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Abstract
Ultra-light dark matter is a class of dark matter models (DM), where DM is composed
by bosons with masses ranging from 10−24 eV < m < eV. These models have been
receiving a lot of attention in the past few years given their interesting property of
forming a Bose–Einstein condensate (BEC) or a superfluid on galactic scales. BEC
and superfluidity are some of the most striking quantum mechanical phenomena that
manifest on macroscopic scales, and upon condensation, the particles behave as a
single coherent state, described by the wavefunction of the condensate. The idea is
that condensation takes place inside galaxies while outside, on large scales, it recov-
ers the successes of ΛCDM. This wave nature of DM on galactic scales that arise
upon condensation can address some of the curiosities of the behaviour of DM on
small-scales. There are many models in the literature that describe a DM component
that condenses in galaxies. In this review, we are going to describe those models, and
classify them into three classes, according to the different non-linear evolution and
structures they form in galaxies: the fuzzy dark matter (FDM), the self-interacting
fuzzy dark matter (SIFDM), and the DM superfluid. Each of these classes comprises
manymodels, each presenting a similar phenomenology in galaxies. They also include
some microscopic models like the axions and axion-like particles. To understand and
describe this phenomenology in galaxies, we are going to review the phenomena of
BEC and superfluidity that arise in condensed matter physics, and apply this knowl-
edge to DM. We describe how ULDM can potentially reconcile the cold DM picture
with the small-scale behaviour. These models present a rich phenomenology that is
manifest in different astrophysical consequences. We review here the astrophysical
and cosmological tests used to constrain those models, together with new and future
observations that promise to test these models in different regimes. For the case of the
FDM class, the mass where this model has an interesting phenomenology on small-
scales ∼ 10−22 eV, is strongly challenged by current observations. The parameter
space for the other two classes remains weakly constrained. We finalize by showing
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some predictions that are a consequence of the wave nature of this component, like
the creation of vortices and interference patterns, that could represent a smoking gun
in the search of these rich and interesting alternative class of DM models.

Keywords Ultra-light dark matter · Fuzzy dark matter · Superfluid dark matter ·
Bose–Einstein condensate · Superfluid
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1 Introduction andmotivation

An overwhelming amount of observational data provides clear and compelling evi-
dence for the presence of darkmatter (DM) on awide range of scales. This component,
which is believed to be responsible for the “missing” mass in our universe, is the
main ingredient for all the structures we have in our universe. This is one of the old-
est unsolved problems in cosmology, being traced back to the 1930s (Zwicky 1933;
Bertone and Hooper 2018), and also one of the best measured ones. The evidence
for dark matter first emerged from the study of the rotation curves of galaxies. From
pioneering studies (Rubin and Ford 1970), it was already evident that the amount of
matter necessary to fit the flat observed rotation curves did not match the theoretical
curves predicted, assuming Newtonian mechanics and taking into account only the
visible matter present in those galaxies. Dark matter was proposed as an additional
(non-luminous) component to explain this discrepancy.

Nowadays, the evidence for dark matter comes from precise measurements on a
wide range of scales. From sub-galactic and galactic scales, to clusters, going up to
the large-scale structure (LSS). On cosmological scales, the observed anisotropies of
the cosmic microwave background (CMB) (Ade et al. 2016), together with data from
Type Ia Supernovae, determine the total energy density of matter with high preci-
sion. This together with the bounds on the abundance of the light chemical elements
from Big Bang Nucleosynthesis, which constrains the amount of baryonic matter in
the universe, strongly shows the need for a clustering component of non-baryonic1

origin, that does not interact (strongly) with photons, and that dominates the matter
content of the universe, accounting for approximately 85% of all matter. The same
non-luminous and clustering component is necessary to explain the structures we see
in our universe today, as is evident in observations of the large-scale structure of our
universe (Anderson et al. 2014; Tegmark et al. 2004).

With all this evidence coming from precise astrophysical and cosmological obser-
vations, cosmologists have converged to a phenomenological model to describe our
universe, theΛCDMmodel. Thismodel is currently the concordancemodel of cosmol-
ogy and it accumulates a number of observational successes. It exhibits outstanding
agreement with current cosmological observations (Anderson et al. 2014), which is
manifested in the parameters of this model being constrained at the percent and sub-
percent level. This incredibly simple model is described by only six parameters and
parametrizes a large amount of the universe’s history. It describes a universe that is
flat and seeded by nearly scale invariant perturbations, composed of baryons, which

1 We are going to see later that there are some “baryonic” candidates for DM.
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Fig. 1 Sketch (not to scale) of the huge range of possible DM models that have been conceived. They span
many orders of magnitude in mass, with DM represented by very distinct phenomena, ranging from new
elementary particles to black holes

amount to approximately 5% of the energy density of the universe, a small radiation
component, but in its majority is composed of two unknown ingredients. The energy
budget of the universe is dominated (∼ 70%) by a component responsible for the
current accelerated expansion of the universe called dark energy, and a clustering
component, the dark matter, making up to ∼ 25% of our universe. These large-scale
observations give a coarse-grained description of these non-baryonic components in
the hydrodynamical limit where dark matter is described as a perfect fluid with very
small pressure (w ≈ 0) and sound speed, cs ≈ 0, that does not interact, at least
strongly, with baryonic matter. Dark energy is parametrized by a cosmological con-
stant, the simplest model for the present accelerated expansion of our universe.

Therefore, within ΛCDM, the Cold Dark Matter (CDM) paradigm emerged from
the large-scale observations and describes the component responsible for the formation
of the structures of our universe through gravitational clustering. In the CDM model,
DM is described by a perfect fluid that must be massive, sufficiently cold, which
means non-relativistic at the time of structure formation, and collisionless to explain
the observational data on large linear scales. This coarse-grained description of a CDM
is very successful in fitting the linear, large-scales observations from the CMB, LSS,
to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large-
scales to a very high precision, the microphysics of the DM component remains
unknown. This allows for the creation of a plethora of possible models of DM. Those
models recover the large scale properties of CDM, but invoke very different objects
and phenomena to play the role of DM.

This incredible variety of viable models of DM can be seen in the huge range of
masses those models cover, as shown in Fig. 1. This figure showsmany different broad
classes ofDMmodels, and eachofwhichmight containmanydifferent specificmodels.
It spans more than 80 orders of magnitude and shows very different hypothesis for
DM, from new elementary particles, to composite objects (Jacobs et al. 2015; Khlopov
2019), up to astrophysical size primordial black holes (for a review on recent bounds,
see (Carr et al. 2020; Carr and Kuhnel 2020)). This shows us that although we have
gathered a lot of knowledge about the gravitational properties of DM, the nature of DM
is still elusive, with the current data still allowing a huge amount of highly different
models.

The possibility that dark matter could be a long lived particle is very appealing,
especially, if these candidates are expected candidates from extensions of the standard
model of particle physics. One class ofmodels that became the preferred candidates for
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theDMparticles areWIMP,weakly interactingmassive particles, which represent new
elementary particles that interactwith baryons not only gravitationally but also through
the weak force or a new force of comparable strength (Roszkowski et al. 2018; Lin
2019). The strong motivation for this candidate is because if it is thermally produced
in the early universe, the relic abundance of particles that have mass of the order of the
electroweak scale, and a coupling of order one, corresponds precisely to the abundance
of DM in our universe. The possibility that WIMP could also be discovered by direct
detection experiments is also an important motivation to search for this candidate.
There is a great experimental effort to constrain the properties of WIMP DM with
the parameter space being very restricted over the past few years. Given the complex
phenomenology from the possible models ofWIMPDM and their interaction with the
standard model particles, the translation of those bounds to the exclusion of WIMP
models is not straightforward. The cosmological and astrophysical behaviour of all
the classes of WIMP models is similar to CDM, so the avenue to probe this scenario
is through direct, indirect and collider experiments (for a complete review of all the
searches, current and projected limits on WIMP detection for both spin-dependent
and spin-independent models, together with indirect detection and collider searches,
see (Arcadi et al. 2018).)

Another candidate that comes from extensions of the standard model of particle
physics is the QCD axion. The axion was introduced to address the strong CP prob-
lem of quantum chromodynamics (QCD) (Peccei and Quinn 1977; Weinberg 1978;
Wilczek 1978). The axion can be used inmany different contexts in cosmology, includ-
ing as a candidate for DM. The QCD non-perturbative effects induce a potential for
the axion. During the radiation dominated period, the QCD axion starts to oscillate at
the bottom of its potential and the axions behaves like dust, contributing to the energy
density of the universe as non-relativistic matter. The QCD axion couples weakly to
the standard model, which motivated an experimental effort for its direct detection
(see these references for a review of axion direct detection searches (Di Luzio et al.
2020; Sikivie 2020; Graham et al. 2015a; Battesti et al. 2008)).

Although we have these very well motivated candidates from particle physics, we
still have no conclusive evidence for electroweak or other non-gravitational interac-
tions for darkmatter. All the knowledge we have about darkmatter is gravitational.We
know that CDM describes the behaviour of DM very well on large-scales. However,
this beautiful and simple coarse grained description of DM as the CDM is challenged
by some curiosities that appear on small scales.

As the observations and simulations of the small non-linear scales and galactic
scales improve, a number of challenges have emerged for this coarse grained descrip-
tion from ΛCDM. These discrepancies have been around for decades, such as the
cusp–core problem, the missing satellite problem and the too big to fail problem. A
particularly curious challenge is the regularity/diversity of rotation curves. One thing
that is surprising about galaxies is that they are extremely diverse, but at the same
time they are incredibly regular. This fact is manifest in several empirical scaling
relations, such as the well-known Baryonic Tully–Fisher relation (BTFR; McGaugh
2005, 2008). The BTFR shows the correlation between the total baryon mass (includ-
ing stars and gas) of the galaxy with the asymptotic rotation velocity in galaxies. The
measured BTFR follows a scaling relation different from the one predicted byΛCDM,
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and it holds for a range of 6 orders of magnitude in mass, with very small scatter. The
significance of these discrepancies is disputed and addressing these challenges is an
active field of research. Those challenges emerge on scales where baryonic physics is
relevant and simulations including several baryonic effects have been perfected point-
ing in the direction that baryons could possibly explain some of these observations
within ΛCDM.

As the physics of these baryonic processes is complex and as there is no final
consensus about the status of theses discrepancies, an alternative explanation for these
discrepancies on small-scales could be that DM is not the usual CDM, but a component
that has different phenomenology on small-scales. Even setting aside the small-scale
problems, given that the observational constraints on these scales are less strong than
on cosmological scales, the dynamics on small-scales can offer a chance to probe
the properties of DM in the hope to help find the microphysics of this component.
Therefore, the small-scales are a good laboratory to probe the nature of DM models
that have impacts on astrophysical scales.

The simplest modifications of the DM paradigm that have a different phenomenol-
ogy on small-scales, and can potentially address someof the small-scales discrepancies
is the warm dark matter (WDM) model (Colin et al. 2000). In this model, DM has
a small mass leading to a thermal velocity dispersion, modifying its behaviour on
astrophysical scales while maintaining the large-scale predictions of CDM. Even with
a small velocity, DM free streams out of potential wells and is enough to suppress
the formation of small scale structures addressing some of the small-scale problems.
Another popular model inspired by those discrepancies is the self interacting DM
(SIDM) (Spergel and Steinhardt 2000), where the DM particles have a self-interaction
in a way to also suppress the formation of structures on small-scales.

In the past few years, another class of alternative models has (re)emerged as an
appealing class of DMmodels given their rich phenomenology on small-scales. These
are the ultra-light dark matter models (ULDM), where DM is composed by ultra-light
bosons with masses in the range 10−24 eV < m < eV. Given the small masses of
these bosons, DM forms a condensate or a superfluid on galactic scales. The idea is
that the wave nature of DM on galactic scales provides a non-CDM behavior which
leads to a different and rich phenomenology for DM on those scales. On large scales,
DM behaves as CDM, although with different initial conditions for the ULDM in
comparison to CDM, maintaining the observable successes of CDM on those scales.

There are many different realizations of this interesting non-CDM phenomenology
on small-scales. Depending on the modelling of the ULDM, these produce distinct
condensate structures and lead to a different phenomenology. There are many different
models in the literature describing these possibilities. We classify them in this review
into three categories, according to the different condensate structure they form. These
three classes are the fuzzy dark matter, when the ultra-light scalar field system is only
subjected to gravity; the self-interacting Fuzzy DM when the system also presents
(weakly) self-interaction, and superfluidDM, whereDM forms a superfluid on galactic
scales.

This classification is general and based only on the non-linear structure it forms
in the halo of galaxies, which is a consequence of the non-relativistic theory they
describe. These can be purely phenomenological models of ULDM on small-scales,
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in the absence of a microscopic description. These classes also contain microscopic
scalar field theories like QCD axion, axions (coming from other origins) or axion like
particles (ALP), which are part of the FDM class. Each of these categories have differ-
ent properties which lead to different astrophysical consequences, that can be probed
by current and future astrophysical observations. For this reason, ULDMmodels have
regained interest in the community in the past few years, with new and exciting exper-
imental effort to probe many aspects of the small astrophysical scales, opening the
avenue to test these models and answer some questions about the nature of DM.

Motivation for this review and detailed plan
This reviewhas the goal of giving anoverviewof the ultra-light darkmatter (ULDM)

candidates, focusing in their gravitational effects and mostly in their different phe-
nomenology on small-scales.

There are many very good and complete reviews in the literature describing specific
models of ULDM or the microscopic models that can be part of the ULDM class like.
There are many reviews of axions in cosmology (Sikivie 2008; Arvanitaki et al. 2010;
Wantz andShellard 2010;KimandCarosi 2010;Kawasaki andNakayama2013;Marsh
2016a) andALPs (Ringwald 2014;Arias et al. 2012;Graham et al. 2015a;Marsh 2018;
Niemeyer 2019; Powell 2016). Axions and ALPs have a whole rich phenomenology
of its interactions to the standard model that will not be explored here, but that can be
seen in the following reviews (Marsh 2016a; Graham et al. 2015a). The FDM model
also has a huge body of literature with many excellent reviews like (Hui et al. 2017;
Suárez et al. 2014; Ureña-López 2019).

We propose to do something different in this review. Instead of studying one single
model or a specific microscopic theory, we study many ULDM models interested
in the gravitational phenomenology that these models present. We study the ULDM
models by dividing them into classes according to their dynamics on small-scales.
The three classes proposed in this review encompass many of the models cited above,
with the inclusion of (weakly) self-interacting models and the DM superfluid model.
We believe this classification is instrumental and shows the general behaviour and
phenomenology that each of these model have inside each class. Therefore, we hope
to bring not only a new classification that encompasses many of the models present
in the literature, but also to include new models, trying to make a big overview of the
entire class of ULDM models.

Another new feature this review brings is a brief review of BEC and superfluidity,
and the different descriptions of these phenomena. Condensation in each of these
classes might arise in a different way, given their different descriptions. Bose–Einstein
condensation and superfluidity are very well understood and well studiedmacroscopic
quantum phenomena in condensed matter physics, being largely studied theoretically
and experimentally. However, these phenomena are not so well understood in gravity.
Therefore, understanding their definition, description and differences is particularly
important to understand if condensation arises in theses models, and the difference
in the condensate structure that is expected to form in each of the classes of ULDM
models.

I take this opportunity to also discuss briefly the different views in the literature
about the formation of a condensate and the scales where this effect takes place.
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With that, we aim to give a general picture of the state of the field to date, trying
to describe all the classes of ULDM present in the literature. We hope this review can
be a resource to researcher entering this exciting field.

The review is organized as follows. First, in Sect. 2, we start by describing the
small scale challenges of ΛCDM, as a motivation to show the discrepancies these
alternative models of DM aim to address. The goal of this section is not only to show
the problems that some of the ULDM models might solve, but also to introduce the
reader into some of the concepts of galactic astrophysics. In this way, the reader can
understand some of the interesting phenomenology that the ULDM models have on
small-scales that differ from the ones predicted by the CDMparadigm.Next, in Sect. 3,
we introduce the basic concepts of the quantum phenomena of BEC and superfluids.
In this section, we describe these phenomena, describe approximations and and the
structures formed in those system with and without rotation, all in the context of
condensed matter physics where they are well defined, understood and tested. The
goal is to give a sound basis to the reader so they can understand with a critical
view how these concepts can be applied to the case of DM in the next section, given
the analogies, approximations and generalizations done in the literature of ULDM.
Following this we are ready to describe the main topic of the review, the ULDM
models in Sect. 4. We start by describing the three classes that we propose to classify
the models of ULDMbased on the type of non-linear they describe.We then talk about
the fuzzy DM and the self-interacting BEC DM models, showing the conditions for
them to condense on galactic scales. We then focus on the fuzzy DM model, showing
how and in which conditions the model attempts to solve the small-scale challenges,
and the interesting astrophysical consequences this class presents. We then talk about
the superfluid DM model describing its condensation on galactic scales, the formation
of the superfluid core and its observational consequences. We also discuss the stability
of this construction, and its possible extension to cosmology. The constraints in these
models and new windows of observations of the effects of these models are discussed
in Sect. 5. We will constraints from different observations. In the case of the FDM,
the current bounds show that the mass range where an interesting phenomenology is
expected on small-scales is strongly constrained.We conclude the review summarizing
our discussion.

Since there is no unique literature this review is based on, but a series of reviews
and articles referring to specific topics, the main references used are cited in the
corresponding sections. The only exception is Sect. 2 that is based mainly in the
following reviews (Bullock and Boylan-Kolchin 2017; Del Popolo and Le Delliou
2017; Famaey and McGaugh 2012).

Conventions In the entire review, natural units are used, where c = � = 1, unless
stated otherwise. The exception is Sect. 3 where all the � factors are present. With that,
the reduced Planck mass is given by M2

pl = 1/8πG, where G is the Newtonian gravi-
tational constant. Unless stated otherwise, the metric signature used is (+,−,−,−),
and Greek letters are indices going from μ, ν = 0, . . . , 3. Sometimes for simplicity
we describe partial derivatives as ∂μ = ∂/∂xμ. In the text gray boxes bring definitions
necessary for the understanding of the topics in the section or following sections.
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Frames text and equations refer to important results or discussions that we would like
to highlight.

2 Small-scale challenges of cold darkmatter

In the concordance model of cosmology, DM is described by the CDM paradigm.
This hydrodynamical description for DM is in very good agreement with observations
from large-scales. This can be seen in the power spectrum (P(k)), which is the Fourier
transform of the two-point correlation function of the matter density perturbations,

�2(k) = 1

2π2 k
3 P(k) , (1)

represented here by the dimensionless power spectrum where k is the wavenumber of
the fluctuation, shown in Fig. 2. The large-scales (around k � 0.1Mpc−1), measured
by the CMB and LSS galaxy surveys, show a good compatibility with the CDMmodel.
This agreement is also robust for the non-linear intermediary scales (k ∼ [10−1 −
10]Mpc−1) with constrains from clusters, weak lensing and Ly-α forest. As we go to
smaller and highly non-linear scales (k � 10Mpc−1 equivalent to M � 1010 M�),
these constraints are less strong, andmight retain important information about possible
deviations from the CDM paradigm. We can see on the right side of Fig. 2 on galactic
and subgalactic scales, different models of DM would behave very differently from
the expected linear behaviour of CDM and this could be probed by the observations
on those scales (Zavala and Frenk 2019; Kuhlen et al. 2012).

On small-scales, the formation of structures is highly non-linear and the evolution
of structures is studied using large numerical simulations. In the past few years, those
simulations improved in size and precision, simulating the cosmological and small-
scales. But when compared to the observations of galaxies, a number of discrepancies
emerged, revealing some curious behaviour on small scales. Given the enormous suc-
cess of the concordance model, these discrepancies attract a lot of interest of the
community. They might represent that we need to better take into account the astro-
physical processes that happen inside those regions, which indeed have a complex
dynamics. Or this might indicate that the CDM model is not good to describe the
physics on small-scales and the coarse grained CDM paradigm needs to be revised.
An even a more radical approach would be to modify gravity on smaller scales.

In this section, we present very concisely the theory of non-linear structure evolu-
tion. We show how the numerical predictions assuming the concordance model might
be in tension with the current observations of galaxies. These tensions are seen in
the counts and density of low-mass objects, and in the scaling relations that show the
tight regularity that galaxies present. We highlight in this section some of the concepts
that are going to be used in the ULDM section and that might not be too familiar for
researchers from fields of dark matter phenomenology and cosmology.
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Fig. 2 In this figure, inspired by Kuhlen et al. (2012), we show how the dimensionless power spectrum
can be probed by many large-scale and small-scale observables, which can be seen as a function of the
wavenumber k. The solid line shows the linear dimensionless power spectrum coming from a ΛCDM
universe. To show how the small-scales might reveal different behaviour for different DM components, we
show the linear power spectrum of warm DM (WDM) with mass of 10 keV (red dotted line), WDM with
mass of 4 keV (green dashed line), and for fuzzy DM with mass 10−22 eV (orange dash-dotted line). The
gray dotted horizontal line represents the limit from linear to non-linear regime, where � ∼ 1. The power
spectra for ΛCDM and for WDM were generated using the Boltzmann code CLASS (Lesgourgues 2011;
Lesgourgues and Tram 2011), and for the fuzzy DM using AxionCAMB (Lewis et al. 2000; Hložek et al.
2015)(The parameters used to generate these power spectra were:Ωbh

2 = 0.022,Ωch2 = 0.12, h = 0.67,
ns = 0.96, As = 2.2 × 10−9, and τ = 0.09.)

Summary of scales and galaxies2

Galaxy clusters: Largest gravitationally bound systems in the universe, with
masses ∼ 1014 − 1015M� (equivalent to k ∼ [1.5 − 6] × 10−1 Mpc−1),
containing hundreds of galaxies, hot gas and mostly DM.

Milky-Way (MW) galaxy: MW is a barred spiral galaxy and part of the Local
Group of galaxies with virial mass ∼ 1012 M�. It has a stellar disk of approx-
imately 30 kpc in diameter and 0.3 kpc thick, and vvir ∼ 100 km/s (virial
velocity, defined below), with the halo of the MW being hundreds of kpc in
size.

Dwarf galaxies:
Dwarf galaxies are low luminosity, small size galaxies, with stellar masses
(M
) smaller than 109 M� and virial mass for the halo smaller than 1011 M�.
Regarding their mass, they can be further divided into: Bright dwarfs (M
 ≈
M ∼ 107−9M�, Mvir ≈ M ∼ 1011M�), classical dwarfs (M
 ≈ M ∼
105−7 M�, Mvir ≈ M ∼ 1010M�), and ultra-faint dwarfs (M
 ≈ M ∼
102−5 M�, Mvir ≈ M ∼ 109M�). Regarding their characteristics, they can
be divided into ellipticals, spheroidal and irregulars, that contain gas and star
formation.
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Dwarf Spheroidals (dSphs): Type of dwarf galaxy with a close to
spheroidal shape, they have low-luminosity with a very small quan-
tity of gas and dust, and no recent star formation. They present a large
amount of DM and are usually the satellites.

2.1 Darkmatter halos and substructures

A halo can be described as a virialized spherical mass concentration of dark matter.
Halos are formed by gravitational collapse of a non-linear overdense regions that
stopped expanding to collapse into a sphere in virial equilibrium.3 The virialization of
the halo happens through violent relaxation, where the DM particles scatter on small
fluctuations of the gravitational field present in this distribution, taking a time tdyn, the
dynamical time, to fully cross the sphere. Once this process is completed, at tcoll, the
dark matter halo has a radius approximately 1/6 of the radius of the region it collapsed
from, and average density (Schneider 2015)

〈ρ〉 = (1 + δvir) ρ̄(tcoll) , (2)

where ρ̄ is the mean density, and (1 + δvir) ≈ 178Ω−0.6
m . Given this, the dark matter

halo is defined as the spherical region where the density is approximately 200 times
the critical density of the universe at a given redshift, with mass given by

M200 = 4π

3
R3
200 200ρcr , (3)

where ρcr = 3H2(z)/(8πG). The virial velocity is given by themean circular velocity
at the virial radius, V 2

200 ≡ GM200/R200. With that, one can express the evolution of
the mass and virial radius with respect to V200: M200 = V 3

200/10GH(z) and R200 =
V200/10H(z). We can see from these expressions that halos that form early in the
evolution of the universe are less massive, while late-forming halos are more massive
and larger.

This definition is not unique and depends on the choice of the virial overdensity
parameter,4 Δ, which above was taken to be Δ = 200ρcr/ρ̄. More generally, (3) can
be written as Mvir = (4π/3) R3

vir Δ ρ̄. The values ofΔ can vary in the literature, with
some common definitions being Δ = 333 at z = 0 for a fiducial cosmology given by
(Ade et al. 2016), which asymptotes toΔ = 178 at high-z (Bryan and Norman 1998);
or a fixed Δ = 200 at all redshifts, usually denoted by M200m.

2 The masses are indicated in terms of the solar mass M� which is equivalent to 2 × 1030 kg in SI units.
Distances are denoted in parsec (pc), where 1 parsec corresponds to 1 arcsecond of measured parallax, and
it corresponds in SI units to 3.1 × 1016 m.
3 Virial equilibrium means that it obeys the virial theorem Ekin = −2 Epot and conservation of energy. So
we can describe the system only in terms of the radius R and thee mass, M (or velocity V ) of the spherical
mass concentration.
4 Not to be confused with the dimensionless power spectrum defined in (1).
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We identify the DM halos from numerical simulations, the N-body code P3M (Efs-
tathiou et al. 1985), and can extract from them the abundance of halos as a function of
their mass for a given redshift. The individual halos can also be analyzed in those simu-
lation and the radial mass profile can be determined. A surprising feature encountered
in those simulations is that halos appear to have a universal density profile, averaged
over spherical shells. Their functional form is characterized by the Navarro, Frenk and
White (NFW) profile (Navarro et al. 1997),

ρNFW(r) = ρs

(r/rs) (1 + r/rs)2
→
{
1/r , for r 	 rs
1/r3 , for r 
 rs

(4)

where rs is the radius where the slope of the profile changes and ρs = ρ(rs). We can
see that this profile diverges towards the center of the halo, presenting a cusp. The
amplitude of the density profile can be written in terms of R200, as we can see from
(3),

ρ̄ = 3

4πR200

∫ R200

0
4πr2ρ(r) dr = 3ρs

∫ 1

0

x2

cx (1 + cx)2
dx , (5)

where x = r/R200, and c := R200/rs is the concentration index and describes the
shape of the distribution. With that, the NFW profile can be determined completely
by R200 (or M200 or any other halo radius definition), and the parameter c. The
shape of the concentration can be inferred from the same P3M simulation, where
c ∝ (M/M∗)−1/9 (1 + z)−1. We can see that, early-forming halos have a smaller
radius, and they are denser than the larger ones, given the higher concentration. The
NFW profile can be generalized for a three-parameter profile that better fits the DM
profile of halos for all ranges in mass (Einasto 1965; Navarro et al. 2004; Gao et al.
2008).

Above we presented the spherically averaged density profiles of DM halos,
described by the NFWprofile. Although this presents a good fit to DMN-body simula-
tions (that assume spherical symmetry and use shells that are distributed radially) and
some observations, halos are not spherical. From halo and large cosmological simula-
tions (Schneider et al. 2012; Jing and Suto 2002; Kasun and Evrard 2005; Bailin and
Steinmetz 2005; Allgood et al. 2006), we can see, however, that themajority of theDM
halos are elliptical or triaxial, with their axis aligned with the cosmic web structure.
This non-spherical structure and intrinsic alignment might come at formation of the
halos from the tidal field. The halo triaxiality plays a crucial hole in the interpreta-
tion of lensing data, cluster morphology and Sunyaev–Zeldovich measurements (for
reviews on this topic, see (Joachimi et al. 2015; Kiessling et al. 2015), and needs to
be taken into consideration.

Surface brightness of galaxies
Our capacity of observing galaxies is limited by the brightness of the sky.
They can only be observed if their surface brightness, which is the brightness
per area, is higher than the sky surface brightness5 where the area A is the
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area of the survey (μB = 23mag/arcsec2). This can limit our understanding
of the distribution of galaxies, making us miss the fainter ones. The surface
brightness of a galaxy is described with respect to the radius R (Binney and
Tremaine 2008) as Sp(R) = Sd exp(R/Rd) ∝ exp(−kR1/m), where Rd is the
disk scale length, and in the second equality we have the empirical S érsic law.
Therefore, we have the following nomenclature for the galaxies with respect
to their surface brightness.

Low surface brightness (LSB) galaxies: There is no formal definition for LSB
galaxies, but in general they are disk galaxies that have surface-brightness
smaller than μB. They are believed to make the majority of the galaxies in
our universe, and most of the LSB galaxies are dwarf galaxies. However,
this is not necessarily the case, with LSB galaxies being galaxies in a broad
range of masses, and very diverse morphologies. This low luminosity is likely
associated to a small star formation rate in those galaxies. So those galaxies
are believed to be DM dominated. Their rotation curves6 usually reach much
smaller speeds than the ones fromhigh surface brightness galaxies (see below),
with a very slow rise before reaching the plateau region given their lower
density, but broaden mass distribution.

High surface brightness (HSB) galaxies: They are usually defined as galaxies
that are brighter than μB. They are the usual galaxies we study. The rotation
curves are known to reach high velocities with a steep rise, coming from the
inner region that has a higher density of baryons with narrower mass distribu-
tions than LSBs, which is described by the Newtonian baryonic acceleration.
This is followed by a Kleplerian fallout to the flat part of the rotation curve.

2.2 Discrepancies in comparison with observations

In this section, we will show how some of the theoretical predictions from simu-
lations of the small-scales considering the ΛCDM model compare with respect to
astrophysical observations. However, this comparison is not straightforward, since we
indirectly probe the dark matter inferring it from the visible matter that traces the grav-
itational potential of galaxies and clusters. There are a few approaches to connect the
information of galaxies and the dark matter halos like forward modelling, abundance
matching and kinetic measurements, and each of those methods has its difficulties
and limitations. The result of this comparison is a series of discrepancies that chal-
lenges the results of the simulations, and in some cases limitations in observations.

5 The brightness of an object is a measure of the amount of light (luminosity) that we detect: B =
Luminosity/4πd2, where d is the distance to the object. We use magnitude to measure the brightness
of an object in a scale without units, and represented by mag.
5 A rotation curve of a galaxy shows the change in the orbital circular velocity of stars or gas clouds with
respect to the distance from the center of the galaxy. An example of a rotation curves can be seen in Fig.
3 for dwarf galaxies. Different types of galaxies present very distinct rotation curves, such as low or high
surface brightness galaxies. This can be seen in Fig. 14.
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We will present some of these challenges in this section. Some of those challenges
might have complementary origin and solution, and are indeed connected, as we will
discuss below.

2.2.1 Cusp–core

As we saw above, the expected density profile from collisionless simulations is the
NFW profile which is cuspy towards the central region of the halo. Given the com-
plex dynamics of baryonic matter in some galaxies, good laboratories to probe the
halo structure are low surface brightness (LSB) galaxies and late-time dwarfs. Those
systems are dominated by DM throughout their halo up until the central regions. Mea-
suring the rotation curves of dwarf galaxies, (Flores and Primack 1994; Moore 1994)
found that those measurements preferred cored isothermal profiles. Many other mea-
surements of the rotation curves of those systems (McGaugh and de Blok 1998; Côté
et al. 2000; van den Bosch and Swaters 2001; Borriello and Salucci 2001; de Blok
et al. 2001a, b; Marchesini et al. 2002; Simon et al. 2005; Gentile et al. 2005, 2007;
Kuzio de Naray et al. 2006, 2008) have confirmed this discrepancy, showing a con-
stant density core with a profile with a slope γ = 0–5 (considering the profile at small
radius given by ρ ∼ 1/rγ ). The smallest values for this slope from dissipationless
simulations are too large in comparison to the ones obtained by observations.

The recent measurement of nearby dwarf galaxies from the survey THINGS (HI
NearGalaxySurvey) (Oh et al. 2011) andLITTLETHINGS (Oh et al. 2015) confirmed
this discrepancy.Measuring the rotation curves from 7 to 26 nearby dwarfs, they found
that the inner slope ismuch smaller than theNFWone (γ = −1), with γ = 0.29±0.07
for the LITTLE THINGS survey, as we can see in Fig. 3.

The situation is more complex for high surface brightness (HSB) objects given its
complex inner density structure; or for galaxies with large mass, like spiral galaxies,
where at small radii is dominatedbybaryonicmatter. Even in the case of dwarf galaxies,
it was pointed out that some systems present cuspy profiles, while others cored ones,
presenting an unexpected diversity in the rotation curves (Oman et al. 2015). Since
different results were obtained by different techniques for the same system, this shows
that determining the inner slope of galaxies is a hard task.

The origin for these discrepancies can come from the fact that the simulations
take into account only DM, while the properties of galaxies are also influenced by
the presence of baryons. The newest hydrodynamical simulations obtained by many
independent groups have shown that baryonic feedback can in fact soften the inner
cusps in the profile and generate core-like profiles like the ones observed for dwarf
galaxies. The main effects are supernova feedback flattening and dynamical friction
from baryonic clumps (for a more detailed list of these and other baryonic processes,
see (Del Popolo and Le Delliou 2017)). These simulations show a threshold mass of
Mvir ∼ 1010 M� below which the simulation predict profiles that are cusped (Gov-
ernato et al. 2012; Munshi et al. 2013; Madau et al. 2014; Oñorbe et al. 2015; Tollet
et al. 2016; Fitts et al. 2017).

However, not all simulations agree with this result. Additionally, modelling those
baryonic feedback effects is challenging, and introduce many new parameters and
uncertainties in modelling assumptions. Finally, not all baryonic processes that might
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Fig. 3 Figure adapted from Oh et al. (2011), showing the results from the THINGS and LITTLE THINGS
surveys. The plot shows a comparison of the velocity versus radius (rotation curve) (left panel) and density
versus the radius (right panel), normalized by R0.3, and V0.3 andρ0.3, from the theoretical parametrizations
of the NFW potential (solid line) and the pseudo-isothermal (dashed line), with the simulated galaxies
(Governato et al. 2010), represented in the plots by the legend DG1 and DG2. In the plots observational
data from 7 dwarf galaxies measured by THINGS are represented by the other points. The crosses represent
the median values of the LITTLE THINGS rotation curves and density profile. We can see that the galaxies
seem to follow a cored profile, while NFW predicts a cusp

influence the formation and dynamics of galaxieswere included in the simulations, and
that might reveal to be important for the result. It is clear that the inclusion of baryonic
effects is hinting in the right direction, but until consensus is achieved, alternatives
need to be considered. As mentioned before, a modification of the properties of DM
might in a simple way account for that, as we will show for the case of Bose–Einstein
condensate DM. An early solution to the cusp–core problem, and that explains the
rotation curves with exquisite precision is a modification of the dynamics of gravity
on small-scales, the MOdified Newtonian Dynamics (MOND). This is also a solution
for the regularity versus diversity challenge, and its main points and shortcomings will
be presented at the end of this section.

2.2.2 Missing satellites

Structure formation is hierarchical in nature and it is expected that the DM halos are
also populated by small subhalos. This is confirmed inΛCDM simulations of Milky-
Way-sized halos, which show that the subhalo mass function diverges toward low
masses, limited only by the numerical limit. Those simulations then predict several
hundreds of subhalos with vmax ∼ 10–30 km/s, that are large enough to host a galaxy
(Mpeak � 107 M�), where Mpeak is the maximum virial mass the halos had when they
formed. On the other side, until 2005 only 12MWclassical satellites were known, with
15 more confirmed ultra-faint satellite galaxies until 2014, with the data from Sloan
Digital Sky Survey (SDSS) (Drlica-Wagner et al. 2015). To date, with the inclusion of
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Dark Energy Survey (DES) data, a few more ultra-faint candidates were discovered,
with the known count of satellites of more than 50. However, the number of MW
galaxy satellites is still much smaller than the number predicted from simulations.
This is known as the missing satellite problem, and not only appears in the MW, but
also in the Local Group.

DES and future observations are expected to discover more of those ultra-faint
galaxies, which can alleviate this discrepancy, but there is still a debate if this will
solve the problem. Another possibility is that low-mass subhalos are there, but we just
cannot see them since they have very low baryonic content. One can expect that for low
mass subhalos, galaxy formation is suppressed since the photoionizing background
heats the gas, reducing its cooling rate and inhibiting gas accretion for Mvir ∼ 109 M�
(Efstathiou 1992; Bullock et al. 2000; Benson et al. 2002; Bovill and Ricotti 2009;
Sawala et al. 2016). Star formation is also suppressed since supernova-driven winds
could strip the gas out of these halos (Dekel and Silk 1986). Other mechanisms can
also suppress the baryon content in the low-mass galaxies, see (Del Popolo and Le
Delliou 2017), like reionization suppression. So, the visible subhalos are only a set of
the entire distribution of halos that contains the non-visible faint end. It was shown
recently in the hydrodynamical simulations APOSTLE (Sawala et al. 2016; Zolotov
et al. 2012; Zhu et al. 2016) that apparently this mechanism can solve the difference
in the number of predicted and observed satellite galaxies, thus solving the missing
satellite problem. But the question remains if this process needs to be too finely tuned
to solve the problem.

Too big to fail
The abovemechanism that could solve themissing satellite problem leads to another

challenge: the too big to fail problem. When we say that the visible subhalos of the
MW are only a set representing the most massive subhalos in the total distribution
of subhalos, to have agreement with ΛCDM simulations these visible MW subhalos
need to correspond to the most massive subhalos predicted by the simulations. But, the
most massive subhalos predicted by those simulations have central masses7(Vmax >

30 km/s) that are too large to host the observed satellite galaxies (Boylan-Kolchin et al.
2011, 2012), and the ones that have central mass like the expected by the MW (with
12 < Vmax < 25 km/s) are not the most massive ones. So, the puzzle is why should
the most massive subhalos, where the gravitational potential is the strongest and the
striping gas mechanisms cited above are not important, be too big to fail to form stars
and galaxies? This is illustrated in Fig. 4. This problem also appears in the galaxies in
the Local Group and Local Volume (Papastergis et al. 2015; Garrison-Kimmel et al.
2014), so it is not a specific property of the MW.

This higher central mass from the most massive sub-halos predicted by simulations
in comparison to the MW dSphs seems to be a more general feature that appears
in simulations. This discrepancy might indicate a more delicate issue related to the
internal structure of the sub-halos. In this way, the too big to fail problem is more than
just the problem related to the missing satellites problem, as stated above.

7 The central mass is equivalent to quoting Vmax since V 2
circ = GM/R, where the maximum circular

velocity is defined as the peak of the rotation curve and it is a quantity less affected by tidal stripping
(Penarrubia et al. 2008).
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Fig. 4 Figure adapted from Bullock and Boylan-Kolchin (2017), showing the circular velocity versus the
radius of specific subhalos from the Aquarius simulation that have Vmax > 30 km/s (magenta lines). Those
are known to have halos that are very massive and expected to host the formation of starts. However, as we
can see from the data points corresponding to classical MW satellites with masses M ∼ 105–107 M�, in
the most massive of those subhalos, with M > 108 M� shown in the gray region of the plot, we do not
observe satellites. This means that the more massive subhalos predicted by the simulations are too big to
fail to form stars and galaxies

Like for the other problems, it was proposed that some astrophysical processes
driven by baryons could be important on those scales and solve the too big to fail
problem.However, these solutions seem to onlywork for theMWand for very efficient
feedback, like the supernova feedback that only solves the too big to fail problem if
very efficient. This is an intense topic of debate and no consensus appears to have been
reached. As these notes were being written, there has been claims that the too big to
fail problem has been solved (Ostriker et al. 2019).

As for the cusp core problem, different DM physics could solve those problems by
having a mechanism that suppresses the formation of small-scale subhalos, and that
reduces the central densities of massive subhalos (or modifies the dynamics of the cen-
tral regions). We are going to show how the models with Bose–Einstein condensation
address some of those problems.

2.2.3 Diversity vs. regularity: scaling relations

Although our universe came from very smooth initial conditions, nowadays the diver-
sity of galaxies that we find in the universe is extraordinary. This incredible diversity
of galaxies, though, presents a surprising regularity. This fact is manifest in several
scaling relations that are shown to hold very tightly for a diverse range of galaxies.
These relations relate the dynamical and baryonic properties of galaxies, and hold
even for DM-dominated systems, and they are one of the most tantalizing aspects
of galaxy phenomenology, representing the most pressing challenge for ΛCDM on
small-scales.
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Fig. 5 Left panel: the Baryonic Tully–Fisher Relation (BTFR), which shows the relation between the
baryonic total mass (Mb) and the asymptotic circular velocity. Dark and light blue points represent star
and gas dominated stars, respectively. The dashed line represents the relation expected for ΛCDM, with
slope equal to 3; while the dotted line which better fits the data, has slope 4. Image reproduced with
permission from from Famaey and McGaugh (2012), copyright by the authors. Right panel: Plot of the
Radial Acceleration Relation for 153 SPARC galaxies. The fit to the data is given by the solid line while the
dotted line is the unit line. The insert is a histogram of the residuals. The red uncertainty bars represent the
uncertainty in each individual point. The lower panel shows the residuals, and the red uncertainty bar shows
the mean uncertainty on individual points. The dashed lines represent the rms value in each bin and the
solid red lines represent the observational uncertainties and variation between the stellar mass-to-light-ratio
from galaxies. Image reproduced with permission from McGaugh et al. (2016), copyright by APS

The most famous of those relations is the Baryonic Tully–Fisher relation (BTFR)
(McGaugh 2005, 2008), which relates the total baryon mass (including stars and gas)
of the galaxy to the asymptotic circular velocity in galaxies, Vf (this is the velocity
measured at the flat portion of rotation curves):

V 4
f = a0GMb , (6)

where a0 is the critical acceleration, a scale that appears in observations. Its value can
be obtained from the data and given by a0 ∼ 1.2×10−8 cm/s. The BTFR expands the
regime of validity of the Tully–Fisher relation which relates the luminosity, instead of
the total mass, to the circular velocity. Luminosity is a probe of the stellar mass, and
in the BTFR, the observed gas mass is also considered on top of the stellar mass. This
extends the validity of the scaling relation by many decades in mass. This empirical
scaling relation is shown to hold for large ranges of masses, six generations, with a
very small scatter, compatible to the size of the error bars. The left panel of Fig. 5
presents the BTFR. As we can see, the slope of the BTFR is different from the one
predicted by ΛCDM, V 3

f ∝ Mb, shown by the dashed line.
There is another general scaling relation that also displays the interesting behaviour

of galaxies: the mass discrepancy acceleration relation (MDAR). This is more general
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since the BTFR can be obtained from the MDAR at large distances in the disk. The
MDAR is a relation between the gravitational acceleration from baryons alone (gbar),
from the distribution of gas and stars in galaxies (McGaugh et al. 2016; Lelli et al.
2017), and acceleration inferred from rotation curves (gobs = V 2/r ). As it can be seen
in the right panel of Fig. 5, this scaling relation shows a remarkably tight correlation
between these quantities for very diverse and large number of galaxies This can be
seen by comparing the interval determined by the solid red lines and the uncertainty in
each individual point, represented by the red uncertainty bars on the top figure, with
the dashed lines show that the data is compatible with negligible scatter.

This relation shows us that in regions of high acceleration, where gobs > a0 and
baryons dominate, one has gobs ∼ gbar. For low accelerations, in the central regions
where it is expected to be DM dominated, this relation deviates from the unit line. This
suggests a very curious behaviour: the baryon mass distribution dictates the behaviour
of the rotation curve at all radii, even for the regions expected to have less baryons.
And this behaviour holds even for galaxies that are DM dominated.

These empirical relations, coming directly from observations, show the surprising
feature that in galaxies the dynamics is dictated by the baryon content, even when
DM dominates. Even more unexpected these relations are very tight, showing very
little spread, even if they come from very diverse types of galaxies. As pointed out in
Bullock and Boylan-Kolchin (2017), what dictates the dynamics in these correlations
is the baryon mass, which is the sum of gas and stars, and not only the stellar mass,
which is the one that is expected to correlate more with the total feedback energy.

Recently, it was shown by many groups that these relations can be explained within
the ΛCDM paradigm (Navarro et al. 2017; Ferrero et al. 2017; Garaldi et al. 2018;
Dutton et al. 2019; Navarro 2019) using the latest hydrodynamical simulations like
EAGLE (Schaye et al. 2015; Crain et al. 2015), APOSTLE (Sawala et al. 2016), Illus-
tris (Illustris 2014), ZOMG (Borzyszkowski et al. 2017; Romano-Diaz et al. 2017;
Garaldi et al. 2017), and NIHAO (Wang et al. 2015). Those simulations include sev-
eral baryonic effects (like star formation, stellar evolution, metal enrichment, gas
cooling/heating, galactic outflows and BH feedback, among others) to their ΛCDM
simulations.8 Those new large volume and high-resolution simulations, like Illustris
and EAGLE, have also been able to reproduce the features of the rotation curves of
galaxies within ΛCDM. This large amount of progress in the simulation side is very
encouraging.

However, some questions still remain. While the BTFR and the MDAR trends can
indeed be reproduced by those simulations, it is pointed out by most of the authors that
the scatter obtained in the scaling relations is larger than the one expected from data
(some authors claim that this spread is correlatedwith the errors in the stellar feedback).
The question remains thoughwhether this is amatter of improving the feedbackmodels
and/or resolution of the simulation, or if given the stochastic nature of the feedback
effects, they will ever be able to give such tight correlations. Another point that is
important to be answered is about the importance of these baryonic feedbacks since
these groups do not agree on how very sensitive to the feedback model the simulations

8 This review will not enter into the details of such baryonic effects that are taken into account in those
simulations. This is a field of its own, very rich and fast developing, and discussing those effects is not the
scope of this review.
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are, which is intriguing. The way those effects are introduced in the simulations is by
parametrizing their effects, instead of introducing all of these feedback mechanisms
from first principles, which is understandable given the complexity of each of those
phenomena. This includes many new parameters to the simulations. And different
simulations might use different parametrizations. Those simulations also still do not
go all the way until dwarf galaxies,9 which are DM dominated and where most of
the tension is. In summary, this is a very challenging and exciting field and a lot of
progress has been done on the simulation side with results that are very encouraging
to explain the formation and dynamics of galaxies. But there are some uncertainties
in those results and the simulations still do not fully reproduce the observations.

2.2.4 What the small-scales tell us

As we saw above, the small-scales hold precious information that can help us under-
stand astrophysical processes, or even the nature of DM. This is revealed by the
challenges presented above, which show rich dynamics on galactic and sub-galactic
scales. There are a number of ways that these discrepancies can be addressed. Within
ΛCDM, this can done by including baryonic effects, which as we saw in the previ-
ous sections seem to address partially or completely some of those puzzles. Another
proposal for solving some of the puzzles of galactic evolution is more radical and pro-
poses a universe without DM that has a modified force law for small accelerations, the
MOdified Newtonian Dynamics (MOND). See box below for a discussion of MOND.

A third avenue is to modify the DM paradigm. Different models of dark mat-
ter can affect the formation of structures in distinct ways, both in the linear and in
the non-linear regimes. Therefore, the small-scales offer an opportunity to probe the
microphysics of DM, beyond the hydrodynamical large-scale CDM paradigm. The
non-linear regime can be specially changed by modifications of this paradigm, as we
can see in Fig. 2. This regime can be probed using galaxies, and for even smaller scales
satellite galaxies and studying substructures. This could help find new properties of
DM, that could help elucidate its nature.

9 To my knowledge. But as I said, it is a fast moving field.
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MOND empirical law -
Milgrom, in Milgrom 1983a; Milgrom 1983b; Milgrom 1983c, motivated by
the scaling relations and rotation curves of galaxies, made a remarkable obser-
vation about the mass discrepancy in galaxies. He observed that the mass
discrepancy can be determined by the observed baryonic matter, and can be
described by the simple empirical law,

a =
{
aN,b , for aN,b 
 a0 ,√
a0 aN,b , for aN,b 	 a0 ,

(7)

where aN,b = GMb(r)/r2 is the Newtonian acceleration due to baryons. The
scale a0 appears naturally from observations, like we saw in the previous sub-
section, and its value can be fitted by the data10giving a0 ∼ 1.2×10−8 cm/s2.
This scale separates the regimeswhere the centripetal acceleration experienced
by a particle is given purely in terms of the Newtonian (baryonic) acceleration
at large acceleration, and at small acceleration, by the geometric mean of aN,b
and a0.
The relation works very well fitting the rotation curves of galaxies, both HSB
and LSB galaxies. LSB galaxies (which were predicted by Milgrom), are DM
dominated, or in the language of MOND, have low accelerations, given their
low stellar surface density. It is also remarkably successful in explaining the
empirical scaling relations (for a review see Sanders and McGaugh 2002;
Broeils 1992; Begeman et al. 1991; Famaey and McGaugh 2012).
More importantly, this empirical relation reveals a very interesting and curious
fact. It seems that the dynamics in galaxies is driven by the baryons, even for
galaxies that areDMdominated. This seems to indicate a long range correlation
between baryons on galaxies.
This fact made Milgrom think that a fifth force was responsible for this corre-
lation, instead of DM, and that this relation could come from a modification of
gravity at those scales. In order to try to get the empirical law (7) as a modified
gravity theory, (Bekenstein and Milgrom 1984) described an effective theory
for MOND, which we will call full MOND. This can be accomplished by
having a scalar field coupled to gravity with effective Lagrangian,
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LMOND = −2M2
pl

3a0

[
(∂φ)2

]3/2 + φ

Mpl
ρb , (8)

which represents a scalar field with a non-canonical kinetic term that is confor-
mally coupled to matter. This Lagrangian, for static and spherically symmetric
source, results in a modified Poisson equation

∇ ·
( |∇φ|

a0
∇φ

)
= 4πGρ , φ′ =

√
a0

GM(r)

r2
= √

a0aN,b (9)

where in the second equation the spherical symmetry was assumed with “′”
denoting derivative with respect to the radial coordinate. This theory describes
that on top of the Newtonian force, there is a scalar field mediated force,
which is given by the MONDian acceleration. This is a simplified version of
their theory, since in their theory they have a way of making an interpolation
between the different regimes. This theory also has a fractional power kinetic
term, which might be problematic.
With the current precise observations on large scales, specially from the CMB
anisotropies and lensing observations, any theory that does not have DM is not
compelling. Indeed, this is a problem for theories without DM, in particular
MOND, since themeasurement of the third peak of theCMBanisotropies (Sko-
rdis et al. 2006; Skordis 2009). This full MOND theory cannot explain galaxy
clusters, since it does not predict an isothermal profile. Many attempts were
made to extend MOND, by including DM, to try to explain the observation on
scales larger than galactic, or extending it to relativistic regimes (see reviews
cited above).
However, the empirical relation (7) is incredibly successful. That alone, with-
out the assumptions of full MOND (no DM and modified gravity), even in the
context of ΛCDM, is a powerful statement about how DM is distributed in
galaxies: in regions where baryons dominate, the theory behaves like Newto-
nian theory, and in regions where the DM dominates, the DMmass is uniquely
determined by the baryonic distribution, GM(r)/r = √

GMb(r)a0.
Given the shortcomings of the full MOND, but the great successes of the
empirical law, insteadof trying to obtain this theory froma fundamentalLorentz
invariant theory, the idea is to obtain the MOND dynamics from a theory
of DM. In this way, MOND dynamics emerges only at galactic scales while
maintaining the CDM behaviour on large scales. This is achieved in the theory
of DM Superfluid that will be presented in Sect. 4.

