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Experimental Analysis of a
Vertical and Flexible Cylinder
in Water: Response to Top
Motion Excitation and
Parametric Resonance
Experiments with a vertical, flexible, and submerged cylinder were carried out to investigate
fundamental aspects of risers dynamics subjected to harmonic excitation at the top. The flexi-
ble model was designed aiming a high level of dynamic similarity with a real riser. Vertical
motion, with amplitude of 1% of the unstretched length, was imposed with a device driven by
a servomotor. Responses to distinct exciting frequency ratios were investigated, namely,
ft:fN,1¼ 1:3; 1:1; 2:1, and 3:1. Cartesian coordinates of 43 monitored points positioned all
along the span were experimentally acquired by using an optical tracking system. A simple
Galerkin’s projection applied for modal decomposition, combined with standard Mathieu
chart analysis, led to the identification of parametric resonances. A curious finding is that
the Mathieu instability may simultaneously occur in more than one mode, leading to interest-
ing dynamic behaviors, also revealed through standard power spectra analysis and
displacement scalograms. [DOI: 10.1115/1.4029265]

Keywords: experiments, flexible cylinder, imposed top motions, Mathieu instabilities,
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1 Introduction

In the offshore scenario, structural elements such as risers and
tethers are subjected to highly complex nonlinear dynamic phe-
nomena. Most of these behaviors are majorly regulated by tension,
parameter that is responsible for what is commonly referred to as
geometric stiffness; see, e.g., Pesce and Martins [1]. In the ab-
sence of current action, waves, and, consequently, floating unity
motions, riser tension is only function of space, governed by its
own weight. On the other hand, motions of the floating unities,
which are concomitantly caused by first- and second-orders free
surface wave forces, by current and by wind, modulate riser
tension in time, within a large range of frequencies, from slow to
high values.

Tension modulations are intrinsically associated to Eigen
frequencies modulations, which may be a key point in the study of
resonant fluid–structure interaction phenomena, such as vortex-
induced vibrations (VIVs); see, for example, Silveira et al. [2],
Joseffson and Dalton [3], and Srinil [4].

From the mathematical point of view, a riser subjected only to
tension modulation can be modeled as a nonautonomous system,
in which one parameter (geometric stiffness) is function of time.
In this case, the Hill’s equation governs the structural dynamics.
Considering that the tension modulation is harmonic and mono-
chromatic, a particular case of Hill’s equation named Mathieu’s
equation is responsible for the dynamics. Deeper discussion
regarding Hill’s and Mathieu’s equation can be found in several
text books of dynamics, such as Meirovitch [5].

The most common form of Mathieu’s equation is the non-
damped one. However, physical systems are usually low-damped.
Furthermore, within the fluid–structure interaction scope, hydro-
dynamic damping is usually modeled as a bilinear function of
velocity, as in Morrison’s equation. Ramani et al. [6] performed a
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thorough theoretical–numerical investigation on the Mathieu
equation2 written as

€uþ j _uj _uþ ðdþ e cos tÞu ¼ 0 (1)

Consider first the nondamped case. The origin x¼ 0 is the triv-
ial solution of the Mathieu’s equation. However, depending on the
combination of parameters �d and �e, this solution may be not sta-
ble. A common approach to check the instability of the origin is
the so-called Strutt diagram. The Strutt diagram allows to identify
regions in the plane of parameters �d� �e where the trivial solution
(the origin) is stable or unstable. These regions are defined by
transition curves (following the nomenclature adopted in Ref. [6])
which can be numerically determined solving determinantal equa-
tions presented, for example, in Ref. [5].

Focusing now the damped case, Ref. [6] presents numerical
simulations and analytical considerations regarding the behavior
of Eq. (1). Besides discussions on the structural bifurcation caused
by the inclusion of the quadratic damping term, the authors dis-
cuss the existence of a secondary bifurcation, “in which a pair of
limit cycles come together and disappear (a saddle-node of
limit cycles)” [6]. This secondary bifurcation emanates from the

point �d � 0:6304 and �e � 1:4386, following the local analytical
approximation obtained in Ref. [6], d¼�0.00534e5þ 0.04716e4

� 0.13696e3þ 0.14908e2� 0.01551eþ 0.58301. Figure 1 illus-
trates the Strutt diagram obtained from Eq. (1), corresponding to
the various stable and unstable regions [6].

Returning to the context of dynamics of risers and tethers,
Mathieu instability and other phenomena have been focus of
investigations during the last decades. Patel and Park [7] pointed
out that, even in the instability region of the Strutt diagram, the
oscillations are limited, due to the hydrodynamic damping term.
Simos and Pesce [8] show that the effects of tension variation
along the length may play an important role in the dynamics of
tension leg platform (TLP) tethers subjected to parametric
excitation.

