /[V Ps, V P3]. We consider
the quotient G = (VB3/[V Ps, VP;])/N that has a presentation given by the one of
VB3 /[V Ps, V Ps] (see the proof of Lemma 27) adding the relation vive = 1, which is
equivalent to the relation v; = vy since v; and vy are transpositions. From v; = vy and
the relations vy - A j - Uk = Ay (i),00(5), for 1 <@ # j < 3 and k = 1,2 we conclude that
G =2 7Z? x 75 has a presentation with generators A12, A21 and v; and defining relations

2 _ _
o« V2 =1, o VLA 201 = Ao 1,
. [/\1,2, /\2,1] =1, b Ul/\2,1vl = /\1,2-

Let M be the normal closure of the coset of vyve in VBs/[KBs, KBs] (which is
actually the group of order 3 generated by vivs) and let H = (VBs/[KBs, KB3])/M.
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Table 1

The character table of Sy.
Representation / () Identity (1,2)(3,4) (1,2 (1,2,3,4) (1,2,3)
Conjugacy class element (Size 1)  (Size 3) (Size 6)  (Size 6) (Size 8)
representative and size
Trivial representation x1 1 1 1 1 1
Sign representation xa2 1 1 -1 -1 1
Irreducible representation 2 2 0 0 -1

of degree two with kernel of

order four xs

Standard representation x4 3 -1 1 -1 0
Product of standard and 3 -1 -1 1 0
sign representation xs

From the proof of Lemma 27 is clear that H is isomorphic to the group G above in this
proof.

We note that G and H are isomorphic to the crystallographic group of dimension
2 of Case 5 of the list of all 17 wallpaper groups given in [20, Section 3] (there it was
denoted by G%). Hence, from [20, Section 3], it follows that G and H have the Ro-
property. Therefore, from Lemma 26 and Lemma 27, we have that V B3 /[V P, V P;] and
V B3 /[ K Bs, K Bs| also have the Ry-property. O

With the last result we may prove that V B3y, W Bs and UV Bs have the Ro.-property.

Corollary 29. The virtual braid group V Bs, the welded braid group W Bs and the unre-
stricted virtual braid group UV Bs have the Roo-property.

Proof. From Theorem 28 we know that the groups V Bs/[V Ps, V Ps] and V Bs/[K Bs,
K B3] have the Roo-property. From [5, Theorem 5.1] the group VB3 /[V P3, V Ps] is iso-
morphic to W B3 /[W P;, W Ps] as well as to UV B3 /[UV P3, UV Ps]. Then, by applying
Lemma 26 and Theorem 2 we get this result. 0O

4.2. The case of 4 strings

Let Z'2 x S4 be a crystallographic group such that the generators of Z'2? are denoted
by A;; for 1 <4 # j < 4 and such that the action of w € S4 on A;; is given by
W Aij = Ap-1(i)w-1(j) for all 1 <4 # j < 4 and where for us the operation 7p
in Sy means po 7 (so first 7, then u). This is then a left action of Sy on Z!2. Let
©: S4 — GL12(Z) be the holonomy representation of Z1? x S;. From the natural
homomorphism GLi2(Z) < GL12(Q) we shall view the holonomy representation as
©: Sy = GL12(Q).

First, we describe the S;-module structure of Q2 using character theory. We record
in Table 1 the character table of Sy.

Let x be the character of the representation ¢: Sy < GL12(Q). Recall that, for an
element 7 € Sy, the number x(7) = Tr(p(7)) is equal to the number of generators \;
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Table 2
The character x: Sy — GL12(Q).

() Identity element 7= (1,2)(3,4) +=(1,2) 7=(1,2,3,4) 71=(1,2,3)
(Size 1) (Size 3) (Size 6) (Size 6) (Size 8)

x(1) =12 x(r)=0 x(t) =2 x(t) =0 x(7) =0

that are fixed by 7. In Table 2 we show the character x evaluated in each of the five
conjugacy classes of elements in Sy, given by representatives.
Now, we compute the components of the character y:

(x| x1) 7 (12-146-2-1) 1
(Xx2) = 5(12:146-2-(=1)) = 0
(xIx3) = 5;(12:2+6-2-0) = 1
(|x) = %(12:3+6:2:1) = 2
(x [ xs) 31(12:3+6-2-(-1)) 1
Hence, the character x has the decomposition
X = X1+ Xx3+ 2X4+ Xs5- (4)

Let V C Q2 be the submodule of Q2 corresponding to x1 + X3 + 2x4. Then, V' =
V NZ'? is a submodule of Z'? and so a normal subgroup of Z1? x S4 such that Z2/V’
is torsion-free.

