RT-MAT 94-12

Trace Properties of Torsion Units in Group Rings

Stanley Orlando Juriaans

abril 1994

Trace Properties of Torsion Units in Group Rings

Stanley Orlando Juriaans

Instituto de Matemática e Estatística Universidade de São Paulo Caixa Postal 20570 01452-990 - São Paulo - Brasil e-mail ostanley@ime.usp.br

Abstract

A weaker form of Zassenhaus' conjecture is proved for some infinite groups.

Introduction

Let G be a group and let $V\mathbb{Z}G$ be the group of units of augmentation one of the integral group ring $\mathbb{Z}G$. Given elements $\alpha = \sum \alpha(g)g \in \mathbb{Z}G$ and $g \in G$, we denote by G the conjugacy class of g and set $\tilde{\alpha}(g) = \sum_{h \in G_g} \alpha(g)$. If G is a finite group a well-known Conjecture of Zassenhaus states:

ZC1: Let G be a finite group and $\alpha \in V\mathbb{Z}G$ a torsion unit; then there exist $\beta \in \mathbb{Q}G$ such that $\beta^{-1}\alpha\beta \in G$.

For finite groups it is proved in [4] that the following is an equivalent form of ZC1.1

Lemma 1: Let G be a finite group and $\alpha \in V\mathbb{Z}G$ a torsion unit. Then there exist $\beta \in \mathbb{Q}G$ such that $\beta^{-1}\alpha\beta \in G$ if and only if for every element γ

¹AMS Subject Classifiation: Primary 20C05, 20C07, 16S34. Secundary 16U60. Key words and frases: Group Rings, torsion units, unique trace property.

of the subgroup generated by α there exist an element $g_0 \in G$, unique up to conjugacy, such that $\tilde{\gamma}(g_0) \neq 0$.

As in [1] we say that a group G has the unique trace property (UT-property) if given an element $\alpha \in V\mathbb{Z}G$ of finite order, there exists an element $g \in G$, unique up to conjugacy, such that $\tilde{\alpha}(q) \neq 0$.

It is known that nilpotent groups are UT-groups, (see [1]). We find some other classes of UT-groups. The dificulty arrise exactly when we have to decide whether $\bar{\alpha}(g) = 0$ for elements of infinite order. The first results in this direction are from [1]. It seems essential to varify this case.

The Results

We begin by extending a result of [1] supplying at the same time a shorter proof.

Proposition 2: Let G be a group containing a normal subgroup H, which is locally noetherian, and such that G/H is a torsion group. If $\alpha \in V\mathbb{Z}G$ is a torsion unit and $g \in G$ is an element of infinite order then $\tilde{\alpha}(g) = 0$.

Proof: Suppose that $\tilde{\alpha}(g) \neq 0$. Then, by [1, Prop.2] there exist an integer k > 1 and an element $x \in G$ such that $x^{-1}gx = g^k$. If x is of finite order, set m = o(x). Then $g = x^{-m}gx^m = g^{k^m}$ and hence we have a contradiction. If x is of infinite order, since G/H is a torsion group, there exist an integer m > 0 such that x^m and g^m are in H. Set $t = x^m$, $h = g^m$, $n = k^m$. Then $t^{-1}ht = h^n$. Let $H_0 = \langle t, h \rangle$. Then, by our hypotesis, H_0 is noetherian hence, by [7, I.2.7], n = 1 and consequently k = 1, a contradiction.

Note that to prove the proposition we do not need H to be normal. Let $\alpha \in V\mathbb{Z}G$ be a torsion unit. The proof of our next result shows why it is necessary to decide whether $\tilde{\alpha}(g) = 0$ for elements of infinite order.

Proposition 3: Let G and H be as in the previous Proposition. Suppose further that H is torsion free, that the torsion elements of G form a subgroup T(G) and that G/H is a UT-group. Then, G is a UT-group.

Proof: Let $\alpha \in V\mathbb{Z}G$ be a torsion unit and $g \in G$ an element. If g is of

infinite order then, by the previous Proposition, we have that $\bar{\alpha}(g) = 0$.