Chatjigeorgiou and Mavrakos [9] considered the coupling of
longitudinal and transversal displacements in the mathematical
model. Among other features, the authors pointed out that the
coupled system leads to modifications in the Strutt diagram. The

parametric excitation of a nonlinear beam model which takes
into account the effects of extensibility in the lateral motion was
investigated numerically in Zeng et al. [10], highlighting that the
nonlinearities in the structural model are responsible for capturing
the parametric excitation due to the surge motion of floating units.
Yang et al. [11] discussed the effects of irregular top excitation
instead of a single harmonic. The numerical simulations presented
in the latter paper showed significant differences between the
Strutt diagram obtained for single-frequency or multi-frequency
parametric excitation.

As can be seen in this brief introduction, a large number of
theoretical and numerical investigations regarding the Mathieu
instability in the context of risers and tethers are available. On the
other hand, experimental studies are not so common as theoretical
ones. The focus of this paper is to present experimental results of
a flexible and immersed cylinder subjected to harmonic top
motion excitation and to discuss the Mathieu instability by plot-
ting onto the Strutt diagram the experimental parameters obtained
for the first three Eigen modes. For the sake of organization, this
paper is composed by six additional sections: In Sec. 2, the experi-
mental arrangement and methodology are briefly described. In
Sec. 3, the model is experimentally characterized (in still water)
in terms of Eigen frequencies and Eigen modes. Section 4
describes the modal analysis approach, followed, in the Sec. 5, by
the presentation of an analytical model that will be employed aim-
ing at plotting experimental data onto the Strutt diagram. Section
6 discusses the experimental results and Sec. 7 presents the final
remarks and perspectives of future works.

2 Experimental Arrangement and

Analysis Methodology

In laboratory tests, accounting for similarities with full scale is
usually a hard task. The flexible cylinder employed in this investi-
gation was designed aiming at reaching a high level of dynamic
similarity with an 8 in. riser. The methodology used for the design
of the scaled model is detailed in Rateiro et al. [12]. Such a meth-
odology is based on the Froude number similarity, related to the
referred motions of the floating unity, caused by the incoming free
surface waves.

A similitude investigation pointed out a family of dimension-
less parameters that regulates the dynamics of a riser, as it might
be regarded in Ref. [12]; all dimensionless numbers are presented
in Table 1. Using Froude similarity in a usual riser of about 250 m
in length and 219 mm in diameter with a reduced scale k¼ 100, it
was possible to build a model which fits the dimensions of the lab-
oratory. Unfortunately scaling a 219 mm in diameter riser would
result in a 2.19 mm in diameter model. Structures with less than
10 mm in diameter are difficult to instrument, especially when
optical sensors are intended to be used. Reynolds similarity is
obviously not preserved, and, as pointed out in Rateiro et al. [13],
“Adopting a distorted scale in diameter is usual in these circum-
stances, what helps increasing model Reynolds number. In fact, if
kD< k is such a distorted scale, then ReR¼ (kkD)1=2(ReM). This,
however, might impair similarity regarding KC number,…” Any-
how, the experimental results at model scale may be used for
comparing and validating numerical models. Despite the general-
ity of the riser modeling methodology presented in Refs. [12] and
[13], a single example of an 8 in. commercial pipe was chosen to
be scaled. Table 2 presents the geometrical, inertial, and stiffness
properties of the model.

The model was made of a silicon tube with external diameter
D¼ 22.2 mm, filled in with stainless steel microspheres. The size
of the microspheres was adjusted in order to represent the scaled
mass per unit length. The unstretched and stretched lengths were,
respectively, Lo¼ 2552 mm and L¼ 2602 mm. The immersed
length was Li¼ 2257 mm. Both axial and bending stiffness (EA
and EI) of the model were experimentally evaluated following a
formulation based on large displacements, as can be found by
Franzini et al. [14]. Figures 2(a)–2(c) show pictures of the

Fig. 1 Strutt diagram obtained from Eq. (1) and the secondary
bifurcation curve in the d–e plane. Focus on the first instability
region. Extracted from Ref. [6].

2Notice that this particular time scaling leads to the definition of the Mathieu
parameters, d and e, such that the resulting Strutt diagram has the vertex of the first
unstable region located at d¼ 0.25.
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experimental arrangement and Fig. 3 sketches the experimental
setup.