10 A funny numerical coincidence is that the measured scale a0 is related to the Hubble parameter today,
a0 ≈ cH0/2π , which is natural units yields a0 ∼ H0. Does this indicate something?
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The goal of this section was twofold. First, we wanted to give an overview of the so-
called small-scale problems of the CDM, which was the motivation for some ULDM
models to be proposed. We wanted to introduce the problems in a way that the reader
can understand why the mechanisms proposed by the models in Sect. 4 address and
solve each of those small-scale controversies. For example, we are going to see that
the FDM model has to have a certain range of mass to solve the cusp–core problem
and the satellite problem; or that the DM superfluid model has a modified dynamics of
small-scales, reproducing the MOND behaviour, which explains the rotation curves
of galaxies and the scaling relations.

The second goal, and perhaps the most important was to give an brief overview
of the rich astrophysics that takes place in galaxies, introducing important concepts
and observations available on these scales. This is important since the main feature of
the ULDM models is to present a new phenomenology on small-scales coming from
the non-CDM behaviour of ULDM. In this way, the small-scale observables offer an
important window to test the nature of DM.

3 Bose–Einstein Condensation and Superfluidity

In this section, we present a short review of Bose–Einstein condensation (BEC) and
superfluidity. The goal of this section is to give an introduction to the basic theory,
properties and the methods used to describe those systems, so they can be applied to
the case of DM in the next section. The different description of those systems and their
limit of validity are very important to be able to understand the construction andvalidity
of the DM models presented next and why they present different phenomenologies
and astrophysical consequences.

Bose–Einstein condensation is one of themost fascinating phenomenon of quantum
mechanics. Since it was theorized in the year of 1920s, by Satyendra Nath Bose and
Albert Einstein, its experimental realization opened the door for many advances in
the physics of many-body systems, and even to the application of this phenomenon in
other fields like cosmology. Its first experimental realization was done in 1995 by two
independent groups using laser and magnetic cooling device to cool down rubidium
atoms gas (Anderson et al. 1995; Davis et al. 1995). Nowadays, BECs are observed in
helium, ultra-cold atomic gases, quasi-particles in solids, multi-component (mixtures)
of BECs, among other systems.

Following on the works of Bose (1924), which described the quantum statistical
properties of photons, Einstein extended this concept to a gas of non-interacting parti-
cles of integer spin, later called bosons as a tribute toBose, that follows aBose–Einstein
statistics (Schay 1924). This Bose gas has the property that at low temperatures a large
number of these bosons, described then as quantum oscillators, condense into the
lowest momentum state, exhibiting long range coherence. This physical phenomenon
initiated the idea of Bose–Einstein condensation.

A BEC is defined as a system where at very low temperatures a large fraction
of the bosons of the system occupy the lowest energy state of a configuration. This
macroscopic occupancy of the ground state is an inherently quantum mechanical
phenomenon. Physically we can interpret it as a consequence of the wavelike nature
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of these particles at low temperatures, where the deBrogliewavelength of these bosons
is larger than the inter-particle separation, and their wavepackets superpose and form
a coherent macroscopic wavefunction describing the entire system. The BEC is then
described by a single wavefunction of the system, linking to the long range coherence
property of a condensate.

A few years after BEC was theorized by Einstein, another intriguing macroscopic
quantum mechanical phenomenon was discovered: superfluidity. In 1937, Kapitza
(1938) and independently Allen and Misener (1938), conducting experiments with
helium-4 realized that after cooling down this liquid to a certain temperature, the
fluid starts flowing without friction, even climbing the walls of the container where
it was stored. Fluids that exhibit this behaviour, characterized by a zero viscosity,
are called superfluids. Landau provided a phenomenological description of this effect
which rendered him the Nobel prize in 1962. It was proposed by London (1938), after
the development of laser cooling techniques for atomic gases, that the properties of
He4 superfluid are related to BEC. This was not obvious given that the (textbook)
description of BEC as an ideal non-interacting Bose gas, contrary to 4He that is a
strongly interacting fluid. This gave relevance to the, until then, only theoretical ideas
of Einstein, and BEC became a rich topic of research. The relation between superfluids
and BECs was confirmed years later in ultracold atomic gases where almost the entire
fluid at low temperatures is condensed and exhibits superfluidity.

It is very challenging to describe the strongly interacting helium system. A weakly
interacting Bose gas was then proposed by Bogoliubov, as a modification of the non-
interactingBose gasmodel, to study theBose–Einstein condensation and superfluidity.
In this way, superfluids can be modelled by a Bose–Einstein condensate that has self-
interaction, and superfluidity is described as being achieved through interactions in
a BEC. Notice that BEC can happen even in the absence of self-interaction, as seen
above, since it is a statistical property of a gas of bosons in low temperature, but
this system does not exhibit superfluidity. The weakly interacting theory is used to
describe many superfluid systems at certain limits. This description, tough, evolved
in the last few years to extend and generalize this framework to finite temperature
systems, mixtures and even stronger interacting system corrections. New frameworks
also emerged to describe different systems that cannot be modelled by the weakly-
interacting theory. One of those ideas based on the hydrodynamical description is to
write these systems as an effective field theory (EFT) order to describe the system
macroscopically using symmetry alone without the need of working its microscopic
description. This EFT, depending on the symmetries of the system, can recover at some
limits the weakly interacting superfluids, but also can be used to describe more general
superfluids, superconductors and even systems like the unitary Fermi gas (Kevrekidis
et al. 2001; Baker 1999), which is a gas of fermions that interact through a strong
two-body coupling that is a superfluid in the ground state.

The theoretical description of those condensed matter systems, together with the
experimental efforts, is a field of research that is in fast development. In this review
we are going to describe the basic concepts on BEC and superfluid, and detail the
different descriptions and properties of these systems. We start by describing the non-
interacting ideal gas, where condensation was first conceptualized to present in more
detail the definition and the conditions for condensation. We then start to describe
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superfluidity. We show first the definition of superfluidity as defined in Landau’s
theory of superfluidity. We then describe a more concrete model for a BEC where
superfluidity is present, the weakly interacting Bose gas. This is the simplest example
of superfluidity.We showhow thismodel describes condensation and superfluidity.We
then follow to show the field theory description of the superfluid, where the system
is described as a system which undergoes spontaneous symmetry breaking caused
by the condensate. This description brings advantages and makes clear the study of
many features in BECs and superfluids. As a low-energy description of the superfluid,
we present the EFT of superfluids as another description of more general superfluid
systems. We finalize describing what happens when we rotate a superfluid, showing
the nucleation of vortices upon rotation.

Not linked to what we will discuss in the review, but an important fact. Nowadays,
it is known that superfluidity is not necessarily linked to condensation. Recent inves-
tigations seem to point that there are states where you can have superfluidity for the
majority or all the particles in the system, while only a small fraction is condensed.
This happens for example for liquid helium below a certain temperature.

3.1 Non-interacting ideal gas

Westart our discussionwith the non-interactingBose gas. The properties of this system
are a consequence purely from the quantum statistic of indistinguishable bosons. We
will see that in the grand canonical ensemble we can write the Bose distribution
function in which we can see the conditions for Bose–Einstein condensation.

We want to describe here a theoretical gas of many non-interacting bosons in a
box. In a system with a large number of particles (N ), it is impractical to try to
determine the state of each particle or even the collective many-body wavefunction
that describes this system Ψ (r1, . . . , rN , t). In this sense, to describe a system with
many particles that can occupy many different states, we represent the system using
a statistical ensemble description. To describe the state of this collective system, one
does not need to label the state of each particle, but to determine the number of
particles in each state of the system. The ensemble that is specially convenient for this
task of deriving the probability of microscopic states is the grand canonical ensemble
(GCE). Since our system is composed of bosons, which are indistinguishable particles
Ψ (r1, r2, . . . , rN , t) = Ψ (r2, r1, . . . , rN , t), called Bose symmetry, this ensemble
is useful to describe the system where many particles can occupy the same state.

TheGCE is a statistical ensemble that describes a system that is in contact in thermal
and chemical equilibrium with a large reservoir, in a way that there is exchange of
energy and particles with the reservoir. This exchange of particles with the reservoir
makes the number of particles in the system to fluctuate, although the number of
particle of the system plus reservoir is constant. As the system is in equilibrium,
the energy and particle number fluctuate around an average. This ensemble can be
described by the following constants: the chemical potential (μ) and the temperature
(T ), which hold for a system (of volume V ). If the GCE is applied to small systems, an
additional condition is necessary: that the gas is diluted. In principle, the probability
of finding the system in a state s with energy εs and ns particles, or occupation number
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ns , is given by

Ps = 1

ZGC
s

eβ(μ ns−εs ) , with ZGC
s =

∑
s

eβ(μ ns−εs ) , (10)

where β = 1/(kBT ), with kB the Boltzmann constant. The chemical potential μ =
(∂E/∂N )S,V is the energy required to add one particle to the isolated system, fully
determined by N , the total number of particles, and T . The chemical potential is
defined to be negative (so no unphysical negative occupation occurs). The total energy
of the system is given by E = ∑

s nsεs . The normalization ZGC
s is the grand canonical

partition function.
With the GC distribution function, we can then evaluate the average occupation

number,

〈ns〉 =
∑
ns

ns Ps = 1

eβ(εs−μ) − 1
, (11)

where the sum converges for μ < εs . This is the Bose–Einstein distribution. This
gives us the total number of particles in the system:

N =
∑
s

ns =
∑
s

1

eβ(εs−μ) − 1
. (12)

We can separate the total number of particles into two contributions,

N = N0 + NT , (13)

where N0 = 1/eβ(ε0−μ)−1 is the number of particles with s = 0, which is the number
of particles in the condensate, with ε0 indicating the lowest energy of the single particle
state. The number of particles that are not in the ground state, not in the condensate,
also called the thermal component of the gas, NT = ∑

s �=0ns . We can replace the sum
for an integral and, from the partition function, the thermal component is given by

NT = V

λT

∫ ∞

0
dε

ε1/2

eβ(ε−μ)
, (14)

where λT = √
2π�2β. For a fixed temperature, NT reaches a maximumwhenμ = ε0.

So, NT is limited, meaning that in this limit there is a finite number of particles not
in the ground state. At this same point in this limit, N0 can diverge showing that the
number of particles in the ground state grows becoming macroscopically occupied.
This macroscopic occupation of the ground state is seen as a condensation and this
phenomenon is called Bose–Einstein condensation.

The critical temperature Tc defines the temperature below which there is the forma-
tion of the BEC. We can define it as the temperature above which all the particles of
the system are not going to be in the condensate: NT(Tc, μ = ε0) = N . The chemical
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potential can be zero at Tc, and from (14), for the maximum μ = ε0 = 0, we can get
that

Tc =
(
2π�

2

mkB

)(
n

ζ(3/2)

)2/3

, (15)

where n is the total number density and ζ(3/2) ≈ 2.612 is theRiemann’s zeta function.
With that, for T < Tc, we expect that most of the particles are going to be in the
condensate, and the number of particles in the condensate is

N0/N = 1 −
(
T

Tc

)3/2

. (16)

Complementary, the number of particle in the thermal component is NT =
N (T /Tc)3/2. From that expression we can see that the occupation becomes macro-
scopic towards small temperatures, aswe can see in Fig. 6. This indicates the formation
of a BEC. This condition that a BEC can form for T < Tc can be translated into the
condition: nλ3dB 
 1, where λdB = √

2π�2/(mkBT ) is the thermal de Broglie wave-
length that gives the coherence length of the gas. This condition indicates that the gas
needs to be dilute for condensation to happen. This condition is also equivalent to hav-
ing the de Broglie wavelength of the particles overlap and the system being described
by a macroscopic wave-function. When T = 0, all the particles of the system will
be in the ground state and the condensate is described by a single macroscopic wave-
function. As we see from Fig. 6, at high temperatures, condensation is broken and the
system behaves as a gas of individual massive particles.

The de Broglie wavelength λdB: associated wavelength of a massive par-
ticle given by λdB = h/p = h/mv, where p and v are the momentum and
velocity of the particle with mass m, respectively. For an ideal gas of temper-
ature T in a volume V , we have the thermal de Broglie wavelength which
determines the coherent length of the gas. The thermal de Broglie wave-
length can be defined then, where the characteristic thermal momentum is
pT = √

2πmkBT , by:

λdB =
√

2π�2

mkBT
.

When the thermal de Broglie wavelength is much smaller than the interparticle
distance (d), we have a gas of free particles. Otherwise, we have condensation
as studied here.

In summary, Bose–Einstein condensation can happen for ideal gases. The condi-
tion for condensation is that the occupation number of the ground state is so large
that becomes macroscopic when T < Tc. This can be translated in a condition for
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Fig. 6 In this figure, we plot the number of particles in the ground state, normalized by the total number of
particles, with respect to the temperature for the non-interacting Bose gas. We show schematically that for
higher temperatures T ≥ Tc the system is in the normal state where the particles behave as free particles
and occupy all energy levels. As the temperature is lowered, when T < Tc we have the formation of a
condensate described by a macroscopic wavefunction. When T = 0, all particles of the system are in the
ground state and we have a pure BEC, described by a single wavefunction

condensation: if nλ3dB 
 1, there is the formation of a BEC. With that we can see that
this very simple theoretical model already shows this intriguing macroscopic quantum
phenomenon that would be confirmed experimentally many years later.

Condition for condensation of a non-interacting ideal gas
The condition for condensation of an ideal gas of N bosons in thermal equi-
librium with volume V and temperature T is:

T < Tc ⇐⇒ n λdB 
 1 ⇐⇒ λdB 
 d ∼
(
V

N

)1/3

=
(
1

n

)1/3

These conditions state that the temperature must be smaller than the critical
temperature; or that we have a macroscopic occupation number of the ground
state N0; or that the de Broglie wavelength needs to be bigger than the mean
space between particles in order to have quantum degeneracy. It is easy to see
that these conditions are equivalent.

3.2 Landau’s superfluid model and criteria for superfluidity

A few years after BEC was theorized, another striking macroscopic quantum phe-
nomenon was observed, superfluidity. Landau constructed a phenomenological theory
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to explain the results of superfluidity in helium, which was observed to flow in thin
capillaries. This phenomenological theory, however, is quite general to describe super-
fluids and gives general conditions for the appearance of superfluidity.

This theory has the goal of explaining why in superfluids charge is transported
without friction. As we described above, according to London’s ideas, to have super-
fluidity, one needs to have a BEC. The condensate has the role of transporting charge.
So we consider a superfluid as the condensate that transports charge without losing
energy. Dissipation of the condensate, which is equivalent to friction in the fluid, is
caused by exciting particles out of the condensate. We have a superfluid in the limit
of no or low dissipation, and the superfluid is lost in the limit of high dissipation. We
present now the conditions for that to happen.

Consider a superfluid moving through a capillary with velocity vs. The energy of
elementary excitations is given by Pitaevskii and Stringari (2016),

E = Ekin + εp + p · vs , (17)

in the rest frame of the capillary. The kinetic energy of the fluid is given by Ekin, and
εp > 0 and p are the energy of the excitation and momentum in the frame of the fluid,
and translated to the frame of the capillary. Dissipation happens when εp +p ·vs < 0.
This can only be negative if its minimum, when εp + pvs cos(θ) where θ = nπ for n
integers, is smaller than zero: εp − p vs < 0. With that we can determine the critical
velocity:

vc = min
p

εp

p
. (18)

For vs < vc, with vc �= 0, the system transports charge without dissipation and the
coherence of the BEC is maintained. This is the first criteria for superfluidity. The
second necessary criteria is that vc cannot be zero, so we need to have a condensate
that transports the charge.Anon-interacting (pure)Bose gas likewe saw in the previous
section has vc = 0, so it cannot be a superfluid. A weakly interacting Bose gas has
vc �= 0 and it is a good representation of a superfluid.

As we are going to see in the next section in the case of the weakly interacting BEC
because of the spontaneous breaking of U(1) symmetry, a Goldstone mode appears,
the phonon. This mode is gapless εp=0 = 0 and it is an elementary excitation of the
superfluid. Even for that mode, the critical velocity is not zero, so there is some cost
for producing the gapless excitation. For this weakly interacting Bose gas, the critical
velocity is the fluid sound speed, and Landau’s criteria for superfluidity becomes

vs < vc = cs . (19)

In summary, given that vc is nonzero, and that we have a condensate (by construction)
in this system, if v < vc, we can say that there is superfluidity. This result, however,
is only valid for zero temperature.

Landau also developed the theory for a superfluid at finite temperature, the two-fluid
model. At finite temperatures, the fluid has two components: the superfluid component
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that flows without friction and a normal fluid which describes the excitations. In this
theory, then there are two sounds speeds, for each degree of freedom. In the case of
weakly interacting Bose gas, the first sound is cs associated with the oscillation in
density, and the second sound is cs/

√
3 that corresponds to the speed of propagation

of the temperature oscillations.
This phenomenological theory is still an important topic of research as a condition

for superfluidity. From simulations to experiments, it is interesting to ask if the Landau
criteria is fulfilled as a criteria for superfluidity. This criterion seems to be valid only
in the regime of linear perturbations. This is the case since in Landau’s theory the
superfluid dissipates only into elementary excitations. However, we know that it is also
possible to exist quantum vortices, topological defects present in rotating superfluids.
This phenomenological theory does not take that into account, which can change the
critical velocity of the superfluid to smaller values, reaching the dissipative regime of
the superfluid before than if using Landau’s critical velocity Ianeselli et al. (2006).

Landau criteria for superflduidity

Phenomenological conditions for superfluidity (at T = 0):

1. Existence of a condensate;
2. vc �= 0 (Non-interacting Bose gas has vc = 0 - not a superfluid!

Interaction is crucial for super-
fluidity.)

3. v < vc - system transports chargewithout dissipation and the coherence
of the BEC is maintained.
vc = velocity above which excitations can leave the condensate (vc = cs -
interacting BEC)

At finite temperatures, two fluid model: the superfluid component that flows
without friction, and a normal fluid which describes the excitations.

3.3 Weakly interacting Bose gas superfluid

We now turn to the discussion of interacting systems. Inspired by Landau’s phe-
nomenological theory, the weakly interacting Bose gas was proposed as the simplest
system to study superfluidity, and as a realistic model to understand condensation. In
this section, we are going to model a superfluid by a Bose–Einstein condensate that
has self-interaction, and show that, although a BEC can be formed both in the case of
the non-interacting and interacting Bose gas, the presence of interaction is crucial for
superfluidity (Pitaevskii and Stringari 2016; Barenghi and Parker 2016; Rogel-Salazar
et al. 2004).

We present here a microscopic description of superfluid which arises upon con-
densation. The microscopic system where this happens is a weakly interacting gas of
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bosonic particles. To describe this interacting gas, first we need to understand how to
describe the excitations in this system.

One of the conditions for condensation is that the gas is dilute. However, even in a
dilute gas, the interaction can play an important role. The waywe describe interactions
or collisions in a Bose gas is somewhat different than in a classical fluid. Since now
we describe it using their wavefunction, we need to have a interatomic potential Vint to
enable these collisions. In a dilute system at low temperatures, three-body interactions
are suppressed, so we are going to describe this system with binary collisions. In such
a system, the two-body collisions depend only on one parameter a, the s-wave (or
coherent) scattering length (Harko and Lake 2015), which is the zero energy limit of
the scattering amplitude a = limT→0 fscat. This is valid only for low energies when
the other length scales of the problem d 
 a. In this limit, the elastic scattering cross-
section becomes constant σ = 8πa2, and the two-body interatomic potential can be
written as Vint(r−r′) = (4πa�

2/m) δ(r−r ′) ≡ g δ(r−r ′), which is short-ranged and
present only when the atoms interact. The s-wave scattering length a can be positive or
negative depending on the system described, representing a repulsive or an attractive
interaction. With this we can model the effective interaction Hamiltonian as Ĥint =∫
drdr′ Ψ̂ †(r)Ψ̂ †(r) Vint(r − r′) Ψ̂ (r′)Ψ̂ (r′) ≈ ∫

d3r Ψ̂ †(r)Ψ̂ †(r)Ψ̂ (r)Ψ̂ (r), where
Ψ is the Bose operator.

The dynamics of this many-body interacting system is given by the second-
quantized N -body Hamiltonian,

Ĥ =
∫

d3r Ψ̂ †(r)
[
−�

2∇2

2m
+ Vtrap(r)

]
Ψ̂ + g

2

∫
d3r Ψ̂ †(r)Ψ̂ †(r)Ψ̂ (r)Ψ̂ (r) ,

(20)

where the brackets is the single particle Hamiltonian, and Vtrap(r) is the trapping
potential, an external potential applied to the system (that in the next section could
be the gravitational potential). In the Heisenberg description, we can then write the
Heisenberg equations of motion,

i�
∂Ψ̂ (r, t)
∂t

= [Ψ̂ (r, t), Ĥ ] =
(

− �
2

2m
∇2 + Vtrap(r)

)
Ψ̂ (r, t)+ g Ψ̂ †(r, t)Ψ̂ (r, t)Ψ̂ (r, t) , (21)

with the brackets indicating the commutator. This is the Schrödinger equation for the
Bose field operator Ψ̂ (r, t).

The Bose field operator Ψ̂ †(r) and Ψ̂ (r) create and annihilate a particle at position
r, and obeys the canonical commutation relations with only non-zero commutator
given by [Ψ̂ (r), Ψ̂ †(r)] = δ(r − r′). The Bose field operator describes a continuum
spectrum of single particle position eigenstates, and can be re-written in the single-
particle basis as

Ψ̂ † =
∑
i

â†i φ
∗
i (r) , Ψ̂ =

∑
i

âiφi (r) , (22)
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where φi is the states wavefunction, and the creation and annihilation operators, â
†
i and

âi , create and annihilate a particle from the state φi . They obey the Bose commutation
relations,11 with only non-zero component given by [âi , â†j ] = δi j .

Many-particle systems described by the Hamiltonian (20) are very difficult to be
solved. With the exception of a few simple models, to find solutions to this problem
and be able to study its properties we need to make simplifications. For that we use
Bogoliubov’s prescription ormean-field approximation. For the general case of a non-
uniform gas, the mean-field approximation can be written, in the Heisenberg picture
as

Ψ̂ (r, t) = ψ(r, t)+ δΨ̂ (r, t) , (24)

whereψ(r, t) ≡ 〈Ψ̂ (r, t)〉 is classical field called the wavefunction of the condensate.
The density of the condensate is fixed by: n0 = |ψ(r, t)|2 = n. Like we described for
Landau’s theory, δΨ̂ (r, t) is a small perturbation of the system with 〈δΨ̂ (r, t)〉 = 0
and describes depletion of the condensate.

Effectively this approximation leads the many-body problem to be reduced to a
single body problem by describing the averaging the effects of all other particles.
Given that the interactions are weak, and that the gas is diluted, quantum fluctuations
on the condensate are suppressed. The mean field approximation is valid for dilute
systemwith n a3 	 1.When this conditions is notmet there are deviations of themean-
field approximation. We can treat these deviations in perturbation theory, where we
invoke non-vanishing moments for the fluctuation operator, like the Hartree–Fock–
Bogoliubov, which considers a non-zero 〈δΨ̂ 〉, or the Hartree–Fock–Bogoliubov–
Popov, for terms up to second order in the perturbation.

With this approximation, we can write the generalized Gross–Pitaevskii (GP) equa-
tion:

i�
∂ψ(r, t)
∂t

=
(

− �
2

2m
∇2 + Vtrap(r)+ g |ψ(r, t)|2

)
ψ(r, t) . (25)

The GP equation is a non-linear Schrödinger equation, with non-linearity arising from
the self-interaction term. This equation describes the dynamics of the zero-temperature
dilute weakly-interacting Bose system by allowing us to determine the shape of the
single particle wave function, the condensate.

We can study the case of stationary solutions. The stationary solution can be taken
as the solution that provides us with the condensate, the ground state wavefunction.
The ground state is the lowest energy state of a quantum mechanical system, with the
excited states being the states with higher energy than the ground state. The stationary

11 In terms of the creation and annihilation operator, the Hamiltonian of the many-body system is given by,

Ĥ =
∑
i j

H
sp
i j â

†
i â j + 1

2

∑
i jkm

〈i j |V̂ |km〉â†i â†j âk âm , (23)

where 〈i j |V̂ |km〉 denotes the matrix element for the interaction, and H
sp
i j = ∫

d3rΦ̃∗
i (r)Ĥ

spΦ̃ j (r), where

Φ̃ j is the states wavefunctions.
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statesΨ are the eigenfunctions of theHamiltonian operator, with eigenvaluesμ related
to the energy of the system, in a way that for the wavefunction we have

i�
∂Ψ

∂t
= ĤΨ = μΨ . (26)

With that we can write the stationary solution as

ψ(r, t) = ψs(r)e− i
�
μt , (27)

where the eigenvalue of the Hamiltonian μ is also called the chemical potential, and
φs is real field with

∫
drψ2 = N0 = N . The Gross–Pitaevskii equation becomes

(
− �

2

2m
∇2 + Vtrap(r)+ g |ψs(r)|2

)
ψs(r) = μψs(r) . (28)

In the Thomas–Fermi limit, which is the approximation where the interaction energy
is bigger than the kinetic energy for a large number of particles, the kinetic energy can
be neglected so we have μψ = (g n + Vtrap)ψ . As a solution of this equation, we get
that in the Thomas–Fermi limit,

n(r) = |ψ(r)|2 =
{
(μ− Vtrap(r))/g , for r where (μ− Vtrap(r))/g > 0 ,
0 , otherwise .

(29)

Fluid description
We can decompose the complex macroscopic condensate wavefunction into

ψ(r, t) = |ψ(r, t)| eiθ(r,t) , (30)

where, as we saw above , ψ is normalized to the total number of particles, |ψ(r, t)| =√
n(r, t) = √

ρ(r, t)/m, and θ(r, t) is the phase distribution. Inserting this into the
GP equation, we get two equations. We make the following redefinition

v(r, t) ≡ �

m
∇θ(r, t) . (31)

This, together with (30) is called Madelung transformation. With those new variables,
the GP equation results in two equations, theMadelung equations (Madelung 1927):

∂ρ

∂t
+ ∇ · (ρv) = 0 , (32)

ρ
∂v
∂t

+ ρ (v · ∇)v = −∇ (Pint + PQP
)− n ∇Vtrap . (33)

They are a representation of the GP equation in “hydrodynamical” equations since
they have a similar form as the continuity equation and Euler equation for a perfect
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fluid. However, the second Madelung equation describes a fluid with a potential flow,
given the definition of the velocity, with zero vorticity ∇ × v = 0. This corresponds to
the main characteristic of the superfluid that it flows without friction, has irrotational
flow. This equation also differs from the perfect fluid Euler equation by the presence
of the quantum pressure term.

The second Madelung equation, the Euler-like equation, reveals more interesting
properties of the superfluid. This equation has two pressure terms, Pint and PQP that
are respectively, the pressure term, and the quantum pressure:

Pint = K ρ( j+1)/ j
∣∣∣
j=1

= g

2
n2 = g

2m2 ρ
2 ,

∇PQP = −n∇Q = −n∇
[

�
2

2m2

∇2√n√
n

]
. (34)

The pressure term comes from the self-interaction which gives a polytropic type of
pressure. For the two-body interaction, which is the case we show here, j = 1. If
we have a three-body interaction, for example, the pressure would have polytropic
index j = 1/2, giving Pint ∝ ρ3. The constant K depends on the interac-
tion constant. The quantum pressure is defined in terms of the quantum potential
Q = −(�2/2m)∇2√n/

√
n (see definition below).

Quantum pressure: Quantumpressure (QP) is the name given to the term12

∇PQP = −n∇
[

�
2

2m

∇2√n√
n

]
, Pi j,QP = −

(
�

2m

)2

ρ ∂i∂ j ln ρ ,

(35)

where Pi j,QP is the quantum pressure tensor. Together with the second term on
the left hand side of equation (33) this term comes from the spatial part of the
kinetic term. However, those two components are very different. The classical
component describes the kinetic pressure due to themotion of the particle. The
quantum pressure comes from the quantum part of the kinetic term that arises
due to the Heisenberg uncertainty principle or can be seen as the curvature of
the amplitude of the wave function. This is an additional force term that appear
in theMadelung equation due to the zero point motion of particles. In themean
field approximation, this term is still present, given the classical wave function
describing the system, so the term quantum is also misleading in this context.
This term is repulsive and counter-acts attraction from a potential or attractive
interaction, supporting the system against collapse. With that, the system
cannot have vanishing size. This term modifies the dispersion relations of the
excitations of the condensate and it is important at small scales, for scales
smaller than the healing length. This term is negligible for large scales, the
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Thomas–Fermi approximation, and for a uniform superfluid, since n = const..

Healing length: defined as the length for which Pint = PPQ, given by,

ξ = �√
2mgn

. (36)

It is the length for which the interactions "heal" (coarse-grain) any density of
phase perturbations in the condensate.

Condensate solution
Having established howwedescribe theweakly interacting system in themean-field

approximation, we can now describe what is the ground state, the condensate. We can
solve analytically the GP equation for a few simple cases and obtain the condensate
solution as for the cases with no interactions, in harmonic potential, and other simple
systems (Barenghi and Parker 2016). We are going to present some interesting cases
here.

In the case of a uniform gas, the wavefunction Φ0(r) = √
Nφ0/

√
V describes the

condensate formed, while the remaining functions form a complete set of functions
orthogonal to the condensate.

Solitons Solitons are a localized solution of the one-dimensional GP equation with
Vtrap = 0, which is integrable in this limit. They are also called solitary waves, and
are solutions described by a permanent and localized wave, that maintains its shape
and velocity upon collisions. They are obtained when the dispersion term, the kinetic
spatial term, and the non-linear term from the interaction cancel out. If the interac-
tion is repulsive (g > 0), a dark soliton is formed,which is given by the solution
ψd(x) = ψ0 tanh(x/

√
2 ξ), where ψ0 = limx→∞ ψ . A bright soliton is the solution

for attractive interactions (g < 0), with ψb(x) = ψ0e−iμt/� cosh(
√
2m|μ|/� x)−1.

They are called dark and bright since they represent a decrease and a concentration of
condensate, respectively.

Collective excitations, dispersion relation and sound speed
The excitations in the superfluid which represent perturbations of the condensate,

are an important part of this system. They represent sound waves, called the phonons
that propagate through the condensate. We are going to show how they arise.

Here we are going to work in the case Vtrap = 0, for simplicity. The case where
a trapping potential is present, like for example a condensate in the presence of a
gravitational potential, is studied in Sect. 4.1. For a homogeneous condensate, to
study the perturbations around the condensate, we perturb the classical wavefunction

12 One can notice that the form of the quantum potential coming from the Madelung equations, and
consequently the quantum pressure tensor, are very similar to the Bohm quantum potential (Bohm 1952a,b).
Some authors point that Bohm rediscovered the quantum pressure in his new interpretation of quantum
mechanics. However, some authors claim this equivalence is not so clear. Some authors also claim that
since the quantum pressure tensor has non-diagonal components, and it is not isotropic, so it cannot be
called pressure (Hui et al. 2020).
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ψ(r, t),

ψ(x, t) = ψ0 + δψ(1) + δψ(2) + · · · , (37)

where we assumed that the motion is only in the x-directions without lost of
generalization. The perturbations are small and δψ(i) indicate the i th order in per-
turbation. To linear order, we can re-write the linearized GP equation: i�∂tδψ(1) =
−(�2/2m)∂2x δψ(1) + μ(δψ(1) + δψ∗ (1)). We make an ansatz for the solution as
travelling waves, δψ(1) = A ei(kx−ωk t) + B e−i(kx−ωk t). The parameters A, B are
determined by the initial conditions. Substituting this ansatz into the linearized GP
equation, we can see that the dispersion relation is given by

ω2
k = c2s k

2 + �
2

(2m)2
k4 , (38)

where the sound speed is defined as the term coming from the linear part of the
dispersion relation

c2s = g n0
m

. (39)

The sound speed appears because of the presence of the interaction; therefore, since
for a superfluid the presence of an interaction is crucial, we can say that a superfluid is
a fluid that has a sound speed. With this we can easily see the definition and properties
of a superfluid.

Superfluid: In the presence of interactions, a sound speed is present which deter-
mines the behaviour of the excitations on large-scales. - For large wavelengths
(small k), the higher k terms do not contribute and the dispersion relation is given
by

ωk = csk , (40)

which is the dispersion relation of a sound wave. The superfluid is characterized
by excitations that propagate as waves, the phonons. Because of this property
phonons can mediate a long- range forces (F ∼ 1/r2). This long-range force is
the responsible for the effective dynamics of a superfluid: flowing without friction.
We are going to see later (in the field theory description) that this gapless mode
can also be viewed as the Nambu–Goldstone modes coming from the spontaneous
symmetry breaking of U(1) symmetry of the system caused by the formation of
the BEC.
This limit where the quantum pressure term can be ignored, or more specifically
when Pint 
 PQP, is the Thomas–Fermi approximation we saw above, and can
alternatively be defined by wavelengths bigger than the healing length.
This is the case for a repulsive interaction (g > 0). The situation is different for an
attractive interaction (g < 0), where wk is imaginary and the solutions is unstable
given by exponentially growing or decaying functions. This means that it is not
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possible to form a stable condensate in these cases.
For small wavelengths (large k), the quantum pressure term dominates, and the
dispersion relation is given by ωk = �k2/2m, which describes a free particle. In
this limit, the system stops exhibiting superfluidity.
In general, for intermediary frequencies, the full dispersion relation (38) does
not propagate as a wave and shows two degrees of freedom: a gapless mode (the
phonon), that propagates as awave, and amassivemode, related to particle creation.
We are going to discuss these again in the field theory section.
No interactions—BEC: In the limit where g → 0, the BEC stops exhibiting
superfluidity. The phonon becomes gapped, the dispersion relation is given by
ωk = �k2/2m, which is the dispersion relation of a free particle. Since ω2

k > 0 in
this case, the solution of the linearized GP equation (without a external potential)
is a stable oscillatory solution.

We showedabove that the superfluid candecay into collective elementary excitation,
the long-wavelength sound-wave quanta, the phonon. These are excitations with linear
dispersion relation that behave as periodic fluctuations in density in the superfluid.
When studying linear perturbations around a classical condensate background, only
the phonon excitation is expected. However, a superfluid can also deplete into other
excitations called rotons and maxons. The linear part of the dispersion relation is
only a part of the dispersion relation at small momenta. For higher momenta, the
dispersion relation presents a maximum and then a minimum. Near the maximum we
have the maxons excitations, and near the minimum, for even higher momenta, we
have the roton excitations. So, phonons, rotons and maxons are excitations described
by different parts of the same dispersion relation. And lastly, for a rotating superfluid,
there is also the vortex nucleation of the condensate, as we will see in Sect. 3.5.

U(1) symmetry group: The unitary group of degree n = 1 is the group
associated with n × n unitary matrices (U∗U = UU∗ = 1) under matrix
multiplication, U = eiα , with α the parameter of the group. For n = 1, this
is the unitary transformations complex numbers, which corresponds to phase
rotations. The U (1) group is isomorphic13 to the SO(2), the group of the
2 × 2 orthogonal rotations in R

2 with unit determinant. The U(1) symmetry
can be global, when it acts in the same way in all points in space-time, or
local, acts differently at each place in space and time.

Noether’s theorem: One of the most important results theoretical physics,
Noether’s theorem definition can be found in basically every textbook in field
theory and even classical mechanics. The theorem states that for each contin-
uous symmetry of a action there is an associated conserved current jν(x, t),
∂ν jν(x, t) = 0 . This has profound implications since the conservation laws
that describe the dynamics of a systems are then associated with the symme-
tries present in the problem.
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We can illustrate this for a system with the global U(1) symmetry that, accord-
ing to Noether’s theorem has a conserved particle number density14. Consider
a complex scalar field (Ψ (x, t)) theory with action:

S =
∫

d4x L =
∫

d4x
[
(∂μΨ )

∗(∂μΨ )+ V (x) Ψ ∗Ψ
]
, (41)

where V (x) is a potential. On top of being invariant under Lorentz trans-
formations, this system has U(1) symmetry, with the action invariant under
continuous rotations of the phase of the complex scalar field:Ψ → eiαΨ (and
c.c.). Since this is a global symmetry, α is independent of (x, t). With that,
we can evaluate the Noether current and charge of this system:

jν = i(Ψ †∂νΨ − Ψ∂νΨ †) , Q =
∫

d3x j0 , (42)

which are conserved: ∂ν jν = 0 and dQ/dt = 0. From jν = (mn, j), the
conserved charge can be written in terms of the local density of Q, Q =∫
d3x ρ(x, t), and the conserved current implies a continuity equation for ρ.

In this way, Q ∝ Ψ †Ψ , which implies the conservation of the norm and it is
associated with number conservation.

Some comments are in order. When defining ψ as the condensate wavefunction,
this quantity is actually a mean-field value of the wavefunction, the degree of freedom
that defines the condensate. This description of averaging selecting the condensate
is consistent with the theory of critical phenomena, like phase transitions. This Bose
system can be seen as a system with spontaneous breaking of a symmetry of the
description. In our case the U(1) symmetry which is the symmetry of the Hamiltonian.
This is analogous to the the spontaneous symmetry breaking in a ferromagnet. The
difference is that, since we have a Bose system, the idea of spontaneous symmetry
breaking to the thermodynamical limit of a finite size Bose gas defines the number
of particles of the system, and this is only consistent with the picture of having a
condensate that can change the number of particles in the ground state, if the number
of particles is conserved.

We can also understand this argument for the symmetry breaking of the system by
analysing another approach to the weakly interacting system initially developed by
Penrose and Onsager (1956), and Beliaev (1958). In this approach, the condensate
wavefunction is identified, using the density matrix ρ̄(r, r′) = 〈Ψ̂ (r′)Ψ̂ (r)〉, to the
number density of particles n(r) = ρ̄(r, r) = ∑

i ni |φ(r)|2, where we are working
in the stationary case. The formation of a BEC, which means that the ground state

13 Isomorphism is a one on one mapping between the elements of groups preserving its group operations.
In the case of U (1) and SO(2), the isomorphism takes a complex number of unit norm into a rotation,

eiθ �→
(
cos θ − sin θ
sin θ cos θ

)
, where the rotation angle is the argument of z.

14 For a more general derivation of Noether’s theorem in field theory for any continuous symmetry and the
connection with the generators of the symmetry group see Zee (2003).
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has a macroscopic occupation, leads to the factorization N = n0 +∑
i �=0 ni , which

means ρ̄(r, r′) = Φ0(r′)Φ0(r) + ∑
i �=0 niφ

∗
i (r

′)φi (r). The field operator then can

be factorized in the presence of a condensate into Ψ̂ (r) = Φ0(r) + δΦ̂(r), with
〈δΨ̂ (r)〉 = 0. This means when a condensate form,

〈Ψ̂ (r)〉 = Φ0(r) �= 0 . (43)

A state that has conserved particle number has 〈Ψ̂ 〉 = 0. So this condition above is seen
as describing a symmetry breaking, more specifically Bose symmetry breaking, and
the consequence is a systemwhere particle number is not conserved in the condensate.
In the absence of a condensate, this goes back to the particle conserving condition:

Φ0

{= 0 , for T > Tc ,
�= 0 for T < Tc .

(44)

This suggests that condensation comes from a spontaneous symmetry breaking theory.
With that, the interacting condensate system above can be understood as a particle

conserving system of bosons with U(1) symmetry, described by the classical field ψ ,
the wavefunction of the condensate, where the formation of a Bose–Einstein conden-
sate is a phase transition, coming from a spontaneous breaking of the symmetry (that
can be seen as spontaneous coherence). This description of the condensate makes us
see a parallel with the formalism used in field theory.

3.3.1 Field theory description

Given the suggestion that we can describe condensation as spontaneous symmetry
breaking process, we turn now to the description of this system using a field theory
language. The methods from field theory are very appropriate to describe this type of
systemwhere spontaneous symmetry breaking is present. Given the descriptionwe had
above for the superfluid and the properties of this system, we represent this system as
a massive complex scalar field15 with self-interactions with a globalU (1) symmetry
that is spontaneously broken by the presence of the ground state, the condensate, with
superfluidity arising upon condensation. We are going to work here, to best illustrate
this description, in the homogeneous case, where there is no trapping or external
potential applied to the system.

Given that, we describe this system by the Lagrangian density for a two-body
interaction,

L = (∂μΨ )
∗(∂μΨ )− m2Ψ ∗Ψ − g

2
(Ψ ∗Ψ )2 (45)

where we consider g > 0 to get a stable condensate with long-range coherence, as
discussed above. As we saw above, this system has a U (1) global symmetry, which

15 We have used here a complex scalar field that has a continuous symmetry since, as we saw before
according to Noether’s theorem, this system has a conserved charge. TheU (1) symmetry gives us a system
with conserved particle number. For this reason it is essential to use a complex scalar field.
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means that it is invariant under continuous rotations of the phase of the complex scalar
field,

Ψ → Ψ eiα , Ψ ∗ → Ψ e−iα , (46)

where α is a constant16. The equation of motion is given by,

∂μ∂μΨ + m2 Ψ + g|Ψ |2Ψ = 0 . (47)

To describe the condensate, like we did previously, we separate the condensate
contribution to the perturbations, and assume the mean-field approximation,

Ψ (x, t) = ψ(x, t)+ δΨ (x, t) , (48)

where ψ(x, t) is the background that gives the condensate field, and δΨ (x, t) are the
excitations of the condensate that are considered small with respect to the background
solution.

Aswe saw in (27), the stationary solution determines the ground state of the system.
Using that, the condensate wavefunction can be written as

ψ = v eiμt , (49)

where θbg = μt is the phase of the ground state where μ is the chemical potential.17

This is the background solution for the equation of motion (47) as long as,

μ2 = m2 + g v2 . (50)

When we have a spontaneous symmetry breaking, only the ground state, the state
that broke the symmetry, is not invariant under U (1) anymore. This means that we
still have a conserved current given by jν = i(Ψ †∂νΨ − Ψ∂νΨ †), as we saw above
in the definition of SSB. Using the equations of motion one can see that this current is
conserved. For the ground state (49), this current gives the number density: n = 2μv2.
In the field theory description, the conservation of the norm (

∫ |Ψ |2), related to the
number density in the condensate and conservation of the number of particles in
the condensate seen in the quantum mechanical approach above, is interpreted as
a consequence of the global symmetry of the system which leads to a conserved
Noether charge, Q = ∫

j0 ∝ ∫
n ∝ ∫ |Ψ |2 (conservation of the number density of

field quanta).

16 It is equivalent to re-write this, in a language of SO(2) symmetry, where the complex field
can be written as Ψ = (1/

√
2)(Ψ1 + iΨ2), where the system as an invariance under rotations:{

Ψ1 → cosα Ψ1 − sin α Ψ2
Ψ2 → sin α Ψ1 + cosα Ψ2

.

17 We identified the chemical potential in our superfluid as the time derivative of the ground state phase,
μ = ∂t θbg. This is only valid if ∂i θbg = 0, which is the chemical potential in the frame where the superfluid
moves with velocity v. If this is not true, the chemical potential is given by μ̄ = √

∂νθbg∂
νθbg, which is

the chemical potential in the rest frame of the fluid.
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Spontaneous symmetry breaking (SSB): SSB is the phenomenon where
the state of the theory is not invariant (not symmetric) under the symmetry
transformations (U ) of the Hamiltonian (or action) that describes the sys-
tem. This stable state |ψ〉 spontaneously broke the symmetry of the system.
This mechanism offers an explanation for why there exist stable states, like
a condensate, that do not respect the symmetries of a system. This allow
for the existence of different symmetry related state U |ψ〉, of same energy
but different phases defining a set of symmetry-broken states. To distinguish
them, or their phases, we have the order parameter of the system, defined as
O = [Q, Φ], where a state breaks a symmetry U = eiαQ if Φ exists. The
order parameter can be used to identify if a symmetry was broken 〈O〉 �= 0,
where the system is said to have long range order, given by its two-point func-
tion (C(x) being proportional to a constant. For unbroken systems, 〈O〉 = 0,
where the C(x, x′) ∝ exp(−|x − x′|/l). The coherent length, l, is infinite
when there is long range order 18.

This is the background solution corresponding to the condensate. This ground state
is responsible for spontaneously breaking theU (1) global symmetry. And we can see
that explicitly. Since this solution represents the ground state, we can compute the
energy functional for this system,

E =
∫

d3x U =
∫

d3x (∂0Ψ∂
0Ψ + ∂iΨ∂

iΨ + Vef f ) , (51)

where Vef f = m2Ψ ∗Ψ+gΨ ∗Ψ . The ground state is given by the stationary,minimum
energy state. This can be found by finding the minimum of the energy (51), which
amounts to finding the minimum of the potential energy. The set of solutions for the
minimum of this potential energy is

{
v0, s = 0 , for m2 > 0 , Symmetry restaured

v0, ssb = ±
√

|m2|
g , for m2 < 0 , Symmetry broken − condensate .

(52)

The value of theminima v0, ssb = ±m/
√
g are called vacuumexpectation value and are

the value that the field assumes at the ground state, apart from a phase. As we can see

18 For a very complete and extensive review on SSB, see Beekman et al. (2019).
An alternativeway ofwriting this Lagrangian that leave explicitly the spontaneous breaking of the symmetry
by the finite charge:

L = |(∂μ − iμ)Ψ |2 − m2|Ψ |2 − g|Ψ |4 . (53)

This is equivalent to the usual way, we introduce the chemical potential in the Hamiltonian: H − μN ,
where N = j0 is the conserved charge. For this modified Lagrangian, the condensate would have trivial
phase θbg = 0. This is equivalent to what we did in the text where the Lagrangian had the canonical kinetic
term, but the phase of the condensate had a time dependency with the chemical potential θbg = μt .
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Fig. 7 Potential of the weakly self-interacting system. Left panel: Potential of the symmetry restored phase,
m2 > 0 which has a minimum at ψs = 0. This ground state is symmetric, respects the symmetry of the
system. Right panel: Symmetry breaking potential, for m2 < 0. This phase has a degenerate minima not
invariant under the symmetry of the system. It represents the condensate state

from on the left panel of Fig. 7, the symmetry restored phase whenm2 > 0 has a well-
definedminimum at v0, s = 0, and this is the normal phase, with no condensation. This
ground stateψs = 0 is preserved under the symmetry of the system (U (1) symmetry),
the rotations of the phase of the complex field.

The symmetry breaking phase when m2 < 0, there is a continuous set of minima
with the ground state given by ψssb = v0, ssbeiα , corresponding to all the possible
phases in the circle α ∈ [0, 2π), as seen in the right panel of Fig. 7. All of these
classical backgrounds are not invariant under U (1) symmetry, the symmetry of the
system, which means that φi, ssb → φ j, ssb = v0, ssbeiα �= φi, ssb. In this way, we say
that the symmetry is spontaneously broken by this condensate ground state. From the
SSB, we can see that the condensate has long-range order, with the field having the
role of the order parameter of the system.

Excitations
Weconsider nowfluctuations around the classical condensate configuration to study

the spectrum of this system. Considering small fluctuations means perturbing each
degree of freedom of the field around the condensate (48). This is equivalent in the
polar notation to:

ψ(x, t) = (v + ρ) ei(μt+π) , (54)

where ρ(x, t) can be interpreted as a perturbation in the radial direction, and π(x, t)
a perturbation in the angular/phase direction. Plugging this into the Lagrangian, we
have

L = −(∂μρ)2 + (v + ρ)2
[
g v2 + 2μπ̇ + π̇2 − (∂iπ)

2
]

− g

2
(v + ρ)4 . (55)

With this expansion is already easy to see that ρ has a mass term (the term accompany-
ing the ρ2 term), so the perturbation in the radial direction is massive. The perturbation
in the phase has no mass term and it is going to be massless. This massless excitation
was already expected from the Goldstone theorem (see below), where a SSB leads to
the appearance of a massless excitation, the Nambu–Goldstone (NG) boson π . In the
context of a superfluid, this gapless excitation is the phonon.
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For low-energy theories, the phonon is the only degree of freedom that is excited
in the theory, as the massive mode can be integrated out. Therefore, at low energies a
superfluid is completely described by the phonon excitations.

Low energies here mean energies lower than the mass gap of the massive mode ρ.
We are going to work on this limit here to obtain the spectrum of this NG boson. In
this limit, the kinetic term of ρ can be neglected and the equation of motion becomes:

g(v + ρ)2 = g v2 + 2μπ̇ + π̇2 − (∂ jπ)
2 ≡ X . (56)

Using this, we can rewrite the on-shell Lagrangian in terms of X as

L = X2

2g
= 1

2g

[
g v2 + 2μπ̇ + π̇2 − (∂ jπ)

2
]2
. (57)

ThisLagrangian depends only on the phononπ , asρwas integrated out, and is invariant
under shift symmetry, π → π + c, inherited from the U (1) symmetry of the complex
scalar field. This is the effective Lagrangian at leading order in derivative expansion
for the phonon. To obtain the dispersion relation we can expand this Lagrangian, using
πc = μπ ,

L = 1

2g

1

4μ2

{
g2n4 + 4gnμπ̇c +

(
ng

μ
+ 4μ2

)
π̇2
c − ng

μ
(∂ jπc)

2 + 2
[
π̇3
c − π̇c(∂ jπc)

2
]

+ 1

4μ2

[
π̇2
c − (∂ jπc)

2
]2}

, (58)

where we used that n = 2μv2. Taking the Fourier transform of the field, we compute
the equation of motion and can see that the dispersion relation of the phonon is given
by

ω2
k = g n

μ
k2 + 1

(2μ)2
k4 = c2s k

2 + 1

(2μ)2
k4 , (59)

where cs is the sound speed of the superfluid. This expression shows us the general
behaviour we already seen in the excitations calculated in the QM approach. For long
wavelengths (small k), the higher order term in k is suppressed, and the dispersion
relation is w2

k, long = csk2, which is the dispersion relation characteristic of a sound
wave. Therefore, the phonon propagates as a wave with sound speed cs in the long-
wavelength regime.

The second term of the dispersion relation is characteristic of a massive particle.
This means that for short wavelengths, the system behaves as a system of normal
particles propagating, and not a superfluid.

We can re-write these expressions in the non-relativistic (NR) regime, which is the
regime we are interested in comparing to the previous approach (and also the limit
where we describe, in the next section, the behaviour of DM in galaxies). In this limit,
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g v2 	 m2, which implies μ2 ≈ m2. The dispersion relation in this case is given by

w2
k,NR = c2s k

2 + 1

4m2 k
4 , with c2s = g n

m
, (60)

which is equivalent to the one found in (38).
In the absence of interactions, we recover the ideal Bose gas from Sect. 3.1, with

background solution is given by Ψideal = veimt , and dispersion relation of a massive
particle w2

k = (1/4m2)k4, showing again that although this system condenses in to a
BEC, in the absence of interactions there is no superfluidity. It is easy to see from (58)
that in the relativistic regime, g v2 
 m2, c2s = 1/3.

In this way, we showed that the field theory description of the superfluid is very
good to describe the general properties of the superfluid. To properly compare with
the results obtained above in the QM approach, we are going to show that in the non-
relativistic limit, the field theory description gives us the GP and Madelung equations
obtained above.