If g has finite order, denote by β and \overline{g} the projections of α and g in $V\mathbb{Z}(G/H)$. Let $C_{\overline{g}}$ be conjugacy class of β . Then, it is easy to see that $C_{\overline{g}}$ is the projection of the subset

 $S=\{k\in G: k=t^{-1}gth,\ h\in H\ t\in G\}$. Now since T(G) is a normal subgroup and H is normal and torsion free we see that $S\cap T(G)=C_g$. Furthermore, if we write $S=S_1\cup C_g$, where S_1 are the elements of infinite order of S, then S_1 is a normal subset of G. Writing S_1 as a disjoint union of conjugacy classes and applying the previous Proposition, we see that $\sum\limits_{h\in S_1}\alpha(h)=0$ and hence we have that $\tilde{\beta}(\overline{g})=\sum\limits_{h\in S}\alpha(h)=\tilde{\alpha}(g)$. Since, by our assumption, G/H is a UT-group the result follows.

As a consequence we obtain in a similar but shorter way, the following result of [1].

Corollary 4: Let G be a nilpotent group. Then G is a UT-group.

Proof: We may suppose that G is a finitely generated and hence we have, by [5, 5.4.6], that G is a polyciclyc group. So G is noetherian and, by [5, 5.4.15], has a normal torsion free subgroup H of finite index. By a result of Weiss (see [9]), G/H is a UT-group. Also, since G is nilpotent, we have that T(G) is a subgroup of G and consequetly is in the centalizer of H. It follows by the previous Proposition that G is a UT-group.

If G is a group and $g \in G$ is an element we denote by K(g) = [g, G]. Let now G be a group generated by an element t and an abelian normal subgroup A such that $t^{-1}at = a^{-1}$ for any $a \in A$ and $t^2 \in A$. Let $\alpha \in V\mathbb{Z}G$ be a torsion unit. By Lemma 2 we have that $\tilde{\alpha}(g) = 0$ for every element of infinite order. Now let $g = ta \in G$ be an element which is not in A. We compute K(g). If $b \in A$ then $[g,b] = [t,b] = b^{-2}$. If h = tb then $[g,h] = [ta,tb] = [tb,t][a,tb] = [b,t][a,t] = (ba)^{-2}$. Hence $K(g) = \{a^2 : a \in A\}$. So we have the following result:

Lemma 5: Let G be a group generated by an abelian subgroup A and an element $t \in G$, such that $t^{-1}at = a^{-1}$ for any $a \in A$ and $t^2 \in A$. Then

- 1. For every $g \notin A$ we have that $K(g) = \{a^2 : a \in A\}$
- 2. If $g \notin A$ then $gK(g) = C_g$.

Proof: The considerations above show that (1) holds. So, let $g\theta \in gK(g)$. Since $g \notin A$ we have that conjugation by g inverts the elements of A. By (1) we have that $\theta = \varphi^2$ for some $\varphi \in A$. Setting $t = g\varphi$ we see easily that $t^{-1}g\theta t = g$.

Remark: Note that item (2) of the previous Lemma holds whenever the elements of K(g) are squares and are inverted by g.

We can now prove:

Theorem 6: Let $G = (t, A : t^2 \in A, t^{-1}at = a^{-1}, \forall a \in A)$ where A is an abelian normal subgroup of G. Then G is an UT-group.

Proof: Let $\alpha \in V\mathbb{Z}G$ be a torsion unit and $g \in G$ an element of the support of α . Suppose first that $o(g) = \infty$. Note that [G:A] = 2 and hence, by Proposition 2, $\tilde{\alpha}(g) = 0$. Secondly, suppose that $g \notin A$. By Lemma 5 we have that $gK(g) = C_g$. Now the element gK(g) is central in the quotient group G/K(g) and hence, by [1, Prop. 4], we have that $\tilde{\alpha}(g) = \sum_{h \in gK(g)} \alpha(g) = 0$ or 1. Finally if $g \in T(A)$, since the support of α is