Harmonic displacements were imposed at the top by means of
an in-house built 400 W servomotor device. The mentioned device
can impose motion with maximum amplitude 280 mm with reso-
lution of 50 lm. Further details regarding the servomotor device
can be found by de Mello et al. [15]. The amplitude of the pre-
scribed top motion was At/Lo¼ 1%, a small value indeed, but
large enough as representative of usual riser dynamics. Six values
of top motion frequency were investigated, namely, ft:fN,1¼ 1:3;
1:2; 2:3; 1:1; 2:1, and 3:1, where fN,1 is the first Eigen frequency
evaluated from free decay tests carried out in still water. Due to
limitations in the length of the paper, the cases 1:2 and 2:3 will
not be discussed herein. The Cartesian coordinates of 43 reflex-
ives and almost nonintrusive targets placed along the model were
measured through a QUALISYS

VR

optical tracking system. Six sub-
merged cameras acquired the data from 38 underwater targets and
two aerial cameras acquired the data from the remaining targets.
The calibration quality of the optical motion capture system and
its uncertainties depend on the number of cameras, the quality of
the targets reflection, calibration time, and distance to targets. At
the end of the calibration process, the optical motion capture sys-
tem provided the standard deviation from the known measures.

This value represents the measurement uncertainty. In that
calibration process, such a value was around 0.1 mm, so of order
D/200. The uncertainty of the measurement is larger than the
uncertainty of the displacement imposed by the servomotor
device.

The model was mounted at the towing carriage of IPT (the S~ao
Paulo State Technological Research Institute). The lower end of
the model was clamped to a support, rigidly fixed to the bottom of
the carriage, while the upper end was clamped to a load cell,
which measured the vertical component of tension. Typical verti-
cal misalignment is close to 1% of the stretched length. All
the data were acquired with sample frequency fsp¼ 60 Hz, runs
lasting 120 s.

Herein, z represents the spanwise position, measured from the
lower end of the cylinder. All the displacements are normalized
with the diameter, i.e., x*(t)¼ x(t)/D, y*(t)¼ y(t)/D, and
z*(t)¼ z(t)/D.

Regarding analysis methodology, we focus on the presentation
of amplitude scalograms x*(z*, t), power density spectra (PSD)
Sx(z*, f), and the Strutt diagrams. It is worth mentioning that, as this
paper focus on the case without carriage speed, the response in the x
direction is expected to be similar to that obtained in the y direction,
except for unavoidable asymmetries in the experimental setup.
Experiments with concomitant parametric excitation and towing
speed were also carried out and will be discussed in future works.

3 Characterization

First, free decay tests driven by structural perturbations were
carried out in still water. The spanwise distribution of the PSD is
shown in Fig. 4, from which the following relation could be
extracted for the n-Eigen frequency:

fN;n ¼ n0:84 Hz; n ¼ 1; 2; 3 (2)
Given that the bending stiffness is very small and the vertical

flexible cylinder is long (L/D> 100), Bessel’s functions, or even
Wentzel–Kramers–Brillouin (WKB) approximate solutions,
would be a proper choice for the Eigen modes (see, e.g., Refs.
[16] and [17]). However, for the sake of simplicity, the Eigen

Table 1 Nondimensional parameters (extracted from Ref. [12])

Number Symbol Representation

Froude number
Fr ¼ xAffiffiffiffiffiffi

gL
p Dynamic motion in waves

Reynolds number
Re ¼ UD

�

Inertial forces versus viscous forces

Strouhal number
St ¼ fsD

U

Vortex shedding frequency

Keulegan–Carpenter number
KC ¼ 2pA

D

Inertial forces versus drag forces

Structural damping f ¼ c

cc

Linear structural damping

Reduced velocity
VR ¼

U

fnD

Normalized velocity in VIV

Reduced shedding frequency
f ?s ¼

fs
fn
¼ St

U

fnD
¼ StVr

Vortex shedding normalized frequency

Reduced mass m� ¼ m

mD

Riser mass versus displaced mass

Added mass a ¼ ma

m
Added mass versus riser mass

Bending stiffness
Kf ¼

kf

L

Bending versus geometrical stiffness

Axial stiffness
Ka ¼

EA

T

Axial versus geometrical stiffness

Table 2 Complementary model properties

Property Value

Internal diameter 15.8 mm
External diameter, D 22.2 mm
Unstretched length, Lo 2552 mm
Stretched length, L 2602 mm
Immersed length, Li 2257 mm
Immersed weight, c 7.88 N/m
Axial stiffness, EA 1.2 kN
Bending stiffness, EI 0.056 Nm2

Mass ratio parameter, m* 3.48
Aspect ratio, Li/D 102
L/D 117
Static tension at the top, Tt 40 N
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modes wn(z) are here chosen to be simply represented by sinusoi-
dal functions.