Before doing that, one comment is in order. In (57), we showed that in the low-
energy regime, we can re-write the microscopic theory of a superfluid as an effective
theory only of the phonon with a non-canonical kinetic term. We did this here in the
case of a weakly self interacting system with two body interaction, but in Sect. 3.4 we
are going to extend this idea to general superfluid systems and show the construction
of the EFT of superfluids.

Goldstone theorem:TheGoldstone theorem (Goldstone 1961; Goldstone et al.
1962; Nambu and Jona-Lasinio 1961) or Nambu–Goldstone theorem, states
when a spontaneous symmetry breaking occurs a mode with energy that van-
ishes as k → 0 is present in the spectrum of excitations of the system. This
mode is called Nambu–Goldstone (NG) boson and is a massless particle, in
the case of relativistic systems or collective excitations with zero energy gap
for non-relativistic systems19.
When a symmetry is spontaneously broken, the Noether theorem still applies
so there is still conserved currents. The stable state responsible for the SSB
is not invariant under this conserved charge, Q|ψ〉 �= 0 (or 〈O〉 �= 0). This
condition implies that there must be a state, the NG mode, with Ek → 0 as
k → 0, whose quanta is a massless boson. The NG boson still exists if the
symmetry is not exact or broken by an external potential μ, but in this case the
mode has a gap μ at k → 0. For ordinary NG bosons (type A), the number of
NG bosons created is equal to the number of broken symmetry generators Q,
nBG.
The Goldstone theorem described here is valid for a system that is invariant
under Lorentz transformation, with the appearance of nBG NB bosons.
However, SSB is an important phenomena inmany systems that are notLorentz
invariant, like the BEC or supefluid, with a number of bosons that will appear
in the theory, nNG, called Nambu–Goldstone (NG) bosons, which might not
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be equal to the number of broken generators, like in the Lorentz invariant
case. A generalization of the Goldstone theorem, which includes systems that
do not have Lorentz symmetry, exists and can be found in Watanabe and
Brauner (2011);Watanabe andMurayama (2012). In these works they classify
and generalize the Nambu–Goldstone theorem for any symmetry, including
non-relativistic systems invariant under Galilean symmetry, showing how to
compute the number of NG bosons created by the breaking of such symmetry.

Recovering the other approaches
We want to show that we can recover the GP theory presented in the previous

subsection, and emphasize that the field theory description is compatible to describe the
superfluid. The field theory presented above is a fully relativistic theory, which means
that the action is invariant under Lorentz transformations on top of the global U(1).
However, GP description shown above is non-relativistic. Therefore, to recover the GP
and Madelung equations we need to take the non-relativistic limit of the relativistic
field theory above.20

Starting from our field theory for the weakly interacting bosons (45), we take the
non-relativistic limit of the Lagrangian. We do that by talking the limit c → ∞ and
assume that in this limit the field has a very fast phase rotation in time, which allows
us to rewrite the fields as

Ψ (x, t) = 1

2m
ψ(x, t)e−imt . (61)

With that, the Lagrangian can be written as

L = i

2

(
ψ̇ψ∗ − ψψ̇∗)− 1

2m
|∇ψ |2 − g

16m2 (ψ
∗ψ)2 . (62)

From this non-relativistic Lagrangian, we can evaluate the equation of motion for the
scalar field ψ ,

iψ̇ =
(

− 1

2m
∇2 + g

8m2 |ψ |2
)
ψ , (63)

which is exactly the Gross–Piatevskii equation like shown above, in the absence of a
trapping/external potential.

19 Some translational symmetry needs to bemaintained in the system, like Lorentz symmetry for relativistic
systems, so that momentum is still a well-defined quantum number.
20 One can also already start from a non-relativistic action for a field, called Schrödinger field, which
directly yields the Schrödinger equation. See Beekman et al. (2019) for this derivation.
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From that, we can also derive the Madelung hydrodynamical equations, if we make
the following substitution:

ψ ≡ √
ρ/meiθ , v ≡ 1

m
∇θ . (64)

The vorticity of the superfluid is zero and the momentum density has a non-zero curl.
Plugging this in the equations of motion, we recover the Madelung equations (32) and
(33) in the absence of an external potential. This shows again that we can recover the
equations that describe the interacting BEC using the field theory approach.

In this section,we showedhow todescribe aweakly interactingBEC.Weshowed the
standard treatment of the theory, where the many-body quantum system is described
by the GP equation. We showed that condensation can be thought as a spontaneous
symmetry breakingprocess and showed that the systemcanbedescribed in a equivalent
way using the field theory approach. We specialized in both cases in the mean-field
theory, which is valid for dilute systems, and simplifies the significantly the study of
the system.

It is important to comment on the validity of this theory and the approximations
made. The theory presented above is only valid for zero temperatures and in the mean-
field approximation that holds for na3 	 1, where we can describe the condensate as
a classical wavefunction and the limit where quantum corrections are not important.
As we cited above, there are correction to the mean field and other approximations
where one can study this model (see Pitaevskii and Stringari 2016 for some examples).
For finite temperature, one has to describe the superfluid as a two-fluid model.

In the cases we are going to study, we will extend a bit the validity of the zero
temperature description, as a first approximation, since in galaxies the temperature is
obviously not zero. However, since the occupation number will be very high in our
problem, the classical description is safe.

Two-fluid model
The description presented above for the superfluid is valid for a zero temperature

dilute weakly interacting Bose gas. However, as already described in Landau’s phe-
nomenological theory, for finite temperature system, the superfluid has to be described
as a two-fluid model: a mixture of a superfluid and a normal fluid. As we saw previ-
ously in this description, for T < Tc, the fluid is a mixture of normal and superfluid
with most of the fluid in the superfluid phase, while for temperatures higher than Tc,
the coherence of the superfluid is broken and the fluid is mostly in the normal phase.

Connecting Landau’s theory and the microscopic description of a superfluid by a
weakly interacting theory, a two-fluid relativistic theory of superfluid was developed.
This can be linked to the non-relativistic one described above, and a “hydrodynamical”
and field theory approaches are developed.We are not going to describe this in detail in
this review since this is not used to describe the current ULDMmodels in the literature.
However, the two-fluid description should be used for finite temperature systems to
describe a superfluid and we believe it is important to describe realistic DM superfluid
models. For a review of the two-field model, see Schmitt (2015). In Sect. 4, we present

123



Ultra-light dark matter Page 47 of 186     7 

one work where the two-fluid formalism is used to describe the self-interacting BEC
DM.

The weakly interacting Bose system studied in this section is the prototypical
description of a BEC system that presents superfluidity. It is a microscopical descrip-
tion that shows the behaviour of the condensate and its excitations. But this description
is limited and cannot be used to describe all the models of possible superfluids and
realistic experimental systems. The interesting point is that this theory can be recast as
a spontaneous symmetry breaking theory of U(1) symmetry of the many-body system.
BEC and superfluidity are a consequence solely of the spontaneous symmetry break-
ing, independent on the specific model chosen. Therefore, this hints us to describing
these symmetry breaking systems using the effective field theory approach, where the
Lagrangian of the system is described by symmetry alone. The hope is to be able to
describe more complicated superfluid systems.We are going to describe this approach
then in the next subsection.

3.4 Effective field theory of a superfluid

We described in the previous section the construction of a microscopic effective the-
ory for the weakly interacting BEC that can be used to describe superfluids. This
description is based on London’s idea (London 1938), which has its roots in the
superfluid/superconductor hydrodynamics, that the BEC can be described by a theory
with spontaneous symmetry breaking caused by the condensate, with superfluidity
arising upon condensation and being described by the Goldstone boson, the phonon,
at low energies. We saw that we can write an effective Lagrangian for the phonon
that describes the behaviour of the superfluid, matching many observations, in the
low-energy and low-momentum regimes.

This procedure shows us that we can describe the hydrodynamical degrees of free-
dom of a theory by the Goldstone modes created by the SSB of a symmetry, the global
U (1) symmetry in our case. This is more general than the simple weakly interacting
two-body interaction case showed above. This is already the case of hydrodynamics
that describes macroscopically the behaviour of low-energy variables and interactions
of system given a symmetry, coarse-graining over the smallest scales. This is the
perfect playground for the use of effective field theories (EFT), and EFT techniques
are very appropriate for this task. An EFT describes, the low energy (long distances)
behaviour of a system, without having to refer to its underlying microscopic theory,
by parametrizing our ignorance of those short scales.

The idea is to use EFT methods to describe the dynamics of a superfluid. This was
developed in Son (2002); Dubovsky et al. (2006, 2012); Son and Wingate (2006),
where they develop the general formalism to describe fluid hydrodynamics without
dissipation as an EFT. In this approach the Lagrangian that describes the system is
constrained by symmetry alone.21 This approach is very powerful since it not only
can be applied to many different systems, but describes the system without the need

21 There aremany other references that also develop EFTs for different condensedmatter systems and under
different conditions, as it can be seen in these references (Zakharov et al. 1992; Burgess 2000; Hofmann
1999), including discussions on dissipation, generalizations and modelling the UV physics that affects the
EFT. This is not an extensive list, but showing just some examples of these constructions. For an EFT of
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of its microscopic understanding. It is also very powerful since it is an expansion over
momentum. At leading order in the expansion, we describe the low-energy theory.
But this description allows us to go beyond leading order in the long-wavelength
expansion.

In our case, we want to construct the EFT that reproduces, in the long wavelength
regime (low energies), the superfluid hydrodynamics, as presented above. This theory
is a theory of the phonon, which is the only degree of freedom that is excited at
low energies. This is the Goldstone mode produced by the SSB of the U (1) global
symmetry by the ground state.We are going towork here in the non-relativistic regime,
but one can see the references above for the relativistic case. Restricting to the non-
relativistic regime does not imply any loss of generality of the argument, with the
system only subjected to different symmetries than the relativistic case.

Inheriting the knowledge of a superfluid from previous sections, at low energies,
the only dynamical degree of freedom that describes a superfluid is the phase of the
condensate, the phonon. Therefore, in the non-relativistic regime, we need to construct
the EFT of this phase π . The superfluid is described by a theory where the symmetry
is spontaneously broken by the ground state,

θ = μt − π . (65)

The theory that is described by this phase Leff(θ) is invariant under shift-symmetry
θ → θ + c which is inherited from the U (1) symmetry of the complex scalar field.

EFT states that to construct the effective Lagrangian for the phonon, we have to
write all the terms that are compatible with the symmetries of the problem. This system
has shift symmetry andGalilean symmetry. For the shift symmetry, for the Lagrangian
to be invariant under this symmetry, only terms that are acted by a derivative can
appear in the theory: L = L (θ̇ , ∂iθ). This may contain terms with any power of the
derivative of the field.

However, this theory has more symmetries. In a generic space-time and adding
a gauge field, which is a natural extension of the simple scalar field model, we
require that this Lagrangian is invariant with respect to three-dimensional gen-
eral coordinate transformations and gauge invariance. The most general Lagrangian
L = L (Dtθ, gi j Di D jθ

)
that is invariant under these symmetries, shift symmetry,

gauge invariance and general coordinate invariance, is given by,

L = P (X) , with X = Dtθ − gi j
2m

DiθDjθ , (66)

where Dtθ = θ̇ + A0 and Diθ = ∂θ − Ai . In flat space, gi j = δi j , the general
coordinate invariance corresponds to a Galilean symmetry.

As it can be seen in Son and Wingate (2006), Galilean symmetry is not enough
to constrain the NLO terms and one needs to consider the full general coordinate
invariance. This is equivalent to considering an additional constraint for the theory,

pions, one can check the following references (Gell-Mann 1962; Weinberg 1966; Gell-Mann et al. 1968;
Weinberg 1979, 2009), as some examples.
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which is known from fluid hydrodynamics,

T0i = m ji , (67)

where T0i is the off-diagonal component of the energy–momentum tensor. As stated
in Greiter et al. (1989) and Dubovsky et al. (2012), this additional constraint (with an
analogous constraint in the case of relativistic systems, Dubovsky et al. 2012) states
that only one degree of freedom carries all the current and momentum. Introducing
a new symmetry, full general coordinate invariance is equivalent to assuming this
relation.

With the two symmetries of the system, in the absence of gauge fields A0 = Ai = 0,
the Lagrangian that describes this system is given by

L = P

(
θ̇ − (∂iθ)

2

2m

)
. (68)

This is a Lagrangian that has a non-canonical kinetic term and it obeys (67).
At the background θ = μt , and T = 0, this Lagrangian density is equal to the

pressure P = P(μ). With that we can evaluate the particle number density,

n = P ′(X) , (69)

where ′ indicates the derivative with respect to A0. For the condensate, then the equi-
librium number density at chemical potential μ is n(μ) = P ′(μ), where P(μ) is the
thermodynamical pressure, defined up to a constant.

Given the Lagrangian (68) with θ = μt + φ, we can write the Lagrangian as:

L = P(μ)− nφ̇ + 1

2

∂n

∂μ
π̇2 − n

2m
(∂iπ)

2 . (70)

We can see from that the phonon speed of sound

cs =
√

n

m

∂μ

∂n
=
√
∂P

∂ρ
, (71)

where ρ = mn is the mass density.
One limit of this EFT Lagrangian is the quadratic Lagrangian for the weakly inter-

acting BEC, shown in (57). We can see that by considering the special case where
P(X) is written as a polynomial, P(X) ∝ (θ̇/m)n . Depending on the power chosen
we will have a superfluid with a different equation of state:

⎧⎨
⎩
n = 2 : P ∼ ρ2 BEC/Sf (2 − body)
n = 3/2 : P ∼ ρ3

n = 5/2 :, P ∼ ρ5/3 Unitary Fermi gas
(72)
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These represent different systems. The case n = 2 is equivalent to the previous case,
in Sect. 3.3, where we had a superfluid with a two-body interaction described by
the microscopic weakly interacting theory, where we obtained P(X) = X2 for the
low-energy (57). The case with n = 3/2 can correspond to the same theory as the
previous case, a weakly interacting theory, but with a three-body interaction, with
this effective Lagrangian obtained by integrating out the massive radial mode, like
done in the previous section. These two equivalences shows us an interesting aspect
of this EFT and from the hydrodynamics of superfluids: the interaction is linked to
the equation of state of the superfluid, and this can be seen by a different choice of
P(X) in the EFT. The case n = 3/2 can also represent another completely different
superfluid system, like we will see in the case of the superfluid DM in the next section,
where the this case does not come from a weakly interacting microscopic theory with
three-body interaction. This is also the case for the other example we show here, the
unitary Fermi gas, which cannot be described by a microscopic theory like we did in
the previous section, and being described with this EFT if n = 5/2.

One comment is in order here. Usually in quantum field theory having fractional
exponents can be problematic, leading to caustics or superluminal propagation. How-
ever, in the case of the superfluid, this is not a problem. Before reaching these regimes
(like the formation of caustics), the superfluid coherence is broken, and the EFT
description of the superfluid is no longer valid.

If one wants to add an external or trapping potential Vext, like, for example, if
the gas is under the influence of a gravitational potential, this corresponds to making

A0 = Vext. With that, the Lagrangian is given by (66), with X = θ̇ − (∂i θ)
2

2m − Vext. In
the case of the condensate in a gravitational potential, this is given by

L = P (X) , with X = θ̇ − (∂iθ)
2

2m
− mΦ , (73)

where Φ is the gravitational potential. This is going to be the case studied in the next
section for the DM superfluid.

With that Lagrangian we are able to describe the theory as the other approaches we
used to describe the BEC and superfluid theories.

Equivalence of the EFT description:
For low energies, and in the non-relativistic case, the EFT of superfluids
is equivalent to the microscopic description presented above. Considering
P(X) ∝ (θ̇/m)n .

2 − bodyL = −|∂Ψ |2 − m2|Ψ |2 − g

2
|Ψ |4 ⇐⇒ L = P(X) ∝ X2 −→ p ∝ ρ2

3 − bodyL = −|∂Ψ |2 − m2|Ψ |2 − g3
2

|Ψ |6 ⇐⇒ L = P(X) ∝ X3/2 −→ p ∝ ρ3
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Superfluid hydrodynamics
From this formalism, we can also describe the superfluid hydrodynamics. From

(69), we re-write the field equation with respect to the number density to obtain the
continuity equation:

ṅ + 1

m
∂i (n∂iπ) = 0 . (74)

The gradient of the field π can define the velocity of the superfluid, vs = −∇θ/m =
∇π/m, we can derive the second equation of superfluid hydrodynamics:

π̇ = −μ(n)− mv2s
2

. (75)

Validity of the EFT
As we saw above, this theory is valid for low energies, or long wavelength, and

breaks for high energies. The Lagrangian shown here is valid in leading order in
derivative expansion. In this regime, it reproduces the results from hydrodynamics
of superfluids. But this framework also allows us to go beyond leading order in
this momentum expansion, the next-to-leading order (NLO) Lagrangian. In Son and
Wingate (2006), they show a prescription to take into considerations next-to-leading
order terms. This can be done in this framework at arbitrary order, only requiring that
the NLO Lagrangian respects the symmetry of the system, and at the cost of introduc-
ing new free parameters. This might allow the study of those systems in a regime that
is challenging for the microscopic perturbative description.

However, the validity of this effective theory constructed here still needs to be
checked as higher order terms in the Lagrangian can only be neglected if the sound
speed of the theory is not too small. In Sect. 4.2.5, we describe the validity of the
EFT for that concrete example of superfluid and show that the theory is valid for the
parameters of the model.

This theory is also only valid in the absence of dissipation. A discussion of how
to describe dissipative phenomenon in this EFT approach can be seen in Berezhiani
(2020).

The formalism of the EFT presented here is used to describe the low-energy dynam-
ics of the superfluid Goldstone mode, the phonon. This formalism is more general,
tough, and translates into an EFT language the hydrodynamics of fluids at zero tem-
perature and without dissipation, so it can be generalized to describe superfluids with
different equation of state, superconductivity, unitary Fermi gas, among other systems.
This low-energy EFT approach is very useful to describe the dynamics of various phys-
ical systems and writing the superfluid in this macroscopic effective Lagrangian offers
us the chance to study the dynamics of this system without having to work out the
details coming from the microscopic short distance physics. With that, this formal-
ism allows us to study the behaviour of more complicated superfluids, with different
equations of state that might come from different and more complicated interactions.
This will be useful to describe the DM superfluid model, in Sect. 4.
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3.5 Rotating superfluid—quantum vortices

When we rotate a normal fluid, the fluid rotates together with the recipient in a homo-
geneous way, like a rigid body, with vorticity ∇ × vn = ∇ × × r �= 0, where the
normal fluid velocity vn of a rotational fluid is given by the cross product of the angular
velocity and the position.

As we saw above, a superfluid, described by a weakly interacting BEC, has irro-
tational flow: vs = (�/m)∇θ which gives ∇ × v = 0, where viscosity is absent.
This is the defining property of a superfluid. In another language, this means that the
circulation around a closed contour C in a superfluid is given by

Γ =
∮
C
v · dl = �

m

∮
C

∇θ · dl = �

m

∫
∇ × ∇θ = 0 , (76)

where dl is a length element on the path C and A is the area enclosed by this contour.
When a superfluid is rotated, this property says that the superfluid would not rotate,
but would remain stationary. So, how can we rotate a superfluid and maintain the
irrotational flow? This is possible if the superfluid phase presents a singularity.

A superfluid is a state where the system is described by one macroscopic wave-
function. In the presence of this singularity, this wavefunction is single valued,
ψ(θ) = √

ρ/m eiθ = ψ(θ + 2πn), which leads to the quantization of the circu-
lation:

Γ =
∮
C

∇θ · dl = �

m
Δθ = 2πn

�

m
. (77)

This property above describes a vortex. Theway a superfluid rotates is inhomogeneous
by forming quantized vortices (Tsubota et al. 2013a, b; Barenghi et al. 2001).

From that we can see that the azimuthal velocity of a irrotational fluid is given by
vφ = n(�/m)(1/r), where r is the distance to the center of the closed loop C and φ is
the azimuthal angle. At the center, we have the vortex core, as limr→0 ψ → 0, of size
equal to the healing length, where the density ρ vanishes and θ , the phase, rotates by
2π around the core. The flow in the center is given by the vortex line. The vorticity of
the rotating superfluid is given by

∇ × vs = �

m

Nv∑
i=1

2πδ(ri )ẑ . (78)

where ri is the location of the Nv vortices, and we considered that the vortex lines
are in the z-direction. The vorticity is non-zero only at each vortex. So the flow is
irrotational in most of the superfluid, except in the vortices. Given that the vortices are
line singularities, they form a lattice of uniformly distributed vortices in the superfluid
and carry the angular momentum of the rotation Lz = n Lqm , where Lqm = �N is
the minimum angular momentum necessary to have one quantized vortex and N =∫ |ψ |2 is the number of particles in the condensate. This configuration is energetically
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Fig. 8 Left panel: schematic of a superfluid in a rotating box. A lattice of vortices is homogeneously
formed in the superfluid. Right panel: the experimental observation of a highly ordered vortex lattice.
Image reproduced with permission from Abo-Shaeer et al. (2001), copyright by AAAS

preferable (instead of for example concentric sheets around the superfluid). With that,
the spatially averaged vorticity is given by

〈∇ × vs〉 = �

m
nv ẑ = 2Ω ẑ , (79)

where nv = 2Ω/(�/m) is the density of vortices, which is related to the angular
velocity (Feynman 1955). Although most of the superfluid has irrotational flow, the
rotational flow is given by the vortices in away that thewhole superfluid then effectively
flows as a normal fluid 〈vs〉 = vn , allowing the superfluid to rotate.

Given that the superfluid has irrotational flow, if it is rotated by a small Ω , the
superfluid will remain stationary. There is a critical angular velocity,Ωc, above which
the nucleation of vortices in the superfluid occurs. The critical velocity is given by
Guadagnini (2017):

Ωc = 1

mR2 ln

(
R

ξ

)
, (80)

where R is the radius of the cylinder where the superfluid is contained. Through
the dependence in the healing length we can see that the critical angular velocity
depends on the interaction, for the case of a weakly interacting BEC that behaves as
a superfluid. The case where the interaction is attractive, g < 0, it is known not to
produce vortices. This is also the case where the BEC has a finite size coherence,
producing only smaller soliton cores. This condition for the formation of cores can
also be re-written as L 
 Lqm, where L is the angular momentum of the applied
rotation to the system.

If there is the formation of vortices, the area density of vortices is given by nv =
n/ABEC = mΩ/π�. From that, we can calculate the size of the vortices created
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(πR2
v = 1/nv) which depends on the mass and the angular velocity of the fluid,

Rv = √
�/mΩ .

Butwhat exactly is the structure of these vortices and how are they described?Aswe
saw before, we defined the vortex as a singularity, where thewavefunction is zero at the
vortex line,with a quantized circular irrotational flowaround the vortex line.Given this,
we represent the vortex as an object in cylindrical coordinates:ψ(r) = f (r , z)einφ . To
describe the density distribution, their structure and size, one has to solve the Gross–
Pitaevskii equation for this object, which in the case of the weakly interacting Bose
gas is

− �
2

2m

[
1

r

∂

∂r

(
r
∂ f

∂r

)
+ ∂2 f

∂r2

]
+ �

2

2m

n2

r2
f + V (r , z) f + g

8m2 f 3 = μ f . (81)

In the limit n = 0, we recover the standard Gross–Pitaevskii equation. So the term
that contains n is called the centrifugal barrier and it is the kinetic energy term from
the azimuthal velocity of the vortex. Solving this equation gives the density profile of
the vortex, from which we can determine the size, density and general structure of the
vortex.

The presence of a trapping or external potential, changes the density of the conden-
sate which also changes the dynamics of the vortices. For details of the formation of
vortices in the presence of a trapping potential, see also Fetter (2009).

Since its discovery in Helium 4 superfluid, vortices have been one of the central
topics in the research of superfluidity (Madison et al. 2000). They have been experi-
mentally observed in many systems like Helium 4 and Helium 3, superconductors and
atomic BECs, including multi-component BECs. These new observational advances
allowed us to visualize and study those vortices, as it can be seen in the left panel of
Fig. 8.

3.6 BEC in wave turbulence—kinetic theory

We studied in this section, the BEC and the superfluid, and showed that their dynamics
is described by theGross–Pitaevskii equation, which is a non-linear Schrödinger equa-
tion. This equation expresses the evolution of the condensate, which is described by
the collective wavefunction formed by the macroscopic occupation of the ground state
by the bosons, in the mean field self-potential. This theory is capable of describing
many different condensate systems and describe the properties of BECs that can be
tested with experiments. There is, however, an alternative way to describe the physics
of a BEC, using the theory of wave turbulence.

Wave turbulence is the theory that describes non-equilibrium statistical systems
using random non-linear interacting waves. These random interacting waves are the
fundamental constituent of the theory. Waves in a non-linear medium interact and
behave very differently than waves in vacuum and wave turbulence describes these
systems of interacting non-linear waves. This approach can be used to describe many
different physical system from quantum fluids to astrophysics, which is our main
interest. Wave turbulence arises in classical context in systems like non-linear optics,
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surface waves in water, magnetic turbulence in interstellar gases, among many others
(see Nazarenko 2011a for a list of examples and references). Quantum fluids are
also physical systems where wave turbulence occurs, and this approach can be used
to explain exotic superfluids, atomic BEC, second sound waves in 4He superfluid,
and other systems as it can be seen in Kolmakov et al. (2014). Wave turbulence is a
formalism specially useful to model these systems numerically and for experimental
studies.

Wave turbulence can arise either in strong or weak interacting system of random
non-linear waves. Weak turbulence is a limit where it is considered that all the waves
are weak and have random phases. It provides a theoretical framework for wave turbu-
lence theory to describe many physical system, representing those systems by a wave
kinetic equation. This equation describes the evolution of the wave spectrum, two
point correlation function or the probability distribution function, via averaging over
random phases, of a system. This kinetic equation is different for each system and can
have a three-wave non-linear interactions, four-wave interactions or even higher order
depending on the system described. Higher moments of this equation allow the study
of deviations of Gaussianity or to explore the limits of validity of the wave turbulence.

Wave turbulence can also be used to describe Bose–Einstein condensates and super-
fluids. It can offer a way of describing different stages of a BEC systems in a nearly
equivalent way of its proper description through the non-linear Schrödinger equa-
tion presented above. We are going to show now how and for which limits a BEC
can be described using wave turbulence approach. We are going to show that wave
turbulence with four wave interaction, which reproduces the non-linear Schrödinger
equation, can only describe the classical initial evolution of a BEC, breaking as the
condensate evolves. We also show that the quantum evolution of a condensate can
be described by this theory. Wave turbulence also offers a description for a BEC and
superfluids outside the weak interaction limit, but we are not going to discuss this case
here.

We want to develop a statistical description of the wavefunction and of the non-
linear Schrödinger equation, and determine the kinetic equation which is the main
equation of the wave turbulence theory. This is done by describing the evolution of
an ensemble of waves (in contrast to the Boltzmann equation that is the equation that
describes the evolution of a distribution of particles). For that we introduce theWigner
distribution (Wigner 1932)

fp(x, t) ≡
∫

dy e−ip.y〈ψ(x + y
2
)ψ∗(x − y

2
)〉 , (82)

where the average is the average with respect to the random initial phases of the
field. The Wigner distribution is a quasi-probability distribution, it behaves like a
probability distribution but it does not obey all the axioms of probability theory by
Kolmogorov (Kolmogorov 1933). It can be used to represent this ensemble of waves
with random initial phases, or of random classical fields. As a quasi-probability, it can
acquire negative values indicating interference of waves in phase-space (Choi 2006)
describing the undulatory behaviour that can be captured in this description.
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We now want to describe the evolution of this ensemble. We want to have a kinetic
theory that is nearly equivalent to theGP equation (25) for aweakly interacting system.
For that, as we can see from the interacting Hamiltonian of this theory (20), we need
a four wave interaction. With that we can rewrite (25) using (82) as

∂ f

∂t
+ p

m
· ∇x f = 2 Im

∫
dy e−ip.y〈ψ(x + y

2
)ψ∗(x − y

2
)Utot(x + y

2
)〉 , (83)

where we wrote fp(x, t) as f for simplicity of notation. Here we are considering that
Utot = g|φ(x)|2. This is the kinetic equation or the wave kinetic equation.

This equation gives the evolution of the distribution that describes the an ensemble
of waves that is the two point correlation function of the field. This distribution can
be interpreted as the wave action or the particle number density or particle occupation
number, where this second interpretation leads us to the idea we had before thatψ can
be thought as the classical limit for the quantum wavefunction or field of a weakly
interaction Bose gas (Dyachenko et al. 1992; Mendonça et al. 2005).

We want to obtain the closed form of the kinetic equation, expressed in terms of f .
The above kinetic equation presents, in the case of the four wave interaction, a four
point correlation function. For the case of weak coupling that we are studying here,
the Wick theorem is approximately valid and we can express this four-point function
into the sum of two-point functions, reducing the higher order problem into a lower
order one:

〈ψ1ψ
∗
2ψ3ψ

∗
4 〉 = 〈ψ1ψ

∗
2 〉〈ψ3ψ

∗
4 〉 + 〈ψ1ψ

∗
4 〉〈ψ3ψ

∗
2 〉 + 〈ψ1ψ

∗
2ψ3ψ

∗
4 〉conn , (84)

where we simplified the notation writing ψi = ψ(xi ), and the last term represents the
connected part of the correlation function, the non-diagonal part of the operator. The
connected part is non-zero if the distribution is non-Gaussian, and it is also higher
order in the interaction.

In the regime of small non-linearities and taking the random phase approximation
(Navez 2005), which allows us to ignore the higher order correlations, we can write
the closed form for this equation. We wish to work in Fourier space, so we take the
Fourier transformof the field. The above approximations correspond to ignoring higher
Fourier moments and writing Eq. (83) in terms of the two-point correlation function
〈ψkiψk j 〉 = n(ki ) δ(ki − k j ), where δ(ki − k j ) is the Dirac delta (Nazarenko and
Onorato 2006; Nazarenko 2011b; Zakharov et al. 1992). Given these assumptions, we
can re-write the kinetic equation in closed form:

ṅk =4π
∫
n1n2n3n4

[
1

nk
+ 1

n3
− 1

n1
− 1

n2

]
δ(k+k3−k1−k2) δ(k2+k23−k21−k22) dk1dk2dk3 .

(85)
The above equation is the equation for the evolution of the wave spectrum. One can
also write the equation for the higher moments if interested in investigating deviations
fromGaussianity or the limits where this description breaks, among other phenomena.

This equation reproduces the non-linear Schrödinger equation,which is the equation
that governs the evolution of a wavefunction. Any wavefunction. It can be thought as
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the quasi-classical limit at high occupation number of the quantumkinetic equation (we
discuss this later in this section). This equation describes the evolution of any ensemble
of classical waves that is described by the Schrödinger equation. It describes a non-
condensed system since in this description condensate density, which is the density
of particles in the ground state which in the language of waves translates into waves
with k = 0, is relatively small (in comparison to a strong BEC deep into the region
T 	 Tcr, where the number of particles in the ground state is almost equal to the
total number of particles). When the condensate density is large or the population of
lowest momentum states is large, the system is not weakly non-linear anymore and the
above description breaks. However, this description can be used to the initial stages
of a condensate, when the condensate density is still small. We call this limit “weak”
condensate. When we have self-interactions the system can form a superfluid, and
for this four-wave system this equation describes the vicinity of superfluid transition.
Therefore, the kinetic equation with four-wave interaction can describe the classical
initial evolution of a BEC, when we have a “weak” condensate.

As temperatures drop and the condensate density becomes larger,wehave a “strong”
condensate. In this stage of the evolution of the condensate the above description with
a four wave interaction is not a description of the system, and the evolution of the
occupation number of the condensate needs to be described by the wave kinetic equa-
tion with three-wave interaction (Nazarenko 2011b; Zakharov et al. 1992; Dyachenko
et al. 1992; Lvov et al. 2003). This three-wave interaction representation describes
the later phase in the evolution when the condensate is strong and fluctuations on
top of the condensate are only given by phonons. Only at this stage the theory can
again be described by weak turbulence, but now involving three waves. The interme-
diary regime between these two description is more complicated. After the four-wave
description breaks down, the system is highly non-linear composed by a gas of hydro-
dynamical vortices. Only after these vortices annihilate and most of the systems are
in the condensed phase, one can use the three-wave description.

One possible solution of (85) is the Kolmogorov–Zakharov (KZ) spectra, which is
a non-equilibrium steady-state solution. Within this solution, we can have turbulent
cascade processes, with a dual cascade for different direction of the energy flux. The
interpretation of these dual cascade processes in BEC is interesting and corresponds to
techniques used in experimental realizations of BEC. Inverse cascading, which is the
non-equilibrium transfer of particle to the lowest energy momentum can be though as
condensation. The initial process of BEC formation can be achieved in this process as
a non-equilibrium condensation. The forward cascading is a processes is the energy
transfer to higher momentum states, higher energy level. When the condensate is in a
trap, these particles are going to leave the trap, and this is called evaporative cooling.

We studied above the casewithout a trapping potential.When in a trapping potential,
the condensate density is now coordinate dependent and the behaviour in this trap will
depend on the relation between the characteristic mean free path of the excitation wave
packets and the size of the trap or the range of the force that produces this potential.

We are gong to see in Sect. 4.1.4 another solution of the above four-wave kinetic
equation in the case of long-range interactions, like the gravitational interaction. The
potential is present and it is the gravitational potential. This is described by the Landau
kinetic theory, and can describe the initial stages of a condensate in the presence of
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gravitational interactions.Different from theKZdescription of condensation discussed
above, in this case, condensation does not arise from a cascading process but from a
dissipation process.

Wedescribed above the four-wave classical kinetic equation. This is a good classical
limit representation of the initial stages of a BEC. However, this is not a description of
strong condensates, as a three wave kinetic equation needs to be adopted instead. This
is also not a description of the quantum condensate. Wave turbulence theory can also
be used to describe the full quantum regime of condensate, and not only the classical
limit described until now. To be able to do that we first need to discuss the statistical
distributions that the kinetic equations describe.

One of the distributions that is a solution of the classical equation (85) is the
Rayleigh–Jeans (RJ) distribution, nk = T /(k2 +mu), with T > 0 and μ > 0. This is
similar to what we find when we are studying classical limit of the systems described
by the Gross–Pitaevskii equation. Thu full quantum system described by (21) has a
occupation number that describes a Bose–Einstein statistics. The classical limit of this
system, described by the Gross–Pitaevskii equation has a mean occupation number in
equilibrium described by the RJ distribution, the classical limit of the Bose–Einstein
distribution: 〈nk〉 = kBT /(εk −μ), where μ < 0. This system describes a condensate
only when the occupation of the ground state is macroscopic, 〈nk〉 → 〈N0〉.

The temperature T in this RJ distribution is related to the initial energy of the system
E0 = ∫

dkωknk = T
∫
dk, where ωk = k2 + μ, in connection to thermodynamics.

From this, we can see that since each degree of freedom of the theory has the same
energy T , for a continuous and infinite system, the this and the energy diverge. This
is the classical RJ catastrophe or the UV catastrophe.

Thus, the UV catastrophe is inherent to the ensemble of classical nonlinear waves.
It is argued then that for the RJ solution to be a relevant solution of the kinetic equa-
tion, a cutoff needs to be introduced to regularize the UV catastrophe. This is as a
phenomenological way of making the classical description of the system valid. There-
fore, to describe a BEC in such a classical theory one needs to have amomentum cutoff
in the theory. This truncated system then can be used to describe the evolution of a
classical ensemble of waves via the kinetic theory derived above. In realistic systems,
this cutoff sometimes comes naturally from dissipation or limits of the simulation or
experiment. If one is working in a description where the UV catastrophe does not take
place, where the evolution period of the system is not threatened by this divergence,
then the above description for the classical condensate also holds. This will be the
case of Sect. 4.1.4.

Another solution to make the description valid (avoiding the UV catastrophe) is to
go to a quantum statistics. We can modify the kinetic theory to obey a Bose–Einstein
statistics. We generalize the kinetic equation to:

ṅk = 4π
∫

n1n2n3n4

[(
1

nk
+ 1

)(
1

n3
+ 1

)
−
(

1

n1
+ 1

)(
1

n2
+ 1

)]

δ(k + k3 − k1 − k2) δ(k2 + k23 − k21 − k22) dk1dk2dk3 . (86)
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The Bose–Einstein statistics is now a solution of this equation. This is the quantum
kinetic equation and can be used to describe the full quantum BEC.

We showed above that we can use wave turbulence as an approximate description
of some regimes of a BEC. The classical four wave kinetic equation can be used to
describe the initial stages of a BEC in the classical limit. Different description will
arise for different stages of the evolution of the condensate. Wave turbulence can
also describe both classical condensate evolution and quantum evolution. A BEC is
a quantum phenomena, but its classical evolution can approximately be described by
wave turbulence which is a convenient description, in particular for simulations.

Weare going touse kinetic theory to describe the formationof theBEC inSect. 4.1.4.

3.7 Summary and discussion: what is a condensate?

We saw in this section, an introduction to two of the most interesting phenomena in
quantum mechanics, the BEC and superfluids. We went through all these concepts in
detail with the goal to give a proper definition of Bose–Einstein condensation in the
context it is well understood and measured.

BEC is the phenomena of macroscopic occupation of the ground state that hap-
pens at low temperatures. BEC is a consequence of the quantum statistics of bosons,
and it is an inherently a quantum phenomena. Equivalent to having a macroscopic
occupation of the ground state, condensation can be though a the regime where the
interparticle distance is smaller than the de Broglie wavelength of the bosons, which
leads to a superposition of these wavefuctions, creating a macroscopic wavefunction
that describes the condensate, which is amacroscopic quantum object. One of themain
properties of a BEC is that it presents macroscopic (long range) quantum coherence.

We also saw that we can describe a more realistic condensation processes using
a weakly interacting Bose gas, which exhibits superfluidity upon condensation. This
theory is described by the fully quantum many-body Hamiltonian. For a large number
of particles (N 
 1), this Hamiltonian is very complicated to be studied. But, when
the interactions in the BEC are weak, the BEC is dilute22 na3 	 1, and for large N,
we can take the mean field approximation. In the mean field approximation, we can
make the huge simplification that the many-body wavefunction can be approximated
by an effective single-particle wavefunction. This means that the wavefunction of the
condensate can be written as

Ψ̂ (r, t) = ψ(r, t)+ δΨ̂ (r, t) , (87)

where ψ(r, t) ≡ 〈Ψ̂ (r, t)〉 (this is a classical quantity, because if it was quantum this
averagewould be zero). The fieldψ(r, t) is the classical field or classical wavenumber.
Quantum effects are suppressed in this limit (the depend on 1/N ), and the BEC is well

22 The BEC has 3 scales in the absence of a trapping potential: the de Broglie wavelength, the s-wave
scattering length a and the inter-particle distance d. To describe the scattering of two particles that have
large λdB as the scattering of two bodies, we have to have d 
 a. The mean field approximation is
applicable in the limit where we have many particles N large and na3 	 1, meaning that the interactions
in the condensate are weak, which translates to a 	 λdb . A condensate that follows this condition is said
to be dilute, which means that for fixed n, the bosons almost do not interact, a must be very small.

123



    7 Page 60 of 186 E. G. M. Ferreira et al.

approximated by a classical theory.23 The classical field that represents the condensate
satisfies the (classical) non-linear Schrödinger equation or Gross–Pitaevskii equation.
Therefore, the classical Gross–Pitaevskii or non-linear Schrödinger description of a
condensate is a mean field description of condensate.

An important detail about the mean field approximation. In the classical limit of a
scalar field we also have (87), whereψ = 〈Ψ̂ 〉 is the scalar field and δΨ̂ are suppressed
quantum corrections. Now, when a condensate can be treated as classical we are also
in the limit where we can expand (87), but we have |ψ(r, t)|2 = n0 = n, which means
that there is a macroscopic occupation of the ground state. For the classical limit of
the condensate, as the term δΨ̂ (r, t) becomes more and more important and the mean
field approximation breaks, this can be seen as depletion of the condensate. This limit
can be broken if temperature or interactions are increased, then quantum and thermal
fluctuations deplete the condensate.24 At this point, the mean field approximation
breaks and this classical description of the condensate cannot be used anymore.

Although the condensate to be formed depends on the quantum statistics of bosons
and it is a quantum phenomena, it can be treated as classical in the mean field approx-
imation. In an equivalent way, in the field description of BEC, the condensate can be
described in the mean field limit by a classical field.25

Summarizing A BEC can be described by a coherent classical scalar field that
satisfies the Gross–Pitaevskii equation, in the mean field approximationwhere most
of the particles are in the ground state, |ψ(r, t)|2 = n0 = n.

The term “condensate” is used in the literature loosely meaning different things
for different authors. I will use throughout this review the definition presented here.
Therefore, every time I am using the term condensate, I am referring to the definition
described here.

4 Ultra-light darkmatter

After the introduction in the previous sections of the concepts that are going to be
applied in this part of the review, we are finally ready to discuss the ULDM models.

Ultra-light DM denotes a class of models where DM is composed by ultra-light
bosons. These models were introduced as a new class of DM models that can address

23 The mean field approximation, N large and weak coupling, and the classical limit (� → 0) not always
coincide. The mean field approximation is called semi-classical in some places of the literature. In some
instances, the mean field N → ∞ can be recast as a classical limit (Dimonte et al. 2018). The mean field
approximation is usually concerned to systems that preserve the number of particles, like condensates.
24 It is also possible to describe a non-condensate quantum system in a classical limit. This was seen in
the wave turbulence theory. In this case, there is no macroscopic occupation of the ground state but the
entire system is still in the high occupation classical limit. In this case, δΨ̂ is not the depletion from the
condensate but it represents the quantum correction to the system.
25 There is only one example in the literature of condensed matter physics where there is classical “con-
densation”. This happens for electromagnetic light waves in nonlinear optics (Sun et al. 2012; Conti 2012).
Kinetic condensation is achieved when the light beam goes from a disordered to a coherent state. However,
as it was emphasized in Connaughton et al. (2005), this classical condensation is a process analogous to
the (genuine) Bose–Einstein condensate, having similar properties and obeying the non-linear Schrödinger
equation. This is a very new and active field of study and it is going to be very interested to see the
development of this field.
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the small scale challenges of ΛCDM, but mainly as models that offer a novel and
rich phenomenology in galaxies that can be tested with small scale observations. The
general idea of those models is that inside a virialized DM halos, ULDM thermalizes
and forms gravitationally bounded cores that can be described as aBECor a superfluid.
In this way, these models behave like CDM on large-scales, with modified initial
conditions, recovering the incredible observational successes of this description, while
inside galaxies they present a wave-like behaviour.

To have this behaviour inside galaxies, the mass of this bosonic DM has to be very
small. There are many models in the literature of ULDM that present this wave-like
behaviour in galaxies, and the specific range of masses where this wave-like behaviour
happens in galaxies depends on the specifics of the models. However, we can estimate
in a model-independent way the range of masses of the ULDM particles to present
this behaviour in galaxies. The mass of the ULDM has to be:

10−25 eV � m � 2 eV . (88)

The lower bound on the mass is very general and comes from the fact that the size of
the condensate core cannot be larger than the halo, since we want the condensate only
on galactic scales and normal DM on larger scales. The maximum case we can have
for the formation of a condensate is where the de Broglie wavelength of the ULDM
particle is of the order of the size of the halo. Taking this bound at virialization, there is
a maximum value on how large the de Broglie wavelength can be λdB < R200. Taking
zvir ∼ 2 and for halos with mass of order of 1012M�, we can see that for a spherical
halo (Rindler-Daller and Shapiro 2012) this imposes a lower bound on the mass

m > mH ≡ 2�√
3G

(R M)−1/2 ≈ 10−25
(

M

1012 M�

)−1/2 ( R200

100 kpc

)−1/2

eV .

(89)

We can also impose an upper bound on the mass asking the question: what is the
biggest mass I can have that ULDM forms a core inside the galaxy? Again, to answer
this question one needs to work with a specific ULDMmodel to study the Jeans theory
of this model and the solutions of the equations in this region, which would give a
boundwithin thismodel for the creation of these cores.However, one can try to bemore
general. The non-CDM behaviour happens in the regions where the wave behaviour
takes place. So, the interesting non-CDM behaviour occurs on scales of the order
or smaller than the scale that characterizes the wave which given by the de Broglie
wavelength. This is the maximal case where the de Broglie wavelength of the ULDM
particle is of the size of the galaxy. But one can also think that we can obtain a galaxy
size wave as the superposition of the de Broglie wavelength of each of the ULDM
particles (which are themselves smaller than the galaxy in this hypothesis). Then we
can calculate the biggest mass, which means smaller de Broglie wavelength if each
particle, for which this superposition yields a galaxy size wave. This translates to the
condition that de Broglie wavelength of the boson DM is larger than the inter-particle
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distance between each boson,

λdB ∼ 1

mv
> l =

(
m

ρ

)1/3

�⇒ m <
( ρ
v3

)1/4
, (90)

where assuming a spherical halo, the interparticle distance is defined as the radius of
a sphere with density ρ. This gives a bound on the mass of the DM particle. This
condition is the same as the condition that a gas need to have to condensate into a
BEC, as we can see in the box in Sect. 3.1 since it is equivalent to the condition of
having macroscopic occupation number of the ground state for temperatures below
the critical temperature of the system. This condition does not determine condensation
of DM in the halo since showing that condensation happens in the halo is much more
complicated than this ideal gas condition that is not realistic for the halo, but it is a 0th
order condition for this phenomena together with the assumption of thermalization.
But here we use it only as a condition to form a galaxy size macroscopic wave from
the superposition of the individual particles’ waves.

We use the density and velocity of the dark matter halo like described in Sect. 2
from standard spherical collapse (Berezhiani and Khoury 2016), and take this bound
at virialization:

ρ200 = 200ρcr ∼ 1.95 × 10−27 (1 + zvir)
3 g/cm3 ,

V200 ∼ 85

(
M

1012M�

)1/3√
1 + zvir km/s , (91)

where we derived these expressions assuming H0 ∼ 70 km s−1 Mpc−1 and a halo
mass of order of the MW. This gives the bound

m � 2.3 (1 + zvir)
3/8
(

M

1012M�

)−1/4

eV . (92)

Taking zvir ∼ 2 and for halos with mass of order of 1012M�, we have an upper bound
for the mass of the ultra-light DM particle to have galaxy-sized wave coming from the
superposition of the wave of each particle: m ∼ 2 eV.26

I would like to bring the readers attention to following. The issue of condensation
of ULDM in the halo is one of huge debate in the literature and we are going to discuss
this in Sect. 4.1.5.

The range of masses showed above is just an estimate of the maximal higher and
lower masses that the ULDM can have. Each specific ULDMmodel has a mass range
where this behaviour in galaxies takes place and that it is in agreement with observa-
tions which depends on the specifics of the models. However, those bounds have to
always fall within this general range (assuming ULDM is all the DM in the universe—
for studieswhere this is not true seeHložek et al. 2015, 2018).Wewill see in Sect. 5 that

26 Remember here what we said before that it is much harder to show condensation for ULDM under the
influence of gravity in the halo of a galaxy. Condensation has been shown to happen in the case of the FDM
in Levkov et al. (2018), and we discuss this in more detail in Sect. 4.1.4.
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for the FDM model, using CMB and LSS observations and assuming again the FDM
is all the DM, that the lower bound in the mass is very close and within this theoretical
estimation. Now for the DM superfluid model, as we will see in Sect. 4.2, respects the
upper bound presented here with the mass of its particle very close to this limit.

The mass range for the ULDM presents masses that are much smaller than the ones
usually considered for DM candidates and cannot be produced thermally in the early
universe. Therefore, ULDM is a non-thermal relic, having to be created by a non-
thermal mechanism to be cold today and behave as DM. There are many non-thermal
production mechanism (see ‘DM relics’ panel below) but since in this review we are
being agnostic on the type of particle that consists our ULDM, we are not assuming
any creation mechanism, unless we are talking about a specific microscopic candidate.

With that, for a ULDM candidate with a mass in the range (88), we are going to
have a non-CDM like behaviour coming from the presence of this core with wave-
like behaviour inside the galaxy, while having a CDM like behaviour on large-scales,
with different initial conditions resulting from the different mass and dynamics of the
specific ULDM model. ULDM is the name used to the collection of models that have
the characteristic stated above. There are many realizations of this behaviour which
are present in each of the specific ULDM model that yield a different description of
DM in galaxies, and a distinct and rich phenomenology in galaxies. We are now going
to see that those models can be classified into three main classes according to their
descriptions in galaxies.

Classification of ULDM models
The idea of havingDMcondensation on small-scales is not new and has been around

for 30 years (Sin 1994; Ji and Sin 1994; Khlopov et al. 1985). For this reason, there are
many models in the literature that were developed to describe a DM component with
that behaviour on galactic scales. These models receive many names in the literature.
They are either models that have a microscopic description or phenomenological
models, which allow for the inclusion of different interactions and for a different
dynamics to describe the evolution and non-linear structures of DM in the halo, which
in turn can lead to distinct and rich astrophysical consequences on small-scales.

One possible model of ULDM is the axion. This model helped to bring a lot of
attention in the literature to this class of models. In the case of the axion, we have a
model that has a microscopic description and a well-defined cosmology. The QCD
axions and general axions can behave like DM in a large range of parameters. This
is also the case for axion-like particles (ALPs), which is another microscopic scalar
theory that can describe DM. These microscopic theories behave like DM, but only
present interesting phenomenology in small-scales for a more limited range of masses.
On small-scales, the behaviour of these microscopic scalar theories can coincide with
the behaviour of other phenomenological models of ULDM. For all of those, the
non-relativistic action that yield a non-linear Schrödinger–Poisson equation.

In this review, we am going to classify the ULDMmodels according to the descrip-
tion they present on the small-scales, given by their non-relativistic dynamics on those
scales. Each of these classes can contain both phenomenological and microscopic
models that yield the same non-relativistic model. This classification is instrumental
since it elucidates the physics responsible for the non-relativistic evolution and non-
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linear structures that are formed, and separates the different phenomenology each of
those classes present.

These different descriptions also yield different conditions for condensation (or if it
condenses of not) and formation of the condensate core. Each of these non-relativistic
descriptions is going to describe a different phenomena upon condensation, being
possible to have either a BEC or a superfluid, the latter in the presence of interactions.

According to this criteria, we classify the ULDM models into three categories
(which somehow agrees with what was suggested in Sharma et al. 2019):

Fuzzydarkmatter (FDM):Thefirst category is given by a gravitationally bounded
scalar field model. It described by a non-linear Shrödinger equation subjected to a
gravitational potential, coupled to the Poisson equation (see ‘ULDM classes’ box). In
this model, condensation under the influence of the gravitational potential is achieved
in galaxies where the gravitational attraction is counteracted by the quantum pressure.
This class of model can be called fuzzy DM since this name is already very well
established for these gravitationally bounded BECs. One of its main realizations,
which coined the name fuzzy dark matter is presented in Hu et al. (2000a); Hui et al.
(2017), where the DM is given by a light particle withm ∼ 10−22 eV. The FDMmodel
is the ULDM model that was studied the most in the literature both theoretically and
numerically.With a particlewith thismass, the FDMmodel is known to be able to solve
some of the challenges from small-scales presented above, and to be in agreement with
large-scale observations. The mass of this model does not have to necessarily have
this value and need to be determined by observations, although this is the value that
gives the most appealing modifications on small-scales. Therefore, this model has one
free parameter, the mass of the FDM particle m (we are considering in the review the
case where all DM is composed of ULDM). Some interesting phenomenology also
emerges from this model, as we will discuss in detail in the next subsections, that can
be probed by current and future astrophysical observations. This model has also been
called in the literature by wave DM, ψDM, among other names (Sin 1994; Ji and Sin
1994; Seidel and Suen 1990; Widrow and Kaiser 1993; Chan et al. 2018; Guzmán
et al. 1999; Matos and Guzmán 2000; Matos et al. 2009).