It follows that, as groups, we can write Z'2 = V' @ W’ where both V' = Z° and
W' =2 73 are free abelian.

Lemma 30. The group V' is a characteristic subgroup of Z'? x Sy.

Proof. Let {ej,es,...,e12} be a generating set of Z12 such that {ej, es,...,e9} generates
V'. Let w € S4. With respect to this generating set we can write ¢(w) as a 12 x 12 matrix
and since V' is a submodule, we have that

o= (7 2)

with o1: Sy — GLg(Z) corresponding to x1 + x3 + 2x4 and o9: Sy — GL3(Z) corre-
sponding to xs.

We can embed Z'?x 5 into Aff (R'?) = R'?xGL2(R) by mapping (z, w) to (z, p(w)).
Let ¢ € Aut (Z12 X 54). Recall that Z'? is characteristic (see page 38). So, 1 induces
an automorphism ¢ on S;. We know that Aut (S;) = Inn (S,). Hence, there is an inner
automorphism p € Inn (212 X 5'4) such that i o  induces the identity on Sj.

As V! 9 Z* x Sy we know that p(V’) = V’. So, we may assume from now on-
wards that ¢ induces the identity on S;. As mentioned before (see page 38) v is
realized by an affine conjugation. So, there exists an element (d, D) € Aff (ng) SO
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that ¥ (z, p(w))
have that Do(w)

Write D as

(d, D)(z,0(w))(d, D)~ As 9 induces the identity on Sj, we must
-1 (w), for all w € S4.

=¥
! gi) Therefore,

3
(B D) (76 sy = (767 a8y (B 22

—
Shw!

and so
D301 (w) = o3(w)Ds, for all w € Sy. (5)

Notice that Ds is a 3 x 9 matrix and can be viewed as a map Dsz: Q% — Q3, with
Q? an Sy-module via o7 and Q® an Sy-module via oo. Equation (5) shows that Ds is

an S;-module map from Q? to Q3, where Q3 is an irreducible module and Q° does not

contain a submodule isomorphic to Q2 and so D3 = 0. Hence D = (%1 gi)

It now follows that for z € V'’ we have that

U(z) = (d,D)(z1)(d, D)™
= (d+ Dz,D)(-D~'d,D71)
= (d+Dz—d,1)
(Dz,1).
Dy Dy

But, since D = ( ) it follows that Dz € V'. O

0 Dy
Theorem 31. The group Z'? x S, has the Ro-property.
Proof. The quotient of Z'2 x S4 by the characteristic subgroup V'’ of Lemma 30 satisfies
ZY2 )V % Sy =2 73 % S,

where the action is faithful (it corresponds to xs5). Then it is a 3-dimensional crystal-
lographic group. From [9, Theorem 4.2] we know that this group has the Roo-property.
Hence, from Lemma 26 the result follows. O

Corollary 32. The virtual braid group V By, the welded braid group W By and the unre-
stricted virtual braid group UV By have the Roo-property.

Proof. We note that the group V B, /[V P,V P, is isomorphic to the group Z? x S4 of
Theorem 31 (see [5, Theorem 3.3]), so by Theorem 31 it has the Ro.-property. From
[5, Theorem 5.1] VBy/[V Py, VP,] is isomorphic to WBy/[W Py, WP,] as well as to
UV By/|[UV Py, UV P,]. Then, from Lemma 26 and Theorem 2 we conclude the result
for this corollary. O
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4.3. General cases

In the next proposition we show that, for n > 2, the Ro.-property holds for the
unrestricted virtual braid group UV B,, and its pure subgroup UV P,,. Then we use it to
prove the result for the virtual braid group V B,,, with n > 5.

Proposition 33. Let n > 2. The unrestricted virtual pure braid group UV P, and the
unrestricted virtual braid group UV B,, have the R, -property.

Proof. The case n = 2 for UV B,, was mentioned in the first paragraph of this section.
From [26, Remark 2.10] it follows that, for n > 2, UV P, is isomorphic to the direct
product of n(n —1)/2 copies of the free group of rank 2. Hence, from [10, Example 5.1.8]
we conclude that UV P,, has the Ro.-property.