In fact and strictly speaking, sinusoidal functions represent the
Eigen modes of a horizontal tensioned string. Section 4 focuses
on the presentation of the modal analysis approach employed in
the analytical model that supports the discussion of the experi-
mental results.

4 Modal Analysis

As discussed in Sec. 3, sinusoidal functions are taken as a first
and simple choice to represent the Eigen modes wn(z). In the pres-
ent section, the focus is the procedure to obtain the time series
u�nðtÞ ¼ unðtÞ=D that represents the oscillating amplitude of the
nth-Eigen mode. For this, consider that, at a given instant, t, x(z, t)
represents the oscillatory part of the elastica of the model. The
amplitude of the n-Eigen mode can be obtained by standard
orthogonal projection, written as

unðtÞ ¼
hxðz; tÞ;wnðzÞi
hwnðzÞ;wnðzÞi

¼

ðL

0

xðz; tÞwnðz; tÞdz

ðL

0

w2
nðz; tÞdz

(3)

As an illustrative example of the use of the modal analysis pro-
posed, Fig. 5 presents the original data at an instant �t and its
reconstruction considering the first four Eigen modes. This was
found to recover the original data satisfactorily, for the purposes
of the present analysis.

Notice that Eq. (3) allows to investigate the dynamics of the
system by just considering a few Eigen modes, instead of the 43
time series of Cartesian coordinates. Table 3 presents the charac-
teristic amplitude (obtained by computing the average of the 10%
of the highest peaks, as in Ref. [18]) and the dominant frequency
fd of the modal amplitude time series.

5 Analytical Model

In this analytical model, the bending stiffness is neglected
when compared to the geometric stiffness. In fact, bending stiff-
ness effect is relatively small, and, in the case of low numbered
modes, confined only to the cylinder extremities, see Refs. [1] and
[19]. However, this effect could be considered, from a WKB
approximation, as shown in Refs. [16] and [17], or, alternatively,
by transforming the fourth-order differential equation into a
second-order one, substituting the bending stiffness term with an

Fig. 3 Sketch of the experimental setup

Fig. 4 Spanwise distribution of PSD. Free decay tests in still
water.

Fig. 2 Pictures of the experimental arrangement. (a) General
view of the experimental setup, (b) submerged cameras, and (c)
servomotor device.
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additional and approximately equivalent geometric stiffness one;
see Mazzilli et al. [20]. Following the simplest approach, the
lateral displacement is given by the equation of a vertical string
subjected to a nonlinear3 damping term, in the form of the
following equation:

mt
@2xðz; tÞ
@t2

þ 1

2
qDCD

@xðz; tÞ
@t

@xðz; tÞ
@t

����
����� @

@z
Tðz; tÞ@xðz; tÞ

@z

� �
¼ 0

(4)

In the previous equation, mt¼mlþmad is the total mass per
unit length (added mass mad included), CD is the drag coefficient
(supposed independent of the spanwise position) and q is the fluid
density. The total tension is T(z, t)¼ Tt� c(L� z)þ Td, where c is
the immersed weight per unit length (weight per unit length minus
buoyancy contribution) and Td ¼ EA=L0ð ÞAt cosðxttÞ is the
dynamic tension induced by the top motion. Albeit it is well know
that added mass and drag coefficients depend on the oscillation
amplitude, in this paper these parameters will be considered con-
stant and equal to 1 and 1.2, respectively.

Considering x(z, t)¼wn(z)un(t) and by applying the Galerkin
approach (multiplying Eq. (4) by wnðzÞ ¼ sin np z=Lð Þð Þ and
integrating along the cylinders’s length), the following modal
oscillator equation is obtained:

Mn€un þ bnj _unj _un þ ðgn þ nn cosðxttÞÞun ¼ 0 (5)

where the modal parameters are given by

Mn ¼
ðL

0

mtw
2
nðzÞdz ¼ ðml þ madÞ

L

2
(6)

bn ¼
ðL

0

1

2
qCDDjwnðzÞjw2

nðzÞdz (7)

gn ¼
ðL

0

@

@z
Tt � cðL� zÞw0nðzÞ
� �

wnðzÞdz

¼ np
2

� 	2

2
Tt

L
� c

� �
(8)

nn ¼
np
2

� 	2 EA

Lo

� �
2At

L
(9)

Notice that Mn and gn may be defined as the modal mass and
stiffness, respectively, such that xN;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g1=M1

p
is the theoretical

value of the first Eigen frequency (in rad/s). Computing g1

and M1, we obtain xN,1¼ 5.24 rad/s, which is, practically, the
experimental result for the first Eigen frequency (i.e.,
2p� 0.84¼ 5.28 rad/s), as already presented. nn gives the modal
stiffness modulation amplitude and bn is the nonlinear modal
damping.