Axions and ALPs can also be thought to be in this class, since they yield exactly
the same physics on small-scales. However, these models are more general and can
describe DM for different values of their mass (like the QCD axion that does not
produce such structures).

Self interacting FDM (SIFDM): The second category is called self-interacting
FDM (SIFDM), but it also receives the names repulsive DM, scalar field DM, fluid
dark matter, among others in the literature (Goodman 2000; Peebles 2000; Silverman
and Mallett 2002; Arbey et al. 2003; Boehmer and Harko 2007; Lee 2009; Lee and
Lim 2010; Harko 2011; Slepian and Goodman 2012; Dwornik et al. 2014; Guzmán
et al. 2014; Harko 2014; Fan 2016; Guth et al. 2015; Chavanis 2018, 2016; Dev et al.
2017; Chavanis 2011; Chavanis and Delfini 2011; Chavanis 2012; Rindler-Daller and
Shapiro 2012). In thesemodels,DM is described by a scalar fieldmodel, in the presence
of gravity, with a (usually) two-body self-interaction. The presence of the interaction
makes this model present superfluidity upon condensation. This case is described
by the interacting BEC presented in Sect. 3.3, which is the simplest example of a
superfluid. The presence of the interaction controls the stability of the core and for
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this reason this model presents a different phenomenology depending not only on the
mass of the particle, as for FDM, but given the strength and sign of the interaction.
For a repulsive interaction, the condensate has a long range coherence and presents
superfluidity. The 2-body case is characterized by having an equation of state (EoS),
P ∼ n2, as we saw in the previous section. Higher order interactions describe SIFDM
with different equations of state.

DMsuperfluid:The third category is calledDMSuperfluid (Berezhiani andKhoury
2015, 2016; Khoury 2016; Hodson et al. 2017; Berezhiani et al. 2018). This theory
was proposed with the goal of reproducing the MOND empirical law on small-scales,
presenting a natural framework for the emergence of this theory. Different from the
case of SIFDM, to reproduce MOND on small-scales, it requires that the EoS is
given by P ∼ n3, like what is expected by MOND, with a more intricate dynamics
describing the small-scales. To accomplish that, this model is described using the EFT
of superfluids which allows us to describe superfluids with a more general dynamics
and EoS.

ULDM classes
Classification is based on the different ways they achieve condensation.

Fuzzy DM (FDM) described by a ultra-light scalar field under the
influence of gravitational potential. Forms a BEC on galactic scales.

iψ̇ = − 1

2m
∇2ψ + Vgrav

Self-Interacting FDM described by a self-interacting
scalar field with 2-body (or higher) interaction. (SIFDM)

iψ̇ = − 1

2m
∇2ψ + Vgrav + g |ψ |2ψ + g3 |ψ |4ψ + · · ·

(Superfluid)

DM Superfluid described by a superfluid with
specific EoS to reproduce MOND in galaxies.

L = P(X)
(Superfluid)

There are many amazing reviews in the literature that focus in different parts of the
ULDM class of model, either focusing in microscopic models, like describing axions
Sikivie (2008); Arvanitaki et al. (2010); Wantz and Shellard (2010); Kim and Carosi
(2010); Kawasaki and Nakayama (2013); Marsh (2016a) or ALPs (Ringwald 2014;
Arias et al. 2012; Graham et al. 2015a; Marsh 2018; Niemeyer 2019; Powell 2016),
or focusing in one of the classes like the FDM Hui et al. (2017); Suárez et al. (2014);
Ureña-López (2019), for which the axions and ALPs describe the same non-linear
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Fig. 9 Map of the ULDM classes of models

theory (given by a Schrödinger–Poisson system in the absence of self interactions).
This review follows a classification between the different classes according to their
non-relativistic description and includes not only the FDM, but also the other classes
of ULDM.

Given that, in this review, we are going to be describing the dynamics each of
these classes of models present on small-scales, and the different cosmological and
astrophysical consequences this new phenomenology brings. The exception is in the
case of the FDM where we also are going to talk a little bit about the cosmology of
the axions and ALPs. However, in general, we are going to remain agnostic about the
origin of this field and we are going to work out only the gravitational consequences
they have.27 Understanding these consequences will prepare the field for the next
section, where we discuss constraints on these models. We briefly discuss in the end
of this section the big role that simulations have in studying these models and also the
regimes where these ultra-light fields can behave as dark energy.

27 The list of models we present here that compose each of the classes is not completely exhaustive and
it only aims to show the diversity of models in the literature, and the different mechanisms they describe.
However, all the possible dynamics present on small-scales coming from ULDM are described here and
can be within one of these three classes. In Lee (2018) one can find a more complete list of references.
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DM relics
Dark matter candidates can have distinct formation mechanisms, with the
main ones being thermal or non-thermal relics produced in the early universe.
Depending on this mechanism, different masses and couplings for these are
allowed as the correct relic abundance of DM is obtained.
Thermal relics: This refers to the particles, including DM, that are pro-
duced from the hot and high density thermal bath of the photon-baryon plasma
in the universe. Initially, in the early universe, the universe was in a state where
it was hot and dense where particle and photons were very close to thermal
and chemical equilibrium. This means that the time scale of the particle inter-
actions (1/Γ ) in the plasma are much bigger than the expansion time of the
universe H 	 Γ = n〈σv〉, where 〈σv〉 is the thermally averaged cross section
(Kolb and Turner 1990). As evolution follows and those quantities redshift, at
some point H ∼ Γ , and the particle decouples from the thermal bath (at the
temperature Tfo). This is a simplified description of the process called freeze-
out or decoupling. Depending on the interaction rate of each particles, they
decouple at different times. This process is described by the Boltzmann equa-
tion and it is how electrons, neutrons and neutrinos are formed. If Tfo 	 m,
wherem is the mass of the particle, the particle decouples as a non-relativistic
particle, and it is called a cold relic; otherwise, if Tfo 
 m or Tfo ∼ m, and
we have hot and warm relics.
We can assume that DM is a component that was in contact with the thermal
bath and it is a particle produced through decoupling from the thermal bath like
described above. For the thermal relics, the particle with smaller mass is hotter.
For cold relics, in the case of WIMP created through this mechanism, for the
WIMP to have the correct abundance of DM today, the averaged cross section
is roughly σDM−DM � 10−8 GeV−2. This is of the same order of magnitude
of the electroweak cross section: σweak � α2/m2

weak with α � O(0.01) and
mweak � O(100GeV) (Kolb and Turner 1990). Many models of DM are
produced thermally like supersymmetric candidates, more complicatedWIMP
candidates or particle DM decays28.

Non-thermal relics: As we saw above, there is a limit for the mass of the
DM particle that can be created thermally. The only way of having smaller
mass candidates of DM is by having a non-thermal mechanism to produce
thoseDMparticles. There aremanymechanisms that can produce non-thermal
DM candidates that include decaying from topological defects (see for exam-
ple Sikivie 2008; Hiramatsu et al. 2012 where axions are produced from the
decay of axion strings or domain walls), decaying from a massive parent par-
ticle, vacuum misalignment, among others (Marsh 2016a; Bhupal Dev et al.
2014). Vacuum misalignment or vacuum displacement is one of the genesis
mechanism for these ULDM and axions. The vacuum displacement mecha-
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nism (Preskill et al. 1983; Abbott and Sikivie 1983; Dine and Fischler 1983;
Carroll 1999) can be described, in a concise way in the following way. A
massive scalar field in an FRW universe, when H > mϕ , is overdamped and
it behaves nearly as a constant. So, if we consider that initially this field was
displaced from its minimum, ϕ = ϕ∗, the field has a potential energy given
by ϕ∗. When H ∼ mϕ , the field starts to evolve and begins to oscillate in its
potential, and in turn redshifts like matter. The mass and the initial displace-
ment fix the energy density of this misalignment field. If we consider that the
ultra-light particles are created by this mechanism, it imposes a lower bound
on the mass H(aeq) ≈ 10−28 eV, in order to start behaving like DM around
equality. For more detail on this mechanism for axions, see Marsh (2016a).

4.1 FDM and SIFDM

In this section, we are going to describe the FDM and the SIFDM models. Although
they both describe different non-relativistic dynamics and structure formation in the
halo, and according to our classification are in different classes, we describe them in
this section together since they can be described by a relativistic action. Even tough
we are interested in the non-CDM phenomenology of these models on small-scales,
these models can also modify the initial conditions for the evolution of the matter
perturbations, and depending on the mass, modify the evolution of the model. In this
way, the relativistic theory allows us to study the cosmology of this model and with
that make predictions that can be tested by large-scale observations like CMB and
LSS. This helps us to describe the model in different scales and use observations from
large and small-scales to constraint the parameters of the model.

The ULDM is described as a very light scalar field minimally coupled to gravity
given by the action,

S = SEH + Sφ =
∫

d4x
√−ḡ

[
R

16πG
+ 1

2
gμν∂μφ∂νφ − 1

2
m2φ2 − g

4!φ
4
]
, (93)

where SEH is the Einstein–Hilbert metric, R is the Ricci scalar, gμν is the metric, ḡ is
the determinant of the metric and g is self-interaction coupling.

The axion or ALPs are described by an action like this. In this case, this action has
a microscopic theory behind it. This potential comes from non-perturbative effects
in QCD, for the axion, or other concrete string theory models, and gives a small
mass for the axion or ALP. Since in these cases this action comes from a well-defined
microscopic theory, the parameters relate to scales from this theory and themechanisms
that originated this particle. There is only a range in the parameter space where the
ALPs behave like DM, and that also gives an interesting modification of structure

28 Even the axion has a thermal production channel, if the axion is in contact with the thermal bath, with
this axion being hot and contributing to a fraction of the effective number of neutrinos (see Marsh 2016a
for a review on that topic).
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formation. This happens for masses around m ∼ 10−22 − 10−20 eV, which is similar
to the range of masses for the FDM model.

But this relativistic action could also be phenomenological that allows the coupling
to have a different sign and values, different from the axion case. We are going to see
soon that the attractive and repulsive interactions yield different phenomenologies,
with the repulsive allowing for much bigger collapse cores.

In this section, we are going to explore the cosmological consequences of this
relativistic action, and after go to the non-relativistic regime to study the structure
formation in the FDM and SIFDM models and describe the condensate formed in the
center of the galaxy. To explore cosmological evolution, we are first going to study the
concrete case where this action is the action for the ALPs. We also comment a little on
the case of axion. This is very useful since in this case when we have a microscopic
theory, we can identify the scale of the parameter and their relations, determine the
initial conditions and the DM abundance.

4.1.1 Formation: ALPs

We are going to briefly describe here the formation mechanism for ALPs (see Marsh
2016a for a more complete description).

An ALP is a pseudo-Nambu–Goldstone resulting from the spontaneous symmetry
breaking of a global U (1) symmetry described by the complex scalar field

Ψ = veiφ/ fa , (94)

where fa is the scale of the spontaneous symmetry breaking and θa = φ/ fa is the
misalignment angle. In the case of the QCD axion, the symmetry broken is the chiral
global U (1)PQ , the Peccei–Quinn symmetry, and the introduction of this Goldstone
boson solves the strong CP problem.When the symmetry is broken, the massive radial
component v is fixed at the vacuum expectation value (vev), v0,ssb = fa/

√
2, making

the radial field non-dynamical while there is a continuous set of minima with the
ground state given by Ψ = v0,ssbeiθa , corresponding to all the possible phases in the
circle (if the reader wants to refresh the memory on SSB, see Sect. 3.3.1 and the box
that refers to SSB in that section). The pseudo-Goldstone boson φ is invariant under
shift-symmetry, inherited from the U (1) symmetry of the complex scalar field.

However, non-perturbative effects, coming from string theory models or from
instantons in the case of the axion, can induce a potential that break the shift symmetry
explicitly, although softly, which leads to a residual discrete symmetry. This potential
gives a small mass to the ALPs, and has the form

V (φ) = Λ4
a

[
1 − cos

(
φ

fa

)]
, (95)

whereΛ4
a is the scale of spontaneous symmetry breaking.29 This potential is not unique

and the overall constant added was chosen arbitrarily. For small field values φ 	 fa ,

29 A similar mechanism that generates a dynamical DE component at late times in the context of the DM
superfluid model can be seen in Ferreira et al. (2019), presented also briefly in Sect. 4.4.2 of this review.
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this potential can be expanded into

V (φ) = 1

2
m2φ2 + g

4!φ
4 + · · · , (96)

wherem = Λ2
a/ fa and g = −Λ4

a/ f
4
a < 0. Since the spontaneous symmetry breaking

scale fa is usuallymuch higher than the explicit symmetry breaking scaleΛa , themass
is usually very small, with the self-interaction coupling g even smaller. For the QCD
case, ΛQCD ∼ 200MeV (Marsh 2016a), and 109 GeV � fa � 1017 GeV coming
from astrophysical constraints, then we can see that 10−10 eV � mQCD � 10−2 eV.
For string theory models, there is a variety of cases, but typically Λst ∼ TSUSY e−Si ,
where Si is the instanton action which generally is Si 
 1.

Although very small, given the approximate shift-symmetry, the ALP mass is
protected against radiative corrections, and interactions with the standard model are
suppressed by powers of fa .

For the case of the QCD axion, the mass generated by the non-perturbative QCD
effects has a time dependence that scales with the power law of the temperature. For
a discussion about that, see, (Marsh 2016a).

Given all that, the action for the ALP is given exactly by the action (93) (usually
the self-interaction is omitted since this is suppressed by powers of f 3a ).

4.1.2 Cosmological evolution

Having established that there is a microscopic theory where the action (93) can come
from, we are going to study the cosmology in the general case, which describes any
model in the FDM and SIFDM classes. If we ignore the small interaction, this model
corresponds to the FDM class. In the presence of interaction, this model corresponds
the SIFDM class, where the interaction can be attractive or repulsive, while in the case
of ALPs and axions, it can only be attractive (g < 0).

We are going to focus only in the matter sector now and omit the Einstein–Hilbert
action (which gives GR, the background theory where our field evolves). The action
we are going to work with is

Sφ =
∫

d4x
√−g

[
1

2
gμν∂μφ∂νφ − V (φ)

]
, (97)

where the potential can be given by only the mass term, describing the FDM, or both
the mass and the interaction, describing SIFDM.

We can study the evolution of this field in a flat Friedmann–Robertson–Walker
background (FRW) background, given by the metric ds2 = dt2 − a2(t)dx2, where
a(t) is the scale factor. The equation of motion for the ALP is given by

φ̈ + 3H φ̇ + dV

dφ
= 0 , (98)

where H = ȧ/a is the Hubble parameter. The cosmological evolution is going to
depend on the competition between the potential term and the Hubble friction term.
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Let uthe ULDM is subdominant s consider the case of the FDM, where V (φ) =
(1/2)m2φ2 to illustrate the cosmological evolution. The background evolution of this
field proceeds in the following way. In the early universe, H 
 m, the Hubble friction
dominates and the solution is a constant given by the initial conditions φearly = φ(ti ).
In the case of the ALP, this initial condition is known and given by the formation of
the ALP with φi = faθa(ti ) = faθi . At early times, the ULDM is subdominant and
has equation of statew = −1 behaving like dark energy. As the universe expands, the
Hubble parameter becomes smaller and smaller, until a point where it is smaller than
the mass of the field H 	 m. The solution of the equation in this case is oscillatory. As
the field oscillates, the equation of state also oscillates around zero, giving an averaged
out equation of state of a dust like component w = 0. In this limit, the field behaves
like DM and the energy density evolves as ρ = ρ(a(t∗)) (a(t∗)/a)3, where t∗ is the
time when H(t∗) ∼ m.

We can already see that the lower the mass is, more and more will take until the
Hubble parameter to become smaller than the mass, prolonging the early period where
the field behaves as dark energy. For higher masses, the FDM behaves like DM earlier
in the history of the universe. Therefore, the mass completely controls when the period
of DM domination starts.

In the case of ALP, for them to behave like all the DM of the universe, it has to start
oscillating before matter-radiation equality, which gives m > 10−28 eV ∼ H(aeq).
However, not all of this regime the ALP as DM presents interesting phenomenological
consequences for structures since for heavier masses, ALP behaves closer and closer
to CDM. We are going to see this in more detail later, but the sweet spot in mass for
the ALP to have this distinct regime on small-scales is m ∼ 10−22 − 10−20 eV.

To obtain the full solution of Eq. (98), one needs to solve this equation coupled
to the Friedman equation that describes the evolution of the scalar factor according
to the components of the universe: H2 = (1/Mpl)(ρφ + ρr + ρb + ρΛ), where the
contributions in the energy density come from the FDM or SIFDM, radiation, baryons
and cosmological constant, respectively. The energy density and pressure of this scalar
particle are given by

ρφ = 1

2
φ̇2 + V (φ) , pφ = 1

2
φ̇2 − V (φ) , (99)

where in the case that the field is oscillating can be averaged over time. In the case of
the FDM, we can take a(t) ∝ t p, which is valid for the period of radiation and matter
dominations, and we have:

φ(t) = a−3/2
(
t

ti

)1/2

[C1 Jn(mt)+ C2 Yn(mt)] , (100)

where C1,2 are determined by the initial conditions, n = (3p − 2)/2 and Jn and Yn
are the Bessel functions of first and second kind.

We can then compute the relic density of FDM, which is the energy density of those
particles today. For the case where FDM is the ALP and behaves like DM, and all the
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DM is made of ALPs, the density fraction is

ΩALP ∼ 1

6
(9Ωr )

3/4
( m

H0

)1/2 ( φi

m pl

)2

. (101)

The initial value of the field displacement determines the relic density of ALPs, and
to have the DM density observed today, the initial value of the field must be φi >
1014 GeV for the masses of the ALP that correspond to DM behaviour. A similar
calculation can be made for the axion and this can be found in Marsh (2016a).

With that we saw that we have two scales that are important for the DM ALPs:
fa the spontaneous symmetry breaking scale that determines the initial conditions of
the ALPs, and Λa the scale of explicit breaking that determines the mass given the
previous scale. The temperature T∗ associated with t∗, the time when the field starts
to oscillate and behave like DM, is set after the mass is determined. This is similar in
the case of the FDM, where the only one degree of freedom is m, although the initial
condition φi can be unknown. If one assumes the FDM is described by an ALP, then
the initial condition is determined.

In the case of the SIFDM, we have an extra parameter in comparison to the FDM,
the interaction strength. The interaction term acts as a pressure term in the equation of
motion (98). This pressure can be attractive or repulsive. There is then a competition
between the Hubble friction, the mass and the pressure. We are going to study more
about these effects in the next section.

Cosmological perturbations: We have studied the background evolution and now
we need to study the cosmological perturbations. This is important in order for us
to study the cosmological consequences of this scenario that can be tested with cos-
mological observations. We are not going to present here an extensive description,
but a summary of the most important results. Notice that like for the cosmological
evolution, the procedure here is general for any FDM or SIFDM.

First, we perturb the scalar field and the metric into small perturbations on top of
the background values:

gμν(x, t) = g(0)μν (t)+ δgμν(x, t) , φ(x, t) = φ0(t)+ δφ(x, t) , (102)

where the 0 indicates the background quantities. We are only going to be interested
in the scalar perturbations, in this review. We are going to work on conformal time
η defined as dη = dt/a. The perturbed metric for the scalar metric perturbations is
described by four functions (following the convention from Mukhanov 2005)

ds2 = a2(η)
{
(1 + 2Φ) dη2 + 2B,i dηdx

i + [
(1 − 2Φ) δi j − 2E,i j

]
dxidx j

}
.

(103)

When doing perturbation theory in general relativity, due to gauge invariance, new
degrees of freedom that are fictitious and not physical might be introduced. One of
the procedures to deal with this is to fix a gauge, which fixes these spurious variables.
There are many ways of doing that which leads to the many possible gauges. The final
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physics given by all these gauges is the same, but each gauge offers a better description
of different phenomena. The Newtonian gauge (E = 0 and B = 0) is useful in the
Newtonian limit. One can also choose the comoving gauge (B = 0 and v = 0), where
v is the velocity of the matter fluid. We are going to use both gauges whenever they
are useful.

After a gauge is chosen, one substitutes the perturbations in the action (97), ignoring
the interaction for simplicity, to obtain the second-order action for the perturbations.
And from that one can obtain the equation of motion for the axion perturbation.

We can also re-write the perturbations in terms of the fluid variables:ρφ = ρφ, 0+δρ
and pφ = pφ, 0 + δ p. From Eq. (99), we can identify the perturbations in the fluid
variables with the ones of the scalar field and metric (Hwang and Noh 2009)

δρ = 〈φ̇0 ˙δφ − φ̇20Φ + m2φ0δφ〉 , δ p = 〈φ̇0 ˙δφ − φ̇20Φ − m2φ0δφ〉 ,
a(ρ + p)v = k〈φ̇0 ˙δφ〉 , (104)

wherewehave taken theFourier transformof thefieldswith k denotes thewavenumber,
and the background pressure and energy density are averaged.

We are interested in obtaining the sound speed of the FDM particle. We showed
before that the FDM behaves like dark matter at the background level, but we also
need to show that the sound speed is small as expected for dust. This different sound
speed is going to give a different Jeans scale and give a different structure formation
for this model. Since we are interested in calculating the sound speed, we are going
to work in the comoving gauge. In that gauge, the equations, assuming the averaged
background equation of state (which is zero), for the scalar perturbations of the metric
and fluid simplify and can be combined to give

δ̈ + 2H δ̇ − 4πGρ δ + k2

a2
δ p

ρ
= δ̈ + 2H δ̇ +

(
k2

a2
c2s − 4πGρ

)
δ = 0 , (105)

where δ = δρ/ρ is the density contrast and ω2
k = k2

a2
c2s − 4πGρ is the dispersion

relation.
By definition, the sound speed is defined as the term that accompanies the gradient,

the term with k2. To obtain the expression for the sound speed, we need to compute
the perturbation of the pressure δ p. For that, make the simple procedure from Hwang
and Noh (2009), where we assume an ansatz for the field perturbation, δφ(x, t) =
δφ+(x, t) sin(mt)+ δφ−(x, t) cos(mt) and substitute that in Eq. (104). This gives us
δ p, and the sound speed can be written as:

c2s = k2

4m2a2

(
1

1 + k2

4m2a2

)
. (106)

This is the (relativistic) sound speed of our FDM fluid. It is valid outside the Hubble
horizon and inside. For sub-Hubble horizon modes, when k/(ma) 	 1 the sound
speed becomes
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c2s −−−−−→
k/ma	1

c2s, n = k2

4m2a2
. (107)

This corresponds to sound speed that can be obtained in the non-relativistic Newtonian
theory, as we will see in the next section.

There are two competing terms in Eq. (105), which are the terms inside the disper-
sion relation. The scale kJ for which ωk(kJ ) = 0 separates the regimes where each of
those terms dominates in the equation.We can alsowrite this in terms ofλJ = 2πa/kJ ,
the Jeans length. For modes with λ < λJ , the dispersion relation is negative, and the
solution of (105) is that the perturbations oscillate. While when λ > λJ , perturbations
grow. So there is only gravitational instability for the modes that are outside the Jeans
length. In a theory of DM with a finite Jeans length, the growth of perturbations will
be suppressed for scales smaller than λJ. That is exactly the effect the small mass of
the ULDM models has. This leads to important cosmological consequences for these
models.

4.1.3 Evolution on small-scales

We have finally reached the section where we are going to describe the behaviour of
the FDM and of the SIFDM on small-scales. It is this different behaviour that is used
to classify the models into different classes.

The action that describes the SIFDM and the FDM is (93). We are interested in
studying the behaviour of DM in galaxies, so we are on sub-Hubble scales. In this
limit, H 	 m and the field is oscillating fast and behaving as DM. Inside the Hubble
horizon and for the small velocities, we have in galaxies (vvir 	 c), we are in the
non-relativistic limit of our theory. In the Newtonian gauge, the limit where B = 0
and E = 0 in (103), and with no anisotropic stress Φ = Ψ , we can write the action
for the ULDM field (Niemeyer 2019):

Sφ =
∫

d4x a3
[
1

2
(1 − 4Φ) φ̇2 − 1

a2
(∂iφ)

2 − (1 − 2Φ)V (φ)

]
. (108)

Since in the non-relativistic limit the field varies slowly, the fast oscillations that we
had for the field can be factored and we can re-write the field as

φ = 1√
2ma3

(
ψ e−imt + ψ∗ eimt

)
. (109)

With the field in this form and assuming the ψ̇ 	 mψ , we have the total non-
relativistic action, including the Einstein–Hilbert action, that describes this theory
given by (Chavanis 2011, 2018)

S =
∫

d4x

[
i

2

(
ψ∂tψ

∗ − ψ∗∂tψ
)− |∇ψ |2

2m
− g

16m2 |ψ |4 − m(ψψ∗ − 〈ψψ∗〉)Φ

− a

8πG
(∂iΦ)

2
]
. (110)

123



Ultra-light dark matter Page 75 of 186     7 

The equations of motion of the action yield the Schödinger–Poisson system of equa-
tions:

iψ̇ = −3

2
i Hψ − 1

2ma2
∇2ψ + g

8m2 |ψ |2ψ + mΦ ψ , (111)

∇2Φ = 4πG (ρ − ρ̄) . (112)

If we consider time scales much smaller than the expansion, we can ignore expansion
of the universe and write the equation of our system as

iψ̇ = − 1

2m
∇2ψ + g

8m2 |ψ |2ψ + mΦ ψ . (113)

This is the non-linear Schrödinger equation. The gravitational potential term can be
re-written in the form−Gm2ψ

∫
d3x

′ |ψ(x′
)|2/|x−x

′ |. This non-linear equation is the
Gross–Pitaesvkii equationdescribed in the previous section anddescribes the evolution
of a wavefunction or a field. We can use this equation to analyze the properties of this
system, analytically and numerically.

Fuzzy DM vs SIFDM

⎧⎨
⎩
iψ̇ = − 1

2m
∇2ψ + mΦ ψ + g

8m2 |ψ |2ψ + g3
12m3 |ψ |4ψ + · · ·

∇2Φ = 4πG (ρ − ρ̄)

�⇒
{
gi = 0 Fuzzy DM

gi �= 0 SIFDM

We can also rewrite the field theory above as a set of hydrodynamical-like equations,
in this long wavelength limit. For that, if we identify (using the theory in the presence
of expansion):

ψ ≡
√
ρ

m
eiθ , v ≡ 1

a m
∇θ = 1

2ima

(
1

ψ
∇ψ − 1

ψ∗ ∇ψ∗
)
. (114)

The vorticity of the superfluid is zero and the momentum density has non-zero curl.
The comoving equations of motion for ψ are

ρ̇ + 3Hρ + 1

a
∇ · (ρv) = 0 , (115)

v̇ + Hv + 1

a
(v · ∇) v = −1

a
∇Φ + ∇Pint

ρ
+ 1

2a3m2∇
(

∇2√ρ√
ρ

)
. (116)

These set of equations are the Madelung equations, generalized for an expanding
universe. The second term in the right-hand side of equation (116) comes from the
self-interaction term, where Pint is the pressure from the interactions. The last term
of the second equation is the quantum pressure. This is present even in the absence
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of interaction and it is going to be important for the effects and formation of the
condensate for the FDMmodel. The quantum pressure has the role of not allowing the
FDM to cluster and collapse, which also makes the density of this collapsed region
to have a finite value. In this way, this model has naturally a cored profile inside the
condensate region, addressing the cusp–core problem. This form of the equations is
useful for numerical simulations that can reveal some properties of the DM scalar
field. However, as we can see from the quantum pressure term, these equations are not
defined for ρ = 0.

The quantum pressure term is present in the ULDM models and it is not present in
other candidates of DM. As we discussed above, the behaviour of FDM or SIFDM in
each regime depends on a competition between the gravity, the pressure term and the
quantum pressure. We can roughly say that then the non-CDM behaviour expected for
our models will take place on scales where the quantum pressure term dominates. The
sign and size of the interaction might affect this a lot. A naive estimate of this effect
is that the scales where this quantum pressure term matters is for scales smaller than
the de Broglie wavelength of the particle, λ < λdB. The de Broglie wavelength for a
typical MW-like galaxy is given by

λdB � 0.2
( m

10−22 eV

)−1
(
V200
v

)
kpc , (117)

where we used the virial velocity (91). For a particle with m = 10−22 eV, this would
mean that the wave-like behaviour of the ULDM particles would be relevant in a
MW-like galaxy on scales smaller than 0.2 kpc. If we consider dwarf galaxies, for
example, where virial velocities are much smaller vdwvir ∼ 10 km/s, these non-CDM
effects would take place on scales of order of their halo size. For scales λ > λdB, the
quantum pressure term is not important anymore and the particles behave like free
particles, in a CDM-like way.30

This scalewhere the condensate behaviour becomes important is called the coherent
length.We are going to show now amore precise determination of this coherent length
in both the FDM and SIFDM. And together with this analysis, it is going to be possible
to better understand what is going on in the center of halos that drives this non-CDM
behaviour.

4.1.4 Description of the condensate

Now that we have our description of the FDM and SIFDM on small scales, we want to
understandwhat takes place inside the halos, where the Schödinger–Poisson equations
describe the evolution of the system. We want to describe here what is the picture we
have in mind for what happens on those small-scales.

The special feature of the ULDMmodels is that they present a non-CDMbehaviour
in galaxies. As we saw in the previous section, the ULDM have a cosmological evo-

30 Here, when I say that is has a CDM-like behaviour, I mean it behaves like a free particle and not like a
condensate. Therefore, it follows the hydrodynamical description of CDM. They can have the same type of
behaviour like CDM and be described by the same equations, but ULDM have different initial conditions
and, for small mass describing DE after equality, can modify the expansion.
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lution very close to CDM for large scales. Different than in CDM, the ULDM have a
non-zero Jeans length showing that on small-scales this component is going to behave
differently than CDM. Therefore, outside galaxies, ULDMbehaves like CDMbutwith
a suppressed power spectrum, and inside galaxies, in those homogeneous sub-Jeans
scales ULDM can have a non-CDM behaviour.

Inside these homogenous sub-Jeans regions inside galaxies, the ULDM thermalizes
and forms gravitationally bound compact objects, called Bose stars or solitons, where
a Bose–Einstein condensation or superfluid is formed. This was described in many
references in the literature (Lee and Pang 1992; Jetzer 1992; Kolb and Tkachev 1993;
Guth et al. 2015; Semikoz and Tkachev 1997; Khlebnikov 2000; Sikivie and Yang
2009; Erken et al. 2012), both in the presence and in the absence of interactions.
The coherence length of this condensate sets the region where the wave behaviour of
the condensate is important and changes the dynamics. Outside the condensate, on
scales larger than the coherent length, the ULDM behaves as particles following the
particle description as CDM (decoupled axion following (Sikivie and Yang 2009)),
with different initial conditions than in CDM.

There have been many studies of the properties of these condensed gravitationally
bounded objects, in particular in the context of axions (Ruffini and Bonazzola 1969a;
Chavanis 2011; Barranco and Bernal 2011; Eby et al. 2015, 2016a, b, 2019, 2018;
Braaten et al. 2016; Visinelli et al. 2018). In this section, we are going to study the
thermalization and formation of these compact objects not only in the context of FDM,
but also in the context of the SIFDM. It is interesting to see that the size and phenomena,
BEC or superfluidity, described by each of these models can differ a lot in each case,
and in the case of the SIFDM it differs with the sign of the self-interaction.

The formation process of this Bose–Einstein condensate by gravitational interaction
in the center of halos or in axionminiclusters is shown to take place in our universe,with
relaxation times dominated by faster gravitational relaxation time, which is smaller
than the age of the universe (Semikoz and Tkachev 1997; Khlebnikov 2000; Sikivie
and Yang 2009; Schive et al. 2014a; Levkov et al. 2018; Kirkpatrick et al. 2020). We
are going to show here we can describe this formation of the condensate and obtain
the relaxation times in the case of the FDM and the SIFDM.

Summarizing, the picture that we have to have in mind is shown in Fig. 10. Inside
the halos of galaxies, a condensate core is formed.31 These Bose clumps are called
solitons or Bose stars. This is also the picture that we have for the DM superfluid
model, presented in Sect. 4.2.

As we saw from the description of the ULDM given above, we are describing the
theory purely classically. It is valid then to ask if our ULDM can be treated as a
classical theory or not, especially since this model has such small masses.

Classicality is an emergent concept that can be applied for system that are composed
by a large number of constituents. In this limit, the quantum effects of the theory are
suppressed by this macroscopic number of particles, and the theory can be described
by a classical theory. In this way, there is a limit where this classical approximation
breaks and the quantum effects become important.

31 The picture described here can differ in the entire literature. We are going to discuss this in Sect. 4.1.5.
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Fig. 10 Schematic figure of the behaviour of ULDM in galaxies, where a condensate core is expected to
form in the inner parts of the galaxy, while DM behaves like normal DM in the outskirts or outside galaxies

Lets first talk about what happens in the halo. When taking the classical limit of a
theory, we can think that we decompose our quantum field ψ̂ into

ψ̂ = ψ + δψ̂ , (118)

where 〈ψ̂〉 = ψ is the classical field (since if it was quantum this expectation value
would be zero) and δψ̂ are the quantum corrections on top of the classical field. These
quantum correction are suppressed by large occupancy number of the states, and for
a coherent state is given by: δψ̂/ψ ∝ 1/N . Therefore, if we are in a system with
a large number of quantum constituents, the quantum corrections can be neglected
and the system can be treated as classical. And this classical field is going to obey
classical equations. This is, very roughly since this can be made much more precise
mathematically, the definition of a classical field. On top of that, it is a condensate,
there is a large occupation number of the ground state, so N = N0.

We can then estimate the occupancy number that we have in a halo. If we consider
a MW-like galaxy, and we take as an example the axion, then the number density of
axions in the galaxy is

ngal = ρgal

m
≈ GeV/cm3

10−5 eV
. (119)

Since we can write the occupation number roughly asN ∼ nλ3dB, given the de Broglie
wavelength of an axion with mass m ∼ 10−5 eV, we have that in a galaxyN ∼ 1046.
This shows that in galaxies today, this ultra-light particle has a huge occupancy number
and we can consider a classical evolution. We can extend this estimation for earlier

123



Ultra-light dark matter Page 79 of 186     7 

times, if we assume the QCD axion, where the potential arises from non-perturbative
effects on scalesΛQCD. For those axions, the energy density (assuming they aremost or
all the DM in the universe) is given by na ∼ ρa/m ∼ (Teq/TQCD) ρtot ∼ TeqT 3

QCD/m.
The de Broglie wavelength can be estimated to be at most of the size of the Hubble
horizon at that time λ ∼ H−1

QCD ∼ T 2
QCD/Mpl . This yields an even larger occupation

number N ∼ 1061.
If you start your theory with a classical scalar field described by classical equations

of motion, then this description is valid for almost all the evolution of the universe
(early timesmight require quantum treatment tough), specially the cosmological times
we are considering. So it is a good description for the evolution of the ULDM32.

As we saw in Sect. 3, in the classical limit, we can describe the properties of the
(classical) condensate using a classical theory. And that is what we are going to do
here. In the classical point of view, the condensate formed is going to be described
by a slowly varying in space, homogeneous and stable field that presents long-range
correlation (Guth et al. 2015). In the case of FDM and SIFDM, condensation takes
place in the presence of gravity, and of both gravity and self-interactions in the case
of SIFDM. So we need to show how this gravitational thermalization takes place. We
are going to describe these condensates, showing their size, given by their correlations
length, and the condensate solution using linear theory.
SIFDM

We are first going to treat the SIFDMmodel, which is described by the presence of a
self-interaction (Chavanis 2011;Guth et al. 2015;Chavanis 2016, 2018).We specialize
here to the two-body interaction, since higher order interaction are usually suppressed
in low-energy systems like the one we are interested. But it is easy to generalize this
for higher order interactions. From what we saw in the previous section, the theory of
a self-interacting condensate describes a superfluid in certain regimes. We are going
to see here for which conditions this occurs in the SIFDM model.

We are going to work in the limit where we ignore gravity to investigate the effect
of the self interaction in the model in a very similar way as described in Sect. 3.3. The
Schrödinger equation that describes model is given by

iψ̇ = − 1

2m
∇2ψ + g

8m2 |ψ |2ψ . (120)

We decompose the field into a homogeneous background solution, which represents
the condensate, plus a perturbation part: ψ(x, t) = ψc(t)+ δΨ̄ (x, t). The condensate
part satisfies the Gross–Pitaevskii equation,

iψ̇c = g

8m2 |ψ0|2ψc , (121)

that has a simple periodic solutionψc(t) = ψ0 e−iμct , where |ψ0|2 = n0 is the number
density of particles that fixes the amplitude of ψ0, and μc = gn0/8m2.

32 There is one subtly here that there might be effects on local systems that can deplete the condensate and
break coherence. I will discuss that in Sect. 4.1.5.
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The equation describing the evolution of the perturbation, making the field redefi-
nition δΨ̄ = ψcδΨ , is

iδΨ = − 1

2m
∇2δΨ + gn0

8m2

(
δΨ + δΨ ∗) . (122)

Since δΨ is a complex scalar field, we can decompose the field into a real and a
imaginary parts, Ψ = A + i B. We want to determine the dispersion relation of this
system, so we write the equation of motion in Fourier space:

d

dt

(
Ak

Bk

)
=
(

0 k2
2m

− k2
2m − gn0

4m2 0

)(
Ak

Bk

)
, (123)

where we call ζk = k2/2m + gn0/4m2. The dispersion relation is given by

ω2
k = gn0

4m2

k2

2m
+ k4

4m2 . (124)

We can see that for ω2
k > 0 we have an oscillatory solution:

δΨk = Z (ωk + ζk) e
iωk t + Z∗ (ωk − ζk) e

−iωk t , (125)

where Z is an arbitrary complex parameter. Whenω2
k < 0, the solution of the equation

for δΨk is given by exponentials,

δΨk = c1 (γk − iζk) e
γk t + c2 (γk + iζk) e

−γk t , (126)

where γk = (k/
√
2m)

√−ζk are the eigenvalues of the matrix, and c1 and c2 are
constants given by the initial conditions.

The regimes where the dispersion relation is positive or negative are separated by
the modes with wavenumber,

ω2
k = 0 �⇒ k2∗ = −g n0

2m
, (127)

from where we can also determine the wavelength λ∗ = 2π/k∗ that divides these
regimes. This wavelength is proportional to the healing length calculated in the previ-
ous sections. However, can see from this scale that what is actually going to determine
if we have a stable oscillatory solution or a exponentially growing instability is the
sign of the interaction.

For a repulsive interaction, g > 0, the homogeneous configuration is always stable,
and it is always going to be described by an oscillatory solution, either if λ is bigger
or smaller than λ∗ . This means that for all wavelength we can have a stable solution
that can describe a condensate. From the dispersion relation, we can also see that, in
the long wavelength regime

ωk � csk , (128)

123



Ultra-light dark matter Page 81 of 186     7 

which is the dispersion relation of the phonon, that propagates as a wave, mediating
long-range correlation. This means that the SIFDM with a repulsive interaction is a
superfluid, with the theory fully described by this propagating phonon. On the other
hand, for very small wavelengths, large k, the term ωk = k2/2m dominates, which
is the dispersion relation of a free massive particle, and the system stops exhibiting
superfluidity. In the intermediary regime, where we should consider both terms of the
dispersion relation, and the theory described by two degrees of freedom the phonon and
the massive particle associated with particle creation away from the condensate. The
scales that determine what we mean by long-wavelength regime is where λ 
 λ∗ in a
way that the linear term dominates the dispersion relation. Since λ∗ is proportional to
the healing length, this condition for the longwavelengths is equivalent to the condition
in Sect. 3.3 that the healing length gives us the scale where quantum pressure (QP)
can be neglected, which is what we are describing here.

When we have an attractive interaction, given by g < 0, we have two regimes of
stability. For k < k∗ (λ > λ∗), we have exponential growing solutions, which means
that perturbations grow parametrically. Given this instability, the condensate cannot
be formed on these scales. For k > k∗ (λ < λ∗), the solution oscillates and is stable,
forming a condensate. This stable configuration, however, is different than in the case
for repulsive interaction, forming a localized object, with maximum size given by λ∗.
This localized stable solutions are called soliton. Therefore, it makes sense that this
is the healing scale is the scale of the stability, since this is the scale below which the
interaction “heals” perturbations of the condensate.

g > 0 −→ ∀ λ Solution oscillates. Condensate (long range)

g < 0 −→
{

λ > λ ∗ Structures grow. No condensate.

λ < λ ∗ Solution oscillates. Condensate (finite size)

The case of the attractive interaction is not a superfluid even in the stable localized
regions, the solitons. The only stable regions are for λ < λ∗ and this is the regime
where the linear term is always subdominant in the dispersion relation. The long-
wavelength regions in this case are the regions where instability happens and there is
no formation of a condensate.

Condensate solution Having studied the stability of the system and determined
the regimes where we have stable and unstable solutions, we can now describe the
background solution for each case. As we saw in the “condensate solution” part of
Sect. 3.3, one possible solution for the weakly interacting BEC is given by the soli-
tons. For repulsive interactions, the condensate solution is a dark soliton, while for a
attractive interaction one has a bright soliton.

What is important is that for the repulsive interaction we can create a condensate of
any size desired. So the size of the condensate is not limited and it will depend only on
the choice of mass and strength of the interaction. For the case of attractive interaction,
we can only have localized stable solutions, giving a finite size bright soliton, with
maximum size λ∗ = 2π

√
2m/|g| n0. Therefore, we can see that we could only have

a soliton, for an attractive interaction, that is relevant on galactic scales if the mass
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is very small but with a not very small coupling. An interplay between these two
parameters need to occurs then if one wants galactic sized λ∗.

This condition also shows us that the QCD axion is not a good candidate for a
ULDM (at least not to represent most of the ULDM, but it can still represent a fraction
of DM). For the QCD axion the interaction, given by ga = −Λ4/ f 4a is negative,
and it is extremely small with ga ∼ −10−48, because Λ ∼ 0.1GeV, for the typical
QCD scale, and fa ∼ 1011 GeV, for typical Peccei–Quinn scale. Given that the mass
of the axion is approximately m ∼ 10−5 eV, the soliton length, for n0 ∼ ngal, is
λs ∼ 2.8 × 1011 km ∼ 9 × 10−6 kpc. This is much smaller than any galactic scales,
which are of the order of tens to hundreds of kpc. The QCD axion, then, produces
these small and localized clumps of axions.

Occupancy number evolution - With those solutions in hand, we can understand
how the evolution of the occupancy number for the condensate will behave for each
mode. Determining the evolution of the occupation number is very important since
having high occupancy number of the ground state of the system st what is actually the
definition of a condensate. And this definition is independent of the system described,
representing the best way of showing that condensation took place. This is given by
N = |ψk |2/V , whereψk is constructed from the exponential and oscillatory solutions
described above, with a random phase. The average occupation number evolves as

〈Nk(t)〉 = 〈Nk(ti )〉
{
1 + 1

2γ 2
k

(
gn0
4m2

)
sinh2

[
γk (t − ti )

]}
, for ω2

k < 0

〈Nk(t)〉 = 〈Nk(ti )〉
{
1 + 1

2ω2
k

(
gn0
4m2

)
sin2 [ωk (t − ti )]

}
, for ω2

k > 0
(129)

For g > 0, an repulsive interaction, γk is imaginary, with γk = iωk , so the occupation
number oscillates and the oscillations are stable. The ratio 〈Nk(t)〉/〈Nk(ti )〉which has
the largest value is obtained for modes that minimize ωk , which are the modes with
k → 0. These are the longest wavelengths. Since the long wavelength dominates, this
means that long-range correlation is present, and we can have a long range condensate.

For g < 0, the occupation number grows exponentially. The fastest growth is given
by the modes k = k∗ that maximize γk . So the modes k > k∗ or λ < λ∗, where ∗
denotes the characteristic scale where instability sets in, will dominate and the stable
configuration of the system will be localized clumps. The size of these clumps will be
given by the mass and interaction of the model.
FDM: only gravity

We are now going to describe a model without interaction, where the ultra-light
particles are under the influence of the gravitational potential. We can think that gravi-
tational potential has the same effect as an attractive interaction, in a way that quantum
pressure has to counteract the gravitational collapse. This gives a good picture to what
to expect, from the knowledge obtained for the SIFDM.However, one needs to remem-
ber that the FDM model is described by a non-interacting theory, which means that it
condenses into a BEC, but does not exhibit superfluidity in any regime.
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The Schrödinger equation for DM in a gravitational potential, in the absence of
interaction is

iψ̇ = − 1

2m
∇2ψ + mΦ ψ , (130)

which is coupled to the Poisson equation:

∇2Φ = 4πG
(
m|ψ |2 − ρ̄

)
, (131)

where the average background density, ρ̄, was subtracted. Expanding the field as done
previously ψ(x, t) = ψc(t) + δΨ (x, t), the equation for the condensate is trivial
and ψc = ψ0 = const.. For the fluctuations, we can write the linearized systems of
equations that govern the evolution of the perturbation:

i ˙δΨ = − 1

2m
∇2δΨ + mΦ , (132)

∇2Φ = 4πG m n0
(
δΨ + δΨ ∗) . (133)

These can be combined into the equation:

i ˙δΨ = − 1

2m
∇2δΨ + 4πGm2n0∇−2 (δΨ + δΨ ∗) . (134)

One can notice that the equation above is very similar to the equation we had for the
interacting case (122) for an attractive interaction. With that, we expect that there is
an instability for long wavelengths, and that the condensate stable solution is only
given for a finite region, forming a localized core. To determine, this lets take the
Fourier transform of the fields. Like in the interacting case, the instability is divided
by the regimes where the dispersion relation is smaller or bigger than zero. For the
parameters of the FDM, we can determine the wavenumber that separates the regimes
as

ω̃2
k = 0 , �⇒ kJ =

(
16πGm3n0

)1/4
. (135)

This scale is the Jeans scale and it separates the regimes where gravity dominates and
collapse happens (k < kJ), and the regime where the quantum pressure dominates and
the solution is stable and oscillates (k > kJ). In this regime, we can have a condensate.
The quantum pressure term counteracts the gravitational attraction and any attempt to
localize the particle is accompanied by an increase in energy. So stability below the
Jeans scale arises because of the uncertainty principle.

{
λ > λJ Structures grow. No condensate.

λ < λJ QP dominates, solution oscillates. Condensate (finite size)
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We can estimate the size of the coherent condensate core. Rewriting the Jeans
wavelength as

λJ = 2π

kJ
= π3/4

2
(Gρ)−1/4 m−1/2

= 94.5
( m

10−22eV

)−1/2
(

ρ

ρcrit

)−1/4 (
Ωmh2

0.12

)−1/4

kpc , (136)

where ρcrit is the critical density. For fuzzy DM in an overdense region ρ = 106 ρcrit ,

Fuzzy DM: m ∼ 10−22 eV −→ λFDM
J ∼ 3 kpc , (137)

forming a condensate that is of the order of the scales of the halo of galaxies. As we can
see, for a MW-like galaxy, this core formed is smaller than the halo. So we expect that
in the outskirts of the halo, the DM is not going to be condensed and is going to behave
like normal matter, with the profile following the NFW profile. For the QCD axion, if
we assume that we can have an axion without interaction, λJ ∼ 1.7×10−7 kpc, which
is a very small-scale in comparison to galaxies. This stable bound system is called a
Bose star.

Adding the expansion of the universe, we can see that the system of equations
becomes

i

a3/2
∂t

(
a3/2ψ

)
= − 1

2m

∇2ψ

a2
+ mΦψ , (138)

∇2Φ = 4πGa2
(
m|ψ |2 − ρ̄

)
. (139)

Like before, we determine the linearized equations for the perturbations δΨ around
the coherent homogeneous background that evolves as ψc ∝ a−3/2. The equation that
describes the evolution of the perturbation is

i ˙δΨk = − k2

2ma2
δΨk − 3

2
mΩa

H2a2

k2
(
δΨk + δΨ ∗

k

)
, (140)

whereΩa = mn0/ρtot is the density parameter of our FDM particles. The real part of
the perturbations obeys the following equation:

Äk + 2H Ȧk − 3

2
ΩaH

2Ak +
(

k2

2ma2

)2

Ak = 0 . (141)

All the terms in this equation would also be present from a massive DM component
like CDM, except for the last term, which is related to the quantum pressure. The Jeans
length in this case is given by

kJ
a

= (6Ωa)
1/4

√
Hm . (142)
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This stability analysis shows us that if we want to construct a ULDM model with
the desired feature of having a condensate in galactic scales, for the FDM model we
need to have a very small mass of the order m ∼ 10−22 eV. This mass is within the
bounds we had obtained earlier for all the ULDM models. For the FDM model, the
only parameter that controls the size of the condensate is the mass. We need then to
determine the mass of the FDM particle for which this model can address the small-
scale problems, and for which the model is still in accordance with the very precise
cosmological observations. This is what we show in the next subsection. We are going
to put bounds on this parameter according to the observations in galaxies and on
large-scales.

Condensate solution The ground state solution for the FDM is called Bose star,
and it is a gravitational bound stable state in 3-dimensions. This can be obtained by
minimizing the Hamiltonian that is described by system with gravity alone, at fixed
particle number (N ) (Guth et al. 2015). In the absence of an exact solution, one can
have an ansatz for this solution, in analogy to the ground state of the hydrogen atom,
we assume spherical symmetry and have

ψbs(r) = ψse
−iμs t =

√
N k3bs
π

e−kBSr e−i μs t , (143)

which corresponds to the ground state E = −25G2m5N 3/512, μs < 0 and where
the characteristic wavenumber of the Bose star is given by

kbs = 5Gm3N/16 ∼ kJ , (144)

given that N ∼ nbs/k3bs. Therefore, the Bose star wavelength coincides with the Jeans
length that determines the core, the stable region with no gravitational collapse.

However, the study of the Bose star solution needs to be done numerically. We are
going to see next how the formation of these Bose stars takes place in kinetic theory.
We see the formation of the BEC in these gravitationally bound structures, having the
Bose star, and see how this Bose star grows. We are also going to discuss the cores
formed by other simulations in Sects. 4.1.6 and 4.3. With those we can determine the
profile, mass and size of the core.

In the case of the SIFDM, we saw that what determines the size of the condensate
is the mass and of the strength of the interactions. Like for the FDM, to construct a
SIFDMmodel that addresses the small-scale problems and that are allowed by current
observations, we need to put bounds on those parameters. This model was much less
studied than the FDM model. There are a few works that present some bounds on
those parameters (see references in the definition of this class), but with much less
constraints than in the FDM case. This is also understandable since here we have an
extra parameter in the model. A more complete analysis for the bounds of the SIFDM
is going to be presented in a future publication and it is being considered by the authors
while this review is being written.
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Initial evolution of the condensate
The picture that we have for the ULDM is that in the interior of galaxies it forms

a core where the ULDM condenses and forms a Bose–Einstein condensate, in the
case of FDM, and a superfluid, in the case of the SIFDM (and of the DM superfluid
which we will see in the next section). Previously, we have determined the region
where condensation can happen in the halo and calculated the coherence length of the
condensate in the case of FDM and SIFDM, and calculating what is the ground state
solution of the condensate, the soliton or Bose star, for each case.