finite and $t^2 \in A$, we may suppose that A is finitely generated. In particular A is a policyclic group and hence, by [5, 5.4.15], we have that there exist $H \triangleleft A$, which is torsion free and of finite index. Note that, since A is abelian and conjugating by t inverts the elements of A, H will also be normal in G. Consider the quocient group $\overline{G} = G/H$. This is a metabelian group which contains a normal abelian subgroup of index 2. Hence, by [3, Theorem 4.1], we have that \overline{G} is a UT-group. Let $g \in A$ be an element and let \overline{g} be its projection in \overline{G} . Then it is easily seen that $C_{\overline{g}}$ is the projection of the subset $S = \{b \in A : b = x^{-1}axh, h \in H \ x \in G\}$. Note that we may write S as a disjoint union $S = C_g \cup S_1$ where $S_1 = \{b \in S : h \neq 1\}$. Note that S_1 is a normal subset of G and its elements are all of infinite order. Hence, writing S_1 as a disjoint union of conjugacy classes we conclude, by Proposition 2, that $\sum_{h \in S} \alpha(h) = \tilde{\alpha}(g)$. Now consider the projection $\Psi : \mathbb{Z}G : \longrightarrow \mathbb{Z}\overline{G}$

and let $\beta = \Psi(\alpha)$. Then, since \overline{G} is a UT-group, we have that $\tilde{\beta}(\overline{g}) = \sum_{\overline{h} \in C_{\overline{g}}} \beta(\overline{h}) \in \{0,1\}$. Hence $\tilde{\alpha}(g) \in \{0,1\}$ and so also in this case we have that

 $\bar{\alpha}(g) \in \{0,1\}$. Since α has augmentation 1 the result follows.

A group G is called a T-group if normality is transitve in G. Let G be a solvable T-group and set $A = C_G(G')$. If A is not a torsion group then, by a result of [5, page 394], we have that G satisfies the condition of Theorem 6 and hence G is a UT-group.

Let G be a group such that the derived subgroup of G is cyclic of infinite order, say $G' = \langle \rho \rangle$. We shall use this notation in the following results.

Lemma 7: Let G be a group with cyclic derived subgroup; then

- 1. If $g \in T(G)$ centralizes ρ then g is central.
- 2. Elements of odd order are central.
- 3. $\{g^2:g\in T(G)\}\subseteq \mathcal{Z}(G)$.
- 4. If $g \in G$ has infinite order and $\alpha \in V\mathbb{Z}G$ is an element of finite order then $\tilde{\alpha}(g) = 0$.

Proof: (1) Let $g \in T(G)$ and $x \in G$ then, since $\langle \rho \rangle$ is normal in G, we have that $g^{-1}xg = x\rho^k$ for some integer k. Let m = o(g) then we have that $x = g^{-m}xg^m = x\rho^{km}$. Since ρ has infinite order we must have that k = 0. (2) If $g \in G$ then g^2 centralizes ρ and hence is central. Since g has odd order we have that also g is central.

(3) The proof of (2) applies.

(4) Suppose that this is false; then, by [1, Prop.2], there exist k > 1, $x \in G$ such that $x^{-1}gx = g^k$. This implies that $g^{k-1} = [g,x] \in G'$. Set n = k-1 and $h = g^n$; then the subgroup (h) is normal in G. Hence $x^{-1}hx \in \{h, h^{-1}\}$. But on the other hand $x^{-1}hx = h^k$ and hence we must have that k = 1, a contradiction.

Lemma 8: Let G be a group such that G' is infinite cyclic. Then, for any torsion element $g \in G$, we have that $gK(g) = C_g$.

Proof: Let $G' = \langle \rho \rangle$. Then, since G' is a normal subgroup, we have that $g^{-1}\rho g \in \{\rho, \rho^{-1}\}$. If $g^{-1}\rho g = \rho$ then, by Lemma 7, g is central. So we may suppose that $g^{-1}\rho g = \rho^{-1}$. In this case also $g\rho g^{-1} = \rho^{-1}$. Hence we have that $g^{-1}g\rho^{-1}g = g\rho$ i.e. $g\rho^{-1}$ is conjugated to $g\rho$. We now separate the proof in two cases.