Aiming at obtaining a classical form of Mathieu’s equation,
Eq. (5) can be written considering the nondimensional time
2s¼xtt, leading to the following equation:

d2unðsÞ
ds2

þ 2ln

dunðsÞ
ds

dunðsÞ
ds

����
����þ ðdn þ 2en cosð2sÞÞunðsÞ ¼ 0

(10)

where

ln ¼
bn

2Mn
(11)

dn ¼
4gn

Mnx2
t

(12)

en ¼
2nn

Mnx2
t

(13)

It is important to highlight the differences between the altera-
tive forms of Mathieu’s equation, Eqs. (1) and (10). The differen-
ces, in form and consequently in the definition of the parameters,
are related to the scaling of both, the nondimensional time and the
parametric excitation amplitude.

The experimental data for dn and en are presented in Table 4.
These values will be plotted onto the Strutt diagram for the first
three Eigen modes.

Section 6 discusses the experimental results. This discussion is
carried out focusing on the time series x*(z*, t) plotted in scalo-
grams, the spanwise distribution of corresponding PSD Sx(z*, f),
and on results of modal decomposition analysis plotted onto Strutt
diagrams. Such results are complemented with time series of
modal amplitude and corresponding power spectra, as well as
modal phase portraits.

6 Results and Discussion

Figure 6 presents the scalograms of the oscillatory component
of x*(z*, t) for a time interval of 10 s. Aiming at a better visualiza-
tion, the color bars do not follow the same scale. Figure 7 presents
the spanwise spectral distribution Sx(z*, f) computed from the
whole acquisition time (120 s).

Considering the ft:fN,1¼ 1:3 case, Fig. 6(a) indicates a standing
wave pattern response. It can be noticed that the oscillations near
the bottom are larger than those close to the top, as expected,
since tension decreases with depth. This result is also observed in
the Sx(z*, f) plot shown in Fig. 7(a), where subharmonic responses

Table 3 Characteristic amplitude and frequency of the modal
amplitude time series

u0
n=D fd/fN,1

ft:fN,1 n¼ 1 n¼ 2 n¼ 3 n¼ 1 n¼ 2 n¼ 3

1:3 0.10 0.05 0.04 1.00 0.33 0.33
1:1 0.38 0.18 0.10 1.00 1.00 2.00
2:1 0.63 0.45 0.16 1.00 2.00 2.00
3:1 0.05 0.12 0.45 3.00 3.00 3.00

Fig. 5 Example of reconstruction of the elastica. Original data
and reconstruction with four modes: ft:fN,1 5 3:1.

3Notice that the only nonlinear term preserved in this mathematical model is that
related to the hydrodynamic damping. Other nonlinear terms could be considered, as
those related to stretching, see, e.g., Ref. [20].
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clearly show up. In fact, the same plot also reveals other spectral
components at f:fN,1¼ 1 6 1/3.

The multicomponent character of the response is also observed
in the ft:fN,1¼ 1:1 case, presented in Figs. 6(b) and 7(b). The
Sx(z*, f) spectrum is mainly composed by two harmonics, at fN,1

and 2fN,1. The scalogram indicates a marked presence of traveling
waves, contrary to the ft:fN,1¼ 1:3 case. Furthermore, the celerity
of the traveling waves, given by the inclination of each trace of
the scalogram depends on the position z*. This fact is not surpris-
ing, since the tension decreases with depth.

The scalogram corresponding to the ft:fN,1¼ 2:1 case is qualita-
tively distinct from the previous ones. It reveals an interesting
dynamic pattern, where dominant responses at two modes clearly
coexist, the first and the second one. A pitchfork-like figure may
be seen forming at midspan, alternately reinforcing vibrations of
both dominant modes, along the upper or the lower part of the
cylinder. A clearer picture of such an interesting dynamic behav-
ior may be formed by analyzing the corresponding modal phase
portraits, presented at the end of this section. Still considering the
ft:fN,1¼ 2:1 case, the spectrum Sx(z*, f) also reveals the compo-
nents f¼ fN,1 and f¼ 2fN,1, but the higher amount of energy is not
related to the frequency of the top motion.