We want to study if there is the formation of a BEC in the center of galaxies in
the presence of gravitational interactions, on top of the self-interaction in the case
of SIFDM. We showed before that the ULDM is described by a classical theory.
The reader, then, might be wondering that since we are using a classical theory we
cannot fully describe thermalization and the formation of the condensate. Indeed, aswe
showed in Sect. 3.6, and also in Guth et al. (2015), classical fields follow a Rayleigh–
Jeans distribution which present the UV catastrophe, and, thus, cannot describe a
condensate. However, Guth et al. (2015) showed that a classical field theory is capable
to describe the phase transition that represents the formation of a condensate and the
theory has a well defined thermal equilibrium if one introduces a ultra-violet cutoff
in the theory. We saw the same conclusion in wave turbulence, in Sect. 3.6, where
the four-wave classic kinetic equation can only describe the initial stages of a BEC if
a ultra-violet cutoff is present in the theory. Therefore, it is possible to describe the
formation of a condensate with a classical theory.

To study the formation of a BEC in the center of galaxies here we use the kinetic
equation from wave turbulence. We can use the four wave kinetic equation to describe
the initial stages of evolution of a BEC. This formalism can be used in the case of
ULDM to show that Bose–Einstein condensation caused by gravitational forces indeed
happens in the center of halos (and of axion miniclusters). From this theory, we can
also obtain a prediction for the condensation time and obtain the properties of the
condensate distribution. This was done in Levkov et al. (2018) that made this analysis
for the FDM model, and showed numerically the formation of the condensate and
growth of the Bose stars, and in Kirkpatrick et al. (2020) where the role of interaction
was also studied. This is what we are going to show now.

We are going to proceed in the same fashion as in Sect. 3.6, but with the system
subjected to a gravitational potential. The difference from the previous procedure is
that the gravitational interaction is long range, while in Sect. 3.6, we studied only the
role of short-range interactions.

In galaxies, we are in the regime of high occupation number, and the classical
description is valid. For the system we are considering, p2 	 2mT ; therefore, for
the period where the evolution is going to be described by this kinetic theory, the UV
catastrophe is not a problem, and the classical kinetic description of the system is
valid.

In this regime, we can see that this system described by the non-linear Schrödinger
equation (113) can be described in wave turbulence by the classical kinetic equation
(83) where the non-linear process is the four-wave resonant interaction. In the case of
the ULDM subjected to gravitational potential, the kinetic equation is given by
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∂ f

∂t
+ p

m
· ∇x f = 2 Im

∫
dy e−ip.y

〈
ψ
(
x + y

2

)
ψ∗ (x − y

2

)
Utot

(
x + y

2

)〉
,

(145)

where f is the Wigner distribution described by (82) and the potentialUtot is given by

Utot(x) = UG + g |ψ(x)|2 = 4πGm
∫

dx′Δ−1
x−x′

(
|ψ(x)|2 − n

)

+ g
∫

dx′ δ(x′ − x) |ψ(x)|2 , (146)

and Δ−1
x−x′ is the Green function coming from the Poisson equation

Δ−1
x−x′ = 1

4π |x − x′| . (147)

These two equations are equivalent in this limit to the Schrödinger–Poisson system
that describes the evolution of the ULDM field in galaxies. This is the Landau kinetic
equation for the gravitating ensemble of random phase classical waves inside a struc-
ture of radius R that in our case of interest is the halo of a galaxy, but it can be an
axion minicluster or a periodic box, in the case of simulations.

To obtain the closed form of this kinetic equation we need to make some assump-
tions, as detailed in Sect. 3.6. In our case, we are going to assume as a initial
distribution Gaussian distributed ULDM particles, described by a Gaussian random
field |ψ̃p|2 = 8π3/2 Ñ e− p̃2 with random phases arg ψ̃p, where ψ = ψ̃v20

√
m/G,

p̃ ≡ p/mv0 and v0 is the initial velocity. This initial configuration is the Fourier trans-
form of ψ̃(t, x̃) = ψ̃(0, x̃), with x̃ = mv0 x, which is an isotropic and homogeneous
field. This is an uncorrelated field, a field that has minimal coherence length. This
type of initial configuration reinforces that there is no seed for condensation in the
halo or axion minicluster, and that condensation arises simply by the gravitational
interaction or gravitational interaction plus self-interaction. This initial condition is
also well motivated from axions formed by the Kibble mechanism (Fairbairn et al.
2018).

Using the Wick theorem, we can write our kinetic equation in closed form for the
SIFDM as (Kirkpatrick et al. 2020)

∂ f

∂t
+ p

m
· ∇x f = F1 + F2 + I ( f ) , (148)

where the F1 and F2 correspond to the two point correlation functions in the Wick
theorem, the first two terms in Eq. (84), and I ( f ) comes from the connected part33,

33 Called St f in Levkov et al. (2018).
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the last term of Eq. (84). The first two terms are given by

F1 = 2 Im 〈Utot(x − i∇p/2)〉 f (x,p) , (149)

F2 = 2

(2π)6
Im

∫
dqdq′dydy′ [4πGm2Δ−1

y + g δ(y)
]
ei(y

′·q−y·q′)

f (x + y
2
,p + q) f (x + y′

2
,p + q′) . (150)

They are T -odd terms. They are order one in the interactions O(g) and O(G). The
potential obeys: Δ〈Utot〉(x) = (4πGm)/(2π)3

∫
dp ( f (x,p)− n).

We can separate the contribution in I ( f ) by coming from the the self-interaction
and from the gravitational interaction I ( f ) = Ig( f )+ IG( f ), respectively, where

Ig = 2 Im
∫

dy e−ip·y g〈ψ+ψ∗−ψ+ψ∗+〉conn , IG = 2 Im
∫

dy e−ip·y 〈ψ+ψ∗−UG〉 .
(151)

Here we simplified the notation by writingψ± = ψ(x±y/2). These terms are second
order in the interactions. Both of those interactions act in very different scales. The
self-interaction is short range and it was the case we studied in Sect. 3.6. The case
of the gravitational interaction needs to be treated carefully since the gravitational
interaction is long range. Here we follow Levkov et al. (2018) where the treatment
from Landau for long-range Coulomb interactions was used for gravity.

For the initial Gaussian distribution, F1, F2 and I ( f ) vanish, and the ULDM dis-
tribution is initially static.

We are interested in describing kinetic relaxation of ULDM in the halo of a galaxy
(or in an axionminicluster),which is the condensation, andobtain the relaxation timeof
this process. Aswe sawbefore, inside the halo y = Δx 	 R, the field and the potential
are homogeneous. In the center of a homogeneous spherically symmetric halo, where
the condensate is formed (or a homogeneous box in the case of simulations), the
terms F1 and F2 vanish and we do not need to take them into account when studying
these initial stages of the condensate, where the four-wave kinetic equation is valid.
Therefore, in our case

∂ f

∂t
+ p

m
· ∇x f ≈ I ( f ) . (152)

Lets first treat the gravitational part. To estimate IG( f ), we can follow Landau’s
treatment. In the regime where the above equation is validΔx 	 R, and in the kinetic
regime (mv)−1 	 R, we can expand the potential asUG(x+y/2) = UG(x)+ (y/2) ·
∇UG(x). With that the gravitational scattering integral we were calculating can be
described by a diffusion process in phase space: IG = −∇p · s, where the Landau flux
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s is

s = 1

(2π)3

∫
dx′dp′ Fx′p′

xp ∇x(4πGm2Δ−1
x−x′) ,

Fx′p′
xp =

∫
dydy′ e−i(p·y+p′y′)〈ψ+ψ∗−ψ ′+ψ∗′+ 〉conn . (153)

Plugging this new IG in the kinetic equation, we can rewrite it as a the equation for the
evolution of the four-point functionF , which involves a six-point correlation function.
To be able to write this equation in closed form and solve it, one uses Wick theorem.
Ignoring the connected part in the limit of small separations y 	 R, the Landau
flux is then si = ∫

dp′Πi j (u)( f ′2∂p j f − f 2∂p′
j
f ′), where u = (p′ − p)/m and

f ′ = f (x′,p′). The term Πi j (u) is given by the integral

Πi j (u) =
∫

dt ′dy ∂i Δ̄−1
y ∂ j

[
Δ̄−1

y+ut ′ − g δ(y + ut ′)
]
, (154)

where ∂i Δ̄−1
y = 4πGm2Δ−1

y . Then this Landau flux defines IG through IG = −∇p ·s.
However, to take the above integral one needs to introduce a long-time and a short-time
cutoffs, given the logarithmic divergence of the Poisson Green’s function. Therefore,
the integral is taken in the interval (mv2)−1 	 t ′ 	 R/v, which is the time that
correspond to the regime where relaxation can happen since it can only happen inside
the halo y 	 R where the field is homogeneous, giving the upper limit, and for
distances bigger than the de Broglie wavelength y 
 (mv)−1, since diffusion is
only sensitive to fluctuations at long distance (Kirkpatrick et al. 2020). The fact that
diffusion is not sensitive to short distance scales already tells us that the self-interaction
contribution be sub-dominant in the relaxation process. So the condensation in the
halo happens much faster because of the gravitational interactions. In this time range,
the dominant contribution of this integral yields Πi j ≈ Λ(u2δi j − uiu j )/u3, where
Λ ≡ log(mvR) is the Coulomb logarithm. We can compute the relaxation time due
to gravity with this, which yields IG ∼ f /τG.

The Ig contribution is going to be sub-dominant, but we can still evaluate their con-
tribution to the condensate. Since the self-interaction is short range, we do not need
to resort to Landau’s treatment. We can just set Utot = g|ψ |2, and solve Eq. (113).
Considering again that we have a homogeneous distribution inside the halo and ignor-
ing the connected part of the Wick theorem since we want the result in leading order
of g, then the kinetic equation can be simplified to d2 f /dt2 ∼ 8g2〈n〉 f , which tells
us that the relaxation rate from the self-interactions is dIg/dt ∼ 8g2n2 f = γ f ,
where d/dt = ∂t + p · ∇x/m. This relaxation rate does not grow with time in this
limit, but when the connected correlations start to become relevant the relaxation rate
starts varying with time. The relaxation time from self-interactions is then given by
τg = 1/

√
γ .
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With that the relaxation time for this weakly interacting Bose gas subjected to
gravity in a halo is given by

τG =
√
2mv6

12π3G2n2Λ
, τg = 1√

8 |g|n . (155)

This gives the condensation time. The relaxation time for the gravitational interaction
is inversely proportional to G2 (and the cutoff scale), while the self-interaction one is
inversely proportional to g. The gravitational relaxation time is much faster than the

self-interaction one. The total condensation time is τtot ∼ 2τGτg/(τg+
√
τ 2g + 4τ 2G) →

τGτg/(τG+τg) → τG, is dominated by the gravitational one. Kirkpatrick et al. (2020)
estimated this to be of the order τg/τG ∼ 105 for the QCD axion. Therefore, the
formation of Bose stars mainly happens due to gravity, even in the presence of the self-
interactions. However, self-interaction is important as we saw above that the presence
of the self-interactions lead to a different phenomenology and size of the soliton core.
Notice that thermalization from gravitational interactions showed here is different then
the one arising from short-range interactions through power-law turbulent cascades
(Semikoz and Tkachev 1997), arising in this system through a diffusion process.

In the virialized halo, we can see that the formation of the Bose star, for the FDM
and SIFDM models, can happen in the universe with formation time smaller than the
age of the universe. For example, in dwarf galaxies, the condensation times for a FDM
particle of mass m22 would take ∼ 106 yr.

This formalism shows us that we can describe the first stages of the formation of
a BEC in the halo of galaxies using kinetic theory. This approximate description of
the BEC can help us estimate the condensation time and study the properties of the
Bose star. This formalism is particularly useful for numerical simulations which were
performed in Levkov et al. (2018) for the FDMmodel. The formation of the condensate
can be seen numerically with no seed condensate in the simulation. It is seen that the
initial evolution of the condensate also follows Eq. (148) for t < τG, as expected for
the wave turbulence with four-wave interaction. The Bose stars grow after formation
and the condensate becomes stronger (more particles condensate). The first decade if
this growth shows a growth in the mass of the Bose star Ms � cv0(t/τG − 1)1/2, with
c = 3 ± 0.7. Only the first decade of the growth was seen both from computational
limitation, but also this description does not hold for when the condensate starts to get
stronger, and the description with four-wave interaction is expected to break.

That study shows us that we can indeed have the formation of a Bose–Einstein
condensate of theULDMparticles inside the galaxies, formingBose stars and solitons.
This shows that the picture of having ULDM forming condensed cores inside galaxies
is indeed valid.
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4.1.5 Discussion

Before going further and describing the observational consequences of the FDM and
SIFDM, we are going to briefly discuss the picture presented here and some different
interpretations regarding condensation that are present in the literature.

The picture that we have showed until now for the behaviour of the ULDM is
the following. ULDM is described by a classical theory that gives its cosmological
evolution and its non-relativistic evolution in galaxies. Inside the halos of galaxies, the
ULDM thermalizes and forms gravitationally bound systems, the Bose stars or soliton,
where a BEC or a superfluid is formed. This condensed core is smaller than the size
of the galaxy and the coherent length gives the region where the wave-like behaviour
of the condensate is manifested, being of the order of the de Broglie wavelength in
the case of the FDM. The formation of these objects through gravitational interactions
can occur inside the halo of galaxies, without any condensate seed, in a time smaller
than the age of the universe, as shown from kinetic theory.

Therefore, in this picture, after the halo of the galaxy forms and virializes, thermal-
ization in the inner regions of the halo happens and a condensate core is formed. This
coherent length of the condensate, which changes if we are in the FDM or SIFDM
cases, sets the size of the core that is smaller than the radius of the galaxy. This con-
densed core in the inner region of the galaxy is surrounded by a shell where DM
behaves like a free particle (since λdB 	 d) instead of a wave like it is inside the core.
Outside the cores, in the outskirts of the halo, DM follows the profile predicted by
CDM. A condensate core can also be formed in the center of a more massive system
like a cluster. However, this condensate is very small, smaller than the ones in galaxies,
in comparison with the size of the cluster. Therefore, in the picture presented here, a
BEC is formed in the interior of galaxies due to the gravitational interactions.

However, many authors in the literature there is a different view. For some authors,
coherence of the ULDM is established initially, in the initial stages of formation of
the ULDM. This is the case for axions, as pointed out in Sect. 4.7 of Marsh (2016a)
(where a very good discussion of this topic is presented). The cosmic axion field is
described as a classical coherently oscillating scalar field. This classical field φ comes
from the expectation value of the quantum axion field, which can be represented in the
Heisenberg picture as 〈φ|φ̂(x)|φ〉 = φ(x). The state of the axion field φ is going to be
coherent state (Zee 2003; Itzykson and Zuber 1980), with this coherence established
initially. For the population of axions that is produced through vacuum misalignment,
in the case where the Peccei–Quinn symmetry is broken during inflation, the inflation-
ary evolution is responsible to making the axion coherent within the Hubble radius.
For the axion population that forms via the decay of topological defects, coherence of
the field is obtained via thermalization after formation with rate of the order of Hubble
rate H0, as presented in Marsh (2016a).

Therefore, as it is claimed in Marsh (2016a), the axions coming from any of the
populations can be described cosmologically as a classical coherently oscillating scalar
field. This classical description of the axion is said to hold throughout the evolution
of the universe. This is discussed in Dvali and Zell (2018) where the validity of this
mean field approximation is studied. They wanted to determine what is the quantum
break time, which is defined as when quantum effects become important again for
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the description of the axion and the classical description of the axions is not valid
anymore. The quantum breaking time is determined by the rate of axion scattering,
and it is found that it exceeds the age of the universe for the QCD axion, but this
would also be true for an axion with a smaller mass. Therefore, they conclude that it
is safe to treat the axion as a classical coherently oscillating scalar field if coherence
was established initially.34

This classical description also holds inside the halos of galaxies. This has been
shown in Allali and Hertzberg (2020) for a ultra-light fields that behave like DM.
The transition from a quantum to a classical system is called decoherence35. This is
an important question since decoherence is known to occur very fast in macroscopic
systems due to interactions of the system with the environment. However, if we have
DM, where interactions with the environment are known to be very weak interacting
mainly gravitationally, decoherence might proceed less efficiently. In this reference,
they study decoherence of aULDM, including axions, in the halo (ULDMoverdensity)
with its environment (the diffuse hydrogen in galaxies in this study). They find that
ULDM in the halo can be treated as classical inside galaxies since decoherence would
take place very fast, with a decoherence rate of the order of the Hubble rate H0 for
ULDM with m ∼ 10−7 eV. The same result holds for a BEC in the halo of galaxies.
If we have a Bose star that formed in the halo, the decoherence time is very fast for
any ULDM that has m < eV, so the condensate, after formed, can be treated as
classical and described by classical equations like the Schrödinger–Poisson system of
equations.

With that, the picture that some authors have is that since coherence is established
from initial conditions, and this classical picture can be maintained throughout the
evolution of the universe, then when the Jeans length stable regions are formed, the
axion in this region is already a coherent field. Thus, inside these regions in the interior
of galaxies, coherence was established by initial conditions, so no thermalization is
necessary to happen inside the halo.

However, the coherence of this classical field could be broken during the evolution
of the universe by local processes. This can come from many out of equilibrium
processes that occur in the universe. One example of this is the formation of halos
since virialization happens through violent relaxation. In this case, the DM particles
scatter on small fluctuations of the gravitational field, and coherence can be lost.
The system can then be describe by an ensemble of classical incoherent waves, with
very small coherence length. Also, as pointed out in Dvali and Zell (2018), even the

34 In this work, they consider that the axion is already represented by a classical coherent field, with all
axions in the zero momentum. Thus, it already started with a classical uniform axion field. They do not
discuss the thermalization process or any mechanism that led axions to this state. They only studied the
maintenance and validity of the classical approximation.
35 Coherence in this reference is the term used to describe the pure quantum mechanical system. This
notation comes from quantummechanics since coherent states only occur in quantummechanics. Therefore,
it has a slight different meaning than the classical coherent scalar field we have been talking until now. The
coherent classical field we have been talking until now is the field that came from the expectation value of
the (quantum mechanical) field operator of this ULDM taken in these coherent states 〈φ|φ̂(x)|φ〉 = φ(x).
So we call this classical field of coherent classical field since the field was in a coherent state during its
initial quantum stages. This term is usually used in the literature. Refer to Allali and Hertzberg (2020) for
a proper definition of decoherence.

123



Ultra-light dark matter Page 93 of 186     7 

classicality of the axion could be challenged in small overdense regions and quantum
breaking could occur in these regions.

With all that, we can see that either having coherence from initial conditions or
not, the ULDM field has to either thermalize or re-thermalize on galactic scales. We
showed above that thermalization of ULDM can take place in the halos of galaxies in
the presence of gravity or gravity and self-interaction, without any need of previous
coherence of the field. And in these regions, it was shown that a BEC is going to be
formed. And after its formation from the results from Allali and Hertzberg (2020)
we can treat the evolution of the Bose star as classical. This picture is valid for the
FDM, SIFDM and for the DM superfluid. So, for the phenomenology of ULDM in
galaxies, if the field was already a coherent field or not, does not alter the conclusions
we present in this review since this coherence can be reached at late times in the halo.

We just want to emphasize one last thing. Bose–Einstein condensation is a quan-
tum mechanical phenomena. It can only arise because of quantum mechanics. The
definition of a condensate is the one given in Sect. 3.7. A BEC can be described clas-
sically in the classical limit of the many-body theory or the field theory description
of a condensate, or by an approximate classical theory as an ensemble of waves like
wave turbulence (where we can make a parallel with the definition of a condensate as
particles in the ground state which in the language of waves translates is waves with
k = 0).

This discussion about thermalization or re-thermalization, classical or not, in the
context of ULDM has been presented in many places in the literature of ULDM with
many different point of views and interpretations. For the interested reader, some of
these discussions are present in the following references (Sikivie and Yang 2009;
Erken et al. 2012; Marsh 2016a; Guth et al. 2015; Castellanos et al. 2014; Davidson
and Elmer 2013; Davidson 2015). We hope we have presented here a clear view of
what happens in the interior of halos and how this can be interpreted, unifying some
aspects of these interpretations.

4.1.6 Cosmological and astrophysical consequences of the FDM

Now that we have a description of what happens cosmologically and inside the halos
of galaxies for these models, we are going to discuss the rich phenomenology that
these models exhibit. We are going to study their predictions and discuss their cosmo-
logical and astrophysical consequences. These models behave differently than CDM
in two ways. They present a CDM like behaviour on large-scales, with modified initial
conditions, and inside the halos of galaxies, they form a core in the inner part of the
halo where a non-CDM behaviour is described, while a NFW behaviour is present in
the outskirts of the halo, outside the core (see Fig. 10).

We need to study the predictions coming from thesemodified initial conditions, and
from the presence of these cores and their non-CDM behaviour. We can think about
three main groups of consequences of these models. First is the suppression of the
small-scale structure, that is going to affect many observables both cosmological and
astrophysical; the second is related to the presence of the cores in the center of galaxies;
and the third is related to dynamical effects that arise from theBECor superfluid formed
in the central regions of galaxies. We are going to describe these predictions in this
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section. We are going to focus mainly in the FDM in this section. Each of those effects
can be probed with different observables, which can lead to bounds in the parameters
of the models. We are going to talk about how these effects are measured and the
constraints obtained in Sect. 5. For other observational consequences of FDM, see
Hui et al. (2017).

A small comment. Although we showed above, we call solitons the ground state
of the SIFDM, and Bose stars the ground state of the FDM, in the literature the term
solitons is used for both. Therefore, from this point, we will use the term soliton to
also describe the ground state of the FDM.

Suppression of structure formation
One of the effects coming from the FDM and SIFDM classes of models is the

suppression of small-scale structure. This is a consequence of the fact that thesemodels
present sizable Jeans scale which cuts off the structure formation for wavelengths
smaller than λJ. The Jeans length for the FDMmodel is given by Eq. (136). Therefore,
as we saw in the previous section, for modes that are larger than the Jeans length
λ > λJ, gravitational instability takes place and structure formation can happen, while
modes smaller than the Jeans length λ < λJ have oscillatory solution and no structure
formation takes place. So structure formation suffers a cutoff on scales of the order of
the Jeans length. The same happens for the SIFDM model, but the scale of this cutoff
is different, analogous to the Jeans length, or the healing length, given by Eq. (127).

We can quantify this suppression by computing the power spectrum for the ULDM
models. We are working in linear perturbation theory, as shown above, and we can
evaluate the linear suppression of the power spectrum. In analogy to that done for
the WDMmodel, the modifications of the power spectrum with respect to theΛCDM
power spectrum are encoded in a transfer function TFDM(k, z).We can relate the power
spectra as (Hu et al. 2000b; Marsh 2016a)

PFDM(k, z)=T 2
FDM(k, z) PΛCDM(k, z) = T 2

FDM(k, z)

(
D(z)

D(0)

)2

PΛCDM(k) , (156)

where PΛCDM(k) is the power spectrum of ΛCDM at z = 0 which in turn is the
primordial power spectrum transformed by an appropriate transfer functions as defined
in Bardeen et al. (1986); Eisenstein and Hu (1998); and D(z) is the growth factor given
by (Peebles 1993)

D(z) = 5Ωm

2H(z)

∫ a(z)

0

da′

(a′H(a′)/H0)3
. (157)

The FDM transfer function is given by

TFDM = cos(x3J(k))

1 + x8J (k)
, (158)
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where

xJ(k) = 1.61
( m

10−22 eV

)1/18 ( k

kJ,eq

)
, kJ,eq = 9

( m

10−22 eV

)1/2
Mpc−1 .

(159)

The scale kJ,eq is the Jeans length at matter-radiation equality, the time when pertur-
bations start to grow.

This transfer function presents a fast decay at k = kJ,eq, which leads to a suppression
of the power spectrum on those scales. The mode where the power spectrum decays
to half of its value T (k1/2) = 1/2 is the half mode given by Li et al. (2019) k1/2 =
5.1 (m/m22)

4/9 Mpc−1, where m22 = 10−22 eV. If k1/2 < knl ∼ 0.1 where knl is
the non-linear scale which is around 1Mpc−1, the suppression of the power spectrum
can be probed by linear CMB and LSS observables. Otherwise, we need non-linear
observables. Therefore, roughly speaking, we can probe the suppression on the power
spectrum on linear scales for FDMwith massesm � 10−23 eV. One interesting fact is
that the k1/2 of the FDM is the same as the one for WDM, although they are different
functions of the wavenumber.

Beyond linear observables, this suppression of the power spectrum on small-scales
induces a suppression in the formation of FDM halos. This can be estimated by cal-
culating the linear half-radius (R1/2,lin) which is the radius where half of the mass
of the spherically symmetric system is contained. Then for R1/2,lin ∼ λ1/2/2, where
λ1/2 = 2π/k1/2, we obtain the mass of the smallest halos that can be formed in this
theory (Bullock and Boylan-Kolchin 2017; Niemeyer 2019)

Mlin = 4π

3
R1/2,lin〈ρFDM〉 = 4 × 1010 M�

( m

10−22 eV

)3 (Ωm

0.3

)(
h

0.7

)2

,

(160)

where 〈ρFDM〉 = 3/(8πG)H2
0 Ωm . Therefore, FDM predicts a large suppression of

halos for M < 1010 M� if the mass ism22. Below, we are going to see how this can be
calculated more specifically given the cores in the halos and see how these predictions
help address the small-scale problems.

This suppression of the power spectrum on small-scales also suppresses the for-
mation of galaxies. It is found in simulations that the number of sub-halos in FDM
in comparison to CDM is reduced by a factor of ∼ (3M/M1/2)

2.4. This suppression
of formation of small galaxies is larger in FDM at higher redshifts, in comparison
to CDM. This opens up an important question about FDM being able to produce
small-scale structures at early times to be probed by Lyman-α forest.

Therefore, the linear suppression of the power spectrum can affect both in the
linear and non-linear part of the theory. This can lead to the following effects. This
suppression can be probed by probing the linear power spectrum by the CMB and
the matter power spectrum through LSS surveys. Or even better by observables that
probe even lower scales, like Lyman-α forest and 21 cm from neutral hydrogen. The
suppression of small halos also affects the non-linear scales. The substructure of this
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model is going to be different than in CDM, with a suppression of substructures on
small-scales. The linear theory can predict a minimal mass for the structures formed,
which can be probed by the population of satellites observed (and can be related to the
missing satellites problem, aswewill discuss in the next subsection). The substructures
can also be probed directly by gravitational sensitive probes like gravitational lensing
and streams, which are affected by the substructure present in the halo, and will be
affected differently if the DM presents this suppression. We are going to see these
observables and the bounds they can put in the models in Sect. 5. The substructures
in the FDMmodel are also going to be changed by details of the presence of the core,
which lead to different predictions that can be tested, as we will see below.

The entire numerical calculation of the power spectrum for the FDM model can
be done using the software AxionCAMB (Lewis et al. 2000; Hložek et al. 2015) or a
modification of software CLASS made in Ureña López and Gonzalez-Morales (2016).
For our discussion in the next section, we used power spectra generated byAxionCAMB.

We discuss now the effect of the FDM in two observables that can probe this
suppression, together with other phenomenology of the FDM like the change in the
rate of expansion: the CMB and the matter power spectrum.
CMB

We want to review the modifications that FDM can cause in the observables of the
CMB so we can understand how we can use this observation to probe the mass of the
FDM. It is also possible to probe the fraction of FDM in the universe, if this is not
assumed to be all the DM in the universe. We are interested in the case where FDM is
all the DM in the universe, but we briefly comment here on the case where it is not.

The lowmass of the FDM can alter the CMB inmany different ways.We are mostly
interested here in the effects in the primary CMB and CMB lensing, which are the
ones that probe the DM in the ranges of mass we are interested for the ULDMmodels.
There are other CMB observables that can probe other aspects of the microphysics
of these models, and of their formation, as we can see in Fig. 2 from Abazajian et al.
(2019).

ULDMaffects theCMB in twomainways.36 The different expansion rate caused by
the ULDMmodels affects the primary CMB, which is the adiabatic, unlensed without
secondary effects CMB spectra. The suppression of the power spectrum that leads to a
different clustering present in the ULDMmodels can be seen in the secondary lensing
anisotropies.

We assume now that all the DM is given by ULDM. The primary CMB is affected
by the expansion rate. Depending on the mass of the axion, their oscillations take
place at different redshifts. If zosc � 1100, then after recombination, the ultra-light
field is behaving like dark energy and has a very different expansion rate than in the
case of ΛCDM. In this case, the amount of dark energy in the universe will be much
bigger since this will be composed of Λ plus the one from ULDM, affecting the first
peak and the Sacks–Wolfe plateau (the plateau around � ∼ 100 that can be seen in

36 Notice here that I am focusing only in the gravitational effects of the ULDMmodels. The CMB can also
be affected by aspects related to the microphysics of some of these models and their formation mechanisms,
which is specific to come models. For example, putting bounds in the axion isocurvature contributions can
offer constraints in the axion decay constant fa . It can even probe interactions in the dark sector. For more
details on these other effects, check (Abazajian et al. 2019; Hložek et al. 2018).
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Fig. 11). The amount of the component that behaves as DM will be much smaller
in this case, which in turn affects the other peaks. This can be seen in the left panel
of Fig. 11. If the oscillations take place at zosc � zrec ≈ 1100, the ultra-light field
behaves as DM before recombination, so they can alter the expansion rate during the
radiation time. This affects the Silk damping tale, enhancing the higher acoustic peaks
because of the reduction in the angular scale of the diffusion distance. This effect can
be degenerate with changes in Neff . As the mass gets heavier, which indicates that the
ULDMbehaves likeDM since very early in the universe, theULDMbehavesmore and
more like CDM, and the angular power spectrum is very close to the ΛCDM one.37

In this figure, we plot the angular temperature power spectrum of coming from theo-
retical predictions of the FDMmodel for different masses, obtained using AxionCAMB.
We also plot for comparison the data from the Planck 2018 Cl TT power spectrum
(Ade et al. 2016) and theΛCDMmodel best fit to this data. We can see that for masses
smaller than 10−25 eV we can even visually see the deviation of the power spectrum
from the data and from the ΛCDM one, with an enhancement of the size of all the
peaks, and changing the relation between the second and third peaks, which indicates
less DM with respect to baryons. For higher FDM masses, we cannot visually distin-
guish it from the ΛCDM one. Therefore, the primary CMB can put bounds on the
mass of the ULDM according to their modified expansion rate at recombination.

Other effects might arise when the density of the axions is not equal to the total
DM energy density. There is a degeneracy between the amount of ULDM, ΩULDM,
and the amount of curvature (or dark energy) and matter. This can be seen in more
detail in Marsh (2016a).

The ULDM can also affect the secondary lensing anisotropies. The small-scale
suppression of the power spectrum can be seen as a lensing deflection power on scales
� > 1000. This can be seen in the lensing convergence power spectrum. This effect
from the suppression of clustering can also be seen in thematter power spectrum, aswe
show below. This effect is degenerate to the one coming from massive neutrinos. For
smaller mass ULDM, one can use the effects of expansion to break this degeneracy,
but this is not the case in the range of masses we are interested for ULDM that has an
important effect on small-scales.

This shows that CMB is a powerful observable to probe many aspects of ultra-light
particles, specially in the low-mass range.We are going to see in Sect. 5 the constraints
obtained by CMB observations in the FDM model and discuss some forecasts.
Matter power spectrum

The matter power spectrum brings information about the matter density contrast
in the universe with respect to the scale. The matter power spectrum contains a huge
amount of information. Considering the full shape of the power spectrum, we can
measured the equality scale (k−1

eq ) which sets and can be inferred by the peak of the
matter power spectrum (a bit hard to see in right panel of Fig. 11) and its overall shape.
The other feature that is present in the power spectrum are the BAO features, from
where we can obtain the BAO frequency and infer the sound horizon at baryon drag
(at zrec).

37 In this section, where we are treating the FDM model, when I say heavier FDM masses I mean m �
10−25 eV.
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Fig. 11 Left panel: angular power spectrum of the temperature CMB anisotropy for the FDM model for
different masses where FDM is considered all the DM in the universe. We compare this with the ΛCDM
model best fit to the Planck data (Ade et al. 2016) showed by the gray data points. Right panel: matter
power spectrum for the same FDM model as used in the left panel

The ULDM affect the matter power spectrum both by having a different expansion
rate and from the suppression of clustering on small scales. A different expansion rate
would alter the BAO, presenting a different sound horizon in the power spectrum. This
is more relevant for smaller masses of the FDM particle, when the FDM behaves like
dark energy for a longer time in the evolution of the universe.

The other effectwhich ismore dramatic on small-scales is coming from the different
clustering that the FDM presents. As we can see in right panel of Fig. 11, for a FDM
that represents all theDM in the universe, thematter power spectrum for FDMpresents
a suppression of the small-scale power spectrum. As we saw, this suppression comes
from the Jeans length of the FDM that suppresses the power spectrum via the transfer
function.Wecan see that the smaller themass is, the effect ismore dramatic. Formasses
that affect the linear scales, this can be easily tested using observations. However, we
can see that for the heavier FDM particles, this suppression occurs on the small-scales,
where there is not a lot of observational data.

We can use galaxy surveys to probe the biased matter power spectrum. This can
give us bounds in the mass of the FDM, as we will see in Sect. 5. However, for heavier
masses we can see that the suppression in the power spectrum occur on smaller scales,
not probed by galaxy surveys. For that we need new observables, like Lyman-α which
allows us to probe scales of order 0.5Mpc/h � λ � 100Mpc/h. This permits to
constrain higher masses for the FDM. Another window of observation that allows us
to probe the smaller scales is 21 cm from neutral hydrogen, which can gives the matter
power spectrum on scale k > 10Mpc−1. We will discuss these observables in Sect. 5.

One important point about using the power spectrum is the issue of the bias. To infer
the matter power spectrum one needs to observe biased tracers of the DM distribution.
The bias relates each of those tracers with the underlying DM distribution. This bias
for each tracer is unknown, and each probe presents a different bias. Therefore, when
obtaining constraints on the mass of the FDM, there is a degeneracy with bias. There
is also the possibility of a scale dependence in the bias of ULDM. This is still a not so
well-studied problem for the ULDM, with a few studies from numerical simulations
for the FDMcase (Cooray and Sheth 2002; Hložek et al. 2015). One can also obtain the
matter power spectrum from shear measurements, coming from gravitational lensing.
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This are unbiased tracers and can provide measurements of the FDM mass with a
complementary approach.
Halo density profile

We saw above that the suppression of the power spectrum in the FDMmodel leads
to a suppression in formation of small mass halos. Only halos with M > Mlin where
Mlin is given by (160) are formed in the FDM. This suppression can lead to a different
number of low mass halos, modifying the halo mass function.

The halo mass function (HMF) describes the density of halos per unit of mass. To
determine the HMF of the FDM one needs to resort to either simulations or semi-
analytic methods. Usually simulations are performed and the HMF can be fitted, as
done in Schive et al. (2016). In this reference they have a simulation of collisionless
particles with initial conditions coming from the FDM. The fitted HMF obtained is
given by:

(
dn

dM

)
FDM

=
[
1 +

(
M

M0

)−1.1
]−2.2 (

dn

dM

)
CDM

. (161)

This HMF presents a suppression for low mass halos, characterized by the scale
M0 = 1.6 × 1010 m−4/3

22 . The HMF of CDM depends on the redshift and mass of
the halo, while the suppression term in brackets is redshift independent, which is a
consequence of the FDM modification only coming from the initial conditions. This
means that this also does not take into account the effective sound speed of the FDM,
only through the suppression of the initial power spectrum. This HMF is very accurate
for higher masses, in agreement with the CDM HMF, but it presents an uncertainty
in the low-mass end, showing that this HMF is reliable to show the suppression on
those scales, but not so reliable to obtain the slope of the HMF for FDM for low halo
masses.

There is also another HMF obtained using different methods. in Marsh and Silk
(2014) with the aim of taking into account the scale dependent linear growth from the
FDM, they obtain the HMF from a modified Press–Schechter approach. This yields

(
dn

dM

)
FDM

= −ρm

M
f (ν)

d ln σ 2

d lnM
, (162)

where ν ≡ δc/σ , δc is the critical collapse overdensity and σ(M) is the variance of the
power spectrum. The variance is calculated by smoothing the power spectrum with a
spherical top-hatwindow function. The function f (ν) comes from the Sheth–Thormen
model (Sheth and Tormen 1999) and it is given by f (ν) = A(q/2π)1/2ν[1+ (qν)( −
2p)] exp(−qν2/2), with parameters A = 0.3222, p = 0.3 and q = 0.707. The
critical overdensity δc brings more details about the evolution of the FDM. At z = 0,
it can be described by comparing δFDMc (k) = G(k) δc, where δc = δc(z = 0, k = k0)
and k0 = 0.002 is the pivot scale. The scale-dependent functionG(k) is the ratio of the
scale-dependent growth factors fromΛCDM and FDM (Marsh and Silk 2014; Bozek
et al. 2015) (in Marsh (2016b) a numerical fitting for this function was found). There
are many other modifications of this HMF and alternative formulations that can be
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seen in Sheth and Tormen (1999), Bozek et al. (2015), Du et al. (2017b) and Schneider
(2015).

We are now going to see how this prediction can be probed by the luminosity
function and reionization.
Luminosity function and reionization

Observations that probe the low-mass end of the halo mass function can be used
to test the FDM and put constraints in the mass. A sensitive probes is the luminosity
function of galaxies, which can inherit the suppression coming from the halo mass
function. Observations at high redshifts of galaxy counts, reionization history can be
used to test the suppression of the HMF caused by the FDM.

The luminosity function φ(L) is a map between the galaxy luminosity and the dark
matter halo. If we want to obtain cumulative galaxy number density so that we can
compare with observations, we need to relate the UV magnitude of a galaxy with the
mass of the halo. If there are less halos formed at early times, this would lead to less
galaxy formation. This can be one characteristic of the FDM model to be tested, but
this suppression cannot be too severe otherwise this model could lead to less than
expected high-z galaxies than seen in observations, like the ones from the Hubble
Ultra Deep Field (Bouwens et al. 2015). This lack of galaxies could also impact the
efficiency of the reionization of the intergalactic medium (IGM), which takes place
through star formation. This would impact the optical depth of the CMB, which is
constrained by CMB observations (Ade et al. 2016).

The relation between the HMF and the luminosity function is usually done by
abundance matching (Kravtsov et al. 2004; Vale and Ostriker 2004; Conroy et al.
2006). For that, one needs to assume a mapping between the halo mass and the galaxy
luminosity or theUVmagnitude of the galaxy. This is done bymatching the cumulative
UV luminosity function Φ(L, z) for magnitude smaller than MUV (which is the same
as luminosities higher than LUV) given by the integral of φ(L) in this interval, with
the cumulative HMF for halos masses bigger than a given Mh : Φ(< MUV, z) = n(>
Mh, z). That, together with fixing φ(L) at low-z with observations, fixes the mass to
luminosity (or UV magnitude) of galaxies.

Given the modified HMF presented by the FDM model, we can then predict the
luminosity function of this model. In Schive et al. (2016) and Bozek et al. (2015), we
can see some examples of the luminosity function for FDM.The low-mass suppression
in the HMF leads to a luminosity function that ends at smaller magnitudes. Therefore,
depending on the mass of the FDM particle, we can predict a cumulative luminosity
function that ends at different magnitudes. This can be used to put constraints in the
FDM using, for example, observations of dwarf galaxies or measurements of high-z
galaxies like the one from the HUDF. We discuss this in Sect. 5.

Depending on the mass of the FDM particle we can predict less galaxies at high-
z, which would alter the reionization history. This can be seen given that the UV
luminosity function is related to the flux of ionizing photons (Niemeyer 2019),

Fion = fesc

∫
φUV (L) γ (L) dL , (163)

where fesc is the scape fraction, related to the fraction of ionizing photons that escapes
the galaxy without being absorbed, and γ (L) the conversion rate, which describes the
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conversion between theUV luminosity of galaxies to the luminosity of ionizing photon
(for more details see Schive et al. 2016 and references therein). With that we can write
the Thomson optical depth to CMB:

τ =
∫ z

0
dz′ (1 + z′)2

H(z′)
Q(z′) σT n̄H (1 + ηHe Y/4X) , (164)

where σT is the Thomson cross section, n̄ is the mean comoving hydrogen number
density, X is the hydrogen fraction, Y = X − 1 is the helium fraction, and ηHe is the
ionization state of helium.

We can then use this modified reionization history, coming from the modified
luminosity function, to constrain the mass of the FDM. One can use, for example, the
CMB where τ(zrec) is measured.

Sub-halo mass function
As discussed above, the FDMmodel is characterized by a suppression in the forma-

tion of the small structures. This minimal mass of structures formed is going to impact
the substructures in the halo. Therefore, a smaller number of sub-halos is present in
the FDM in comparison to CDM. This suppression can be seen in the sub-halo mass
function, which is given by dnsub(m)/d lnM , where nsub is the number of sub-halos
and M is the halo mass. This can also be obtained from simulations and semi-analytic
calculations (Schive et al. 2016; Corasaniti et al. 2017; Marsh and Silk 2014; Du et al.
2017a), where a fitting form for the FDM sub-halo mass function is obtained (Du
2018; Schutz 2020):

(
dnsub
d lnM

)
FDM

= f1(M)+ f2(M)

(
dnsub
d lnM

)
CDM

, (165)

where the functions present in this fitting formula are given by

f1(M) = β exp

[
− 1

σ

(
ln

M

M1 × 108 M�

)2
]
,

f2(M) =
[
1 +

(
M

M2 × 108 M�

)−α1]−10/α1

. (166)

The influence of tidal stripping of cores in the sub-halo mass function is studied in Du
et al. (2018), showing that core stripping influences this function for sub-halo masses
smaller than 107 M�. Including this effect the parameters in (165) are α1 = 0.72,
σ = 1.4, β = 0.014m3/2

22 , M1 = 4.7m3/2
22 , and M2 = 2.0m1.6

22 . For these parameters,
this fitting formula agrees with simulations for masses smaller than 5 × 10−21 eV.

In Fig. 12, we compare the sub-halo mass function for FDM with different masses
with the CDM one. Here we used the following CDM sub-halo mass function:

(
dnsub
d lnM

)
CDM

= aCDM

(
M

108 M�

)−α0
. (167)
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Fig. 12 Comparison between the sub-halo mass function from CDM and FDM for different masses of the
FDM particle. In the case of the FDM, we consider that all DM is given by the FDM model

where aCDM = 113.094 and α0 = 0.86, which was obtained as a fit to the sub-
halos of the Aquarium simulation (Springel et al. 2008). We can see in the figure the
suppression of the small-scale structures by the redshift dependent cut in the sub-halos
mass function for smaller sub-halo masses, characteristic of the FDM model.

With the sub-halo mass function expected for the FDM model, one can test if the
predictions from this model are in accordance with observations.

The central soliton
We have shown in Sect. 4.1.4 that there is the formation of a soliton (or Bose star) in

the central parts of the galaxy, which is the ground state solution of the Schrödinger–
Poisson system. However, there is no analytical solution for the soliton and we have
to obtain this solution numerically. This was done by many authors (Hui et al. 2017;
Chavanis 2011; Schive et al. 2014a, b; Kaup 1968; Harrison et al. 2002; Ruffini and
Bonazzola 1969a; Guzmán and Ureña-López 2004; Bar-Or et al. 2019), and here we
are going to quote the numerical solutions obtained by Schive et al. (2014a, b). Here
we will restore the � factors for clarity.

An interesting characteristic of the Schrödinger–Poisson is that tit has scaling sym-
metry, which allows to re-scale the quantities of this problem by an arbitrary variable β
as {t, x, Φ, φ} → {

β−2 t, β−1 x, β2Φ,β2 φ
}
(Ji and Sin 1994; Guzmán and Ureña-

López 2006) . This is also valid for the SIFDM, although more subtle (Guzmán and
Ureña-López 2006), and the interaction term scales as g → β−2 g. The solutions also
obey this scaling transformation, and the physical quantities transform as: the energy
density of the soliton transforms as ρs → β4ρs , the radius as r → β−1r , and the mass
of the soliton as Ms → β Ms . This means that one can simple re-scale the solution
to the equilibrium scale of interested, like the virial scale, if interested in the cores in
galaxies, or study the axion star in QCD axion miniclusters (Niemeyer 2019).
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By assuming spherical symmetry, we need only to determine one of those physical
quantities, like the soliton density, and we can derive the other parameters from it.

The density of the soliton core can be approximated by (Hui et al. 2017): ρc �
4×10−3(Gm2/�2)3M4 � (3M/4)R−3

1/2,c where the half-mass radius is R1/2,cρ̄1/2 �
4�

2/GMm2, the radius where the density drops to one half of its value38. This can be
re-written as (Schive et al. 2014a, b)

ρc � 1.9 × 10−2

[1 + 0.091 (r/R1/2,c)2]8
( m

10−22 eV

)−2
(

rc
kpc

)−4

M� pc−3 , (168)

With the density, we can compute the soliton mass

Mc = 4π
∫ ∞

0
r2 ρc(r) dr = 2.2 × 108

( m

10−22 eV

)−2
(
R1/2,c

kpc

)−1

M� . (169)

Here we are approximating these expression by considering that R1/2,c = rc is the
radius of the condensate, and the mass of the soliton core is the mass enclosed in the
sphere with this radius. We can see that 95% of the soliton mass is within r ≤ 3rc,
and this means that (168) is accurate to 2% for 0 ≤ r ≤ rc.

We are interested in studying the soliton cores formed inside the galaxies, so we
use the scaling to obtain the solution soliton radius in a virial halo of MW-like mass

rc � 0.16
( m

10−22 eV

)−1
(

M

1012 M�

)−1/3

kpc . (170)

With that we can see that the FDM soliton core for a FDM with mass m = 10−22 eV
is going to be smaller than the halo of the MW, with size rc ∼ 0.16 kpc in the center
region of the halo. In the outskirts of the halo, FDM is expected to behave as free
particles, like CDM, so the core is enveloped by shell with in NFW-profile:

ρhalo �
{
ρc for r ≤ rc
ρNFW for r > rc

, (171)

which is the picture we showed in Fig. 10. We use this simplified picture to describe
what happens in the halo. We can see that the soliton core is inside the Jeans length,
as expected, if one compare with Eq. (136). But it is of the order of the de Broglie
wavelength if we use the velocity in the soliton v2c = r/(GMc),:

λdB(v = vc) = 3.91 rc

(
r

rc

)1/2

. (172)

In Schive et al. (2014b) based on the scaling of the Schorinder–Poisson system and
using the result of simulations it was also derived the core–halo mass relation for the

38 Notice that this is the half-radius of the soliton core, since it is the radius where the core density drops
in half. This is different than the half-radius of the halo, for example.
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FDM, showing that Mc ∝ (1 + z)1/2 M1/3, where M is the halo mass. This shows
that MW like halos with M ∼ 1012 M� at a redshift around z ∼ 8 will have soliton
cores forming after the halo collapse with mass Mc ∼ 109 M�. These soliton cores
can be seen in FDM simulations, as we will see in Sect. 4.3.

The presence of these soliton cores in the interior of the galaxies lead to a rich
phenomenology. Since no gravitational clustering happens in these regions, the soliton
core has a cored profile ρc(r), which is different than the one expected from CDM.
Therefore, if we can probe the central density of galaxies and obtain a non-cored
profile, we can use this to put a bound on the FDM mass. Dwarf galaxies can also be
used to do that. Since those galaxies are DM dominated, one can measure their central
density and compare with the bound obtained by the expected core to constrain the
mass of the FDM.We are going to discuss this in detail in Sect. 5, and also in a extreme
case in Sect. 4.1.7, where we discuss how the core can solve the cusp–core problem.

Dynamical effects—relaxation
In this section, we are going to discuss the third class of observational effects of the

ULDM, the dynamical effects. These are effects that arise because of the wave-like
behaviour that ULDM have inside the soliton cores in galaxies. This can modify the
dynamics of objects that are present inside this region where condensation takes place.
We are going to see here two of those effects that arise from the relaxation between
the FDM and macroscopic objects that move in or through the condensed core. These
effects can lead either to heating, which is seen as an energy injection in the orbit of
the macroscopic object, or to cooling or dynamical friction, where orbit of the object
loses energy to the FDM field.

These two effects are present in CDM and other DM models, but are modified
here by the wave-like behaviour of the FDM. Effects like an enhanced heating can
lead to observational effects such as the increase in the velocity dispersion of systems
and their expansion. On the other hand, this modified dynamical friction can be used
to explain effects like system that were expected to have merged but did not, which
represents a challenge for the CDM paradigm.

In the same way that we studied relaxation between the FDM particles leading
to the formation of a BEC in Sect. 4.1.4, we can use the same techniques of kinetic
theory to study the relaxation of the FDM and the macroscopic objects. We describe
below briefly this analysis. This was introduced in Bar-Or et al. (2019) and the reader
should consult this reference for more details. There are also different ways to model
dynamical friction, which we will comment below.

We want to describe the relaxation between the FDM and macroscopic objects
inside the condensate core. Therefore, we can think about this as a test particle, or a
contaminant, that is present in the condensate39.Wewant to see how stochastic density
fluctuations in the FDM core lead to diffusion of the velocity of the macroscopic
object40.

Using kinetic theory one can treat the problem as a diffusion of a test particle
in a fluctuating density field. In the case of the FDM, the FDM is represented by a

39 We are going to see this modelled from a microscopic theory in Sect. 4.2.4 in the case of the superfluid.
40 In this section, I restore the � factors since the relation with the classical limit is more subtle. See Bar-Or
et al. (2019) for more details.

123



Ultra-light dark matter Page 105 of 186     7 

wavefunction which is a collection of plane waves, ψ(r, t) = ∫
dk ϕ(k) exp(ik.r −

iω(k)t), with ω = �
2k2/2m, interacting with a zero-mass particle. In this case, we

can ignore gravitational interactions between the FDM particles and only focus in the
interaction of the FDM and the classical test particle. The FDM can be treat in this
way inside the core where it is condensed.

Computing the diffusion coefficients for this system of a test particle in the FDM
condensate, it was found that it yields the same diffusion coefficients as the ones for
a classical two-body relaxation where the test particle interacts with a homogeneous
classical density field composed by particles with massmp, but with a different effec-
tive mass for the FDM “particles” meff , a different distribution function Feff and a
different Coulomb logarithm logΛFDM:

meff = (2π�)3

m3

∫
dv f 2(v)∫
dv f (v)

, feff = f 2(v)

∫
dv f (v)∫
dv f 2(v)

, (173)

where f (v) is the FDM distribution function and the effective distribution function
is normalized like ρFDM = ∫

dv feff(v). The Coulomb logarithm is logΛFDM ≈
log(2bmax/λdB(σ )), where bmax is the maximum scale of encounter and σ is the
dispersion velocity.

So the picture is that for understanding the effects of a macroscopic object in the
FDM core, one can think as the FDM was composed by effective particles with mass
meff , called FDM “quasiparticles” in Bar-Or et al. (2019)41. If this quasiparticle has
a mass that is larger than the mass of these macroscopic objects mt , this leads to
the object to either lose energy or otherwise to gain energy from the encounters with
these quasiparticles. These two processes are the cooling (or dynamical friction) and
heating.

