The fundamental theorem of calculus for regular multidimensional Banach space valued Kurzweil-Henstock integrals

Chaim Samuel Hönig

Instituto de Matemática e Estatística Universidade de São Paulo Caixa Postal 20570 - Ag. Iguatemi 01498 - São Paulo - Brazil

Abstract

In [Ho,1] we gave a characterization of the functions $F:[a,b] \to X$ that are Kurzweil-Henstock integrals. In this paper we extend this result to dimension n > 1. A theorem of Saks, [S], proves that this is impossible with the usual definition of derivative for dimension n > 1. Hence we use the more general regular derivative and in order to keep the correspondence with the integration we use the more general regular integral.

§1 - BASIC DEFINITIONS (In order to simplify the exposition we will consider dimension n = 2)

We work in a bidimensional interval $R = [a, b] = [a_1, b_1] \times [a_2, b_2]$. All intervals we consider have their sides parallel to the coordinate axis. For $x, y \in \mathbb{R}^2$ we write $x \leq y$ if $x_1 \leq y_1$ and $x_2 \leq y_2$. By $\{x, y\}$ we denote the corresponding closed interval: analogously for [x, y] etc. [x, y] etc. always denote closed intervals: [x, y] denotes the interior of [x, y] denotes the area of [x, y] denotes the two-dimensional Lebesgue measure.

For $\xi \in R$ and $\sigma > 0$ we define $B_{\sigma}(\xi) = \{x \in R \mid ||x - \xi|| < \sigma\}.$

If $(J_i)_{i=1,2,...,n}$ is a division of R in nonoverlapping intervals and given points $\xi_i \in J_i$, tags, we say that $(\xi_i, J_i)_{i=1,2,...,n}$, or simply, (ξ_i, J_i) , is a tagged division (TD) of R. If the union of the J_i is not all R we say that we have a tagged partial division (TPR) of R.

Given $c \in]0,1]$ and an interval J whose sides have length h and k we say that J is c-regular if $c \leq \frac{h}{k} \leq \frac{1}{c}$; we say that a TD or a TPD is c-regular if all its intervals are c-regular.

For $E \subset R$ a function $\delta : E \to [0, \infty[$ is called a gauge (defined on E). We say that a TD [TPD] $(\xi_i J_i)$ is δ -fine, where δ is a gauge on R, if for every i we have

$$\xi_i \in J_i \subset B_{\delta(\xi_i)}(\xi_i)$$
.

If $c \in]0,1[$ it is immediate that we can divide R in a finite number of c-regular intervals; by further bisections it follows easily that for every gauge $\delta: R \to]0,\infty[$ there exists a c-regular, δ -fine TD of R: see [Ho, 2], Teor. 3.1.

Given a function $f:R\to X$, where X always denotes a Banach space, we say that f is Kurzweil-Henstock integrable, we write $f\in\mathcal{K}(R,X)$, or simply $f\in\mathcal{K}$, if there exists $I\in X$ such that for every $\varepsilon>0$ there exists a gauge δ on R such that for every δ -fine TD (ξ_i,J_i) of R we have

$$||\sum (f(\xi_i)|J_i|-I||<\varepsilon:$$
 we write $\int_R^K f(t)\,dt=I$ or simply $\int_R^K f=I.$ If $f\in\mathcal{K}(R,I)$, for every $t\in R$ there exists $\tilde{f}(t)=\int_{[a,t]}^K f(t)\,dt=I$

We denote by \mathcal{J}_R the set of all closed intervals $J \subset R$: we say that a function $F: \mathcal{J}_R \to X$ is additive if we have $F(J) = F(J_1) + F(J_2)$ whenever $J = J_1 \cup J_2$, with J_1, J_2 nonoverlapping; we denote by $\mathcal{A}(\mathcal{J}_R, X)$, or simply by \mathcal{A} , the set of all additive functions $F: \mathcal{J}_R \to X$.

We say that a function $f: R \to X$ is Henstock or variationally integrable, we write $f \in \mathcal{H}(R,X)$, or simply $f \in \mathcal{H}$ if there exists a $F \in \mathcal{A}(\mathcal{J}_R,X)$ such that for every $\varepsilon > 0$ there exists a gauge δ on R such that for every δ -fine TD (ξ_i,J_i) we have

$$\sum_{i} ||f(\xi_i)|J_i| - F(J_i)|| < \varepsilon :$$

it is immediate that $\mathcal{H} \subset \mathcal{K}$.