Finally, the case ft:fN,1¼ 3:1 is also distinct from the others
analyzed in this section. The Sx(z*, f) plot (see Fig. 7(d)) is mono-
chromatic and narrow-banded centered at f¼ 3fN,1¼ ft, and the
scalogram presented in Fig. 6(d) clearly reveals a stable and repet-
itive standing wave pattern in the third Eigen mode. Hence, for
this condition of prescribed top motion, the response in mainly
due to the external excitation.

Now, we change the focus to the analysis of the Mathieu
instability by using the Strutt diagrams for the first, second,
and third Eigen modes. The results of the Strutt diagram will be
correlated with the scalograms and spectra presented in Figs. 6
and 7.

The Strutt diagrams for the first three Eigen modes are pre-
sented in Fig. 8. First, let us consider only the first Eigen mode
(see Fig. 8(a)). From the mentioned figure, it is clearly visible that
the green square is in an unstable region of the Strutt diagram.
Hence, the top excitation frequency ft:fN,1¼ 2:1 leads to Mathieu
instability for the first Eigen mode. It is worth to emphasize that,
despite the combination of the values of the parameters d and e
leading to the unstable region, the amplitude of motion is rela-
tively small. This fact is associated with the nonlinear damping
and was already pointed out in Ref. [7]. Still considering the first
Eigen mode, the red triangle, which corresponds to the ft:fN,1¼ 1:1
case, is at a transitional curve. Thus, in this case we can also
expect oscillations with non-negligible amplitudes. Notice also
that, as the amplitude of the parametric excitation is small, neither
the ft:fN,1¼ 2:1 case or the ft:fN,1¼ 1:1 one are close to the second-
ary bifurcation curve. Such a curve is graphed in red and was con-
structed from Ref. [6], after rescaling from �d� �e to the d–e
diagram.

The Strutt diagram for the second Eigen mode is shown in
Fig. 8(b). Notice that, the ft:fN,1¼ 2:1 (ft:fN,2¼ 1:1) case is practi-
cally at a transition curve, such that Mathieu’s instability might be
expected. On the other hand, the points corresponding to the cases

ft:fN,1¼ 1:1 and ft:fN,1¼ 3:1 are close enough to the transition to
instability, such that any small perturbation in one of the parame-
ters, as for instance in the added mass coefficient, might trigger
Mathieu instability for the second Eigen mode, in this excitation
frequency as well. This discussion agrees with the characteristic
amplitude u0

2 presented in Table 3, for which the higher value is

Fig. 6 Scalograms x*(z*, t). Only 10 s of acquisition are shown.
(a) ft:fN,1 5 1:3, (b) ft:fN,1 5 1:1, (c) ft:fN,1 5 2:1, and (d) ft:fN,1 5 3:1.

Table 4 Experimental points in the dn–en plane

dn en

n 1 2 3 1 2 3

1:3 35.54 142.17 319.88 7.02 28.09 63.19
1:1 3.95 15.80 35.54 0.78 3.12 7.02
2:1 0.99 3.95 8.89 0.20 0.78 1.76
3:1 0.44 1.76 3.95 0.09 0.35 0.78

Bolded points are close to the transition curves or inside unstable regions.
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related to ft:fN,1¼ 2:1, but with non-negligible oscillations in the
cases ft:fN,1¼ 1:1 and ft:fN,1¼ 3:1.

The Strutt diagram for the third Eigen mode is presented in
Fig. 8(c). The latter plot indicates that the top excitation with fre-
quency ft:fN,1¼ 3:1 leads to Mathieu instability. In the same plot, the

green square is located close to a transition curve. Once again, the
results from Table 3 agree with those predicted by the Strutt dia-
gram, with the higher amplitude u0

3=D being observed for the
ft:fN,1¼ 3:1 case. Furthermore, it is observed the dominance of vibra-
tion of the third Eigen mode in the condition with top motion excita-
tion at ft:fN,1¼ 3:1, as already discussed in the analysis of the
scalograms and the PSD plots (see Figs. 6(d) and 7(d), respectively).

Fig. 7 PSD spectra Sx(z*, f). (a) ft:fN,1 5 1:3, (b) ft:fN,1 5 1:1, (c)
ft:fN,1 5 2:1, and (d) ft:fN,1 5 3:1.