Thus, ifmeff 
 mt , the fluctuations in the FDM field inject energy into the orbit of
the macroscopic object. This injection increases the velocity dispersion of the macro-
scopic object, which in turn increases its size and we have heating. The heating time
scale is defined as

τheat = 3σ 3

16
√
πG2ρbmeff logΛFDM

= 3m3σ 6

16π2G2ρ2b�3 logΛFDM
(174)

For times smaller than τheat, the system can gain energy from these FDM fluctuations
and heating takes place. For values of the effective mass in halos, we can see that the
quasiparticle is more massive than stars. This heating of stars either in a cluster or in
the disk of galaxies can lead to observational effects.

If meff 	 mt , then the mass of the macroscopic object is bigger than the FDM
quasiparticle, and the macroscopic object loses energy from its orbit to the FDM field.
This process can be interpreted as dynamical friction. Since the macroscopic object is

41 Careful here that the term quasiparticle was used for the phonon and they do not have the same meaning
as here.
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losing energy, this process is also known as cooling, with a cooling time given by

τcool = 3σ 3

8
√
2πG2ρbmt logΛFDM

(175)

This process usually happen for more massive objects like globular clusters merging
with the center of the galaxy or black holes.

A similar analysis is done in El-Zant et al. (2016, 2020b), where they confirm the
results fromBar-Or et al. (2019) and extend themodel to include the effect density per-
turbations coming from stellar winds, supernova explosions or active galactic nuclei.
The consequence for super massive black holes in a FDM halo was studied in El-Zant
et al. (2020a) which can lead to its ejection from the core. This effect can be used to
put bounds in the FDM mass.

We are going to discuss below some specific examples where these dynamical
effects take place.

Gravitational heating
We can now see here how the heating affects a stellar population. We show this

for a prototype case of a spherical stellar system of radius r
 in a FDM gravitational
potential. The initial distribution function of the stellar system is Maxwellian with a
velocity dispersion σt . Since star have mt = mstar 	 meff , only heating takes place.

The heating is important when τheat,
 is of order of 1/3 of the age of the galaxy
τage, where

τheat,
 ≈ 2.08

logΛFDM

(
r


1 kpc

)4 ( m

10−22 eV

)3 ( m

200 km/s

)2

Gyr . (176)

In this case, we have a increase in the velocity dispersion and the system is going to
expand42. This happens in scales when r
 < rheat,
 with

rheat,
 = 1.13 logΛFDM

(
τage

10Gyr

)1/4 ( m

10−22 eV

)−3/4
(

m

200 km/s

)−1/2

kpc .

(177)

For the comparison with observation that we are going to show in Sect. 5, we are
interested in the cases where this effect leads to a increase in the dispersion relation
of the star, expanding the stellar system. This is going to be studied in the disks of
galaxies and also in a star cluster, like Eridanus II.

Dynamical friction
The change in dynamical friction is one of themost interesting consequence inBECs

and superfluids. This emergent phenomenology can lead to consequent observations

42 One thing to be attentive here is that heating or diffusion is the term used for the injection of energy in
the orbit of the macroscopic system by the FDM. This might cause an increase in the velocity dispersion,
which leads to an expansion of the system, or not depending on the radial profile of the galaxy (see Bar-Or
et al. 2019 for more details).
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that might reveal the characteristics of those systems. It is interesting to see how
dynamical friction behaves in the presence of a BEC core, as in the case of the FDM.
The dynamical friction in a BEC is not expected to change as dramatically as in a
superfluid, which has no friction, but some change is expected nevertheless.

It is expected that the FDM changes this prediction because of three phenomena:
(1) change in the rate of orbital decay because of the presence of the condensed core;
(2) since the FDM produces a homogeneous core, a mechanism similar to the “core
stalling” observed in N-body simulations can take place and reduce or eliminate drag
from dynamical friction; and (3) the way dynamical friction is calculated must be
modified by the presence of an object with large de Broglie wavelength, a quantum
mechanical extension to the calculation of dynamical friction must be done.

An interesting puzzle that can potentially be explained by a modified dynamical
friction is the puzzle of the Fornax globular clusters. From the standard dynamical
friction expected for CDM and baryons, it is expected that globular clusters orbiting
Fornax should have rapidly fallen towards its center to form a stellar nucleus. However,
there is no signal of mergers and we detect 5 globular clusters orbiting Fornax.

In Hui et al. (2017), only the last effect is described and simulated for different
parameters the orbital decay times for Fornax in CDM and in the FDM cases. They
found that in FDM the orbital decay time is longer, and four of the five decay times
simulated are bigger than 10Gyr or more, thus explaining the puzzle for why the
globular cluster in Fornax survived. More simulations and observations are needed
to confirm this claim, but the FDM model seems to address the dynamical friction
puzzle. The ideal is to have the microscopic theory describing dissipation in the FDM
model.

These qualitative results are confirmed in Bar-Or et al. (2019) using the classical
two-body relaxation, shown above. See also results for how dynamical friction alters
inspiral systems (Bar-Or et al. 2019).

Finally, in Lancaster et al. (2020), a detailed analytical and numerical study of
dynamical friction in the FDMmodel was performed. To describe the dynamical fric-
tion in this model, they describe the dissipation that a perturbermoving in a condensate
causes. They work this dissipation theory for point-sources (satellites), extended satel-
lites and point-like satellite in a FDM background with finite velocity dispersion.
This analytical theory is then verified by their numerical-simulation that solves the
Schrödinger–Poisson system in the presence of such perturber satellite, showing good
agreement with the analytic methods. This framework is applied to the cases of the
Fornax globular cluster, but also to the Sagittarius (Sgr) stream and the Large Magel-
lanic Clouds (LMC) (wewill see about those systems in more detail in Sect. 5). For the
Fornax, they find that if the mass of the FDMmodel ism � 10−21 eV this model stops
explaining the Fornax globular cluster merging times, which is in agreement with the
mass bounds necessary for the FDM to solve the small-scale problems. For Sgr and
LMC it is found that the dynamical friction on those are described by the classical limit,
described by the Chandrasekhar formula.More simulations need to be done to confirm
this, and it is very important to understand the dynamical friction in this regime since
these bodies have a strong influence in the MW, and are the target of many studies
and observations. These results already show that this modified dynamical friction in
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the FDMmodel can maybe explain some interesting astrophysical observations which
might be a good opportunity to measure the ULDM on galactic scales.

Clusters: most massive halos
The FDM can also affect clusters. For distances larger than the de Broglie wave-

length of the FDM, it is expected that DM behaves as standard CDM and that the halo
enveloping the soliton has a NFW profile. This can be seen numerically for the mass
range 109 M� � Mvir � 1011 M� (Schive et al. 2014a, b; Schwabe et al. 2016; Velt-
maat and Niemeyer 2016), which gives an estimate for the mass of the central soliton.
Extending this relation to larger halos, the FDM predicts that in the inner regions of
clusters there will be a condensed core, a soliton, with mass

M � 1.3 × 1010M�
(
10−22

m

)(
Mvir

1015M�

)1/3

. (178)

which is still below the maximum mass for the soliton calculated above for a galaxy.
The corresponding half-mass radius is

R1/2 � 25 pc

(
10−22

m

)(
Mvir

1015M�

)−1/3

. (179)

So, the presence of this soliton with this mass and size would be a prediction of
the FDM model. But a question that remains to be answered is the following: is the
presence of such solitons in the interior of clusters halos compatible with merging
cluster like the Bullet cluster or the anti-Bullet cluster?

In Hui et al. (2017), they ask the question if solitons in the center of the galaxies
have not been misinterpreted as super massive black holes. They compare the mass of
the central dark regionmeasured fromVirgo and show that this is similar to themass of
the soliton core in a galaxy like Virgo for amass of the FDMparticle ofm ∼ 10−22 eV.
However, since the observations from the Event Horizon Telescope of the black hole
in the center of M87 were released, this hypothesis seem to be almost excluded, and
it is indeed a super massive black hole that inhabits the center of this galaxy. We have
to wait for more data to confirm this, but this is an exciting measurement that can also
be used to test the FDM hypothesis.

Another interesting fact is that we know that the galaxies host a super massive black
hole in their center. For this reason in Hui et al. (2017) they investigate the possibility
of a super massive black hole to be created in the center of a soliton. Apparently, the
black holes do not grow for the fiducial massm22, in a condensate core. Their creation
only starts being significant for m � 5 × 10−22 eV, which is in tension with other
bounds in the mass, like the one to solve the missing satellites problems.

4.1.7 Addressing the small-scale challenges

Perhaps even more interesting than solving the small-scale problems of the CDM
paradigm, it is the new and rich phenomenology that the ULDM present. But the
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ULDMmodels can also address these small-scale challenges and reconcile the small-
scale observations with the CDM paradigm. Usually the scales where the non-CDM
and interesting phenomenology happens coincides with the scales where these models
present modifications in the small-scales that are necessary to explain the small-scale
observations.

We are going to discuss nowhow this newphenomenology on small scales presented
by the FDM can address the small-scale challenges and what are the conditions in the
parameter of this class of models for that to happen. We are only going too discuss
the FDM case now, and the conditions in the mass, but one can think that a similar
analysis can be done for the case of SIFDM.

FDM
We want to determine the mass of the FDM candidate. From the discussion above,

we saw the there is a bound for the mass to condensate in galaxies 10−25 � m � eV
for a typical MW-like galaxy. Later we saw that, for masses of order of the usual QCD
axion mass, around m ∼ 10−5eV, the stable configurations are very localized and
small, far from galactic scales. With that we can already see thatm 	 10−5eV for the
FDM model. Now, we are going to see other conditions that can bound the mass and
show the mass range for the FDM particle that can address the small-scale challenges.

– Halos: minimum size, maximum density and the cusp–core problems:
The general idea why FDM (and all ULDM models) can solve the cusp–core
problem is because these systems naturally predict a core in the center of galaxies.
In this core there is no structure formation (Jeans instability), and for that reason
they might prevent the formation of a cusp in the center of the galaxy. We are
going to investigate here how and for which mass the FDM core size and density
can address the cusp–core problem.
Since we want the non-CDM behaviour to happen inside galaxies, the de Broglie
wavelength of the FDM inside galaxies cannot exceed the size of the galaxy, given
by the virial radius: λdB < R = GM/v2. Therefore, R � 1

GMm2 , where M is the
mass of the galaxy. We can write that in terms of the half-radius, radius where half
of the mass of spherically symmetric system is contained (Hui et al. 2017)

R1/2 � 0.335

(
M

109 M�

)−1 ( m

10−22 eV

)−2
kpc . (180)

This bound on the radius is compatible with the half-light radii inferred from the
densities of 36 Local group dwarf spheroidals (McConnachie 2012) if the mass of
the FDM particle is m ∼ 10−22eV.
With the above condition, we can also compute the upper bound in the central
density:

ρc ≤ 7.05

(
M

109 M�

)4 ( m

10−22 eV

)6
M� pc−3 . (181)

If we compare this bound to the observations from 8 dwarf spheroidals, and we
can see for the density to be comparable to the one measured for these dSph, the
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FDMmass needs to be m = 8+5
−3 × 10−23 eV for Draco and m = 6+7

−2 × 10−22 eV
for Sextans (Chen et al. 2017). For those masses, the distribution at the center of
the galaxies seem to be cored, alleviating the cusp–core problem.
Therefore, it is necessary a mass of order m ∼ 10−22 eV in order for FDM to
solve the cusp core problem. And we showed that this is compatible with the
measurements fromdwarf galaxies. However, we are going to discuss in Sect. 5.2.1
that some studies dispute this conclusion.

– Lower bound on the FDM halo masses, and the missing satellites and too big
to fail problem:
Aswe saw before, for the self-gravitating FDM systems, since gravity is attractive,
we have coherence on a finite scale. The size of this core depends on the mass,
being larger as the mass gets smaller. So the smallest radius to be produced in the
FDM model are determined by the smallest mass allowed for the particle.
Having a limit for the smallest cores that can be created has important consequences
in the abundance of lowmass halos, and it is going to be different in thismodel than
what is given by ΛCDM. We can see that by calculating the smallest structures
formed in the FDM model. This is given when λ = λJ, where λJ represents the
last scales that can suffer gravitational instability. With the Jeans length, we can
calculate the Jeans mass:

MJ = 4π

3
ρ

(
1

2
λJ

)3

= 1.5 × 107M� (1 + z)3/4
(
ΩFDM

0.27

)(
H

70 km/s/Mpc

)1/2

(
10−22 eV

m

)3/2

. (182)

This is the minimum mass of substructure created in the FDM model. This is in
contrast with CDM, where halos with mass below ∼ 108M� are highly created,
with abundance dn(Mh) ∝ M−2

h dMh. In that sense, the missing satellites problem
is addressed in the FDM model, since halos of smaller masses than MJ are not
created, if m = 10−22 eV. If the mass of the FDM is smaller than that, sub-
halos with smaller mass will form, and the FDMmodel is not going to address the
missing satellite problem anymore. Therefore this shows that to solve this problem,
the FDM has a preferred mass of around 10−22 eV. We are going to see below that
tidal disruption can also act suppressing small mass halos, aiding FDM in solving
the missing satellites problem. The too big to fail problem is also addressed by
the FDM, since we have a mechanism to explain the fact that low-mass sub-halos
are not formed, making it not necessary to invoke mechanisms that creates the
too-big-to-fail problem as a by product.

Summarizing, to address the small-scale challenges, which means presenting a
cored density profile inside galaxies and suppressing the formation of small mass
sub-halos which would explain the smaller amount of satellites, the mass of the FDM
needs to be of the order of ∼ 10−22 eV. A component with that mass and presenting
the dynamics of the FDM class of models would behave like CDM on large-scales
and present the observed structures on small-scales.
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However, we are going to see in Sect. 5 that, although for many years this mass
range was available as a possibility for the mass of the FDM, the latest observations
have been challenging this mass, and showing that the FDM has to probably have a
heavier mass than the one necessary to address the small-scale problems.

4.2 DM superfluid

In this section, we are going to describe the third category of models of ULDM, the
DM superfluid. In previous sections we saw the small-scale problems of ΛCDM and
how MOND empirical law offered a very good fit to the rotation curves of galaxies
and the scaling relations that emerge from the dynamics of galaxies, which might
be challenging in the context of ΛCDM. However, as we saw, there is no present
framework that can explain MOND, given that the initial proposed theory, the full
MOND, and its extensions present serious problems. We present here an alternative
model to DM that has the goal of reconciling CDM and MOND: the DM superfluid.
This model intends to not only solve the problems that the previous models attempt
to address but also offer a mechanism to describe MOND on small-scales. In this
framework,DMbehaves as standardCDMon large-scales,while theMONDdynamics
emerges on galactic scales. And this is possible through the physics of superfluidity.

The idea of the DM superfluid model is that DM forms a superfluid on galactic
scales, where superfluidity arises upon condensation. This superfluid core present in
the inner regions of galaxies not only addresses the small-scale challenges ofΛCDM
in a similar way as the previous models, but the superfluid described in these regions
behaves following a different dynamics which reproduces the MOND behaviour. This
is possible given that this superfluid is described by a Lagrangian similar to thee one
from the MOND theory which is allowed given the EFT description of the superfluid.
In this way, the long-range correlation present in MOND is going to be given by the
behaviour of the phonons which mediate long-range forces. Outside the superfluid
core, DM behaves as normal matter as in the previous models. This is the general
vision how the DM superfluid model attempts to describe the behaviour of DM in
galaxies.

In the following subsection, we will construct the DM superfluid theory showing
first in which conditions DM condensates on galactic scales, following that we will
present the theory that describes this superfluid phase. With that in hand we can
calculate the halo profile and rotation curves to compare with data and check the fit
of the theory. We present how this model explain many astrophysical systems and
possible predictions. After that we show the limits of validity of this description and
its relativistic completion.We briefly describe how the cosmologyworks in thismodel.

Thismodel is constructed using the fact that in a generic superfluidwe can reproduce
the exact action as in MOND. This is a very specific model and serves as a toy model
for the understanding of theories of DM that present an emergent dynamics on small-
scales. It is important to point out that what is important is for the model to be able to
explain the rotation curves and scaling relations described by galaxies. This translates
into a theory that exhibits long-range correlation on Galactic scales. We present here
a very specific example of a model when this occurs, where the way the long-range
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correlation is obtained is by restricting the Lagrangian to behave likeMONDon small-
scales, but this does not have to be the case. The search for a more general theory
where this emerges, with a known microphysics is the final goal. Such a construction
is currently being searched.

4.2.1 Conditions for DM condensation

Before describing how the DM superfluid behaves inside galaxies, we need to
determine in which conditions DM condensates into a Bose–Einstein condensate in
galaxies. As we saw in the previous section, two conditions need to be met for con-
densation: first, we need that all the particles are in a single coherent quantum state,
described by a single wavefunction of the condensate; a second condition is that the
DM particles are in thermal equilibrium, to be described by a Bose distribution.

In this section, we want to obtain a rough estimate of the bounds in the parameters
of the model to obtain this condensed core in the inner parts of the galaxy. For that,
for simplicity, we use the criteria for weakly interacting gases.

Condensate wavefunction and thermalization
We showed in the beginning of this section, the condition on the mass for the

ULDM particles to condense in galaxies, showing that they should be in the range
10−25 eV � m � 2 eV. This is an approximate condition for the case of DM in
galaxies, but it gives us an order of magnitude estimation for the mass of the DM
superfluid particles. However, if we remember fromSect. 3, there is a second condition
for condensation.

The second condition to form a condensate is that the particles are in thermal
equilibrium. The condition to achieve thermal equilibrium is that the time scale of
thermalization must be smaller than the time scale where dynamical processes happen
in the halo, the dynamical time. If this condition is satisfied and thermal equilibrium is
achieved, the condensate is coherent in the entire halo. The time scale of thermalization
if given by the inverse of the self-interaction rate, and the condition for thermalization
is given by

Γ ∼ Υ vvirρvir
σ

m
� t−1

dyn = (3π/32Gρ)−1/2 , (183)

where Υ ∼ ρvir
m

(2π)3

(4π/3)(mv)3
is the Bose enhancement factor, which tells you if a boson

is already in the state, the probability to another boson to be in that state will be
enhanced by a factor of Υ . The dynamical time is taken here as the time it takes to
a sphere of density ρ to collapse due to gravity. This condition gives a bound in the
self-interaction cross section:

σ

m
� 0.3

( m

eV

)4 cm2

g
, (184)

where we assumed zvir = 2 and M = 1012M�. If we want that our self-interaction
satisfies the merging-cluster bound (Randall et al. 2008; Massey et al. 2011; Harvey
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Fig. 13 Left panel: mass of the superfluid particle with respect to the mass of the halo. The filled are
represents the regime where DM is condensed and behaves as a superfluid, for zvir = 2. Right panel:
approximate calculation form (Berezhiani andKhoury2015) for the fractionof the particles in the condensate
versus in the normal state, for a series of sub eVmasses in accordancewith our bounds.We assumed zvir = 0

et al. 2015), which is ∼ 1cm2/g, this gives another bound in mass of the superfluid:
m � eV.

From these conditions, we can obtain a few properties of the our DM superfluid
condensate:

– Critical temperature: With DM in thermal equilibrium, the temperature can be
obtained by the equipartition theorem: kBT = m〈v〉2/2, which is valid for temper-
atures smaller than the critical temperature.Above that temperature, the condensate
is broken. The critical temperature Tc is associated with the “critical” velocity vc,
than can be read when we saturate the bound (90):

Tc ∼ 6.5

(
eV

m

)5/3

(1 + zvir)
2 mK . (185)

With that the temperature in a halo of mass M is given by:

T

Tc
∼ 0.1(1 + zvir)

−1
( m

eV

)8/3 ( M

1012M�

)2/3

(186)

– Condensate fraction:As we saw on Sect. 3 at T = 0 it is expected that almost all
the particles are in the condensate. However, at finite but subcritical temperature,
as seen in Landau’s theory (Landau and Lifshitz 1980), it is expected that the
fluid is going to be a mixture of superfluid and normal fluid, with the majority in
the superfluid. Borrowing from the non-interacting BEC description, this can be
estimated as

Ncond

N
= 1 −

(
T

Tc

)3/2

∼ 1 − 0.03(1 + zvir)
−3/2

( m

eV

)4 ( M

1012M�

)
. (187)

This formula is only valid for free-particles, and a particle with interaction and
trapped in the gravitational potential has a different power than 3/2, but it serves as
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an estimate. We can see in Fig. 13 the condensate fraction with respect to the mass
of the halo for different masses of the DM particle. From this, we an see that for a
MW-like galaxy for any mass smaller than eV, the particles are in the condensate,
while for higher masses of clusters, for example, this is not true. Therefore, the
mass range from the bound (88) describes a condensate that condenses on galactic
scales.

The above conditions were obtained assuming that the condensate will take the
entire halo. However, as mentioned in Sect. 2.1, virialization occurs through violent
relaxation, which is an out-of-equilibrium process. In this way, the DM superfluid
cannot thermalize.What should happen is that first, the halo virialized and the profile is
the expected NFW. After this process, DM particles start to enter thermal equilibrium
in the inner, most central regions of the condensate, where the interaction is more
pronounced. In this way, the halo would have an inner region (r < RT ) where DM is
in a condensed state surrounded by the outer part of the halo (r > RT ) that follows
the NFW profile (Berezhiani et al. 2018). Since in this model the goal is to be able to
describe the rotation curves of galaxies, RT needs to be larger than the radius where
the circular motion of stars and gas is observed. For r > RT, the density profile of the
halo follows the NFW profile, ρ ∝ r−3. So we can rewrite the density and velocity
with respect to the virial quantities used above: ρ(r) = ρ(R200) (R200/r)3, where
for a NFW we can estimate ρ200/ρ(R200) ∼ 5. With that, the thermalization bound
becomes:

σ

m
� 0.2

( m

eV

)4 ( M

1012M�

)2/3 ( r

R200

)7/2 cm2

g
, (188)

which tells us that it is easier to reach thermal equilibrium in the center of the galaxies
where the density is higher. This translates into a bound to the thermalization radius:

RT � 310
( m

eV

)−8/7
(

M

1012M�

)1/7 (
σ/m

cm2/g

)2/7

kpc . (189)

For a MW-like galaxy with M = 1012M�, if we can measure the the circular
velocity up to approximately 60 kpc, this will translate into a bound for the mass:

m � 4.2
(

σ/m
cm2/g

)1/4
eV.

4.2.2 Superfluid dynamics

Since we have determined that DM condenses and forms a superfluidity in the central
regions of the halo, we now need to describe the evolution of this superfluid inside this
region. We need to determine the dynamics of the superfluid to be able to calculate the
profile of the region of the halo comprising the superfluid and with the calculate the
rotation curves of galaxies. In this section, we will describe the effective field theory
of superfluids and show how this is theory reproduces MOND at small scales.
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As we saw in the previous section, a superfluid at low-energies is described by the
effective Lagrangian that is invariant under shift and Galilean symmetries:

LT=0 = P(X) , X = θ̇ + μ− mΦ − (∇θ)2
2m

, (190)

whereΦ = −GM(r)/r is the external gravitational potential for a spherical symmetric
static source. The thermodynamic pressure is given by P .

We want our theory to describe the MOND dynamics at the regions where it is
superfluid. Given this general Lagrangian for the phonons (190), wewant it to describe
the MOND Lagrangian (8). For this, we conjecture that our phonon action is given by

LDM,T=0 = 2Λ(2m)3/2

3
X
√|X | . (191)

This fractional power might seem strange from the point of view of a quantum field
theory of fundamental fields, leading to superluminal behaviour and caustics.However,
as a theory for the phonons, this is not problematic and it determines uniquely the
equation of state of the superfluid. As we can see for the condensate, the background,
where θ = μt , the pressure is given by the Lagrangian density:

P(μ) = 2Λ

3
(2mμ)3/2 , ⇒ P = ρ3

12Λ2m6 , (192)

where, in the non-relativistic regime, ρ = mn and n = ∂P/∂μ is the number density
of condensed particles. As expected from the result from MOND, this Lagrangian
gives us an EoS for the superfluid P ∝ ρ3, which is what we wanted to reproduce
MOND.

Toevaluate the excitation spectrum,wewrite the action for the phonon excitationsφ,
that can be obtained by expanding (190) to quadratic order.Neglecting the gravitational
potential:

L(2) = (2m)3/2

4μ1/2

(
φ̇2 − 2μ

m
(∇φ)2

)
, (193)

from where we can infer the sound speed of the phonon excitations:

cs =
√
2μ

m
. (194)

However, only those ingredients are not enough to reproduce a MOND-like force
and a coupling between the phonons and the baryon density needs to be introduced:

Lint = −α Λ

Mpl
θρb , (195)
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whereα is a dimensionless coupling constant.Althoughnecessary to obtain theMOND
regime, this interaction Lagrangian breaks shift symmetry softly, only at the 1/Mpl
level. This term is here considered as a phenomenological term to reproduce MOND.
In this way, this superfluid theory has three parameters: the mass m, the scale Λ and
the coupling α.

The present formof theLagrangian to obtainMONDis not the onlywayof obtaining
the MOND behavior in the context of the DM superfluid model. In Khoury (2016)
it was used higher order corrections to generate the non-relativistic MOND action,
which is inspired in the symmetron mechanism. Using the same Lagrangian (191)
as the leading order Lagrangian, higher order corrections involving gradients of the
gravitational potential are added to effectively modify the gravitational force. This
results in the spontaneous breaking of a discrete symmetry. The symmetry is broken
for small accelerations leading to MONDian gravity, and is restored in the limit of
large acceleration leading to Newtonian gravity. In this theory the shift symmetry of
the entire system is maintained. A difference from the present mechanism, as we are
going to see later, is that cosmologically all the DM is in the normal phase, behaving
like CDM, and reproducing all the results from ΛCDM. Here we will describe the
method of adding a photon–baryon coupling since this was studied in more detail in
the literature.

Finite temperature
The theory developed above is valid for a T = 0 superfluid. However, in reality,

the DM in galaxies has a non-zero temperature. As we mentioned in Sect. 3, for
finite temperatures, this Lagrangian needs to receive finite temperature corrections. In
Landau’s model the finite temperature superfluid consists is described as a two-fluid
theory where a superfluid component and a normal component are present. Those
components must interact with each other. Following this idea from Landau’s theory,
at lowest order in derivatives, we can write the general form of the EFT at finite
temperatures and finite chemical potential as a function of three scalars (Nicolis 2011):

LT �=0 = F (X , B,Y ) , (196)

where X = X(θ)was defined before with respect to the superfluid variables. The other
new components are: B is defined with respect to the normal fluid three Lagrangian
coordinates ϕ I (x, t); and Y represents the scalar product of the normal and superfluid
velocities:

B ≡
√
det ∂μϕ I ∂μϕ I , Y ≡ uμ

(
∂μθ + mδ0μ

)
� μ− mΦ + φ̇ + v · ∇φ , (197)

where uμ is the unit 4-vector from ϕ I (x, t), and in the last equality of Y we have taken
the non-relativistic limit, so v is the velocity vector of the normal fluid component.

There are manyways to construct the finite temperature operators. Our restriction is
that we want our finite-temperature theory to generate the expectedMOND profile. To
construct such a Lagrangian requires first-principle knowledge of the microphysics
of the superfluid. Since we still do not have a fundamental description of the DM
superfluidmodel, we proceed empirically.We suggest the following finite-temperature
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Lagrangian for the model:

L = 2Λ(2m)3/2

3
X
√|X − βY | − α

Λ

Mpl
φ ρb , (198)

where the finite temperature effects are parametrized by a dimensionless constant β.
When β → 0, we recover the T = 0 result; we are using the fiducial value β = 2. We
included the interaction term so we could represent the entire action of the model that
we are going to use next.

4.2.3 Halo profile

With the Lagrangian of the theory, we can evaluate the halo profile in the superfluid
region and, after matching with an outer NFW profile, calculate the rotation curves of
galaxies. And this is what we are going to do in this section: estimate the halo profile.
This will be done in steps. First, we estimate the DM halo profile taking into account
only the density coming from (191). Next, we include the baryons, by calculating the
profile for the full action including interaction. We are going to use here the finite-
temperature effective action (198) since in the case of the T = 0 the perturbations
around a static background configuration suffer from a ghost-like instability. Although
phenomenological, it retains the features of the initial superfluid Lagrangian and can
give a more realistic description of the system.

DM halo profile
We can now calculate the density profile of the condensate, in the superfluid region,

assuming that we have only dark matter and no baryons for simplicity. This is the halo
profile given by the different equation of state that the superfluid has: P ∝ n3, given
by equation (192). This analysis is almost the same for the zero-temperature and
finite temperature cases, with accounts for the replacement:Λ → Λ̃ = Λ

√
β − 1.

Assuming hydrostatic equilibrium, for a static and spherically symmetric halo, the
pressure and acceleration are related by:

1

ρ(r)

dP(r)

dr
= −dΦ(r)

dr
= −4πG

r2

∫ r

0
dr ′ r ′2ρ(r ′) . (199)

By making a change of variables ρ(r) = ρ0Ξ and r = ξ
[
ρ0/(32πGΛ̃2m6)

]1/2
,

where ρ(r = 0) = ρ0, this equation reduces to the Lane–Emden equation (with
n = 1/2),

1

ξ2

d

dξ

(
ξ2

dΞ

dξ

)
= −Ξ1/2 . (200)

Choosing boundary conditions Ξ(0) = 1 and Ξ
′
(0) = 0, we can numerically solve

this equation. We can see from the change of variables that the size of the condensate
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and the central density are given by Chandrasekhar (1967),

R = ξ1

√
ρ0

32πGΛ̃2m6
, ρ0 = M

4πR3

ξ1

|Ξ ′
(ξ1)| , (201)

where at ξ1 the numerical solution vanishes. From the numerics ξ1 ∼ 2.75 and
Ξ

′
(ξ1) ∼ −0.5 gives the following halo radius and central density:

ρ0 ∼
(

MDM

1012M�

)2/5 ( m

eV

)18/5 ( Λ

meV

)6/5

(β − 1)3/5 10−24 g/cm3 , (202)

R ∼
(

MDM

1012M�

)1/5 ( m

eV

)−6/5
(

Λ

meV

)−2/5

(β − 1)−1/5 45 kpc , (203)

With that, we can determine the chemical potential μ = ρ2/
(
8Λ2m5

)
. For m ∼ eV

and Λ ∼ meV, we obtain realistic core sizes, which are of sizes that cover a big part
of the halo, as we wanted. For this reason, we choose the fiducial values:

m = 0.6 eV , Λ = 0.2meV . (204)

For these values, we have a cored density profile with a condensate core of radius
158 kpc for MDM = 1012M�. The condensate does not make the entire halo, but we
expect that this condensed core is surrounded by a NFW profile. The central density
obtained is smaller than the expected from CDM simulations, which is preferred by
observations. In this way the DM superfluid offers a simple resolution to the cusp–
core and the “too big to fail” problems. We will see these results in more details in
Sect. 4.2.4.

Including baryons
Now, we derive the condensate profile in the presence of baryons. We expect that

there is this extra acceleration due to the interaction to baryons. This comes from the
dynamics of the phonon excitation φ given the Lagrangian (198). We are going to
assume a static, spherically symmetric approximation: θ = μt + φ(r). The equation
of motion for the phonon is given by,

∇ ·
(
(∇φ)2 − 2mμ̂√
(∇φ)2 − 2mμ̂

∇φ
)

= α
ρb

2Mpl
, (205)

where μ̂ ≡ μ − mΦ. If we ignore the homogeneous curls term, in the limit where
(∇φ)2 
 2mμ̂ the solution is

|(∇φ)| (∇φ) � αMplab , (206)
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where ab is the Newtonian acceleration due to baryons only. Then acceleration medi-
ated by φ is,

aφ = α
Λ

Mpl
�⇒ aφ =

√
α3Λ2

Mpl
ab = √

a0ab , (207)

for a0 = α3Λ2/Mpl, which is exactly the acceleration expected in the deep MOND
regime, as shown in Sect. 2.2.4. In the regime (∇φ)2 	 2mμ̂, we recover the New-
tonian acceleration given by the baryons. So, in this model, the total acceleration is
given by ab, aφ , and also aDM the Newtonian acceleration from the DM halo itself
(obtained in the previous section), since we have DM in this model (different than
MOND).

Halo profile algorithm
Having developed the theory of the superfluid DM above, now we want to evaluate

the density profile of the DM halo and the rotation curves, and compare it with the
data to make a first proof of concept of the model. To evaluate the rotation curve, we
need to determine the circular velocity with respect to the radius.

As discussed in our model the galaxy contains a superfluid core in the central region
of the galaxy surrounded by a NFW profile envelope. So to calculate these quantities
for the galaxy we first need to evaluate them inside the superfluid core, and then at
R = RNFW match the density and the pressure obtained for the superfluid ρSF and
PSF, to the ones given by the full NFW profile.

For that, we need to evaluate these quantities in the superfluid phase. To obtain the
halo density profile, we need to determine the total mass of the haloM(r). The rotation
curve is the circular velocity with respect to the radius, given by a = v2circ(r)/r where
a = ∂Φ/∂r . So we need to determine the gravitational potential Φ to calculate the
rotation curve and, also to determine M(r). The Poisson equation in the superfluid
region is given by

∇2Φ = 4πG (ρSF + ρb) . (208)

The baryon density is given by the observations, while the superfluid density we can
obtain from our theory by differentiating our Lagrangian (198) with respect to Φ,:

ρSF =
2
√
2m5/2Λ

[
3(β − 1)μ̂+ (3 − β)

(∇φ)2
2m

]

3
√
(β − 1)μ̂+ (∇φ)2

2m

, (209)

wherewe can see that ρSF = ρSF(Φ, φ). So, to solve the Poisson equation, we need the
equation for φ, which is given by its equation ofmotion (205). The system of equations
we need to solve is given by (208) and (205), which can be very intricate to solve. One
approximation that can be done to simplify this is to assume that baryon distribution is
spherically symmetric (whichwe know it is not true, but used as a simplification).With
that, the system can be solved numerically. This is done in Berezhiani et al. (2018).
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Table 1 Summary of observational consequences of superfluid DM, showing the behaviour of this model
in each of the systems listed. Table reproduced with permission from Berezhiani et al. (2018), copyright by
IOP/SISSA

System Behaviour

Rotating Systems

Solar system Newtonian

Galaxy rotation curve shapes MOND (+ small DM component
making HSB curves rise)

Baryonic Tully–Fisher Relation MOND for rotation curves (but
particle DM for lensing)

Bars and spiral structure in galaxies MOND

Interacting Galaxies

Dynamical friction Absent in superfluid core

Tidal dwarf galaxies Newtonian when outside of
superfluid core

Spheroidal systems

Star clusters MOND with EFE inside galaxy host
core—Newton outside of core

Dwarf Spheroidals MOND with EFE inside galaxy host
core—MOND+DM outside of core

Clusters of Galaxies Mostly particle DM (for both
dynamics and lensing)

Ultra-diffuse galaxies MOND without EFE outside of
cluster core

Galaxy-galaxy lensing Driven by DM envelope �⇒ not
MOND

Gravitational wave observations As in General Relativity

After having this, this solution needs to be matched to the NFW profile that describes
the outskirts of the halo. With that, it is possible to evaluate the density profile and the
rotation curves of galaxies.

4.2.4 Observational consequences

In this section, we will describe the main observational consequences of the superfluid
DM. A summary of all the effects already worked out can be seen in Table 1. This
table compiles a list of the behaviour that this model has in different systems. We
describe in this section, some of those results, but point to Berezhiani et al. (2018) for
a detailed explanation of each of those cases.

In Table 1, EFE stands for external field effect, and it reveals an interesting charac-
teristic of the superfluid DM model. This effect is an example from kinetic screening
in scalar field theories, where in the presence of gradient interactions the scalar accel-
eration, given by the non-linearities in the scalar field gradient, can suppress scalar
field effects in gravity, making the system behave as standard gravity theory. This
effect was an essential aspect of MOND, but in the DM superfluid model this effect
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is present in the superfluid cores, coming from the phonon non-linearities. With this,
we can see that for satellite galaxies that are inside the superfluid core should follow a
MOND-like dynamics, while more distant satellites are outside the core, and therefore
should follow Newtonian dynamics. For more details, see Berezhiani et al. (2018).

Since it is going to be used a lot in this section, we remind Landau’s conditions for
superfluidity is that the fluid velocity (vs) is smaller than the superfluid sound speed
cs, vs < cs.

– Galaxy rotation curves:
Berezhiani et al. (2018) numerically calculated the rotation curves of IC 2574, a
low surface brightness galaxy, and UGC 2953, a high surface brightness galaxy,
using the method developed above, as a proof of concept of the galactic dynamics
that the DM superfluid is able to reproduce. Since for the theoretical predictions,
a spherical baryonic distribution was assumed to simplify the calculations, and
since this is far from the actual distribution of baryons, in these calculations a
hybrid method, mixing the results calculated with the spherical distribution, was
implemented. In this, the acceleration is corrected for the actual distribution leading
to

ahybrid = ab,real + aDM + aphonon , (210)

where ab,real is the acceleration computed from Poisson’s equation for a non-
spherical baryon distributions; aDM the Newtonian acceleration from the DM halo
using spherical baryon distribution; and aphonon from (207) sourced by ab,real,
but with Newtonian potential from the spherical case. Although calculated in the

hybrid method, aphonon ∼ √
a0aN,b as expected in MOND regime.

The fiducial parameters used for this numerical calculation were m = 1eV,
(σ/m) = 0.01 cm2/g, which are optimal for having a superfluid core that encom-
passes the baryonic disk of the galaxy, while still within the bounds to agree with
cluster observations; Λm3 = 0.05meV × eV3; and α = 5.7. The rotation curves
can be seen in Fig. 14.

1. LSB galaxy As pointed out before since these type of galaxies are DM domi-
nated, the rotation curves from LSB are expected to have a slow raise before
reaching the plateau region. As we can see in the left panel of Fig. 14, our
model reproduces the observed rotation curve for IC 2574, represented by the
orange points, very precisely for the parameters chosen.
The size of the superfluid core obtained for this galaxy is RSF ∼ 40 kpc, which
here is represented by theNFWradiuswhere the profile ismatchedwith aNFW
profile and has a close value to RT . Relative to R200 ∼ 57 kpc for this galaxy,
the superfluid core is relatively large encompassing 58% of the total DMmass
of the halo.

2. HSB galaxy: The rotation curve features of HSB galaxies are known to be
hard to be reproduced. We saw that MOND empirical theory is successful in
reproducing those features. It is interesting to see if the superfluid DM model
is also able to reproduce it. The rotation curve for UGC 2953 is shown in the
right panel of Fig. 14, using the same conventions as for the LSB. The radius
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obtained for the superfluid core in this case is RSF ∼ 79 kpc, which is small
in comparison to R200 ∼ 245 kpc. Only 24% of the total mass of DM is in the
superfluid core. The difference from the LSB results is the red curve, where the
total DMmass is set by theΛCDMabundancematching value ofM = 65M�.
For the red curve, we get a bigger superfluid radius, RSF = 93 kpc, which is
still significantly smaller than R200 = 446 kpc. The rotation curves seem to fit
the data well, showing a smaller value but still compatible with observations
for the velocity in the point where the curve turns to flat. Also, the superfluid
DM show a slight rise in the end of the rotation curve, which is compatible to
the data but not existent in MOND.

In general, it seems that the superfluidmodel reproduces the rotation curves of LSB
and HSB galaxies. Also, the BRTF relation is satisfied, as expected. Of course,
this calculation shows a proof of concept and the rotation curves of many more
galaxies with different characteristics need to be fitted, also to help determine the
parameters of the theory, which were chosen here. However, it is expected that the
behaviour of the rotation curve is similar to the fits shown above for different types
of galaxies inside the superfluid core, only changing the size of the core depending
on the galaxy.

– Dynamical friction: From the very definition of superfluidity, flow without fric-
tion, we can expect that in these models in the inner regions of galaxies, where
superfluidity emerges upon condensation, dynamical friction to be absent. This
might lead to interesting astrophysical consequences and help understand some
puzzles with CDM (Hui et al. 2017; Ostriker 1999), while testing the DM super-
fluid model.
One example of an observation that can be explained by this characteristic of
superfluids is the velocity of galactic bars in spiral galaxies, which are expected
to have been slowed down by dynamical friction, but are measured to be nearly
constant which is consistent with no dynamical friction.
Another interesting puzzle directly linked with dynamical friction is the Fornax
globular clusters, as we already mentioned above. In the presence of a superfluid
in the halo, given the absence of dynamical friction, these globular cluster should
not necessary have merged with Fornax. The effect expected for the case of a
superfluid is more pronounced than in the FDM model, for example. This shows
that these type of system can offer an opportunity to test these ULDM model.
However, to use these observations to test these models we need to really under-
stand what is the behaviour of dynamical friction in the DM halo. For that, a
microscopical description of a superfluid theory with dissipation is necessary, and
that is what is shown next.
The simple picture that in a superfluid there is no friction is a simplification. A
superfluid can suffer dissipation, when its internal degrees of freedom, are excited
out of the condensate, resulting in a mixture of superfluid and normal particles,
or even the complete depletion of the condensate. In those cases, then the system
exhibits friction. To fully understand how friction and dissipation in the superfluid
takes place, one needs to work out the superfluid theories presented in Sect. 3 in the
presence of dissipation. To describe dissipation, one needs to study the motion of
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an impurity, a particle moving in the superfluid represented by a real scalar field χ .
In general lines, dissipation is described in the following way: if an object passes
through this superfluid, this is called an impurity. When this happens, two things
can happen: (1) if the object is moving through the condensate with a velocity
bigger than the superfluids sound speed, v > cs , dissipation of the superfluid takes
place, given that the moving object transfers energy to the internal degrees of free-
dom of the superfluid. At low energies, the only accessible degree of freedom is the
phonon, so the passage of such an impurity excites phonons out of the superfluid
and the radiation of phonons occurs. The rate of phonon emission,describes the
dissipation of the superfluid. The If the impurity passes through the condensate
with subsonic speed, then there is no dissipation and the particle travels without
friction.
This was discussed in detail in Berezhiani et al. (2019). The regime of validity of
such a theory in the presence of dissipation is discussed in Berezhiani (2020), and
it is an extension to the discussion presented in Sect. 3, where we assumed the
limit without dissipation.
The theory with dissipation was worked out for the simplest superfluid example,
the interacting BEC described by the microscopic Lagrangian of a self-interacting
complex field (45), with the presence of an impurity,

L = −|∂μΨ |2 − m2|Ψ |2 − g

2
|Ψ |4 − 1

2
(∂χ)2 − 1

2
M2χ2 − 1

2
gint χ

2|Ψ |2 .
(211)

We are going to work with the Lagrangian which actually describes the SIFDM
model, but that is the simplest model to understand superfluidity.We are interested,
as before, in the non-relativistic case and low-energy regimes. To study the dis-
sipation of phonons, we perturb this Lagrangian and work with the linear theory.
The process that we want to study is the dissipation of the superfluid radiating
phonons caused by the motion of the impurity, with Φ, the Newtonian potential
behaving as the mediator of this process. This can be described by the process (at
first approximation) χ → χ + π , and the rate of this process can be computed.
As discussed in Berezhiani (2020), it is important to reach the correct result to
consider the higher order derivatives of the phonon effective action, like we did in
(45) that gives rise to the higher order k4 term in the dispersion relation, together
with the higher order terms involving the impurity field. With that it is possible to
calculate the energy dissipation,

|Ė | =
∫
ωk dΓ ∝ n g2int k

4∗
m3M2V

, (212)

where dΓ = (q/E in
χ )|A|2 δ(4)(pinχ − pfχ − pfπ ) (d

3 pfχ/E
f
χ )(d

3 pfπ/E
f
π ) is the rate

of the process described above, with ‘in’ indicating the initial values before the
collision and ‘f ’ indicating final values. The initial momentum of the impurity is
pinχ = (M +MV 2/2, MV) and with k∗ given by k2∗/2M +ωk∗ = k∗V . With that,
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we can determine the friction force in the system:

|F | = |Ė |
V

= mng2int
M2

(V 2 − c2s )
2

V 2 . (213)

This shows that the friction force is not discontinuous, given having friction or
no friction in the case of having a superfluid or not, as suggested by Landau, but
actually it varies monotonically with the velocity. In the limit where V is equal to
the sound speed, then the friction force vanishes, as expected for a superfluid.
If we include gravity in this system, we have an extra term coming from the
coupling to gravity which modifies the dispersion relation for the superfluid as
shown in Sects. 3.3 and 4.1.4

ω2
k = −m2

g + c2kk
2 + 1

4m2 k
4 , (214)

where there is an additional tachyonic mass term from the gravitational contribu-
tion, given by m2

g ≡ 4πGρ0. The presence of this term modifies the Jeans scale

and Jeans instability occurs when k > kJ = 2m2c2s (−1 +
√
1 + (m2

g/m
2c4s )). In

this case, as shown in Berezhiani et al. (2019), the force evolves monotonically
with the velocity. However, it never reaches zero friction for subsonic velocities,
when there is the superfluid, because of the Jeans instability. This shows that the
dynamical friction in a superfluid is more complex than the simple dichotomy of
absence or presence of friction if there is or not a superfluid. This is an active field
of research and might lead to interesting observational consequences for the DM
superfluid and SIFDM, which is the model worked out here.

– Galaxy clusters: In a simple way, following the analyzes in Sect. 4.2.1, clusters
have large dispersion velocities, and at large distances, of order of R200,Υ is going
to be small and thermal equilibrium cannot be achieved. The DM in clusters is
in the normal phase. However, as we saw for galaxies, in the central regions the
density increases and thermal equilibrium may be achieved. In clusters, only a
very small amount can be in the superfluid state, since observations exclude that
clusters are largely in the superfluid regime.We can then see the bounds in ourmass
to have a small amount of superfluid component in clusters that is not in tension
with data. We assume that RT /R200 � 0.1, which gives, using the relations from
Sects 4.2.1 and 2.1:

RT � 200

(
M

1015M�

)1/3

kpc . (215)

We can now repeat the analysis of thermal equilibrium done in Sect. 4.2.1. How-
ever, for such a small RT in comparison to the cluster size, we use the full NFW
profile for the halo. This yields a constraint in the mass of the DM particles:

m � 2.7

(
σ/m

cm2/g

)1/4

eV . (216)
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This combinedwith the condition from thermalization in galaxies gives the allowed
range for the DM mass:

2.7 eV � m

(
σ/m

cm2/g

)−1/4

� 4.2 eV (217)

From the tightest constraints fromapproximately 30merging systems (Harvey et al.
2015),σ/m � 0.5 cm2/g.This value is in accordancewith the one fromSect. 4.2.1,
and from the constrain above it gives a DM mass between 1.5 eV � m � 2.4 eV.
For DM superfluid in this mass range, we have condensation inside galaxies and
the condensation in the interior of cluster happens for very small radius, appearing
not to be in conflict with what is expected from observations. This constraint can
be made broader by assuming a more realistic and not constant cross section. A
quantitative analysis via numerical simulations would be ideal to check this result.

– Galaxy mergers The behaviour of merging galaxies is an interesting question,
given the superfluid nature, the absence of friction, proposed for the inner core of
galaxies. In the absence of friction, it is expected that the merger would make the
galaxies pass through each other without interacting. But the existence of these
superfluid phases in these merging systems is going to depend on the comparison
between the infall velocity for the merging galaxy and the sound speed of the
phonon, given by the Landau criteria.

– vinfall � cs—In this regime, the halos are driven out of equilibrium, so coher-
ence of the condensate is broken and the halo will be in the normal phase.
The merging process will proceed as inΛCDM, where mergers are fast due to
dynamical friction. Thermal equilibrium and condensation will be achieved in
the merged halo after some time.

– vinfall � cs—In the case of subsonic velocities, the DMhalo is in the superfluid
phase, and the superfluid cores will pass through each other with almost no
dissipation. In this case, dynamical friction is reduced taking a much longer
time to the system to merge, and possible multiple encounters.

In our case, the phonons have sound speed cs = √
2μ/m, and for the fiducial values

adopted (204), cs ∼ 220 km/s for a 1012M� halo. This needs to be compared with
the infall velocities of galaxies of amerging system to see how themerger dynamics
proceeds.

– Merging clusters
The Bullet cluster is a system of twomerging cluster that was very well investigate
observationally. It represents one of the best evidences of the existence of DM (and
against alternatives like MOND). This is seen by a segregation in the position of
the mass peak (highest concentration of total matter) given by lensing that probes
all the matter content, and the one from X-ray measurements, which measures the
baryonic matter. This is consistent with the CDM picture, where the DM in the
merging processes due to its negligible interaction passes through almost without
interaction, while the baryons are slowed down. This poses a problem for theories
that do not have DM, like full MOND.
By construction, and as it was seen above, in this model clusters do not develop
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a condensed core of cluster size and have most of the DM in the normal phase.
However, the galaxies inside the clusters have a condensed core, and the cluster can
develop smaller sized cores in its inner regions. Therefore, when clusters merge,
the presence of a core or not also depends if the merger is subsonic or supersonic,
obeying or not Landau’s criteria like we saw for the merging galaxies.
The outcome of the merging depends on the infall velocities, which determines
if most of the DM is in the superfluid phase or in the normal phase in each of
the merging clusters. If the infall velocities are subsonic, the superfluid cores are
present, and most of the DMwill be in the superfluid phase. Any collision between
a cluster where DM behaves like a superfluid will follow without dissipation,
with the clusters pass through each other without friction. Now, the DM in the
normal phase presents self-interactions. Therefore the collision of two clusters in
the normal phase would be slowed down due to these interaction.
In the case of theBullet cluster (Berezhiani andKhoury 2016), to be consistentwith
observations, at least the sub-cluster must be in the superfluid phase. As we can
see, the sound speed of the phonon for the sub-cluster (Msub ∼ 1014M�) is, for our
fiducial values, cs,sub ∼ 1400 km/s, while for themain cluster (Mmain ∼ 1015M�)
is cs,main ∼ 3500 km/s. The relative velocity between the clusters is∼ 2700 km/s
(Springel and Farrar 2007; Lage and Farrar 2015). If we take this to be the infall
velocity, we can see that the sub-cluster is in the superfluid phase, while the main
cluster is in the normal phase.With that, the clusters will mergewithout dissipation
and pass through each without friction, as it is expected from observations.
For the Abell 520 “train wreck” (Mahdavi et al. 2007; Jee et al. 2012; Clowe et al.
2012; Jee et al. 2014), another merging cluster system, the DM superfluid model
predicts a subsonic merger, with two peaks representing the superfluid component,
compatiblewith the lensingmap, and a peak during the normal component, coming
from theX-ray luminosity peak. This shows that the DM superfluid framework can
accommodate not only the dynamics on galactic scales, but also explain clusters
and its merger events.

– Gravitational lensing
In the case of the full MOND theory, or its relativistic completion TeVeS, because
of the absence of DM to be able to explain the relativistic regime makes necessary
the introduction of a complicated non-linear term between the scalar field of the
theory and baryons, which should also couple to a time-like vector field to give
the correct gravitational potential to be able to explain gravitational lensing.
In the case of the DM superfluid, since the theory has DM, we have the superfluid
component described by the phonon scalar field, and we have the normal compo-
nent which provides the time-like vector field uμ. The gravitational potential is
then sourced by both dark matter and baryons, as expected.
As we have that the superfluid core resides in the inner part of the galaxy, sur-
rounded by an NFW envelope, gravitational lensing will come primarily from this
NFW outer part.
Recently, the DM superfluid model was studied in the context of strong lensing
(Hossenfelder and Mistele 2019).