If $F \in \mathcal{A}(\mathcal{J}_R, X)$ and $\xi \in R$ we write $(DF)(\xi) = f(\xi)$ if there exists

(1)
$$\lim_{J\ni \xi, |J|\to 0} \frac{1}{|J|} F(J) = f(\xi) .$$

One would expect that if $f \in \mathcal{L}_1(R)$ then for almost every (ae) $\xi \in R$ we have

(2)
$$\lim_{J\ni \xi_1|J|=0} \frac{1}{J} \int_I f(t) \, dt = f(\xi) \; ;$$

however Saks in [S] proves that with the exception of the functions belonging to a subset of first category of $\mathcal{L}_1(R)$, for all other functions f we do not have (2) at any point $\xi \in R!$

This fact suggests the necessity of generalizing the notion of derivative in dimension $n \ge 2$.

For $F \in \mathcal{A}(\mathcal{J}_R, X)$ and $c \in]0,1]$ we say that F is c-differentiable at $\xi \in R$, and that $f(\xi)$ is its c-derivative, we write $(D^cF)(\xi) = f(\xi)$, if we have (1) when we take there only c-regular intervals. We say that F is regularly differentiable at $\xi \in R$, and that $f(\xi)$ is its regular derivative, we write $({}^rDF)(\xi) = f(\xi)$, if we have $(D^cF)(\xi) = f(\xi)$ for every $c \in]0,1]$.

We say that $f: R \to X$ is a regularly Kurzweil integrable, we write $f \in {}^{r}\mathcal{K}(R,X)$ or simply $f \in {}^{r}\mathcal{K}$, if there exists $I \in X$ such that for every $\varepsilon > 0$ and every $c \in]0,1[$ there exists a gauge δ on R such that for every c-regular, δ -fine TD (ξ, J_i) of R we have

$$||\sum_i f(\xi_i)|J_i|-I||<\varepsilon$$
 :

then we write $\int_R f(t) dt = I$, or simply $\int_R f = I$, and for every $t \in R$ there exists $\tilde{f}(t) = \int_{[a,t]} f(s) ds$.

 $\mathcal{K}(R,X) \subset {}^{\tau}\mathcal{K}(R,X)$ and for $f \in \mathcal{K}$ we have ${}^{\tau}\tilde{f} = \tilde{f}$.

We say that $f: R \to X$ is regularly Henstock integrable, we write $f \in {}^{\tau}\mathcal{H}(R, X)$ or simply $f \in {}^{\tau}\mathcal{H}$, if there exists $F \in \mathcal{A}(\mathcal{J}_R, X)$ such that for every $\varepsilon > 0$ and every $c \in]0,1[$ there exists a gauge δ on R such that for every c-regular, δ -fine TD (ξ_i, J_i) on R we have

(3)
$$\sum_{i} ||f(\xi_i)|J_i| - F(J_i)|| < \varepsilon.$$

It is immediate that $\mathcal{H} \subset {}^{r}\mathcal{H}$ and ${}^{r}\mathcal{H} \subset {}^{r}\mathcal{K}$.

1.1 (Lemma of Saks-Henstock) - For $f \in {}^{r}\mathcal{H}(R,X)$, $\varepsilon > 0$ and $c \in]0, 1[$. let δ be a gauge on R corresponding to the definition of $f \in {}^{r}\mathcal{H}$. Then for any c-regular, δ -fine TPD (ξ_i, J_i) of R we have (3).

The proof follows the usual ones for the Saks-Henstock Lemma; see for instance [Ho. 2]. Teor. 3.7.

If $f \in {}^{r}\mathcal{K}$, for every $x \in R$ we have

(4)
$$\tilde{f}(x) = F([a,x]) - F([(a_1,a_2),(a_1,x_2)]) - F([(a_1,a_2),(x_1,a_2)]) + F([a,a])$$
.

We may associate to \tilde{f} an additive function of intervals, which we still denote by \tilde{f} . $\tilde{f}: \mathcal{J}_X \to X$, defined by

(5)
$$\tilde{f}([x,y]) = \tilde{f}(y) - \tilde{f}(x_1,y_2) - \tilde{f}(x_2,y_1) + \tilde{f}(x)$$
.

Reciprocally to $F \in \mathcal{A}(\mathcal{J}_R, X)$ we may associate a function $R \to X$, that we still denote by F:

(6)
$$F(x) = F([a,x]) - F([(a_1,a_2),(a_1,x_2)]) - F([(a_1,a_2),(x_1,a_2)]) + F([a,a])$$

This function satisfies

(7)
$$F(a_1, x_2) = F(x_1, a_2) = 0$$
 for every $x \in R$.