Case 1: $K(g) \neq G'$.

Since $g^{-1}\rho g = \rho^{-1}$ and K(g) is cyclic we must have that $K(g) = \langle \rho^2 \rangle$. Hence, by the Remark following Lemma 5, we have that $gK(g) = C_g$.

Case 2: K(g) = G'.

In this case, since G' is cyclic and ρ is inverted by elements not in its centralizer, we see easily that there is an element $t \in G$ such that $K(g) = \langle [g,t] \rangle$. In particular, we have that $[g,t] \in \{\rho,\rho^{-1}\}$. Hence g is conjugated either to $g\rho$ or to $g\rho^{-1}$. Since we have already proved that $g\rho$ is conjugated to $g\rho^{-1}$, we only have to prove that an element of gK(g) is either conjugate to g or to $g\rho$. In fact, set $h=g\theta$ with $\theta \in K(g)$. If θ is a square then, by the Remark following Lemma 5, h is conjugated to g. If θ is not a square, we may write $h=g\rho\varphi$ where φ is a square. Hence, again by the same Remark, we have that h is conjugated to $g\rho$ which in turn is conjugated to $g\rho$.

We can now prove:

Theorem 9: Let G be a group such that the derived subgroup of G is infinite cyclic. Then G is a UT-group.

Proof: Let $\alpha \in V\mathbb{Z}G$ be a torsion unit and $g \in G$ an element. If g is of infinite order then, by lemma 7, we have that $\tilde{\alpha}(g) = 0$. If g is a torsion element then, by Lemma 8, we have that $\tilde{\alpha}(g) = \sum_{h \in gK(g)} \alpha(g)$. Since the element gK(g) is central in the quotient group G/K(g) we have, by, that $\sum_{h \in gK(g)} \tilde{\alpha}(g) \in \{0,1\}$. Since α has augmentation 1, the result is proved. \square

ACKNOWLEDGEMENT

The author would like to thank Professor C. Polcino Milies for his guidance and encouragement.

REFERENCES

- [1] Bovdi A. A., Marciniak Z. and Sehgal S.K., Torsion Units in Infinite Group Rings Journal of Number Theory (to appear).
- [2] Dokuchaev, M.A., Torsion units in integral group ring of nilpotent metabelian groups. Comm. in Algebra. 20(2), 423-435 (92).
- [3] Luthar I.S., Passi I.B.S., Torsion Units Matrix Group Rings. Comm. in Algebra, 20(4), 1223-1228 (1992)
- [4] Marciniak Z., Ritter J., Sehgal S.K., Weiss A., Torsion units in integral group rings of some metabelian groups, II. *Journal of Number Theory* 25, 340-352 (1987).
- [5] Robinson D.J.S., A course in the theory of groups. Springer-Verlag, New York, Heidelberg, Berlin, 1980.
- [6] Scott W.R., Group theory. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1964.
- [7] Sehgal, S.K., Topics in group rings. Marcel Dekker, Inc. New York and Basel, 1978.
- [8] Sehgal, S.K., Units of Integral Group Rings, Longman's, Essex, 1993.
- [9] Weiss A., Torsion units in integral group rings. J. Reine Angew. Math. 415(1991), 175-187.

TÍTULOS PUBLICADOS

- 93-01 COELHO, F.U. A note on preinjective partial tilting modules. 7p.
- 93-02 ASSEM,I. & COELHO, F.U. Complete slices and homological properties of tilted algebras.