– Gravitational waves
In the superfluid DM, different than in MOND, the superfluid core is locates in the
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Fig. 14 Left panel: predicted rotation curve for theLSBgalaxy IC2574. The orange points are data fromLelli
et al. (2016) assuming a distance of ∼ 3Mpc (Tully et al. 2008), the black and red curves are the predicted
curves for MDM = 20Mb and 50Mb. The gray band corresponds to two values of a0 ∈ (0.6, 1.2)× 10−8

and the blue band two values ofΛ ∼ (0.02, 0.1)meV. Right panel: preducted rotation curve of UGC 2953.
The orange points are data from Noordermeer et al. (2007) with all the parameters like in the left panel
figure, but the red curve where MDM = 65Mb. Images reproduced with permission from Berezhiani et al.
(2018), copyright by IOP/SISSA

inner regions of the halo and the outskirts of the halo have a NFW profile. So the
gravitational lensing signal comes from this outer part of the halo and it behaves
like in the case of GR+CDM. This means that photons and gravitons propagate
at the speed of light travelling along the same geodesics. This is in agreement
with the recent constraints from the gravitational waves from neutron stars merger
GW170817 (Abbott et al. 2017), which rule out relativistic completions of full
MOND (Boran et al. 2018).
The implications for the gravitational waves in the case where the phonon has a
non-vanishing sound speed was considered in Cai et al. (2018), together with its
observational effects in future GW experiments.
Specifying the microphysics of the DM superfluid particle can also yield other
signatures in the produced gravitational waves, like chirality, as done in Alexander
et al. (2018).

4.2.5 Validity of the EFT

In this section, we are going to scrutinize the validity of the EFT construction used,
verifying the regimes where this leading order EFT is valid, and the regimes where
the theory obeys the Landau criteria for superfluidity.

Higher-order derivatives
First, we need to check if in our regime and for the parameters of the model, it is

valid to ignore higher order terms in the EFT. As we saw above, the EFT is constructed
by including all the terms which are invariant under shift symmetry. We retained only
the first order contributions, given that we are working in the low-energy limit. Higher
order terms involve more than one derivative per field. Higher order contributions to
the quadratic Lagrangian for the phonon (193), can contain terms of the form:

Lhigher−order ⊃ Λm3/2μ
3
2−n∂nφn ∼

(
Λm3/2μ3/2

)1− n
2
∂nφnc , (218)
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where ∂ → ∂t or cs∇, and φc = Λ1/2m3.4μ−1/4φ is the canonical variable. The scale
that controls these higher order terms is given by Λs = (

Λm3/2μ3/2
)1/4

, which we
call the strong coupling scale. So, higher order corrections can be neglected when:

1

Λs

∂2r φ

∂φ
∼ 1

Λr
	 1 . (219)

This is the general condition for ignoring the higher order corrections in an EFT
given by the Lagrangian we described here. Given this, we an easily see that the
approximation of ignoring these terms breaks for small sound speeds.

However, specializing to the parameters of the DM superfluid model described
here, and using the profile obtained in (202), which determines μ, the strong coupling
scale is given by the DM superfluid model:

Λs ∼ meV

(
MDM

1012M�

)3/10 ( m

eV

)6/5 ( Λ

meV

)2/5

. (220)

For the fiducial parameters, Λs ∼ meV. So, higher derivatives are suppressed if
r 
 0.2mm, which is clearly satisfied on astrophysical scales.

Criteria for condensate coherence
An important criteria to verify the validity of the superfluid description we are using

is to check if our superfluid obeys the Landau criteria. As we saw in Sect. 3.2, the
criteria for the system to transports chargewithout dissipation, leading to the coherence
of the BEC to be maintained, is that the velocity of the superfluid is smaller than the
critical velocity:

vs 	 vc ∼
( ρ
m4

)1/3
. (221)

where the critical velocity must be non-vanishing. This condition is equivalent to
the condensation conditions showed in the panel in Sect. 3.1. In the case of the DM
superfluid, in Sect. 4.2.1, we already evaluated the conditions for DM to be condensed
in the center of galaxies.

We need to estimate vc locally. For that, we can use the halo mass density ρ =
(2m)3/2mΛ

√|X | ∼ 2m2Λ
√
κ , where we assumedMOND regime in the last equality

and κ = mμ̂, which gives us

vc ∼ 0.025

(
Mb

1011M�

)1/6 ( m

eV

)−2/3
(

Λ

meV

)2/9 (kpc
r

)1/3

, (222)

where Mb is the baryon’s mass. The superfluid velocity is given by vs = ∂rφ/m ∼√
κ/m, which yields

vs ∼
(

Mb

1011M�

)1/2 ( m

eV

)−1
(

Λ

meV

)−1/3 (kpc
r

)
. (223)
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With that, using Eq. (221) and assuming spherical symmetry, we an determine thee
radius where superfluidity can occur:

r 

(

Mb

1011M�

)1/2 ( m

eV

)−1/2
(

Λ

meV

)−5/6

kpc . (224)

We can see that this condition is satisfied in the central regions of galaxies, and we
have coherence of the condensate and superfluidity in those scales.

Solar system
We can check this criteria for condensate coherence locally to verify in which

regions and regimes we have DM in the superfluid phase. Therefore, we can apply the
criteria for condensation developed above and the radius where locally the superfluid
can occur to our solar system.

At solar system scales the bounds on deviation from standard Newtonian gravity
are very tight, and these measurements do not allow deviations from the Newtonian
dynamics. Full MOND is in tension with these bounds. However, the DM superfluid
scenario fits well into the Solar system bounds. We can see that using the coherence
bound for the condensate (221). For that we need to evaluate vs and vc for solar system
quantities.

Given the local gradients of the phonon in the vicinity of the Sun (Mb = 1M�),
the superfluid velocity is given by:

v�
s = 5

( m

eV

)−1
(

Λ

meV

)−1/3 AU

r
, (225)

where r is the distance to the Sun and AU is the astronomical unit, the average distance
between the Earth and the Sun. The critical velocity of the Milky Way galaxy (for
Mb = 3 × 1011M�) evaluated at our solar system (r ∼ 8 kpc) is:

vMW
c ∼ 0.02

( m

eV

)−2/3
(

Λ

meV

)−2/9

. (226)

We can see that the coherence bound v�
s 	 vMW

c is obeyed for distance much larger
than the solar system scales:

r 
 r�
s = 250

( m

eV

)−1/3
(

Λ

meV

)−5/9

AU . (227)

This shows that on solar system scales, the presence of the Sun causes the local phonon
gradients to be large, making the local superfluid velocity vs ∼ φ′/m, to be larger than
the local critical velocity for a region around the solar system with a radius r�

s from
the Sun. Therefore, on distances like the solar system, r < r�

s , DM is in the normal
phase since the condensate loses its coherence, and obeys standard Newtonian gravity.
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4.2.6 Relativistic completion

As we saw in Sect. 3.3, the description of a superfluid is given by a weakly self-
interacting field theory with global U(1) symmetry. The symmetry is spontaneously
broken by the superfluid ground state of a system at chemical potential μ. In the
previous section, where we defined this field theory for superfluids, we added a 2-body
self-interaction, g − 3|Ψ |4. This gives an equation of state P ∝ n2. As we saw in the
previous section, the pressure that describes the interaction in the Madelung equations
has the form of the pressure of a barotropic fluid. For a three-body interaction, the
equation of state is given by P ∝ n3. For the DM superfluid, to reproduce MOND, we
wanted to have a theory that gave P ∝ n3. So one might think that the DM superfluid
could be described by the microscopic theory of an interacting BEC with three-body
interaction. However, we are going to show now that this is in fact not the case since
those theories give a Lagrangian with different signs.

Three-body interaction
Lets consider now like before that the self interacting theory with U(1) symmetry

that gives us the superfluid has a three-body interaction, instead of a two-body one.
The relativistic action of this theory is given by

L = −|∂Ψ |2 − m2|Ψ |2 − g3
3

|Ψ |6 , (228)

where g3 > 0 for stability. Like before, this theory conserves particle number. Since
we are interested in the non-relativistic (NR) theory, replacing Ψ = ψeimt and taking
the NR limit gives us

L = i

2

(
ψ∂tψ

∗ − ψ∗∂tψ
)− |∇ψ |2

2m
− g3

24m3 |ψ |6 . (229)

With that, we can calculate the equation of motion, which gives us the Schrödinger’s
equation:

− i∂tψ + ∇2ψ

m
− λ

8m3 |ψ |4ψ = 0 . (230)

The condensate is described by the background solution, at zero temperature: ψ0 =√
2m veiμt , where μ = λv4/2m. The excitations are given by

ψ = √
2m (v + ρ)ei(μt+φ) , (231)

where ρ is the gapless mode and φ is the Goldstone boson associated with the broken
U(1). At low energies, we substitute this into (229) and integrate out the gapless mode:

L = 4

3
m

(
μ+ φ̇ − (∇φ)2

2m

)[
2m

λ

(
μ+ φ̇ − (∇φ)2

2m

)]1/2
= 4

3

(
2

λ

)1/2

m3/2 X
√
X ,

(232)
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which is the action to leading order in the derivative expansion, with X = μ + φ̇ −
(∇φ)2/2m. This is very promising since the theory with a three-body interaction
gives a low-energy Lagrangian with the same exponent as the one we need for MOND
and for the effective Lagrangian P(X) for the EFT of superfluids. However, it has
the opposite sign, given that g3 > 0! As we saw before, the limit where g3 < 0 is
unstable, and we cannot have condensation on all scales, superfluidity and MOND.

Phenomenological relativistic Lagrangian
So, the expected description as a theory with three-body processes is does not

work for the DM superfluid model, where we want to recover MOND behavior in
galaxies. It was phenomenologically proposed in Berezhiani and Khoury (2015) a
relativistic Lagrangian that is able to reproduce our expected Lagrangian (191) in the
non-relativistic regime, which is given by

L = −1

2

(
|∂μΨ | + m2|Ψ |2

)
− Λ4

6
(
Λ2

c + |Ψ |2)6
(
|∂μΨ | + m2|Ψ |2

)3
. (233)

The scale Λc was introduced in order for the theory to admit Ψ = 0 vacuum. It is
easy to see that this action reduces, in the non-relativistic limit and whenΛc 	 |Ψ |2,
this action gives (191). The condition for MOND, given by Λc can be rewritten as
|X | � Λ4

c/(2mΛ
2), which corresponds to

aφ � Λc

α2Λ
a0 , (234)

where aφ is the acceleration from the phonon that can be obtained from the action and
given by aφ = α(Λ/Mpl)φ

′
. According to observations, the deep MOND regime is

very accurate for ∼ a0/10, which poses a bound for Λc.
This theory presented here is a phenomenological relativistic version of the DM

superfluid.However, it would be interesting to have a relativistic completemicroscopic
theory for the superfluids.

4.2.7 Cosmology

After working out the galactic behavior of the DM superfluid model, we need to
understand what happens on cosmological scales in this model. In this section, we
show how DM superfluid behaves cosmologically. Since we do not have a proper
relativistic theory that we can use to describe cosmology, we make some estimates to
understand the behaviour of DM on cosmological scales in this theory.

The first question we would like to answer is if DM is in the superfluid or normal
phase cosmologically. We saw in Sect. 4.2.1 that the critical temperature of the DM
superfluid is given by Eq. (185), and T /Tc today is around 10−2 for massive galaxies
(M ∼ 1012M�). Cosmologically, the temperature is much colder. We can estimate
given that ultra-light candidates forDM, like theDMsuperfluid, are non-thermal relics.
They can be generated, for example, through a vacuum displacement mechanism (see
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below for a definition of this mechanism) like the axion. So, the particles are created
when Hi ∼ m, which corresponds to a temperature for the photon–baryon plasma:

T b
i ∼ √

mMpl −−−→
m∼eV

50TeV , (235)

which is around the weak scale!
With that, we can rewrite the condition for thermalization (90), given that the

velocity and density redshifts as v ∝ a−1 and ρ ∝ a−3. At matter-radiation equality,
we can write this condition as

m ∼ ρ1/4eq 	
(
ρeq

v3eq

)1/4

, (236)

where ρeq ∼ 0.4 eV4 and using that veq = vi ai/aeq ∼ eV/
√
mMpl is much smaller

than one, while vi ∼ 1 since it was created deep into the radiation era. Since T /Tc =
(v/vc)

2, we have that

(
T

Tc

)
cosmo

∼ veq

( m

eV

)8/3 ∼ 10−28
( m

eV

)5/3
. (237)

So, cosmologically, all the DM is in the superfluid state. Once this DM is formed, if
condenses and behaves as a superfluid. However, one question than comes to mind: as
we saw previously, in the DM superfluid model in the superfluid phase the dynamics is
give by a MONDian dynamics, instead of Newtonian. Then the question is: does DM
behaves differently than Newtonian on cosmological scales, which can be a problem
to reproduce some known results in cosmology? We can see that this is not the case.

The cosmological temperatures are many orders of magnitude different than the
temperatures on galaxies. For the EFT built for the superfluid to be valid on such
different scales, the parameters of the EFT Λ and α need to evolve with the tempera-
ture. This dependence is estimated in Berezhiani and Khoury (2015) by making some
phenomenological statements for the theory to match both regimes. A consequence
of the introduction of this variation is that the critical acceleration, given by a0 in
galaxies, is now temperature dependent. Therefore, on cosmological scales the criti-
cal acceleration of the theory has a much smaller value than the one from galaxies:
acosmo
0 	 10−4 a0. This has an important consequence: although the DM superfluid
is condensed on cosmological scales, the gravity is highly Newtonian on those scales.

This shows to us that a very compelling feature of this model: at the same time it
describes the small-scale behavior, given by a MOND-like dynamics, it also recovers
the large-scale successes of CDM. It also recover the expected CDM behaviour in
clusters, and also in the vicinity of star like in the solar system, where the DM is in
the normal phase behaving like particle DM.

To close theDMsuperfluid section, we can summarize the global behaviour that this
model has on all the scales. This together with Table 1 describes the phenomenology
of the DM superfluid class.
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Cosmological Scales
Condensate
NoMOND

−→
Clusters

Mostly no condensate
No MOND

−→
Galaxies
Condensate
MOND

−→
Solar System
No condensate
NoMOND

4.3 Simulating ULDMmodels

We described above the main characteristics of the ULDM models. We showed how
we expect the small-scale structures to be suppressed in this model by computing
quantities in the linear limit, and showed how this model presents a core solution for a
simplified model of the halo. However, to study the formation of structures at different
scales, and the formation of galaxies which are highly non-linear processes, one needs
to resort to simulations. Cosmological simulations have been one of the biggest tools
for the understanding of the non-linear formation and evolution of structures and
galaxies in the past few years, modelling diverse scales and physical process that are
present in those processes. Therefore, to better understand how different the structures
are going to be in the ULDMmodels, together with modelling some structures that are
exclusively present in these constructions like the presence of cores, interference and
vortices, we need to resort to cosmological simulations (for a summary of the current
FDM simulation, see Zhang et al. 2019; Li et al. 2019).

The traditional simulationmethods present in the literature to study the formation of
structures, like N-body simulations or hydrodynamical simulations, cannot be readily
applied to the case of ULDM since they do not take into account the wave nature
of these models. As we saw above, it is this wave nature that can lead to important
observational consequences present in these models of DM.

There are two approaches to simulate the ULDM models. One solves the
Schrödinger–Poisson system, composed by the Gross–Pitaevskii equation for a given
ULDM model coupled to the Poisson equation; the other is given by solving the
hydrodynamical equivalent of the GP equation, the Madelung equations. Each of
those approaches have advantages and disadvantages, so they can be considered com-
plimentary.

Schrödinger–Poisson Hydrodynamical-Madelung equations

iψ̇ = − 1

2m
∇2ψ +mΦψ + g

8m2 |ψ |2ψ + g3
12m3

|ψ |4ψ + · · ·

∂ρ

∂t
+ ∇ · (ρv) = 0

∇2Φ = 4πG m
(|ψ |2 − |ψ̄ |2) ∂v

∂t
+ ρ (v · ∇)v = − 1

m
∇ (PQP +Φ + Pint

)
.

In the absence of interaction, we have the Fuzzy DM model, and in the presence of
interaction, the terms marked in blue, we have the SIFDM model. The interactions
can be a two-body or three-body interactions, like shown respectively in the last two
terms of the GP equation above, or even higher order body collisions represented in the
ellipsis, if this is allowed in the system. These describe fluids with different equation
of state. In the Madelung equations, the interactions are represented by the interaction
pressure term Pint, which has the form of a polytropic fluid. This polytropic fluid can
describe different fluids with different equations of state, that arise depending on the
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Fig. 15 Wave simulation (left panel), where the SP system is solved, and a fluid simulation (right panel),
where the Madelung equations are solved, of the FDM model with mass m = 10−23 eV. This represents a
slice at redshift z = 5 of the density, given by the color code, and it shows how the wave simulation can
resolve the small-scales by showing the interference patterns, that are coarse grained by the fluid simulations.
Images reproduced with permission from Li et al. (2019), copyright by AAS

type of interaction. So one can simulate either one of those models using these system
of equations43.

For the simulation that solve the Schrödinger–Poisson equations, also called wave
simulations, there are many groups that are attempting to solve this system using
different methods (Schive et al. 2014a; Schwabe et al. 2016; Mocz et al. 2017, 2018;
Edwards et al. 2018; Garny et al. 2020). In general, this approach is very good to
describe the small-scales, being able to resolve the small structures and taking into
account the wave nature of the condensate, as we can see in the left panel of Fig. 15.
With that, this approach predicts the correct and expected structures on small-scales.
Being able to resolve the smaller scales, this simulation can resolve and show the
presence of cores in the halos, the granular interference structure in the condensate
or the presence of vortices. However, this approach is very demanding numerically,
since it requires a more finely resolution to resolve scales of the order of the de Broglie
wavelength.Thismakes these simulations to bemuch smaller in size than thefluidones,
not describing cosmological scales or being able to span many decades in redshift.

The simulations that solve the Madelung equations, the fluid simulations, have the
advantage of being able to use the already written and well explored hydrodynam-
ical codes available in the literature. They can be implemented by adapting those
known codes to the case of FDM or SIFDM. The difference from a normal fluid
simulation is the presence of the quantum pressure term, ∇PQP = −n∇Q, where
Q = (�2/2m)(∇2√ρ)/√ρ. This term is singular when the density is zero, and the
quantum pressure is not well defined in this regime. This restriction translate into those
simulation not being able to resolve the smallest scales, coarse graining through the

43 Theoretically, one could also simulate a gravitationally bounded DM superfluid model by evaluating its
the equation of motion in the NR regime, obtaining a equation analogous to the GP equation, but with a
more complicated form. There is not, to our knowledge any group that is performing simulations of those
models at the moment. We might expect that the more complicated form of the equations might render a
more computationally expensive simulation. For this reason we stick for now to the simulations of the other
classes of models.
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granular structure or any other substructure expected in these models. This leads to
fluid simulations predicting a more pronounced gravitational collapse leading to an
enhancement bigger than expected in the power spectrum at small-scales (Li et al.
2019).

The advantage of the fluid approach, though, is not only being implemented using
the already mature hydrodynamical codes, but also being able to run much larger sim-
ulations than in the wave case, since it is less computationally expensive. With this
method cosmological size simulations are possible. Many groups have been working
on simulating the FDM using the fluid approach, with some variations in the imple-
mentations of the codes and the solvers (Veltmaat and Niemeyer 2016; Mocz and
Succi 2015; Nori and Baldi 2018; Zhang et al. 2018b).

Many research groups are attempting to perform those simulations so we can better
understand the behaviour of the FDM model and reveal possible smoking gun sig-
natures of this model. Those simulations are crucial so we can understand and better
search for these signatures on observations. For this it would be interesting to have
the small and large-scales of the simulations resolved. Since the fluid simulations are
good to describe the large-scales and the wave simulations the small-scales, some
groups are exploring the possibility of having hybrid simulations where both methods
are considered for the scales they work better (Li et al. 2019). Veltmaat et al. (2020)
consider another hybrid method where N-body simulations are used to simulate the
cosmic web, while the wave simulation is implemented in the inner halo.

Another simulation that is also hybrid is the AxioNyx simulation (Schwabe
et al. 2020). This simulation actually mixes different dark matter models, having a
Schrödinger–Poisson solver built on a cosmological N-body simulation of CDM and
baryons to simulate self-gravitating mixed fuzzy and CDM. This allows to include in
this simulation baryonic effects and some astrophysical processes. With this simula-
tion one can study spherical collapse and core formation in this mixed DM context.
This mixed DM nature of the simulation can be seen in a suppression in the CDM
collapse due to the FDM fraction, while CDM delays the FDM collapse shrinking
the Jeans scale. It was also found that both FDM and CDM evolution respond to the
same gravitational potential, although in the center of the overdensities, where solitons
form depending on the granule mass which is determined by the FDM fraction, a large
fraction of FDM particles of about 10% of the total DM is present.

More work in the presence of interactions, describing the SIFDM, would also
be welcomed, since this would reveal more about the superfluid nature of this DM
scenario and the possible consequences of having a superfluid core in the inner regions
of galaxies.

Simulations of ULDM models are a fast moving and essential field to study these
models, and the current advances are very exciting, which makes us look forward to
new results in the near future.

We are focusing in this review on dark matter, in the late time non-relativistic limit

SIFDM/superfluid
There are a smaller number of simulations for the case of the self-interactingULDM.

It is important to also consider systems where self-interaction is present, on top of
gravitational interaction, since these systems contain a very rich phenomenology.
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Fig. 16 Left panel: power spectrum of Ψ , with adiabatic vacuum fluctuations initial condition, for the case
with and without gravity. Growth of perturbations occur first through self-interaction instability, backreact-
ing in the condensate, followed by soliton formation. Right panel: comoving number density of solitons in
simulationswith andwithout gravity. The fact that when gravity is included effects likemergers occurmakes
the number of solitons to be smaller in the case gravity is included. Images reproduced with permission
from Amin and Mocz (2019), copyright by APS

Depending on their sign these models present different clustering scales, soliton for-
mation, which in this case can be driven by the self-interaction instead of gravity alone,
and its rates, times and sizes; and effects like dynamical friction work differently.

Amin and Mocz (2019) investigated the system of a non-relativistic scalar field in
the presence of two-body self-interaction in an expanding universe. The main goal
of the authors is to study the formation, clustering and collision of solitons when
their formation is controlled by attractive self-interactions, on top of the gravitational
part. They work in the regime where the scales of the problem present the following
hierarchy: m 	 M 	 mpl , where m is the mass of the ULDM particle, M controls
the interaction scale, and the reduced Planck mass determines the strength of gravity.
In this work, they solve numerically the Schrödinger–Poisson system in the presence
of interaction in 3 + 1 dimensions in the presence of expansion, with cosmological
initial conditions. They compare the result of this simulations with analytical results
calculated for the soliton formation time and length scales, the soliton distribution and
two-point function of the clustering of the solitons, showing good agreement between
both. The problem then has two instability scales from the self-interaction and from
gravity, as shown separately in Sect. 4.1.4. We show in left panel of Fig. 16 the power
spectrum of the scalar field. The formation of solitons controlled by the interactions
is faster than under gravity alone, as seen in the right panel of Fig. 16. In the presence
of those two components, the solitons scatter, merge and form binary systems, the last
only present in the presence of gravity. This shows that the system with interactions
presents significant different phenomenology than in the case of FDM. Therefore,
more efforts to simulate these interacting BECs is necessary, specially in the case of
repulsive interaction.

Another interesting discussion present in this paper is the connections to the
equivalent relativistic system: a relativistic non-linear Klein–Gordon equation. In the
relativistic system, the equivalent to the soliton is the oscillon. In this review we are
interested in DM, so discussing simulations of relativistic system is not in the scope
of the paper. But it is worth mentioning that there is a large body of literature in this
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topic (see, e.g., Kolb and Tkachev 1994; Amin et al. 2012; Lozanov and Amin 2019).
They describe the mainly the early universe evolution, but are directly applicable in
the context of ULDM.

Two-fluid approach
As we mentioned in Sect. 3, based on the ideas by Landau, the correct description

of a finite temperature superfluid is using the two-fluid model, where there is a normal
and a superfluid components. The description used above for the SIFDM and DM
superfluid extend the limit of usage of the zero temperature description of the super-
fluids when describing DM in a halo, which should be treated with a finite temperature
approach. An effective extension to include finite-temperatures was attempted for the
DM superfluid case. When simulating the superfluid model, one should use the equa-
tions for a superfluid in the two-fluid formalism, where the system is described as a
mixture of a superfluid component (represented with subscript ‘s’) and a normal fluid
(represented with subscript ‘n’). The superfluid is the component that flows without
frictionwhile the normal fluid is the only of the two that transports entropy and thermal
energy.

This is what it was done in Hartman et al. (2019). They want to study structure
formation in the a model where DM forms a superfluid. For this reason, they solve
the hydrodynamical equations that describe this superfluid. The finite-temperature
hydrodynamical equations for the simplest superfluid, the weakly interacting Bose
gas in a trapped potential, are given by Taylor and Griffin (2005); Chapman et al.
(2014)

∂ρ

∂t
+ ∇ · j = 0 ,

∂S

∂t
+ ∇ · (Sun) = 0 ,

∂us
∂t

+ ∇ (μ+ u2s /2
) = −∇Φ , (238)

∂j
∂t

+ ∇P + ρs(us · ∇)us + ρn(un · ∇)un + us [∇ · (ρsus)] + un [∇ · (ρnun)] = −ρ∇Φ ,

(239)

∂E

∂t
+ ∇ ·

[(
U + 1

2
ρnu

2
n + P

)
un + 1

2
ρsu

2
sus + μ(us − un)

]

= −j · ∇Φ , (240)

where ρ = ρs+ρn is the fluidmass density, S the entropy density, u is the velocity, j =
ρnun + ρsus is the momentum density, E is the energy density E, Φ the gravitational
potential, following the Poisson equation and μ = [P +U − ST − (us − un)2/2]/ρ
is the chemical potential (P is the pressure, U the internal energy density and T the
temperature).

In this set of equations, the authors set the trapping potential to be the gravitational
potential and these equation can be re-written in an expanding background by trans-
forming to super-comoving coordinates and using v = u−Hr. In this way, the model
describes the finite-temperature hydrodynamical equations for the SIFDMmodel. The
authors test the two-body and three-body interactions for comparison.

One challenge of this approach is that the hydrodynamical equations do not include
the Landau criteria in them. To include this explicitly one needs to add dissipative
terms. Since this is not completely worked out analytically, to do that one has to make
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some assumptions and assume a form for these terms. A very big step in including
dissipation in this theory was done by Berezhiani et al. (2019); Berezhiani (2020) and
shown above in the “dynamical friction” subsection of the DM superfluid. This is a
work in progress. Until this is worked out in detail, and avoiding adding unknown dis-
sipative terms, the authors chose to do this numerically imposing Landau’s condition
at every position in the simulation.

They numerically integrate the hydrodynamical equations from redshift z = 100
until today. The authors found from the simulation that, in SIFDM model, the growth
of structure proceeds less efficiently than in CDM, as expected for the ULDMmodels,
although more efficiently than expected, with the suppression more pronounced on
small-scales and at high temperatures. They also study the role of the interaction
strength and of the equation of state.

This numerical simulation presents some limitations giving some of the assump-
tions and limitations inherited from the hydrodynamical formalism. For example, in
this approach we cannot see the complete dissipation of the superfluid. Also, correctly
adding the dissipation physics would be a big improvement in this description. How-
ever, this simulation represents a very important step towards simulatingmore realistic
superfluids, which already showed to lead to interesting observations consequences.

4.4 ULDM as dark energy

Ultra-light fields can also behave as dark energy (DE), depending on their mass and
on the different theory they are applied. We can see this in two different cases where
the ultra-light field can be used to explain the acceleration of the universe.

4.4.1 Fuzzy DM

In the case of fuzzy DM, where we have a (non-interacting) ultra-light scalar field in
FRW universe, the field can behave as dark matter, early dark energy or dark energy
depending on themass of this field. The behaviour of the field depends on how its mass
is related to the Hubble parameter. At early times, the ultra-light field has m 	 H . In
this regime, the field is almost frozen and behaves as DE with w ≈ −1. As m ∼ 3H ,
the field starts to coherently oscillate around the potential minimum and to behave
as DM, where the equations of state averaged over the oscillations approaches zero.
Depending on the mass, the oscillating DM phase can happen at different times of the
evolution of the universe.

If the oscillating phase happens after radiation-matter domination, the ultra-
light field behaves like DM. From Hložek et al. (2015), we see this happens for
m � 10−27 eV. This bound comes from observations from the CMB and LSS galaxy
clustering, and in this regime the ultra-light field can oscillates before the present day
and the field redshifts as DM. More generally, form � 10−32 eV we can still have the
ultra-light field behaving as DM, since the field starts oscillating before the present
time, but in this case the ultra-light field can only make a fraction of the DM.

For m ∼ 10−33 eV ≈ H0, the field behaves like a quintessence field, if in the
presence of a potential, and it can be the responsible for the late time acceleration.
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Since the field is virtually frozen until the present time, or slowly-rolling the potential,
with almost constant density, and it behaves very closely to a cosmological constant.
With observations from CMB, we can see that in this case the ultra-light fields have a
maximum bound on the energy density compatible with the expected amount of DE
in the universe. For masses around 10−32 eV � m � 10−27 eV, the ultra-light field
behaves like DE earlier than what it is expected, and can be thought as an early DE
component.

4.4.2 Superfluid DM—unified superfluid dark sector

There is another way to explain the late time acceleration using these ultra-light fields,
where the acceleration is not given by this behaving like a quintessence field. This can
be done in the context of the DM superfluid, where the dark energy behaviour is yet
another manifestation of the same superfluid that emerges at cosmological scales at
late times, as presented in Ferreira et al. (2019); Ferreira (2021).

In the previous case and in the case of quintessence, a ultra-light field is a component
with a very small mass m ≈ 3H0, that dominates around the present times and drives
the acceleration. Differently, in the framework we present here, the dark sector is
composed only by DM described by a superfluid, without DE. The late acceleration
emerges from the dynamics of this superfluid, and we have a unified model for the
behaviour of DM and DE.We can see how this arises from the model described below.

BECs and superfluids in the laboratory are usuallymade of atomic species. After the
discovery of BEC and superfluidity, one big evolution in the study of these systemswas
to study mixtures of condensates where atoms that compose the fluid that condenses
might be at different atomic configurations. This allowed researchers to explore the
richness of the internal structure of the atoms that compose the superfluid, describes
a more realistic system, where atomic transitions are allowed to happen, and also the
different dynamics that appears in systems where more than one species of condensate
and superfluid is present.

In this entire section, we are using the same formalism as the one defined for the
DM superfluid (and the EFT of superfluids from Sect. 3.4. In the model we present
here, we assume that the superfluid is composed by two different species, which can be
represented by the ground (Ψ1) and excited (Ψ2) state of the dark atom that composes
the superfluid. These species interact through a Josephson interaction (Josephson1962;
Tommasini et al. 2003)44, which is a contact interaction between the components of
the superfluid that has the simple form Lint ∝ −(Ψ ∗

1 Ψ2 + Ψ1Ψ
∗
2 )/|Ψ1||Ψ2|. So the

Lagrangian of this theory is the Lagrangian for the EFT of superfluids, given by a non-
canonical kinetic term, plus the term coming from the interaction. This interaction

44 The Josephson interaction or Rabi coupling (Josephson 1962; Mahan 2000) is very common in many
systems in condensedmatter systems. It is a contact interaction that represents a long-range phase coherence
between components, leading to conversion between the different species. This is used in many systems
leading to the very well known Josephson effect, but it is also present in other effects studied theoretically
and experimentally (Usui and Takeuchi 2015; Cappellaro et al. 2017; Bornheimer et al. 2017; Fernandes
and Chubukov 2017; Nicol and Carbotte 2005; Ballagh et al. 1997; Zibold et al. 2010).
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Fig. 17 Left panel: evolution of the Hubble parameter for the unified DM-DE model with superfluids in
comparison to ΛCDM. We can see that both model describe the same cosmology given by a period of
deceleration where the universe is matter dominated, followed by an acceleration period, around present
times. The unified model deviates from the ΛCDM evolution close to present and for future times, where
the action of the oscillatory potential is more pronounced. Right panel: evolution of the growth factor in
the unified model in comparison to ΛCDM, and percent difference, showing that those differ for present
times given the potential that describes the accelerated expansion period

leads to an oscillatory potential for the low-energy Lagrangian of the phonons,

L = P1(X1)+ P2(X2)− (1 − 2Φ) V (θ1, θ2) , with

V (θ1, θ2) = M4 [1 + cos(θ2 − θ1 +ΔE t)] , (241)

From the form of the interaction term, the oscillatory potential for the phonons is
given by a cosine potential, where M is the explicit symmetry breaking scale coming
from the interaction Lagrangian that breaks softly the shift symmetry of the phonon
action, and that has to be of the order of M4 = 2M2

plH
2
0 ≈ meV, to drive the late time

acceleration. The parameter ΔE is the energy gap between the two species, between
the ground and first excited state of the component of the superfluid.

Considering the approximation ΔE 	 mi , we can see that the superfluid has two
distinguished behaviours: one degree of freedom that behaves like dust, described
only by the non-canonical kinetic term that behaves like DM in the non-relativistic
regime as the DM superfluid model, and one that evolves under the influence of the
potential, like what is expected from a field that behaves like DE. The cosine potential
is similar to the pNGB models of DE (Frieman et al. 1995; Kaloper and Sorbo 2006),
and it is a special potential for explaining DE since it only softly breaks the shift-
symmetry, and the flatness of this potential is still approximately protected against
radiative corrections, which is one big problem in quintessence models of DE. The
late time acceleration behaviour from this DM superfluid can be seen in the evolution
of the Hubble parameter in the NR limit,

2Ḣ + 3H2 = V (θ1, θ2)/M
2
pl . (242)

From the left panel of Fig. 17we can see thatwehave a decelerated evolution, following
the behaviour of DM, followed by a period of accelerated expansion at present time.
Therefore, this model behaves like what is expected by DE, even without the presence
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of a specific component responsible for the acceleration, and being a model of DM
alone. At future times, this models deviates a lot from the predictions of ΛCDM, as
the cosine potential becomes important.

Although the evolution in this model is very close to ΛCDM, this model presents
distinct predictions. This can be seen by computing the perturbations in this model.
One of those predictions is the growth factor, that in this model deviates from the
ΛCDM one by around 10% at present times, as presented in right panel of Fig. 17.
Future galaxy surveys might be able to test this deviation.

5 Cosmological and astrophysical constraints, and newwindows of
observation

Now that we have described our ULDM classes and showed the consequences that
these models might have in cosmology and astrophysics, in this section, we are going
to show some of the constraints obtained for the parameters of these theories when
the different phenomenology of these models is tested with data.

For most part of this section, the constraints are going to be for the FDM model.
This model has been much more explored in the literature than the others, not only
because it has been introduced first, but also since it has only one parameters m (we
are assuming in general that the ULDM is the total mass of the universe, unless stated
otherwise). However, we are also going to show some constraints obtained for the
SIFDM and the DM superfluid models. In each part it is stated for which model the
constraints are obtained.

We summarize most of these constraints on the mass FDM in Fig. 18. As we can see
in this figure, this set of (current) constraint, if they hold, strongly suggests that an FDM
with mass of order of 10−22 eV, which was proposed as the ideal mass that introduces
interesting new phenomena on small-scales and that addresses the controversies that
appear in those scales, is strongly challenged. For the heavier masses that seem to be
allowed now, the phenomenology of the FDM is closer to the one from CDM.

In the plot we presented only some of the constraints present in the literature. Other
bounds obtained from other observables testing different astrophysical consequences
of the ULDMmodels is presented below, together with a description of the bounds of
the figure45.

We just want to emphasize that this bounds are for the FDM model only, and the
SIFDM and the DM superfluid have other sweet spots for the mass of their ultra-light
particle. These twomodels currently areweakly constrainedwith not a lot ofwork done
in the literature to constraint the parameter of these models. For the DM superfluid,
as we saw in Sect. 4.2, the mass is constrained to be 1.5 eV < m < 2.4 eV coming
from the thermalization condition in the halo with cross-sections that are allowed by
measurements from galaxy cluster mergers.

45 The bounds presented here assume that almost all the DM is composed by FDM. If one wants to see an
equivalent figure that takes into account the fraction of the FDM, see Fig. 1 from Grin et al. (2019). This
reference also presents a very good review of the gravitational probes of FDM.
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Fig. 18 Summary of most of the constraints on the mass of the FDM particle discussed in the section
(For other versions of this figure and a notebook to generate it check https://github.com/elisaferreira/
figure_mass_FDM.). These bounds assume that FDMmakes most of the DM in the universe. In this figure,
the shaded regions represent the excluded regions. TheCMBandLSSbounds come fromHložek et al. (2015,
2018) using Planck (2015) TT CMB auto-power and the WiggleZ galaxy–galaxy auto-power spectrum.
The Lyman-α constrains correspond different analysis made in the literature coming, from the darker to
lighter, from Nori et al. (2019); Armengaud et al. (2017); Iršič et al. (2017); Rogers and Peiris (2020),
respectively. The Eridanus II constraint are both for its existence and for the survival of its star cluster
from Marsh and Niemeyer (2019). The next line presents the constraints from black hole superradiance
(BHSR). The first constraint comes from bounds on the spin of the supermassive BH (SMBH) inM87, from
the measurements obtained by the Event Horizon Telescope (Davoudiasl and Denton 2019). The second
set of bounds comes from Stott and Marsh (2018), which presents the stringiest bounds from BHSR of
ultra-light particles from stellar BHs and from SMBHs. The global 21 cm signal detected by the EDGES
team can also be used to put bounds on the mass of FDM as shown in (Lidz and Hui 2018; Schneider
2018). The next row refers to bounds on the FDM imposed by testing the suppression of the sub-halo mass
function in comparison with the SHMF from WDM models constrained using strong gravitational lensing
of quasars and from fluctuations in stellar streams (Schutz 2020). In Lancaster et al. (2020), they compute
the different description that dynamical friction has for the FDM and apply this to the Fornax globular
cluster. The next bound comes from another dynamical effect, which is heating of the MW disk, that can be
constrained measuring the velocity dispersion of stars in the solar neighbourhood (Church et al. 2019). We
also include two constraints in the mass assuming that the measured central density of dSphs, Draco and
Sextants should match maximum FDM core size, which should be smaller then the virial radius of these
galaxies (Chen et al. 2017). This row also contains the results from the reanalysis of the bounds from dSphs
from González-Morales et al. (2017) starting at the lighter region, and Safarzadeh and Spergel (2019) the
darker shaded region. In red, it is the constraint in the mass coming from the analysis of the ultra-faint dwarf
Segue I from Hayashi et al. (2021)

5.1 Cosmological constraints: CMB and LSS

We are first going to talk about the constraints and forecasts that can be obtained on
the ULDM parameters using cosmological observations.
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5.1.1 CMB and LSS

FDM
We saw in Sect. 4.1.4 how the angular temperature power spectrum and the matter

power spectrum can be affected by the FDM. We show now constraints obtained in
this class of models using measurements of the CMB power spectrum and of the
matter power spectrum. These constraints are obtained in mainly in two articles. In
Hložek et al. (2015), the authors investigated that using a combination of CMB data
from theWilkinsonMicrowave Anisotropy Probe (WMAP), Planck satellite, and also
from ground CMB experiments like the Atacama Cosmology Telescope, and South
Pole Telescope, and galaxy clustering data from the WiggleZ. And in Hložek et al.
(2018) this analysis was updated, and some additional effects were tested, using a
combination of data fromPlanck (2013) temperature power spectrum and theWiggleZ
galaxy-galaxy auto-power. In these references, they investigate the FDMmodel, where
only one particle is responsible for the FDM.

In those two papers, they investigate the effects in the CMB and in the matter
power spectrum of a large range of FDM masses, encompassing masses where the
ultra-light particles behave as dark energy. These two papers also investigate effects
that could come from specific models inside the FDM, like the constraining the axion
isocurvature modes, and the spontaneous symmetry breaking scale, which we are not
going to discuss in this review.

In these references, the data from CMB and from LSS were combined to obtain the
constraints. The combination of this data is important to make the constraints on the
highermass end of the FDM tighter, and it is drivenmainly by the LSS tight constraints
for k ∼ 0.1 hMpc−1.

For the low mass end of the FDM, the combination makes the constraints weaker.
This results show that if one wants a DM component that can be responsible for all
the DM in the universe, then

m � 10−24 eV . (243)

If m � 10−32eV the ultra-light field can behave as dark energy. This constraints
are driven mostly by the expansion of the universe given that a component with this
mass modifies the evolution of the universe after matter-radiation equality and can be
strongly constrained by CMB (we will discuss FDM as DE in more details in the end
of this section). The most up to date constraints are present in Hložek et al. (2018),
but we show in Fig. 19 a very explanatory plot from Hložek et al. (2015) where we
can see these constrains. The allowed region is the red-shaded region.

The region where 10−32 eV < m < 10−23 eV is interesting since is allows to
constrain the model a lot. This might not be the region where the ultra-light field can
have a sizable DM component, but it allows to put percent level constraints the fraction
of the FDM,with CMB being the best gravitational probe in this regime. In this region,
FDM cannot be more than 5% of the total DM: ΩFDM/(ΩDM +ΩFDM) ≤ 0.05 and
ΩFDMh2 ≤ 0.006 with 95% confidence level.
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Fig. 19 The 2σ and 3σ of the mass fraction Ωultra−light/Ωd in function of mass. The regions show the
constrained region Ωultra−light/Ωd � 0.05 at 95%, where Ωd is the total dark-matter density fraction.
CMB-only constraints are the red regions, while grey regions include large-scale structure data. Image
reproduced with permission from Hložek et al. (2015), copyright by APS

Future CMB experiments, CMB S4, will be much more sensitive to the energy
density of the ultra-light particles (Hložek et al. 2017). They will be capable of probe
different imprints that ultra-light particles can leave in the CMB in the range of masses
10−32 eV < m < 10−23 eV. This range is particularly interesting to probe many
different aspects of the microphysics of the models that belong to the FDM class, like
the axion andALPs. In the highermass range of the above interval, this next generation
of CMB experiments can provide constraints in the mass that are competitive to small-
scale observables like dwarf galaxies abundances and mass-halo profiles.

Optical depth The suppression of the structure formation present in the FDMmodel
leads to a possible smaller amount of galaxies at high-z, changing the reionization
history. We saw that the optical depth can be changed by the FDM (164). We can then
use the optical depth measured by the CMB, τ(rrec), to constrain the mass of the FDM.
This was done in Bozek et al. (2015) where they use the value of the optical depth
from Planck + WMAP (Spergel et al. 2015). They found that a mass m � 10−23 ]eV
for all the DM to be FDM is excluded, depending on the model chosen which entails
details of the reionization and the luminosity function, at more then 3σ . The standard
mass of 10−22 eV is challenged by these high-z measurements, with results from this
mass being on the edge of the allowed parameter space. This shows that non-linear
high-z measurements can also be used to constrain the FDM mass, and other ULDM
models. However, these bounds carry a lot of astrophysical uncertainties and so need
to be considered carefully.

This study opens up an interesting avenue to constrain the FDMmodel through the
modified reionization using CMB. The epoch of reionization can be better constrained
bymeasuring the kinematic Sunyaev–Zel’dovich (kSZ) effect (Sunyaev and Zeldovich
1980). The amplitude of the kSZ is sensitive to the duration of the reionization, and
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could be used to put bounds in the FDM mass. Experiments like Advanced ACTPol
(AdvACT) have an improved measurement of the kSZ and help constrain the FDM.

5.1.2 Lyman-˛

FDM
Recent investigation of FDM models in light of Lyman-α forest finds new con-

straints on FDM mass (Iršič et al. 2017; Armengaud et al. 2017; Kobayashi et al.
2017). It puts a bound in the mass of FDM in the case where more than 30% of the
DM being composed by this scalar field of m � 10−21 eV. This value is larger than
the value necessary for the FDM model to solve the small-scale problems ofΛCDM,
and puts some tension in the FDM model.

The Lyman-α forest is produced by the absorption of the light from quasar by
clouds of neutral hydrogen localized at low-redshifts, in the line of sight between the
quasars and us. For this reason, this is an important probe of the matter spectrum on
small-scales, on scales of order 0.5Mpc/h � λ � 100Mpc/h.

In this work, data from the XQ-100 survey were used which refers to 100 medium
resolution spectra with emission redshift 3.5 < z < 4.5. This data is compared against
a simulation of the FDM with different masses and abundance today. On non-linear
scales, quantum pressure is added. The result is shown in the left panel of Fig. 20. The
right panel of this figurewe also see the impact of the constraints obtained in cosmology
and in the astrophysical implications. In cosmology, the constraints obtained give a
bound in the value of the displaced field, assuming that the genesis mechanism for
this light field is vacuum displacement. Combining this data with CMB data, they
also derive bounds on inflation, more specifically on r the tensor to scalar ratio for an
inflationary epoch in the presence of FDM. They also show how this bound impacts
the resolution of the small-scale problems presented by FDM. The cyan line indicates
the bound where the missing satellites problem is solved by FDM. The constraint is
very tight and it shows a tension with the Lyman-α measurements.

A possible caveat from this analysis, and of the other in Iršič et al. (2017) and
Armengaud et al. (2017), is that they use hydrodynamical simulations, and theymostly
neglect quantum pressure. However, quantum pressure can be very important and play
a vital role in structure formation,which iswhat the analytical behaviour seems to show
us (Zhang et al. 2018a). In a follow-up paper (Nori et al. 2019), quantum pressure was
included in the simulations and its effect on the LSS evolution is studied. It is found a
constraint in the mass of the FDMmodel ofm ∼ 2.1×10−21 eV, which is compatible
with the ones obtained in the analyses that do not include quantum pressure (Iršič
et al. 2017; Armengaud et al. 2017; Kobayashi et al. 2017). It is found that quantum
pressure does not affect the LSS in these redshifts and scales relevant for Lyman-α,
not affecting the bound on the mass largely. These simulations also allow the authors
to study the properties of the halos formed in this model, showing the differences in
their distribution and shape in comparison to CDM.

Recently, Rogers and Peiris (2020) presented a reanalysis of the Lyman-α data. This
is based on a method that emulates the power spectrum from a “training” simulation
constructed using Bayesian optimization, which then is fed in the MCMC sampling
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of the parameter space. The authors claim that this emulator makes less assumptions
than the usual interpolation techniques and for this reason presents a better statistical
modelling of the power spectra. With this technique they obtain a even higher bound
for the FDM particle: m > 2 × 10−20 eV, which disfavours the strongly 10−22 eV
canonical FDM mass. This reference presents the newest and most complete study
of the bound on the FDM model using Lyman-α, and it confirms the tension with
the value of the mass that is necessary in order for the FDM model to address the
small-scale challenges.

However, as it is pointed out in these references, the bounds obtained above depend
on how the intergalactic medium (IGM) is modelled. It is expected, for example,
that as reionization proceeds in a spatially inhomogeneous manner, fluctuations in the
temperature and ionizationmust be present, and, therefore, the IGMmodel should con-
sider this effect. As pointed out in Hui et al. (2017) and some of the references above,
differences in this modelling like missing the addition of these fluctuations could
drastically change these bounds. In the recent analysis by Rogers and Peiris (2020),
however, where they marginalize over physically-consistent IIGMmodels with differ-
ent temperature and ionization histories it is argued that this can actually tighten the
constraint. They also claim that the current data might be only marginally sensitive to
these different modellings of the IGM. How to model an the impact of the IGM mod-
elling in the FDM bounds, remains, then, a question that needs further investigation.
Therefore, new and independent analysis needs to be done to confirm if the intermedi-
ary to small-scales hold more information about these models. Another probe that can
help with that is the 21 cm from neutral hydrogen, since it probes even smaller scales.

Another thing that could change these bounds is the properties of the FDM model.
Leong et al. (2019) pointed out that for FDMmodels with a axion-like cosine potential,
different initial conditions can yield different bounds on the FDM mass when using
the Lyman-α data. Different than in the standard case considered until now where we
considered small angles (field values—see discussion below (93), in the extreme axion
misaligned angle is considered, the transfer function presents a bump for small-scales.
This affects the Lyman-α flux power spectrum. With this initial conditions, the mass
of this FDM scenario necessary to explain the Ly-α data is of order 10−22 eV, > 10
times bigger than for the case of standard FDM initial conditions considered above
(see Arvanitaki et al. 2020 for other phenomenology of this extreme FDM model).
This shows that the bounds also depend on the properties of the FDM model.

5.1.3 21 cm cosmology

FDM
As discussed above, the ULDM models give a suppression of the matter power

spectrum on small-scales. Those scales can only be marginally probed by the cosmo-
logical probes like CMB, LSS, cluster abundance, Ly-α forest. Those measurements
can only constraint the structures on scales k ≤ 10Mpc−1, not being able to probe the
smaller scales. One new window of observation, the 21 cm line from neutral hydro-
gen (HI), promises to allow us to probe the matter power spectrum in much smaller
scales, k ≥ 10Mpc−1, on scales even smaller than the Ly-α forest. This is possible
since neutral hydrogen is only present in the universe, after reionization, inside dense
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Fig. 20 Left panel: shows the constraint on the mass of the FDM and the fraction of the total DMmass from
Ly-α forest measurements. Right panel: constraints in the mass of the FDM and the value of the displaced
field. This is combined with cosmological constraints, shown by the dashed lines for different tensor to
scalar ratios. The region in parameter space where the missing satellite problem is solved for the FDM
model, is shown by the cyan stripe. The white dotted contour represents the line where FDM constitutes
only 20% of the total DM. Image reproduced with permission from Kobayashi et al. (2017), copyright by
APS

clouds in damped Ly-α systems, which are small objects (k ∼ 102 Mpc−1). In this
way the 21 cm HI signal is a biased tracer of the galaxies, and consequently of the
underlying matter distribution in such small-scales. Therefore, measuring the global
21 cm HI signal together with its fluctuations can gives information about the still
largely unconstrained small-scale matter power spectrum.