If $F \in \mathcal{A}(\mathcal{J}_R, X)$ satisfies (7) we write $F \in \mathcal{A}_0(\mathcal{J}_R, X)$ or simply $F \in \mathcal{A}_0$: to every $F \in \mathcal{A}(\mathcal{J}_R, X)$ we can associate a $F_0 \in \mathcal{A}$ that also satisfies (7), with $F_0(J) = F(J)$ for every $J \in \mathcal{J}_R$: $F_0([a, x])$ is given by the second member of (4) or (6).

1.2 - For $f:R\to X$ with f=0 as we have $f\in \mathcal{H}(R,X)$ and $\bar{f}=0$.

The proof is routine; see for instance the proof of 3.2 in [Ho, 2].

1.3 - For $f \in {}^{r}\mathcal{H}(R,X)$ and $g: R \to X$ with g = f as we have $g \in {}^{r}\mathcal{H}$ and ${}^{r}\tilde{g} = {}^{r}\tilde{f}$.

§2 - MAIN RESULTS

The lemma that follows is the bidimensional analogue of the Lemma of Austin. see [Ho. 2].

Lemma 2.1 - Let $(J_i)_{i \in A}$, A finite, be a covering of R or, more generally, of a compact $K \subset R$, by c-regular intervals, $0 < c \le 1$. Then there exists $B \subset A$ such that the intervals J_i , $i \in B$, are disjoint with

$$\sum_{i \in B} |J_i| \ge D_c m(K) \quad \text{where} \quad D_c = \frac{c^2}{7c^2 + 2} \ .$$

Proof. Let us denote by J^1 an interval J_i , $i \in A$, with maximal area. If $|J^1| \geq D_c m(K)$ the proof is finished. If not we define $A_1 = \{i \in A \mid J_i \cap J^1 \neq \emptyset\}$ and $K_1 = \bigcup_{i \in A_1} J_i$; from the maximality of $|J^1|$ it follows that

$$D_{\mathfrak{c}}|K_1| \leq |J^1| \ .$$

Let us denote by J^2 an interval J_i , $i \in A \setminus A_1$, with maximal area. We have $|J^2| \leq |J^1|$ and $J^2 \cap J^1 = \emptyset$. If $|J^2| + |J^1| \geq D_c m(K)$ the proof is finished. If not we define

 $A_2 = \{i \in A \setminus A_1 \mid J_i \cap J^2 = \emptyset\}$ and $K_2 = \bigcup_{i \in A_2} J_i$. We have $D_c |K_2| \leq |J^2|$; let us denote by J^3 an interval J_i , $i \in A \setminus (A_1 \cup A_2)$, with $|J^3|$ maximal. We have $|J^3| \leq |J^2|$ and J^1 , J^2 , J^3 are disjoint. If $|J^1| + |J^2| + |J^3| \geq D_c m(K)$ the proof is finished. If not, we proceed; the process must finish after a finite number of choices J^1, J^2, \ldots, J^s since A is finite. Then we will have

$$\frac{1}{D_c}[|J^1| + |J^2| + \dots + |J^s|] \ge |K_1| + |K_2| + \dots + |K_s| \ge m(K)$$

since $\bigcup_{1 \le i \le s} K_i \supset \bigcup_{i \in A} J_i \supset K$ and $D_c[K_i] \le |J^*|$ for $i = 1, 2, \dots, s$.

Theorem 2.2 - If $f \in {}^{r}\mathcal{H}(R,X)$ then there exists ${}^{r}D \stackrel{r}{f} = f$ ae.

Proof. Let us denote by E the set of all $\xi \in R$ such that there does not exist $({}^rD^r\tilde{f})(\xi)$ or such that $({}^rD^r\tilde{f})(\xi) \neq f(\xi)$. We will prove that mE = 0. Let us take $\xi \in E$; then there exists $c = \frac{1}{k}$ $(k \in N)$; hence any $\frac{1}{n} < \frac{1}{k}$ will also do) such that there does not exist $(D^{c-r}\tilde{f})(\xi)$ or $(D^{c-r}\tilde{f})(\xi) \neq f(\xi)$. We write then $\xi \in E^k$ and we have $E = \bigcup_{k \in N} E^k$. We denote by E^k_n the set of all $\xi \in E^k$ that are such that any neighbourhood of ξ contains a c-regular interval $J_{\xi} \ni \xi$ such that

(a)
$$|| \tilde{f}(J_{\xi}) - f(\xi)|J_{\xi}| || > \frac{1}{n}|J_{\xi}| .$$

Since $f \in {}^r\mathcal{K}$, given $\varepsilon > 0$ there exists a gauge δ on R such that for any c-regular, δ -fine TPD (ξ_i, J_i) we have

(b)
$$\sum_{i} || \tilde{f}(J_i) - f(\xi)|J_i| || < \varepsilon.$$

If $\xi \in E_n^k$ we take J_{ξ} such that we have (a) with

$$\xi \in \mathring{J}_{\ell} \subset J_{\ell} \subset B_{\delta(\xi)}(\xi)$$
.