Now, let n > 3. From Theorem 2, the group UV P, is a characteristic subgroup of
UV B, (see also [26, Proposition 2.15] for n > 5). Then, from Lemma 26 applied to the
short exact sequence 1 — UV P, — UV B, — S, — 1 we obtain the result for
UVB,. O

Remark 34. We note that, for n = 3 and 4, we also proved the R,,-property for UV B,,
in Corollaries 29 and 32, respectively, but using different techniques.

All possible homomorphisms from V' B,, to V B,,, were determined in [3, Theorem 2.3],
for n > 5, m > 2 and n > m. In particular, for n > 5, Out (VB,,), the outer automor-
phism group of V B,,, is isomorphic to Zs X Zo and is generated by the classes of ¢; and
(2 where

e (1: VB, — VB, is defined by (;(0;) = v;0;v; and (1 (v;) = v;;
e (2: VB, — VB, is defined by (s3(0;) = ai_l and (o (v;) = vy;

fori=1,...,n—1, see [3, Corollary 2.5].
Lemma 35. Let n > 5. The normal closure K of the set
{Ui0i+10ivi+10;10’;_11; 'Ui+10‘i0‘i+17}i0‘;_110';1 li=1,...,n—2}
is a characteristic subgroup of V B,.
Proof. We shall use the presentation of V B,, given in Definition 4. Recall that, for all
t=1,...,n—-1 v = v, in VB,. In the following computations we use the mixed

relation (MR2) v;v;410; = 04410041 of V By, fori =1,2,... n— 2, which is equivalent
-1 -1 -1 -1
t0 03Vi41V; = V410041 OF 0 VU410, = = 0, 1ViVi41 OF t0 0; "Vit1V; = Vip1050,; -
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-1 _—1 -1 -1
Cl(vi0i+10ivi+lai Ji+1) = UiVi4+104+1Vi41V0ViVi41V0; ViVi4+10; 1 Vi+1

—1 —1
ViVi410i41Vi41Vi03Vi41ViVi410;  ViVip10,;{1Vit1

1 -1
ViVi410i4+1Vi41ViVi+1Vi0i4+10i0; {1 ViVit1ViVi410,; 1 Vit

-1 —1
= VUi410i41ViVit 1054100, [ Vit 1V50; {1 Vit 1

-1 -1
ViVi41ViVi4+10304+1Vi0,;,10; Vi4+1ViVi+1
-1 -1
Vi+1ViVi+1 " Vi+1030i41Vi0;410; = - Vi41V;Vi+1
G (Vig100i1100, 107 Y) = 0100004 10441 Vi 10 Vi 10,04 Vig 100, 05
1\Vi4+10404410U5 i+1Y4 — 1+1Vi0UUs4+10341Vi4+1U3 U1 i+1 1+1U0; )

—1 -1
= Vi41Vi03ViVi4+10i+1ViVi4+1V;0;, 1 Vi+1Vi0; U4

—1 -1
Vi41Vi0V;V41ViVi4107V410; V41UV 4100, U

Ui+1vio—ivi+1vi0—ivi+1U;lviviJrlU;lUi
= U¢+1vwz’+1Ui0¢+1Uz'vi+10i_10i_+11vivi+17fi
ViVi410;  Vi0i 410304105 T4 Vv v;
11y 11
C(vioiy10vi410; "0 1) = V0,107 Vif10i0i41
(Ui+10i0¢+1)_10i+10¢0i+1U¢0;10f1(U¢+1U¢Ji+1)
C2(W+10i0z'+1’0i0i_+110i_1) = Ui+10i_105r1111i0i+101'
(Vi0i4103) T vioip10vi10; to L (Vo) O

We recall that the unrestricted virtual braid group UV B,, is the quotient group
VB, /K of the virtual braid group, see Definition 6.

Theorem 36. Let n > 5. The virtual braid group V B,, has the R, -property.

Proof. From Lemma 35 we know that K is characteristic in V' B,,. The quotient VB,,/K
is the unrestricted virtual braid group UV B,, that, from Proposition 33, has the Ro-
property. The desired result then follows by applying Lemma 26. O

Remark 37.

(a) To the best of our knowledge, for n > 5, it is not known if the welded braid group
W B, has the Ro,-property.

(b) From the presentation of VP, (see [1, Theorem 1]) we get VP, = Z x Z, which we
know it has the Roo-property. Since VP, = WP, = UV Py, these groups have the
Roo-property. For n > 3, as far as we know it is unknown if the R.-property holds
or not for virtual pure braid groups and for the welded pure braid groups.