However, at those scales these system are dominated by astrophysical process,
making it difficult to disentangle the behaviour of DM from those processes. To
obtain cosmological information from thesemeasurements is a challenge. Some recent
studies (Muñoz et al. 2020) forecast that the matter power spectrum can be mea-
sured from the global 21 cm HI signal for an experiment with parameters close to
EDGES (Bowman et al. 2018), with a precision ofO(10%) integrated over the scales
k = (40− 80)Mpc−1, after imposing priors on the astrophysical effects like star for-
mation rate and feedback amplitude. They also parametrize the effect of foregrounds,
like the Galactic foreground, that plagues all 21 cm experiments and might represent a
huge limitations for them if not well mitigated. Detecting the 21 cm HI fluctuations is
a much harder task. Large interferometer experiments like HERA (Hydrogen Epoch
of Reionization Array) (DeBoer et al. 2017), LOFAR (LOw-Frequency ARray) (van
Haarlem et al. 2013), LWA (Long Wavelength Array) (Eastwood et al. 2019), and
SKA (Square-Kilometer Array) (Koopmans et al. 2015) have the goal of measuring
this signal from the epoch of reionization (EoR) and also late times. For a HERA-like
experiment itwas found that thematter power spectrumcan be probedwith an accuracy
of O(10%) integrated over the scales k = (40–60) Mpc−1 and k = (60–80) Mpc−1.
The measurements of the fluctuations probe the evolution of the matter density tomo-
graphically, carrying more information about the scale and redshift dependency of
the HI signal, bringing more information on the astrophysical processes. This makes
the parameters of these astrophysical processes to be better disentangled from the
HI signal, allowing this constraint in the power spectrum be less dependent on the
astrophysics in these regions.
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Specifically for the case of ULDM models, forecasts using 21 cm HI signal were
made in Lidz andHui (2018); Nebrin et al. (2019); Shimabukuro et al. (2020), and they
specialize in the FDM model. Lidz and Hui (2018) studied how the recent EDGES
measurement of the global 21 cm HI signal (Bowman et al. 2018) can constraint the
FDMmodel. The global signal is the average radio signal from 21 cm redshifted emis-
sion from z ∼ 15–20 in the case of EDGES. This measurement showed an absorption
profile that had an amplitude two times bigger than the expected. This higher ampli-
tude indicates that already at redshift z = 20, there was significant star formation,
which leads to a also significant Lyα background. This fact shows that the smallest
structures, and consequently the power spectrum on small-scales, cannot be largely
suppressed. This puts constraints in models of DM that have the feature of suppressing
the small-scale structures, like the FDM (or any ULDM model). This measurement
alone is capable of putting a challenging constraint in the mass of the FDM particle:
m ≥ 5 × 10−21. A similar analysis is performed in Schneider (2018), where using
conservative limits of the stellar to baryon fraction and minimum cooling temperature
motivated by hydrodynamical simulation puts a comparable bound in the FDM par-
ticle mass: m ≥ 8 × 10−21. To obtain this constraint some assumptions on the star
formation, and on the halo mass profile had to be made. Given the importance of this
result for the FDM models, the bounds obtained from this data should be explored
further, as well as the future data from 21 cm signal.

To better understand how the HI signal is affected by the FDMmodel, Nebrin et al.
(2019) study the impact of FDM models in the 21 cm HI signal from the cosmic
dawn and EoR analytically, together with some forecasts for future experiments. They
use an analytic model which take into account the Ly-α coupling, X-ray heating and
ionization to study the 21 cm in a ΛFDM cosmology. They find that suppression
of structure from FDM models, which makes small sub-halos absent in this model,
has the effect of postponing the formation of sources and the reionization of neutral
hydrogen. This delay changes the global 21 cm signal showing a smaller absorption
feature than expected from ΛCDM. The amount of suppression allowed considering
the results from the EDGES experiment puts a lower bound on the mass of the FDM
model, withm ≥ 6×10−22 eV, whichmight already be considered challenging for the
FDM to solve the small-scale problems, but marginally. They also show the potential
of a SKA-like and LOFAR experiments to test these models in the future. This shows
us that future experiments will be able to confirm the important bound of the FDM
model imposed by the EDGES.

Shimabukuro et al. (2020) analyze the impact of measurements of the 21 cm forest,
which alternatively from the tomographic and power spectrum techniques to use 21
cm HI signal, proposes to use the 21 cm narrow absorption features from the IGM
cause by high-z loud radio sources or collapsed objects, like minihalos. The 21 cm
forest is expected to be measured by SKA. In this reference they show that the impact
of this measurement can also constraint the mass of the FDM model, and that this is
degenerate with the fraction of FDM that composes the DM.

For post-reionization HI signal from 0 < z < 3, that can be measured using the
intensity mapping technique, a study of the forecast of the possible constraints in the
FDMmodel was presented in Bauer et al. (2020). This analysis shows how this signal
can be used as a powerful probe of the halo formation since the halo abundance is

123



Ultra-light dark matter Page 149 of 186     7 

changed if a fraction of the DM is given by the FDM. They forecast the constraints in
the mass of the FDM for a SKA1MID-like IM experiment. They find that the fiducial
value adopted for the FDM (m = 10−22 eV) can be constrained at the 10% level when
the 21 cm data are combined with CMB data from the Simons Observatory.

The possibility of 21 cm HI signal to constrain alternative models to CDM, like
WDM, for example,was studied inmany references (Barkana et al. 2001;Yoshida et al.
2003; Safarzadeh et al. 2018; Lopez-Honorez et al. 2019; Leo et al. 2020). They show
how the signal changes for different DM models and also show how measurements
like the one from EDGES can put constraints in the mass of WDM.

The study of the capabilities of 21 cm experiments to give us cosmological infor-
mation is an active field of study and the references above are just some examples
of those efforts. These studies give us hope that, in the near future, this new window
of observation will allow us to probe the still unconstrained small scales, helping
elucidate the nature of the DM component.

5.2 Astrophysical constraints and newwindows of observation

Wepresented above some cosmological observations that help to constraint theULDM
models. In the past few years, there has been a huge advance in the observations of the
small-scales, with newwindows of observations being opened that can help determine
the nature of DM.We present in this section, the constraints on the ULDM parameters
coming from astrophysical observations and present some of these new windows of
observations that are still being tested and being developed, but that promise to help
testing the ULDM models.

5.2.1 Local Milky Way observables and stellar streams

Our galaxy, the Milky Way (MW), is our closest source of information about DM
and it is a very good laboratory for studying its behaviour on small-scales. Here we
present some observations from the MW that promise to help us test different models
of DM. We are in a very special era for observations of the MW and Local group with
data coming frommany current and future experiments likeGaia (Gaia Collaboration
2016), Large Synoptic Survey Telescope (LSST) (Ivezić 2019), Prime Focus Spec-
trograph (PFS) (Tamura et al. 2016), WFIRST (Akeson 2019), among others. Using
the incredible new data from these observations promises to be revolutionary in the
studies of the MW, and hopefully for helping discover the nature of DM.

MW’s gravitational potential
Very quickly we would like to point out an observable that can help us test DM.

Knowing the shape, mass and distribution of the halo in the MW can gives us clues
on the DM model since different DM models predict distinct shapes for the halos. To
understand the halo we need information not only in the inner regions of the halo,
but on many different scales up to the virial radius. The measurement of the position
and velocity of satellite galaxies and globular cluster can give information for the
dynamics in a good range of distance from the center of the MW. The distribution of
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satellite galaxies is already used to put constraints on the mass of the ULDM models
(and other models of DM), as we saw above.

Experiments like Gaia can give us very accurate data for scales much smaller than
the virial radius. PFS galaxy archaeology survey will also measure stars in the galactic
disk, complementing complementing Gaia’s survey. LSST is expected to provide
information from stellar tracers on scales close to Rvir, being able to measure many
new satellites that are fainter and more distant than the known today, extending the
determined halo mass function by three orders of magnitude.

This is linked to the study of streams discussed above, since streams given their
long range in the halo, can give us information on the gravitational potential of the
halo for of even larger scales.

Dwarf galaxies
Dwarf galaxies are good laboratories to study ULDMmodels. Those small galaxies

are DM dominated and allow us to study the behaviour of DM in an environment with
small influence from baryonic effects. They can be used to probe the three classes of
effects we saw in Sect. 4.1.6: the suppression of the power spectrum, effects coming
from the core structure inside the galaxy, and dynamical effects. We can use many
different types of dwarf galaxies for that from dwarf spheroidals (dSphs) to ultra-faint
dwarfs (UFD).

The suppression of the power spectrum present in the FDM model, leads to a
suppression in the low-mass halos. So the FDMmodel predicts halos with a minimum
mass. Nadler et al. (2019) used theminimummass of detected halos from the observed
population of satellites in theMW, and found that in order for it to be within the bound
(182), the mass of the FDM needs to be m > 2.9 × 10−21 eV, setting a lower bound
from on the mass caused by the linear suppression.

The effects from the presence of the core in the interior of galaxies can also be
probed by dSphs. As discussed in Sect. 4.1.4, classes of models like the FDM present
a limit for the size of the cores that they can form which leads to an upper bound in the
central density of these cores. We can use measurement the central density and half
mass radius of dwarf galaxies to compare with those bounds and constrain the mass
of the FDM.

As we already discussed, McConnachie (2012) measured half-light radii inferred
from the densities of 36 Local Group dwarf spheroidals, and when compared with the
bound on the half mass radius predicted for the FDM (180), obtained a mass around
m ∼ 10−22 eV so these are compatible. The density of 8 dwarf spheroidals has been
measured in Chen et al. (2017). Comparing these central densities measured with
the bound (181) it was shown that for the central density from FDM to match the
measured ones from the dSphs Draco and Sextants, the mass of the FDM needs to
be m = 8+5

−3 × 10−23 eV for Draco and m = 6+7
−2 × 10−22 eV for Sextans. For those

masses, the FDM leads to a cored distribution at the center of the galaxies, alleviating
the cusp–core problem. This shows that dSphs can be used to put bounds on the mass
of FDM.

Nevertheless, new studies have been reviewing these bound. They challenge many
aspects of this result including the analysis made, presenting some reanalysis, and the
assumption of sphericity of the halo of these galaxies.
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In González-Morales et al. (2017), it was suggested this analysis might be giving
biased values for the FDM mass. The reason for that is because there is a degeneracy
between the mass density profile and the anisotropy of the velocity dispersion. When
using Jeans analysis to obtain the halo parameters, like the FDM mass, from dSph
galaxies that we do not know the density profile, leads to a biased determination if this
mass. Therefore, in this paper they usemock catalogues of dSphs hosted in a FDMhalo
and they conclude that the analysis should be fitting the luminosity-averaged velocity
dispersion of the subcomponents. Using this technique for Fornax and Sculptor, they
obtain a bound in themass of the FDMwith 97.5% confidence ofm < 0.4×10−22 eV,
which goes in a different direction than the other constraints.

Safarzadeh and Spergel (2019), using the half-mass radius and the slope the mass
profile of Fornax and Sculptor dwarf spheroidal galaxies, obtained a different bound
for the FDM mass m � 10−21 eV, to have the expected density profile and halo mass
for those dSphs from observations like dynamical friction.

Kendall and Easther (2020) pointed out yet another possible limitation of the above
analysis. They show that the presence of cores with flat density profile in the center
of the NFW-halos can actually make the density of large ULDM halos larger than
the CDM ones, making the cusp–core problem worse. This happens because solitons
obey the inverse mass-radius scaling law, with mass depending on the total mass of the
halo. They perform an analysis that takes into account semi-analytically the variability
of the core–halo relation showing that this might make this discrepancy less strong
for larger halos. However, this shows that many aspects that are crucial for properly
describing these systems, like fluctuations and baryonic effects, are not present in the
semi-analytic model.

Another study also challenges this result based on the fact that the DM halo in
dSphs might not be spherical (Hayashi and Obata 2020). This analysis produces less
stringent bounds due to uncertainties in the non-sphericity but brings an important
characteristic that should be considered about the DM halo of dSphs. There are also
several works in the literature (e.g. (Read et al. 2019; Safarzadeh and Spergel 2019;
Hayashi et al. 2020)) that suggest that luminous dSphs might be affected by baryonic
effects which makes the analysis of the dark matter profile in those system to be more
complicated.

Another class of dwarf galaxies that can be used to probe ULDM model are the
ultra-faint dwarf galaxies. UFDs are considered the ideal system to study dark mat-
ter since they present an even larger mass to light ratio than other dwarf galaxies,
containing less stellar mass than the luminous dSphs, and being less affected by bary-
onic effects Lazar et al. (2020). There are only a few studies of the FDM model
using UFDs, but they already show the importance of these system to probe the
properties of DM on small-scales, in particular of the FDM model. Calabrese and
Spergel (2016), using the half-light masses of Draco II and Triangulum II estimated
mFDM ∼ 3.7 − 5.6 × 10−22 eV. Doing a similar analysis using Milky Way UFDs,
Safarzadeh andSpergel (2019) obtained a bound in the FDMmass,mFDM > 10−21 eV.
We can also cite studies using Eridanus II, which wewill mention in a separate section.

Although much less explored, the UFDs put the strongest constraints to date on
the FDM mass, as shown in Hayashi et al. (2021). In this work, as more data from
stellar kinematics of UFDs become available, it was performed a full Jeans analysis
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of 18 UFDs, where a simulation driven FDM core profile (obtained in Schive et al.
2014a, b) surrounded by an NFW profile is fitted to the data. The authors found that
the FDM mass obtained for all UFDs prefer a particle mass heavier than 10−21 eV.
The strongest constraint comes from Segue I, mFDM = 1.1+0.83

−0.7 × 10−19 eV, which
can be seen in red in Fig. 18. This not only is the strongest constraint to date on
mFDM, but it also compatible with most of the other constraints coming from different
system. These systems constraint different phenomenology and showed a tendency
for a higher FDM mass, confirmed using UFDs in this work.

However, the bounds obtained from dSphs are in tension with all the other bounds
on the FDMmass. The bound on themass obtained for the luminous dSphs, the last row
of Fig. 18, falls in the excluded region of almost all of the other bounds, including from
UFDs, which are obtained using the same method. This was noted in Safarzadeh and
Spergel (2019),where the bounds on the FDMmass using the half-light radius of dSphs
and UFDs were compared. They found that the mass obtained using UFDs cannot fit
the density profile of Fornax and Sculptor. This was confirmed inHayashi et al. (2021).
This might be an important indication that the FDM model cannot explain the small-
scale challenges (this was pointed out in a different context in Burkert (2020)). Or
this might indicate several other questions regarding our understanding of how these
cores form and their relation to the halo of galaxies. Baryonic effects might change
the DM profile in a way that we are not probing the intrinsic DM profile. It could
also be that we cannot use an universal density profile for all galaxies, or that we do
not understand the relation between the core and halo. Recent simulations (Veltmaat
et al. 2018; Schive et al. 2020) have shown that the soliton is not static and oscillates
with large amplitudes, which might also impact these numerical fitting functions. This
remains an open question and a challenge for the FDM model.

All of these studies show that we need to have better understanding of the modeling
of those halos and their formation, and need broader observations and numerical
simulations, specially including baryons, to understand and test the FDM class using
dwarfs. However, they also showhowpowerful these small galaxies can be to constrain
the FDM. Measuring the density profile of dwarf galaxies is the goal of many future
telescopes like PFS and LSST, for example.

Stellar streams
Stellar streams are a stream of stars orbiting a galaxy which are remnants of a

tidally disrupted globular clusters or dwarf galaxies, that was torn apart by a more
massive system. These streams are usually thin and very long, extending to dozens
of kpc across the 3-dimensions of the halo, and wrap around the disrupting galaxy.
Streams are good dynamical probes since they are initially cold and very sensitive to
the gravitational potential (Ibata et al. 2002; Johnston et al. 2002; Yoon et al. 2011;
Carlberg 2012). This means that the streams when encounter substructures present in
the halo of the galaxies can be influenced by it, causing dynamical heating, which are
changes in the velocities in the stream, but that are very hard to detect. These encounters
also cause disturbances in the morphology of the stream, with the formation of gaps
which are underdensities caused by the sub-halos encountered (Carlberg 2012). Only
a part of the sub-halos hosts baryonic matter and can be observed directly, so stellar
streams offer the opportunity to detect dark halos invisible by the traditional methods
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(see also discussion about lensing below). These gaps contain information about the
substructure and can be caused by clumps that are even less massive than a what
is expected of a DM sub-halo, showing how sensitive the streams are for detecting
substructures. From these gaps, it is possible to infer the properties of the perturber
that caused the gap, determining quantities like its mass, scale radius, relative velocity,
and impact parameter. It is estimated that we can observe gaps in streams cause by
substructures with mass as low as (Erkal and Belokurov 2015; Erkal et al. 2016; Bovy
et al. 2017) M ∼ 10−5 − 10−6 M�. This is well below the limit where those halos are
expected to host galaxies, and for this reason cannot be probed by usual methods based
on detecting the luminous component. On top of that, since the stream extend for large
distances in the galaxy and outside the galactic plane, streams might contain detailed
information about the gravitational potential and its variations of large part of the halo
of a galaxy. With this, stellar streams are an exciting new probe of substructures that
can have important consequences in testing different models of DM.

Since different models of DM predict a different amount of sub-halos, it is argued
that the stellar streams can be used to test DM models. In the case of the ULDM
models, which suppress the formation if substructures, having a much bigger size of
minimal subhalo allowed to be created in the galaxy halo. Models like WDM and
SIDM also have a modified abundance of sub-halos in comparison with CDM. So
there is the hope that these different models would imprint very distinct signals in the
streams given their different substructure distributions. Streams can also have gaps
coming from baryonic substructures, so one needs to be very careful in the analyses
not to overestimate the presence of sub-halos.

Up to now, 22 MW stellar streams are known, being the Sagittarius stream one the
most important.46 One of the streams that has been used to determine the presence of
sub-halos is GD-1. The MW stellar stream GD-1 was discovered using SDSS maps
(Grillmair andDionatos 2006), originated from a globular cluster, and it is seen as a 63◦
long structure in the North Galactic region. Gaps of scales of approximately 10◦ were
found in this stream using SDSS and these were associated with the encounter with
sub-halos by Carlberg (2016). This was confirmed by Banik et al. (2021) analyzing
the stellar density perturbations from accurate measurements of the morphology (de
Boer et al. 2020) of this streams using Gaia data combined with photometry from
Pan-STARRS (Chambers et al. 2016). They found that the data indicates that these
perturbations should come from sub-halos, and that their abundance and masses are
compatible with the expected from CDM from simulations. The error bars of these
abundances and expected masses are still large. To detect gaps from subhalos from
masses M ∼ 10−5–10−7 M� it is necessary a precision in the determination of the
radial velocity of 100–300 m/s. However, these measurements inaugurate and opened
the avenue for searches of substructures using stellar streams.

Novel experiments like PFS and LSST promise to measure the streams from the
MW and Andromeda in more detail and with higher precision, with the goal of not
only detecting the signals of substructures but to understand in more detail the charac-
teristics of the stream, its formation and the properties of its progenitor. Forecasts for
LSST (Drlica-Wagner et al. 2019) show that the lowest mass subhalo that the 10-year

46 Around 4 streams are known in Andromeda and 10 streams are known outside the Local group.
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LSST data will be able to measure has mass 2 × 107 M� for a stellar stream with
surface brightness of 33mag arcsec−2, improving the current bound in three times.
LSS can also measure smaller subhalos (10−5 M�) since it will allow to access to
smaller angular scales, previously dominated by noise, to measure the power spectra
of the stream.

However, Ibata et al. (2020) recently revise these conclusions and indicate that
the features found in GD-1 can be explained by simple epicyclic motion in a smooth
Galactic potential as shown by their N-body simulation, without the need of the pres-
ence of a subhalo. Therefore, they conclude that the measurement from GD-1 show
no evidence for the influence of DM. This shows that obtaining information about
DM substructure in the streams might be more complicated than expected, with some
degeneracies with other effects, and that more modelling and understanding of the
influences of the MW in the streams are necessary. This is an open topic of research,
and all these conclusions need to be studied further and verified by independent groups.
But without a doubt, streams are a promising probe for DM, and the next few years
are guaranteed to be very exciting in this fast moving field.

Vertical dynamics
Here we are going to show that the vertical dynamics of stars can be used to test

predictions coming from different aspects of the ULDM. We are going to show here
that it can be use to probe modifications of the dynamics coming from the MOND
behaviour of the theory, in the case of the DM superfluid, or as a way to probe the
heating of stars cause by the presence of FDM quasiparticles in the halo. The second
effect would also be present in the case of the SIFDM or the DM superfluid since
both classes would also present a similar relaxation with macroscopic objects, which
can be probed by this effect. But this was only studied in the case of the FDM in the
literature, and that is what we present here.

Superfluid DM
Our galaxy holds more information that can be used to probe DM models. There

are several other local MW observables that imprint information from the underlying
DM that forms the halo.

One example of one observation that can bring information about the different
dynamics imprinted by models like MOND and the DM superfluid is presented in
Lisanti et al. (2019a, b). MOND and the DM superfluid model are constructed to give
a very good fit to the rotation curves of galaxies and to explain the scaling relations,
like theMDAR, by having a different dynamics on small-scales. On top of that, theDM
superfluid model reproduces the expected CDM behaviour on large-scales. However,
in these papers, the success of those models in explaining the dynamics of galaxies is
challenged by observations from the MW dynamics.

The radial dynamics is what it is constrained by those models, since it is the infor-
mation that enters in the rotation curves of galaxies and the scaling relations. Now, if
one consider also the vertical velocities in the vicinity of the Sun, the authors show that
then it remains a challenge for those models to explain the rotation curves and these
vertical velocity dispersion data. MOND and the DM superfluid, in slightly different
ways, modify the dynamics on small scales, where for low-acceleration regions, a
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different acceleration than the Newtonian emerges in the system. In the DM super-
fluid, this is caused by the presence of the phonons, as we saw above. This modified
acceleration changes the dynamics in the radial and in the vertical directions. And in
these articles they constraint both the radial and the vertical velocities dispersion for
these models in comparison to CDM.

To constraint the radial dynamics, the very precise data fromGaia was used giving
data of the circular velocity between R = [5, 18] kpc. For the vertical dynamics it
was used data of K-dwarfs from the SEGUE sub-survey from SDSS (Sloan Digital
Sky Survey) were it was inferred the velocity dispersions for three mono-abundance
stellar populations. With this data a Bayesian likelihood analysis was conducted. The
authors found a discrepancy between the vertical acceleration predicted by MOND
and DM superfluid model in comparison to the one inferred from the data, giving
values that are around 15% larger than the ones inferred from observations and larger
than the ones predicted by CDM. And for this reason they claim those models are not
preferred as the DM model.

This work establishes an important new observable that should now be taken into
account when constructing DM models, their impact not only in the radial dynamics,
but also in the vertical dynamics.

However, as some authors have pointed out this result should be taken carefully.
McGaugh (2020) pointed out that this is a 2σ discrepancy and that maybe the data
used to infer the vertical velocities implies a local DM density that is the double of the
one inferred from the radial dynamics. This would give a halo that is not spherical,
like assumed in the analyses of Lisanti et al. (2019a).

This brings an important point about the data for the vertical dynamics of the
MW that we would like to highlight. The dynamics of the MW is very complex
with a rich accretion history. Although the MW, with its thin disk, is considered a
very stable galaxy with no major recent dynamical interactions, many observations
indicate a major accretion event with Sagittarius (Sgr) dwarf spheroidal. This is seen
in the streams that wraps around the MW, and it is expected that this event strongly
influenced the dynamics of the MW. Laporte et al. (2018) study of the MW’s major
accretion events with Sgr and the Large Magellanic Clouds (LMC). They show that
this encounter with Sagittarius produces oscillations in the MW disk. These vertical
perturbations are an influence of many passages of Sgr, as it falls into the MW. The
influence of the LMC also changes the dynamics, but much less than Sgr, with Sgr
being the main influence in the dynamics of our galaxy in its recent evolution. This
shows that the dynamics of theMWis complex and hasmany unknowns. These vertical
oscillations are also found in recent observations both in the Galactic disk and around
it, close and far away the solar neighbourhood (see Laporte et al. 2018 for a summary
and discussion of those). Therefore, even if the explanation for these oscillations and
other features in the Galactic disk is not solely the one above, this rich dynamics of
the MW has to be considered when using these observations, specially to constrain
models.

In this way, there is the possibility that the vertical dynamics data used in Lisanti
et al. (2019a, b) has the influence of these oscillations and cannot be used at face value
to constraint the dynamics of DM. Or, maybe this complexity of features has to be
considered as larger error bars in the inferred vertical dispersion. Therefore, vertical
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velocities are a new and important observable to test DM models, but it necessary to
understand if this information can be disentangled from the complex dynamics from
the accretion history of the MW. When this degeneracy is resolved this will be an
important criteria for DM models to satisfy in the MW.

Hossenfelder andMistele (2020) also point out that the model of the DM superfluid
used is too simplistic and that the DM superfluid interacts with baryons which might
also change the vertical accelerations.

FDM
In the context of the FDM model, the vertical dynamics was also used to constrain

the FDM mass in Church et al. (2019), where the change in the vertical dynamics
comes froma different effect than the one above. The disk of spiral galaxies ismodelled
approximately by a decaying exponential for the radial and vertical structure. From
observationswe see that, in general,wehavegalaxies that have a thin disk or a thickdisk
(Binney and Tremaine 2008). What determines the thickness of the disk is the vertical
velocity dispersion of the stars in the disk, and its linked to how old the star population
is in the disk. As we saw in Sect. 4.1.6, the presence of order one fluctuations in the
FDM field, or substructures in the halo, can cause gravitational heating due relaxation
between the FDM particles and the stars (Bar-Or et al. 2019). This heating increases
the velocity dispersion of the stars, making the size of the system that contains these
stars larger: star clusters larger or making the disk in galaxies thicker. In this work
they investigate how substructures of the FDM model affect the disk shape. They use
simulations that solve the SP system to understand the structure in the FDM model.
They find that the subhalos formed in this model, plus the presence of a standing wave
in the density profile of FDM, heat the stars in the disk, making the MW disc thicker,
with the second effect affecting more the inner disk. They also find the presence of
radius dependent flaring of stars caused by these structures. They compare this with
measurements of the velocity dispersion of theMWin its thickest part (δv ∼ 32 km/s),
and put a bound in the mass of FDM at 2σ confidence level of m > 0.6 × 10−22 eV.

Dynamical effect: Eridanus II
In the previous section, we showed how the measurements of the thickness of the

disk can probe the velocity dispersion caused by gravitational heating by substructure
in the halo in the case DM is the FDM. Here we are going to show that Eridanus II
can be used to probe the same effect of the gravitational heating.

The existence of old star cluster like Eridanus II can then be used to constrain these
FDM fluctuations, and consequently the mass of the FDM particle. But not only the
existence of such sub-halo to host Eridanus II is necessary, but also one needs to check
the stability of the star cluster contained in this UFD. It is observed in simulations that
the central core formed in the inner part of galaxies has oscillations that changes the
density inside the core and might affect star formation. Therefore, if the star cluster
region is inside the core, which occurs for m � 10−20 eV, it is going to be affected by
the oscillations and might have a different star formation. Otherwise, the star cluster
can extend outside the core and can be subject to the interference patterns present
in the halo. The effect of those oscillations in the stars is heating of the star cluster,
which can disrupt the cluster in a time scale that should have been observed. Taking
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that effect into consideration, if FDM is the total amount of DM, Eridanus II can only
form if m � 8 × 10−22 eV, which is a value of the mass of the FDM particle that is
in slight tension with the one necessary for the FDM model. In Schive et al. (2020)
high-resolution simulations, where the random walk behaviour of DM inside the core
could be seen, it is shown that Eridanus II is bound to the MW, so its halo might suffer
tidal disruption. This reduces the oscillations and counteracts the heating. From that,
they claim that the bound obtained in Marsh and Niemeyer (2019), can be evaded
and m ∼ 10−22 eV is allowed and can explain Eridanus II. These studies show how
important is to study the effect of oscillations in the core, and this is the goal of future
simulations.

5.2.2 Substructure—strong lensing

Different models of DM predict different substructures, from its abundance to the
minimum mass for the possible substructures formed. As we saw in this section,
generally all the ULDMmodels suppress the formation of sub-halos of a certain mass
and size. By probing the substructures and its properties, then, we can test different
models of DM. Therefore, the observables that probe substructures represent one of
the most important tests for DM on small-scales.

We already presented above a probe of substructures present in the halo, the stel-
lar streams. This probe seems to be very sensitive to DM substructures and has the
potential in the future to help test DM models.

However, there is another way of probing directly the presence of substructures,
if they are luminous or not, which is gravitational lensing. Gravitational lensing is
distortion of light from objects by the presence of a gravitational potential. One of the
main observations used to search for substructures is strong gravitational lensing of
quasar. Lensed quasar can present multiple images, arcs or even Einstein rings. The
presence of substructures modifies the lensed images of quasar changing its morphol-
ogy and flux ratios, in a way that the substructure can be mapped, as done in Mao
and Schneider (1998), Hsueh et al. (2017), Dalal and Kochanek (2002) and Heza-
veh et al. (2016), including distortions from sub-halos in the line of sight (Despali
et al. 2018). There are many efforts to probe DM substructures from strong lensing
using different frameworks (Vegetti and Koopmans 2009a; Koopmans 2005; Vegetti
and Koopmans 2009b; Daylan et al. 2018; Vegetti et al. 2010), and machine learning
techniques (Alexander et al. 2020; Brehmer et al. 2019) (for a list of other machine
learning approach, see Alexander et al. 2020).

Different models of DM can also predict different types of substructures, like vor-
tices. They can also predict different shapes for these substructures like dark disks.
Dark disks are a unique type of substructure in isolated systems, not expected in CDM.
Those dark disks can be formed in the models based on the superfluid DM (Alexander
et al. 2019) and are very distinct signature of those alternative models. Strong gravi-
tational lensing is an important technique to probe these substructures, and one of the
techniques that is going to improve the most with the upcoming experiments.

All the other observations presented before probe substructures or other phenomena
from systems that contain stars or galaxies. Gravitational lensing and stellar stream
can be used even if the sub-halo or dark structure does not have a luminous component.
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Therefore, these probes offer the possibility of not only probing very light substructures
but different dark structures predicted by the ULDM models.

Sub-halo mass function
As we described in Sect. 4.1.4, the sub-halo mass function for the FDM model

presents a redshift dependent cut for smaller sub-halo masses, which leads to a sup-
pression of the small-scale structure. We can then use probes that are sensitive to the
gravitational potential to test the SHMF of the FDM model.

One work that attempts to test the suppression of the sub-halos is Schutz (2020).
In this work strong lensing, together with stellar streams, is used to constraint the
suppressed sub-halos mass function of the FDM model. A bound on the mass of the
FDM particle can be obtained,m ∼ 2.1×10−21 eV, which is again in tension with the
value of the mass where the FDM solves the small-scale challenges. A similar analysis
was performed in Benito et al. (2020) using a different fitting form for the sub-halo
mass function from Schive et al. (2016) and comparable constrain for the FDM mass
was obtained m ∼ 5.2 × 10−21 eV

5.3 UV luminosity function

Here we present constraints on the FDM mass by comparing the predicted cutoff in
the luminosity function from the FDM model with observations that probe the UV
luminosity function.

The Hubble Ultra Deep Field (HUDF) (Bouwens et al. 2015) is used to search for
galaxies at high-z. The high-z galaxies measured by the HUDF can be used to match
with the expected UV luminosity function predicted by the FDM. This is done inmany
studies. In Schive et al. (2016), using the HMF fitted from their simulation (161), they
used the data from HUDF and found that m � 1.2 × 10−22 eV (2σ), using galaxies
from z = 6−8.Avery similar analysiswasmade inCorasaniti et al. (2017)with similar
bounds. In Bozek et al. (2015), this was also analyzed but using the HMF (162) and
shows that using the observed UV luminosity from HUDF, a mass of m = 10−23 eV
is excluded with at > 8σ , and therefore m � 10−22 eV is consistent with HUDF.
Obtaining a luminosity function from a full hydrodynamical cosmological simulations
of galaxy formation using the initial conditions from the FDM model was done in Ni
et al. (2019), they reach a similar conclusion, ruling out m < 5 × 10−22 eV (3σ).
Combining the HUDF data with deep IRAC data from Spitzer Space Telescope over
the Great Observatories Origins Deep Survey (GOODS) fields, in Song (2016) they
can probe even higher redshifts z ∼ 8 and show that for m ∼ 10 − 5 × 10−22 eV the
FDM is consistent with their measurements, while m < 2× 10−22 eV is inconsistent.

One can also use theHubble Frontier Field (HFF) (Lotz et al. 2017;Koekemoer et al.
2014) that observes the gravitationally lensed ultra-faint galaxies. This observation
probes the faint end of the luminosity function. This is exactly where it is expected
that the FDM changes the luminosity function, so it is a very good observation to put
bounds in theFDMmass. Thiswas done inMenci et al. (2017). Since themeasurements
that they use are based on gravitational lensing and therefore, it is possible to measure
smaller halos, they construct a new luminosity function extending to smaller values of
M in Φ(< MUV , z) = n(> M, z). This new luminosity function does not depend on
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baryonic physics that takes place at galaxy formation. With that they are able to place
a very strong constraint in the mass of the FDM, which must be m � 8 × 10−22 eV
to be compatible with this data. A similar study (Leung et al. 2018) using HFF finds
that m � 10−22 eV.

5.4 Black hole superradiance

Until now we explored ways of probing DM by the gravitational effect they imprint in
the structure and substructure of our universe. We explored in detail the astrophysical
tests of DM which happen in environments where we are in the weak field regime,
but that are dominated by baryonic effects and complex non-linear physics, but that
can still give us hints of the nature of DM. We present here a very different way of
probing specifically ultra-light fields in strong field environments, far from the linear
cosmological scales.

Ultra-light particles can be largely produced around spinning BHs, a process called
BH superradiance (Brito et al. 2015b). When a BH rotates faster than the angular
phase velocity of an incoming wave, it amplifies the energy and angular momentum
of the field in its vicinity. This superradiance effect (Zel’dovich 1971, 1972; Misner
1972; Starobinsky 1973) is a natural mechanism to create clouds of ultralight bosons
around Kerr BHs (see Brito et al. 2015b for a review). For ultra-light particles with
Compton wavelengths of order or larger than the BHs gravitational radius, they will be
efficiently produced by the superradiance, forming a large ‘cloud’ around the BH. This
cloud is a condensate of ultra-light particles created through this instability carrying
up to 10% of the BH’s mass and angular momentum, diminishing the initial rotation
of the BH (Arvanitaki and Dubovsky 2011; Dolan 2013; Brito et al. 2015a; East and
Pretorius 2017).

In the non-relativistic limit, the eigenfunctions of the system are determined by a
Schrödinger-like equation and the whole setup is sometimes referred to as a ‘grav-
itational atom’. Superradiance instability depends on the spin of the BH, the mass
of the BH and the mass of the ultra-light particle created, where the modes are co-
rotating with the BH. Depending on the mass of the BH, from stellar mass BHs
to supermassive BHs spanning masses from a few to billions of solar masses, the
ultra-light bosons produced through this mechanism can have masses from 10−20 to
10−10 eV (Arvanitaki et al. 2015; Brito et al. 2017; Stott and Marsh 2018). The most
stringent constraints to date on the mass of ultra-light bosons using superradiance
is presented in Stott and Marsh (2018), where, for the FDM model, masses from
7 × 10−14 eV < m < 2 × 10−11 eV are excluded with 95% C.L. Using stellar mass
BHs, and for SMBHs they are excluded in the range 7× 10−20 eV < m < 10−16 eV.
These constraints are also valid in the presence of a potential for the axion like men-
tioned in Sect. 4.1 if fa � 1014 GeV. Superradiance can also occur for ultra-light
vector fields. In this case, particles of mass 10−14 eV to 10−11 eV can be created by
stellar mass BHs, and 10−20 eV to 10−17 eV for supermassive BHs (Baryakhtar et al.
2017). The case of spin-2 particles was also studied in Brito et al. (2020).

InDavoudiasl andDenton (2019), the data from theEventHorizonTelescope (EHT)
on M87* are used to exclude ranges for the mass of scalar ULDM, 2.9× 10−21 eV <
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ms < 4.6×10−21 eV, and for vector ULDM, 8.5×10−22 eV < mv < 4.6×10−21 eV.
This reference uses the initial EHT data, and it will be interesting to see how this bound
will evolve as more data is obtained.

This cloud emits GW, which allows us to probe its presence around BHs. This GW
signal could possibly be detected by experiments like LIGO,when coming from stellar
BH clouds, and LISA, from supermassive BH clouds (Arvanitaki et al. 2015; Brito
et al. 2017; Baryakhtar et al. 2017). The signature of this GWwill depend if the cloud
is made of real particles, which creates a non-axisymmetric cloud, or complex scalar
particles, where the cloud is axisymmetric and the emission of GWs is suppressed. For
the cloud made of real bosons given the non-axisymmetric configuration, it can emit
GWs when the ultra-light bosons interact with gravitons, or when gravitons change
levels, emitting monochromatic GWs (Brito et al. 2017; Bertone et al. 2019). The
cloud can also collapse if there is an attractive interaction between those UL particles,
emitting GWs in this process.

If the spinning BH and its respective cloud is in a binary BH system, the GW
signal is modified due to the presence of the companion presenting a richer GW
phenomenology (Baumann et al. 2019; Hannuksela et al. 2019; Baumann et al. 2020).
The evolution and GW signature of the cloud is modified by the presence of a second
BH where the waveform and the amplitude of the signal can be modified and even
vanish given the resonant transitions between the growing and decaying modes of the
cloud. Sharp features in the GW waveform appear, offering a window to probe the
signal from these UL particles using GW experiments.

This is an active field of research with the modelling of these effects, the study
of back reaction and the observational signatures still ongoing topics of research.
Detecting the GWs coming from these clouds would give us the opportunity to probe
ultra-light particles in a range that is very interesting for DM. In this way, this obser-
vational signature is very relevant to the ULDM models.

As we saw here, those busy and complex environments like galaxies and BHsmight
still offer, despite their modelling complexity, new ways of probing de fundamental
properties of DM. For a review on the same lines for probing fundamental physics in
those environments, see Baker et al. (2021).

5.5 Probing the wave nature of ULDM

We have shown above the astrophysical and cosmological consequences of DM being
described by a BEC or a superfluid inside the halos of galaxies. From changing the
behaviour of LSS on small-scales, to changes related to the halos having a minimum
mass in those models, and the different profile the wave nature of ULDM leaves in the
inner parts of halos, we have been investigating the gravitational consequences of the
ULDMmodels. Some of those predictionsmight be degeneratewith otherDMmodels,
like the WDM and SIDM, and even with possible consequences from unaccounted
baryonic physics.

However, given the wave nature of the ULDM, these models present some predic-
tions that are a direct consequence of this wave nature and that are completely distinct
from any other DM model. We discuss here vortices and interference patterns. These
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are distinct effects that can appear in galactic scales, and can also be connected in the
formation of halos.

The detection of any of these effects would be a direct evidence of those models of
ULDMand a smoking gun for thewave nature ofDM.For this reason, it is interesting to
study how these effects arise in each of those classes of ULDMmodels and understand
if they yield observable consequences that allow us to test them.

5.5.1 Vortices

Until now, we neglected the fact that the halomight be rotating. As we saw in Sect. 3.5,
rotating superfluids have an interesting newphenomenology, the appearance of a lattice
of quantized vortices that allow for the rotation of this irrotational fluid. This is a purely
quantum mechanical phenomena resulting in quantized vortices being produced.47

This new phenomenology arising from rotating BEC halos might lead to observable
astrophysical consequences that will represent a direct probe of the wave nature of
these DMmodels. The hope is that measuring this unique signature from these models
will make it possible to distinguish this class of models from other alternative DM
models which might present some signatures that are degenerate with the ULDM
models.

Disk galaxies are one of the most common galaxies in our universe and those are
rotationally supported systems. Therefore, the DM halos from those systems are also
expected to be rotating. Galaxy halos acquire angular momentum in their formation
via tidal torques coming from the neighbouring large-scale structures (Peebles 1969).
This angular momentum is conserved after those halos virialize, which leads to the
rotating supported disks in galaxies. This process is still being fully understood, with
N-body and hydro-simulations showing that the halos of galaxies are expected to
have angular momentum. From CDM N-body simulations, the angular momentum
obtained, represented by the dimensionless parameter λ = L|E |1/2/GM5/2, where
L is the angular momentum and E the total energy, are on the range λ ∈ [0.01, 0.1]
(Barnes and Efstathiou 1987). Therefore, when considering realistic halos of DM, one
needs to consider rotation, and if DM is made of ultra-light particles, this can lead to
the formation of vortices.

Here we show the effects of the halos being rotating in the ULDM, an effect that
is not as explored in the literature as expected, but that might present a decisive
observational signature for these ULDM models. We saw in Sect. 3 above, there are
conditions for the formation of these vortices, depending on the angular momentum
of the rotating halo. The presence of vortices in the DM halo can alter some properties
of the halo, like the mass distribution or the presence of those substructures in parts
of the halo that might lead to observable signatures. Detectability of these vortices or
of the effects caused by their presence, and the observational technique used to probe
them, will depend on their abundance and size, which should be studied solving the
Schrödinger–Poisson system. Those present some theoretical solutions and estimates
of the properties and formation of these vortices, but mainly vortices have to be studied

47 It is also worth noticing that a fluid can also form classical vortices, and the difference between those to
the quantum vortices is that the quantum vortices are quantized.
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numerically, with wave simulations like described above. We present here some of
those that investigate this in the SIFDM model, and a rough estimation for the DM
superfluid.

During the final preparation of this review a paper studying the possibility of the
formation of vortices in gravitationally bounded BECs appeared (Hui et al. 2020). In
this paper, they study the possibility of formation of a vortices in the FDM model
and of other topological defects with different topologies. They also present results of
simulations of this system for rotating halos and the possible observational signatures
as consequence of the existence of such vortices.

Other topological defects such as the creation of strings on the condensate in the
DM halo in the SIFDM are investigated in Harko and Lake (2015).

Self-interacting BEC
There is a small amount of studies in the literature that investigate the presence

of vortices (Rindler-Daller and Shapiro 2012; Zinner 2011; Kain and Ling 2010)
(and recently Hui et al. 2020). Given that to investigate vortices one needs to study
the Schrödinger–Poisson equations, the main model where those were studied is the
simplest superfluid model given by the SIFDM model. But even in these simplified
models, it is still hard to find solutions to the GP equation.

Kain and Ling (2010) discuss the possibility of the formation of a lattice of vortices
in the halo of a galaxy with the same parameters as Andromeda. This aims to show a
order of magnitude estimate for a known galaxy, the amount of vortices formed and
put bounds in the mass of the SIFDM particle, and in its interaction. Assuming that
a galaxy like M31 has M ∼ 1012 M�, average radius R ∼ 100 kpc, average density
ρavg ∼ 10−23 kg/m3 and angular velocity Ω ∼ 10−16 rad/s. If vortices are created
they cannot be larger than the size of the condensate core, Rv ≤ Rbec, the SIFDMmust
have a mass m � 10−24 eV, with radius Rv ∼ 1021 m ≈ 30 kpc. Therefore, in a halo
like the halo of M31, there might be from 1 to 100 vortices. For the simplified case
of having only one vortex in the halo, the GP equation can be solved in the Thomas–
Fermi limit, ignoring the QP term, determining the structure of this cylindrical vortex
core, and the critical velocity, showing that Andromeda galaxy could have formed a
vortex given its angular velocity.

Zinner (2011) focuses in a simplified study of the consequences for virialization and
on the rotation curves if a lattice of vortices is present in the FDMmodel. Depending on
the choice of mass and interaction, this vortices can lead to oscillations in the rotation
curve of galaxies, which the authors claim resemble what is observed in rotation curve
of spiral galaxies.

Now, Rindler-Daller and Shapiro (2012) try to study the vortex solutions in more
detail, solving the GP for some assumed halo profiles that are more realistic than in
the previous work (see also Suárez et al. 2014 for a review of vortices in SIFDM).

First, it is interesting to repeat something we presented in Sect. 3.5. The presence
of a rotation in a condensate in a spherical halo is that without rotation, the BEC
wavefunction is real and positive; however, the angular velocity induces a superfluid
current, making the wavefunction to be complex, ψ = |φ|ei S(t,r), with a phase that
gives a velocity flow, v = �∇S/m, and as we saw in Sect. 3.5, the fluid velocity is
v′ = v − × v. Therefore, a rotating BEC is a superfluid. As shown in Table 1 from
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Rindler-Daller and Shapiro (2012), FDM models, where there is no interactions, do
not form vortices. If the interaction is attractive, vortices are also not formed. For this
reason, we work in the case of SIFDM model with repulsive interaction.

The condition for the formation of vortices is Ω > Ωc or equivalently L > Lqm.
This imposes a bound in the mass of the SIFDM particles. They work this out and the
solutions for the GP equations for two halomodels. First, in halo model A, they assume
a simplified halo model where the density and potential is given by a homogeneous
Maclaurin spheroid, which gives a known form for the gravitational potential inside
halos. This halo is not irrotational, having L 
 Lqm.With that simplified gravitational
potential one can calculate the characteristics of a virialized rotating halo. This allows
to put bounds in the mass and the interaction of the SIFDM particle, assuming the
critical casewhere (L/Lqm)c and λ = 0.05 is the average of the dimensionless rotation
parameter: m/mH ≥ (m/mH)c ≈ 50 and g/gH ≥ (g/gH)c ≈ 2550.

For amore realistic halowhich allows to take into account the compressibility of the
fluid, the halo is considered as (n = 1)-polytropic Riemann-S ellipsoids, halo model
B, which is irrotational before forming halos L = Lqm. This shows that if L < Lqm,
there is no formation of vortices and the rotating BEC can be described by halo model
B. And for L 
 Lqm, there is the formation of, at least one vortex if the quantities are
equal to the critical quantities or more in case they exceed these values, with the halo
being described by halo model A. The case where L � Lqm, the halo is described by
the halo model B again, with a single vortex in the center of the halo.

This study shows the conditions for the formation of the vortices and shows the
complexity that can arise in the presence of rotations and of a vortex lattice.

These studies show important characteristics for the formation of vortices in the
halo of galaxies in the SIFDM model. However, to fully study the presence and con-
sequences of a rotating halo in those models one needs to perform wave simulations.
One study that takes that in consideration is Hui et al. (2020).

DM superfluid
As we saw above, to calculate the abundance and properties of the vortices, it is

necessary to solve the equations of motion of the superfluid coupled to the Poisson
equation. For the DM superfluid model, there is still no numerical study of the solution
of the equations equivalent to the GP in the presence of gravity to understand the
formation of vortices in this model. For this reason, here we present a dimensional
analysis and order of magnitude estimation of the presence of vortices in the DM
superfuid context.

Vortices are formed when the angular velocity of the superfluid is larger than the
critical velocity: ΩSf 
 Ωc, with the critical angular velocity given by (80). For
R ∼ 100 kpc andm ∼ eV,we can see thatΩc ∼ 10−41 s−1 (neglecting the logarithmic
factor). This is much smaller than the rotation velocity of the halo: Ω ∼ λ

√
Gρ ∼

10−18s−1, using a halomass densityρ ∼ 10−25g/cm3. So, therewill be the production
of vortices in the halos of the galaxies in the DM superfluid model And this production
seem to be very numerous.

We can estimate the number of vortices in the halo Nv = Ω/Ωc ∼ 1023, with a
core radius, given by the healing length, ξ = 1/(mcs) ∼ mm (assumed a MW type
galaxy and fiducial values). Although highly numbered, these vortices are small. It
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Fig. 21 In this figure, we show the interference pattern in the DM halos from hydrodynamical simulations
of the fuzzy DM model. Left panel: the density distribution of FDM at redshift z = 0.1 at different scales.
This simulation uses the GAMER code to describe the wave-like FDM using an adaptive-mesh-refinement
(AMR) scheme. Image reproduced by permission from Schive et al. (2014a), copyright by Macmillan.
Right panel: simulations of the slices of DM through a filament in the DM distribution at redshift z = 5.5.
This simulation was made by modifying the magneto-hydrodynamics code AREPO for FDMmodel. These
figures clearly show the interference pattern that the FDMmodel imprints in the halos which is very distinct
from CDM or even other DMmodels like WDM. These interference fringes that are present at the scales of
the de Broglie wavelength. On top of that, in both stimulations we can see the soliton cores formed in the
halos, also characteristic of the FDM model. Image reproduced with permission from Mocz et al. (2019),
copyright by APS

is still unclear if it is possible to detect those vortices via, for example, gravitational
lensing or any other effect they might have in the galaxy.

5.5.2 Interference fringes

Another interesting effect that comes from the wave nature of DM superfluid model is
interference. Since the condensate is described by a coherent wave function with the
density if give by |ψ |2, in the formation of galaxies, interference patterns are expected
to form.

As we discussed in the numerical simulations section, the interference patterns
can only be seen in wave simulations since when there is destructive interference, the
quantumpressure term is notwell defined and this is not present in thefluid simulations.
We show in Fig. 21, the result of two wave simulations from different groups that
show the interference fringes that appear in the filaments of FDM structure. These
patterns appear on scales of order of the de Broglie wavelength. General features like
caustics, which are density singularities that usually appear in CDM and even WDM
simulations, are regularized in FDM models due to the uncertainty principle, and do
not appear in FDM simulations.

Another effect that could generate interference patterns is the collision of sub-
sonic galaxies. Since those galaxies maintain the coherence of their condensate core
described by the coherent wave function, the collision between these cores leaves an
interference pattern (Maleki et al. 2020). If this interference fringes could be observed,
this would be still another form of probing these models.

Interference patterns are going to be created also in the merging processes of dark-
/bright solitons (Hamner et al. 2011; González and Guzmán 2011). Some authors
suggest that this effect could be linked to the shells seen around elliptical galaxies
(Cooper et al. 2011).
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6 Summary

In this review, we studied an alternative class of DMmodel, the ultra-light DM. These
models have been receiving a lot of attention in the literature nowadays given their
interesting property of forming a BEC or superfluid on galactic scales. In this review,
we aimed to give a summary of the models of ULDM, suggesting for the first time
a classification into three categories according to the their non-relativistic behaviour
and the structures they form in galaxies: the fuzzy DM, self-interacting BEC and
the DM superfluid. Their different descriptions lead to different phenomenologies
and observational effects that can be used to test these DM paradigms. We had also
the goal to give a snapshot of the field as it stands at present. We saw that current
observations highly constrain the mass of the FDM and, if these constrains hold, the
mass rangewhich shows an interesting phenomenology on small-scales and reconciles
these scales with the CDM successes on large-scales is challenged for this model.

We highlight how important the observations on small-scales are for helping to
determine the nature of DM, and how the observations of the small-scales, galaxies
and our MW have been advancing very fast in the last few years. With current and
new experiments like Gaia, LSST, PFS, HERA, SKA, just to cite a few, and the
new and exciting probes like stellar streams, 21 cm cosmology, MW observables,
BH superradiance, the next few years promise to revolutionize the tests of DM on
small-scales.

In this reviewwe tried also to give a complete description of the theory behind these
models, describing the striking phenomena of BEC and superfluidity. We stressed
the difference between models, showing their different descriptions and phenomeno-
logical consequences. Since the understanding of this DM class of models requires
knowledge from several fields, including condensed matter physics, we believe that
this theoretical summary of these constructions, is very important to better understand
all the features that these models of DM can present and even help in finding new
observables for these models. It is also important for future progress since there is still
a lot of room for theoretical development of these DM models.

Maybe one of the biggest challenge for these models and testing them against
observations is the need for numerical simulations. Those are necessary so we can
understand how the formation of structures proceeds in these models. However, per-
forming those simulations in a way that they resolve the small-scales in order for us to
see the interesting effects coming from the wave nature of these models, and also that
they simulate the structure on cosmological scales is a challenge. Incredible advances
in this field have been made in the past few years and there are many groups currently
working to improve those simulations. Most of those advance, though, are only for the
FDMmodel. Simulations for the SIBEC are only a few and there is still no numerical
framework to study the DM superfluid. Thus, we should expect continue progress in
this field in the future, which will lead to also a better understanding on how to probe
those models with observations.

In summary, the study of the ultra-light DM is an active area of research and many
challenges are still opened to be addressed theoretically, numerically and observation-
ally. As this field becomes more and more popular, we believe this progress will go
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even faster and we hope this review can help those entering or already in this field
supporting their understanding of this fascinating new DM model.
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