It is enough to prove that $mU < 2D_c n\varepsilon$ where $U = \bigcup_{\ell \in E_n^k} \mathring{J}_{\ell}$. It is immediate that there exists a compact $K \subset U$ with $mK > \frac{1}{2}mU$ and the open covering $(\mathring{J}_{\ell})_{\ell \in E_n^k}$ of K contains

a finite subcovering $(\mathring{J}_{\xi_i})_{i\in A}$, A finite. We write $J_i=J_{\xi_i}$ if $i\in A$. By Lemma 2.1 there exist $B\subset A$ such that the $J_i,\ i\in B$, are disjoint and

(c)
$$m\left(\bigcup_{i\in B}J_i\right)\geq \frac{1}{D_c}m\left(\bigcup_{i\in A}J_i\right)\geq \frac{1}{D_c}mK>\frac{1}{2D_c}mU.$$

Since $(\xi_i, J_i)_{i \in B}$ is a c-regular, δ -fine TPD, by (c), (a) and (b) we have

$$\frac{1}{2D_c}mU < m\left(\bigcup_{i \in B} J_i\right) < n\sum_{i \in B} || \tilde{f}(J_i) - f(\xi_i)|J_i| || < n\varepsilon.$$

For $F \in \mathcal{A}(\mathcal{J}_R, X)$ and $B \subset R$ we say that F satisfies the regular strong Lusin condition on B, we write $F \in {}^rSL(B, X)$, if for every $\varepsilon > 0$, every $c \in]0,1[$ and every $A \subset B$ with mA = 0, there exists a gauge δ on A such that for every c-regular, δ -fine TPD (ξ_i, J_i) with $\xi_i \in A$ we have

$$\sum_{z} ||F(J_i)|| < \varepsilon .$$

If $F \in {}^{r}SL(R, X)$ and if we have f furthermore (7) we write $F \in {}^{r}SL_{a}(R, X)$ or simply $F \in {}^{r}SL_{a}$. If there exists also ${}^{r}DF$ as we write $F \in {}^{r}SL_{a}{}^{r}D(R, X)$ or simply $F \in {}^{r}SL_{a}{}^{r}D$.

Theorem 2.3 - For $f \in {}^{r}\mathcal{H}(R,X)$ we have ${}^{r}\tilde{f} \in {}^{r}SL_{a}{}^{r}D(R,X)$ and ${}^{r}D{}^{r}\tilde{f} = f$ ae.

Proof. Take $A \subset R$ with mA = 0 and define $f_{CA} = f_{\lambda CA}$. By 1.3 we have $f_{CA} \in {}^{r}\mathcal{H}$ with ${}^{r}\tilde{f}_{CA} = {}^{r}\tilde{f}$. Given $\varepsilon > 0$ and $c \in]0.1[$ let δ be a gauge on R corresponding to the definition of ${}^{r}\int_{R}f$. By 1.1. for any c-regular, δ -fine TPD (ξ_{i}, J_{i}) with $\xi_{i} \in A$ we have $\sum_{i} ||{}^{r}\tilde{f}_{CA}(J_{i}) - f_{CA}(\xi_{i})|J_{i}||| = \sum_{i} ||{}^{r}\tilde{f}(J_{i})|| < \varepsilon$ and by Theorem 2.2 there exists ${}^{r}D{}^{r}\tilde{f} = f$ as.

Reciprocally:

Theorem 2.4 - If $F \in {}^rSL_a{}^rD(R,X)$ and $f: R \to X$ are such that ${}^rDF = f$ as then $f \in {}^r\mathcal{H}(R,X)$ and $F = {}^r\tilde{f}$.

Proof. We define $E = \{ \xi \in R \mid \exists ("DF)(\xi) = f(\xi) \}$. Hence for A = CE we have mA = 0. By 1.3 we may suppose that $f(\xi) = 0$ if $\xi \in A$. It is enough to prove that for every $\varepsilon > 0$ and every $c \in]0,1[$ there exists a gauge δ on R such that for any c-regular δ -fine TD (ξ_i,J_i) we have $\sum ||F(J_i) - f(\xi_i)|J_i| \ || \leq 2\varepsilon$.