As explained at the end of the introduction, Theorem 3 is now proved by collecting
all the results of this section.

Data availability

No data was used for the research described in the article.
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Appendix A

We note that the technique used in this work to prove that some subgroups of virtual
braid groups are characteristic may be applied to other braid-like groups. We exemplify
it in this section by showing that some remarkable subgroups of virtual twin groups are
characteristic. For more details about these groups see [28] and [29] and the references
therein.

The virtual twin group VT, n > 2, admits a presentation with generators o;, p; for
i=1,...,n—1 and defining relations:

e o2=1fori=1,2,...,n—1.

o 0,0; =0jo; for |i — j| > 2.

e pr=1fori=1,...,n—1.

o pip; = pjp:i for |i — j| > 2.

o PiPit1Pi = Pit1PiPit1, fori=1,2.... n—2.
o pioj =0;p;, for |i —j| > 2.

e PiPit10; = Oir1pipir1, fori=1,...,n— 2.

Let n > 2. For 1 < i <n-—11letr, = (i,i + 1) as before. Let np: VT,, — S,
be the homomorphism defined by np(o;) = wp(p;) = 7; for i = 1,...,n — 1. The pure
virtual twin group PV'T,, is defined to be the kernel of wp. Let g : VT, — S, be the
homomorphism defined by 7 (0;) = 1 and 7 (p;) = 7; for i = 1,...,n — 1. The kernel
of mx will be denoted by KT,,.

Theorem 38. Let n > 2.

(a) The groups PVT, and KT, are not isomorphic.

(b) The virtual pure twin group PVT, is a characteristic subgroup of the virtual twin
group VT, if and only if n # 3 and the group KT, is a characteristic subgroup of
VT, if and only if n > 3.

Proof. Let n > 2.

(a) From [28] the pure virtual twin group PVT, is a right-angled Artin group (hence it
is torsion free) and from [29] the group KT, is a right-angled Coxeter group (so it
has finite order elements), hence they are not isomorphic.

(b) The proof of this item follows the same lines as the proof of Theorem 2, so we just
indicate some steps of the proof.

Claim 1: There are, up to conjugation,

(i) 3 surjective homomorphisms from VT to Sa;
(i) 5 surjective homomorphisms from VT3 to Ss;
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(#ii) 6 surjective homomorphisms from VTy to Sy;
(iv) 4 surjective homomorphisms from V7Tg to Sg; and
(v) 2 surjective homomorphisms from VT, to Sy, for n > 5 and n # 6.

The proof of Claim 1 for n > 5 may be found in [29]. For the cases n = 2,3, 4 the
verification is done as in Section 3 for the virtual braid group.

Claim 2: 1t is clear that the image of KT by the automorphism ¢: VI, — VT
defined by v¢(o1) = p1 and ¥(p1) = o1 is not KT. Also, it is not difficult to
verify that the image of PVT3 by the automorphism ¢: VI3 — VT3 defined by
p(o1) = o2, p(o2) = p1p202p2p1, v(p1) = p1 and @(p2) = p2 is not PV T3. Therefore,
the group KTy (resp. PVT3) is not a characteristic subgroup of VT (resp. VT3).

Claim 8: The groups PVT,, PVT,, KT3 and KT, are not isomorphic to the
kernels of the other homomorphisms (for the same number of strings) from Claim 1.
The verification of this claim can be done along the same lines as we did for V B,, in
Section 3.

Then, applying Theorem 1, we get that for n # 3 (resp. n > 3) the groups PV'T,
(resp. KT,,) are characteristic subgroups of VT,,. O

An application of Theorem 38 is the following result.
Corollary 39. Let n > 2. The virtual twin group VT, has the R -property.

Proof. Since VT, is isomorphic to Zg * Zo then from [20, Proposition 2.8] (see also
[18, Lemma 2]) it has the Ryo-property. From the presentation of KT, given in [29,
Theorem 3.3] we get the isomorphism K73 = Zg % Zg * Lo * Lo % Lo * Zo. From [18,
Lemma 2] the group KT5 has the Roo-property and since it is a characteristic subgroup
of VT3 (Theorem 38) then from Lemma 26 the latter group also has the Ro.-property.
For n > 4 the pure virtual twin group PVT,, has the Ro-property, see [28]. Then, from
Lemma 26 and Theorem 38, the virtual twin group VT,, has the Roo-property. O
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