Fig. 8 Strutt diagrams. Red (triangle): ft:fN,1 5 1:1; green
(circle): ft:fN,1 5 2:1; blue (square): ft:fN,1 5 3:1. Results for the
condition ft:fN,1 5 1:3 are within the stable region and are not
shown. (a) First Eigen mode, (b) second Eigen mode, and (c)
third Eigen mode.
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Up to this point, we discussed the Strutt diagram based on the
modal amplitude time series for each of the chosen Eigen modes
wn(z), n¼ 1, 2, 3. Now, we turn our attention to investigate
Mathieu instabilities for each excitation frequency. This approach
allows a straightforward way to interpret the scalograms and the
PSD plots presented in Figs. 6 and 7.

The first case analyzed is that in which ft:fN,1¼ 1:1, marked as
red triangles in Fig. 8. For this excitation condition, only the first

Eigen mode is at a transition curve, hence subjected to significant
oscillations. This fact is confirmed by modal amplitudes presented
in Table 3.

Considering now the case with excitation frequency
ft:fN,1¼ 2:1, the green squares in Fig. 8 indicate not only the
Mathieu instability in the first Eigen mode (Fig. 8(a)) but also
the possibility of this instability in the second and third Eigen
modes (Figs. 8(b) and 8(c), respectively). These results may

Fig. 9 Modal amplitude time series u1(t)/D and corresponding
PSD. (a) ft:fN,1 5 1:3, (b) ft:fN,1 5 1:1, (c) ft:fN,1 5 2:1, and (d)
ft:fN,1 5 3:1.

Fig. 10 First mode phase portraits _u1=(xd D) versus u1(t)/D. (a)
ft:fN,1 5 1:3, (b) ft:fN,1 5 1:1, (c) ft:fN,1 5 2:1, and (d) ft:fN,1 5 3:1.
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justify the modal amplitude distribution presented in Table 3.
Moreover, the composition of modes may be related to the alter-
nating “fork” pattern verified in the scalogram shown in Fig. 6(b).

Finally, in the case with ft:fN,1¼ 3:1, the blue square in Fig. 8(c)
reveals that the third Eigen mode is at a transition curve, whereas
for the others cases, the referred marker is inside stable regions.

This result totally agrees with the character of both the corre-
sponding scalogram and spanwise PSD plots shown, respectively,
in Figs. 6(d) and 7(d), as well as with the characteristic oscillation
amplitude u0

3 results presented in Table 3. The last set of results
that will be discussed is the modal amplitude time series and the
corresponding PSD plots. These results are shown in Figs. 9–14.
Considering the first mode amplitude time series u1 (Fig. 9), it is

Fig. 11 Modal amplitude time series u2(t)/D and corresponding
PSD. (a) ft:fN,1 5 1:3, (b) ft:fN,1 5 1:1, (c) ft:fN,1 5 2:1, and (d)
ft:fN,1 5 3:1.

Fig. 12 Second mode phase portraits _u2=(xd D) versus u2(t)/D.
(a) ft:fN,1 5 1:3, (b) ft:fN,1 5 1:1, (c) ft:fN,1 5 2:1, and (d) ft:fN,1 5 3:1.
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clearly visible that the dominant oscillation frequency is f/fN,1¼ 1
for the ft:fN,1¼ 1:1 and 2:1 cases. The oscillation amplitude for the
3:1 case is almost negligible. The corresponding phase portraits
(see Fig. 10) indicate a well defined periodic behavior of these

time series. On the other hand, the response of the 1:3 case is
dominated by the first Eigen frequency, but also presents energy
at components f/fN,1¼ 1þ 1/3 (sum frequency) and f/fN,1¼ 1� 1/3
(difference frequency). The presence of sum and difference
frequencies was already pointed out in experimental results of
simultaneous VIV phenomenon and parametric excitation of a
semi-immersed flexible cylinder (see Ref. [21]).

Fig. 13 Modal amplitude time series u3(t)/D and corresponding
PSD. (a) ft:fN,1 5 1:3, (b) ft:fN,1 5 1:1, (c) ft:fN,1 5 2:1, and (d)
ft:fN,1 5 3:1.

Fig. 14 Third mode phase portraits _u3=(xd D) versus u3(t)/D. (a)
ft:fN,1 5 1:3, (b) ft:fN,1 5 1:1, (c) ft:fN,1 5 2:1, and (d) ft:fN,1 5 3:1.
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Focusing now on the u2 times series, the dynamic behavior is
certainly more intricate, as can bee seen in Figs. 10 and 11. In the
ft:fN,1¼ 1:1 case, the PSD analysis reveals oscillations with
components f/fN,1¼ 1 and f/fN,1¼ 2. Hence, the model vibrates
with the shape of the second Eigen mode and at the first Eigen fre-
quency. This might be attributed to modeling an intrinsically non-
linear structure and related phenomena by employing linear
modes. Ongoing researches on this subject make use of nonlinear
modes, which carry richer information on oscillation frequencies,
amplitudes, and velocities, as an alternative analytical approach
for this problem. The reader interested in theoretical discussion
and applications of nonlinear modes is referred to Shawn and
Pierre [22,23].