 11p.
- 93-03 ASSEM, I. & COELHO, F.U. Glueings of tilted algebras 20p.
- 93-04 COELHO, F.U. Postprojective partitions and Auslander-Reiten quivers. 26p.
- 93-05 MERKLEN, H.A. Web modules and applications. 14p.
- 93-06 GUZZO JR.,H. The Peirce decomposition for some commutative train algebras of rank n.12p.
- 93-07 PERESI, L.A. Minimal Polynomial Identities of Baric Algebras. 1ip.
- 93-08 FALBEL E., VERDERESI J.A. & VELOSO J.M. The Equivalence Problem in Sub-Riemannian Geometry. 14p.
- 93-09 BARROS, L.G.X. & POLCINO HILIES, C. Modular Loop Algebras of R.A. Loops. 15p.
- 93-10 COELHO.F.U., MARCOS E.N., MERKLEN H.A. & SKOWRONSKI

 Module Categories with Infinite Radical Square
 Zero are of Finite Type. 7p.
- 93-11 COELHO S.P. & POLCINO MILIES, C. Automorphisms of Group Algebras of Dihedral Groups. 8p.
- 93-12 JURIAANS. O.S. Torsion units in integral group rings, 11 P.
- 93-13 FERRERO, M., GIAMBRUNO, A. & POLCINO MILIES, C. A Note on Derivations of Group Rings. 9p.
- 93-14 FERNANDES, J.C. & FRANCHI, B. Existence of the Green function for a class of degenerate parabolic equations, 29p.
- 93-15 ENCONTRO DE ÁLGEBRA IME-USP/IMECC UNICAMP. 41p.
- 93-16 FALBEL, E. & VELOSO, J.M. A Parallelism for Conformal Sub-Riemannian Geometry, 20p.
- 93-17 "TEORIA DOS ANEIS" Encontro IME.USP. IMECC-UNICAMP - Realizado no IME-USP em 18 de junho de 1993 - 50p.
- 93-18 ARAGONA, J. Some Properties of Holomorphic Generalized Functions on Strictly Pseudoconvex Domains. 8p.
- 93-19 CORREA I., HENTZEL I.R. & PERESI L.A. Minimal Identities of Bernstein Algebras. 14p.
- 93-20 JURIAANS S.O. Torsion Units in Integral Group Rings II. 15p.
- 93-21 FALBEL E. & GUSEVSKII N. Spherical CR-manifolds of dimension 3, 28p.
- 93-22 MARTIN P.A. Algebraic curves over Q and deformations of complex structures. 9p.

- 93-23 OLIVEIRA L.A.F. de Existence and asymptotic behavior of poiseuille flows of isothermal bipolar fluids.
- 94-01 BIANCONI, R. A note on the construction of a certain class of Kleinian groups. 9p.
- 94-02 HENTZEL, I.R., JACOBS, D.P., PERESI, L.A. & SVERCHKOV, S.R. Solvability of the ideal of all weight zero elements in Bernstein Algebras. 11p.
- 94-03 CORREA, I. & PERESI, L.A. Bernstein-Jordan Algebras of dimension five, 6p.
- 94-04 ABADIE, B. The range of traces on the Ka-group of quantum Heisenberg manifolds. 13p.
- 94-05 BIANCONI, R., GUSEVSKII, N. and KLIMENKO, H. Schottky type groups and Kleinian groups acting on S³ with the limit set a wild Cantor set. 30p.
- 94-06 GDRODSKI, C. Minimal Hyperspheres in Rank Two Compact Symmetric Spaces. 20 p.
- 94-07 BARROS, L.G.X. de and WATSON, B. On Hodular Loop Algebras of RA2 Loops, 19p.
- 94-08 BARROS, L.G.X. de Loop Rings of I.P. Loops. 12p.
- 94-09 BIANCONI, R. A note on the non-interpretability of a discrete order in an o-minimal (dense) structure.
- 94-10 GOODAIRE, E.G. and POLCINO MILIES, C. On the loop of units of an alternative loop ring, 10p.
- 94-11 GOODAIRE, E.G. and POLCINO MILIES, C. Finite subloops of units in an alternative loop ring. 8p.
- 94-12 JURIAANS, S.O. Trace Properties of Torsion Units in Group Rings. 7p.

NOTA: Os títulos publicados dos Relatórios Técnicos dos anos de 1980 a 1992 estão à disposição no Departamento de Matemática do IME-USP. Cidade Universitária "Armando de Salles Oliveira" Rua do Matão, 1010 - Butantã Caixa Postal - 20.570 (Ag. Iguatemi) CEP: 01498 - São Paulo - Brasil