Definition of δ : 1) if $\xi \in E$, i.e., if there exists $({}^{r}DF)(\xi) = f(\xi)$ then by definition of ${}^{r}DF$ there exists $\delta(\xi) > 0$ such that if $\xi \in J \subset B_{\delta(\xi)}(\xi)$, with J c-regular, we have

$$||F(J)-f(\xi)|J|\ ||<\frac{\varepsilon}{|R|}|J|\ ;$$

2) Since mA = 0 and $F \in {}^rSL$ there exists a gauge δ on A such that for any c-regular, δ -fine TPD (ξ_k, J_k) with $\xi_k \in A$ we have

$$\sum_{k} ||F(J_k)|| < \varepsilon .$$

Now, for any c-regular, δ -fine TD (ξ_i, J_i) of R we have

$$\sum_{i} ||F(J_{i}) - f(\xi_{i})|J_{i}|||$$

$$\leq \sum_{\xi_{i} \in \mathcal{E}} ||F(J_{i}) - f(\xi_{i})|J_{i}||| + \sum_{\xi_{i} \in A} ||F(J_{i})|| + \sum_{\xi_{i} \in A} ||f(\xi_{i})||||J_{i}||$$

$$\leq \sum_{\xi_{i} \in \mathcal{E}} \frac{\varepsilon}{|R|} |J_{i}| + \varepsilon + 0 \leq 2\varepsilon.$$

§3 - COMMENTS

For $f \in \mathcal{H}([a,b],X)$ the function \tilde{f} is continuous but even in the numerical case, X = R, for $f \in {}^{r}\mathcal{H}([a,b])$, ${}^{r}\tilde{f}$ may be discontinuous at the border of [a,b], see [J-K-S]. If $J = J_1 \cup J_2$, with nonoverlapping J_1 and J_2 , for $f: J \to \mathbb{R}$ we may have $f \in {}^{r}\mathcal{H}(J_1)$, i = 1, 2, but $f \notin {}^{r}\mathcal{H}(J)$; see [J-K-S].

The idea of regular intervals goes back to at least 60 years.

Results related to multidimensional regular derivation and integration can be found, among others, in the following recent papers: [J-K-S], [K-J, 1], [J-K, 1], [K-J, 2], [J-K, 2] and [K-J, 3]; their nomenclature however is different:

- 1) Their integrals are called: GP integral [J-K-S], weak Perron integral [J-K, 1], Z-integral [K-J, 1], Pf-integral [K-J,2], α-regular integral [K-J,3].
- 2) Their derivatives are called: weak derivative [J-K,1], Z-derivative [K-J, 1], α-regular derivative [K-J,2].
- 3) For the regular strong Lusin condition we have the following names: n_I^+ class [J-K, 1], well-behaved [K-J, 1], α -variationally normal [K-J, 2].

We took the expression "strong Lusin condition" from [L].

In another paper we will develop further the results presented here and compare them with those of the papers quoted above.

REFERENCES

- [Ho, 1] Hönig. C.S. On a remarkable differential characterization of the functions that are Kurzweil-Henstock integrals. 33 2 Seminário Brasileiro de Análise (1991). 331-341.
- [Ho. 2] Hönig, C.S. As integrais de gauge. 37º Seminário Brasileiro de Análise (1993). 1-60.
- [J-K, 1] Jurkat. W.B.: Knizia. R.W. A characterization of multi-dimensional Perron integrals and the fundamental theorem. Can. J. Math.. 43 (1991), 526-539.
- [J-K, 2] Jurkat. W.B.: Knizia, R.W. Generalized absolute continuous interval functions and multi-dimensional Perron integration. *Analysis*, 12 (1992), 303-313.
- [J-K-S] Jarnik, J.: Kurzweil, J.: Schwabik, St. On Mawhin's approach to multiple non-absolute convergent integral. Casopis pro pest. mat., 108 (1983), 356-380.
- [K-J, 1] Kurzweil, J.: Jarnik, J. Equi integrability and controlled convergence of Perrontype integrable function. *Real Analysis Exchange*, 17 (1991-92), 110-139.

10.7

- [K-J, 2] Kurzweil, J.: Jarnik, J. Equivalent definitions of regular generalized Perron integral. Czech. Math. Journal, 42 (1992), 365-378.
- [K-J, 3] Kurzweil, J.; Jarnik, J. Differentiability and integrability in n dimensions with respect to α-regular intervals. Results in Math., 21 (1992), 138-151.
- [L] Lee, P.Y. On ACG function. Real Analysis Exchange. 15 (1989-90), 754-756.
- [S] Saks, S. Remark of the differentiability of the Lebesgue indefinite integral. Fund. Math., XXII (1934). 257-261.