A summary of the above discussion can be found in Table 5, in
which the frequency ratios of periodic responses predicted by the
Strutt diagram are compared to those experimentally obtained
from modal analysis. Recall that, in the usual Strutt diagram, the
transitional curves which bound the instability regions are the loci
of periodic solutions, alternating between 2T and T periodic ones,
as successive tongues of instability are considered; the first one,
with vertex at d¼ 1, is 2T. If damping is included, the transitional
boundaries change to bifurcation lines, delimiting regions were
periodic oscillations may appear. Comparing the predictions given
by the plots in the Strutt diagrams with the experimental results
obtained through the spectral analysis, a fair agreement is
indeed obtained. For example, a Mathieu like instability, with a
2T periodic solution (fR:ft¼ 1:2), is clearly confirmed for the first
Eigen mode; see Table 5, second line, n¼ 1. For the same Eigen
mode, a 1T periodic solution (fR:ft¼ 1:1) shows up too (first line,
n¼ 1). Similarly, 1T periodic solutions (fR:ft¼ 1:1) appear for the
second (second line, n¼ 2) and for the third (third line, n¼ 3)
Eigen modes.

On the other hand, the 2T periodic oscillation that might be
expected for the third Eigen mode (second line, n¼ 3), since the
corresponding plot in the Strutt diagram (Fig. 8(c)) is very close
to the left boundary of the third instability tongue, is not con-
firmed by the spectral analysis. As a matter of fact, whenever the
Strutt diagram does not clearly predict a single periodic
solution for a given mode (what is marked with a horizontal trace
in Table 5), the spectral analysis reveals a multifrequency
response in that mode. In other words, periodic solutions emerg-
ing from Mathieu-like instabilities in a given mode appear to
dominate other possible harmonic components, possibly presented
in the same mode.

Before the final remarks, a last aspect should be highlighted.
The use of sinusoidal functions as a projection set showed to be a
good choice, balancing simplicity, and quality of results. Further
investigations may take into account other set of functions in the
Galerkin’s projection scheme, by using more sophisticated
approximations to the Eigen modes, as Bessel’s or WKB

asymptotics. However, other issues, as orthogonality properties,
should be properly worked out.

7 Conclusions

Combining modal and spectral analysis with Mathieu instability
modeling, an experimental investigation was carried out with a
flexible and vertically immersed cylinder, subjected to harmonic
vertical top motions. The dynamic response for distinct excitation
frequency ratios, with respect to the first natural frequency, was
analyzed and discussed.

In the frequency ratio case ft:fN,1¼ 1:1, the response amplitude
scalogram indicated the presence of a traveling-wave pattern and
the PSD plot Sx(z*, f) highlighted the predominance of the first
two Eigen modes in the response. In the ft:fN,1¼ 2:1 case, the
Sx(z*, f) also indicated the predominance of the first and second
Eigen modes, but the scalogram revealed an alternating “fork
pattern.” The higher excitation frequency ratio tested corresponds
to ft:fN,1¼ 3:1. Contrary to the previous ones, the latter condition
was characterized by the predominance of a standing-wave pattern
with the shape of the third Eigen mode.

In the case in which ft:fN,1¼ 1:1, the Strutt diagram pointed out
the Mathieu instability in the first Eigen mode. On the other hand,
for the case ft:fN,1¼ 2:1, the analysis of the Strutt diagram allowed
to assert that the Mathieu instability may occur in more than one
Eigen mode. This fact was verified through spectral analysis of
the modal components time series.

Another interesting finding is that, whenever the Strutt diagram
did not clearly predict a single periodic solution for a given mode,
the spectral analysis revealed a multifrequency response in
that mode. In other words, periodic solutions emerging from
Mathieu-like instabilities appear to dominate other possible har-
monic components in a given mode. These findings may contrib-
ute to the understanding of the dynamics of top tension risers or
TLP tethers.

Further work on vertical cylinder dynamics shall address
the analysis of experimental results of concomitant VIV and para-
metrically excited vibrations, already obtained during the same
research project. Other aspects to be investigated include a
multimode projection scheme as a way to verify the influence of
the modal interactions in the response. Sensitiveness studies
concerning the effect of added mass and drag coefficients on
Mathieu instabilities are also interesting issues to be further
considered.
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