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Abstract. The aim of this work is to demonstrate the effectiveness of
the extension theory of symmetric operators in the investigation of the
stability of standing waves for the nonlinear Schrödinger equations with
two types of non-linearities (power and logarithmic) and two types of
point interactions (δ- and δ′-) on a star graph. Our approach allows
us to overcome the use of variational techniques in the investigation of
the Morse index for self-adjoint operators with non-standard boundary
conditions which appear in the stability study. We also demonstrate
how our method simplifies the proof of the stability results known for
the NLS equation with point interactions on the line.

1. Introduction

In the last two decades the study of nonlinear dispersive models with
point interactions has attracted a lot of attention of mathematicians and
physicists. In particular, such models appear in nonlinear optics, Bose-
Einstein condensates (BEC), and quantum graphs (or networks) (see [3,
17, 21–23, 28, 40, 42, 44] and references therein). The prototype equation
for description of these models is the nonlinear Schrödinger equation (NLS
henceforth)

i∂tu(t, x) + ∂2
xu(t, x) + |u(t, x)|p−1 u(t, x) = 0, x 6= 0, (1.1)

(t, x) ∈ R×R, p > 1, with specific boundary conditions at x = 0 induced by a
certain impurity or point interaction. The most studied are the models with
so-called δ- and δ′-interaction (see Section 5 for details). Indeed, the Dirac
distribution models an impurity or defect localized at the origin. Moreover,
the NLS-δ equation on the line can be viewed as a prototype model for the
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interaction of a wide soliton with a highly localized potential. In nonlinear
optics it models a soliton propagating in a medium with a point defect, or
interaction of a wide soliton with a much narrower one in a bimodal fiber
(see [36]). Recently, numerous results on the local well-posedness of initial
value problem and periodic boundary value problem, the long time behavior
of solutions, the existence of stationary states, blow up and scattering results
(see [3,4,8,9,12,23,24,28,32,36] and references therein) have been obtained.

In this paper, we study the existence and the orbital stability of standing
waves of the model (1.1) being extended to a star graph G, i.e., N half-lines
attached to the common vertex ν = 0. Namely, we consider the following
nonlinear Schrödinger equations on the star graph G

i∂tU(t, x) + ∂2
xU(t, x) + |U(t, x)|p−1U(t, x) = 0, (1.2)

where U(t, x) = (uj(t, x))Nj=1 : R × R+ → CN , and p > 1. The nonlinearity

acts componentwise, i.e., (|U|p−1U)j = |uj |p−1uj , and the function U is
assumed to satisfy specific boundary δ- and δ′-interaction at the vertex ν = 0
to be defined below (see Subsection 2.1).

Equation (1.2) models propagation through junctions in networks. The
analysis of the behavior of NLS equation on networks is not yet fully devel-
oped, but it is currently growing (see [1, 2, 10, 11, 15, 16, 44] and references
therein). In particular, models of BEC on graphs/networks is a topic of
active research (see [22,29]).

We recall that the quantum graphs (metric graphs equipped with a linear
Hamiltonian H) have been a very developed subject in the last couple of
decades. They give simplified models in mathematics, physics, chemistry,
and engineering, when one considers propagation of waves of various type
through a quasi one-dimensional (e.g. meso- or nanoscale) system that looks
like a thin neighborhood of a graph (see [17, 20, 22, 40, 42] for details and
references).

Various recent analytical works (see [1,2,10,11,44] and references therein)
deal with special solutions of (1.2) called standing wave solutions, i.e., the
solutions of the form U(t, x) = eiωtΦ(x), with the profile Φ satisfying δ-
interaction conditions defined by (2.3) below. In [2] it was established a
complete description of the profiles Φ for any α ∈ R, and the stability in-
vestigation for the N -tail profile (see (2.9)) under the restriction α < α∗ < 0
which comes from the associated variational problem. In [1] the restriction
α < α∗ was removed. It is worth noting that the problems of the existence
and the stability/instability of standing waves are far richer and more com-
plicated in the case of the NLS models with point interactions on star graphs
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than in the case of the NLS equation with point interactions on the line. We
propose a novel short proof of the orbital stability of the N -tail profile for
any α < 0 in the framework of the extension theory approach (see Remark
3.20). Moreover, we prove the following new result on the orbital instability
of N -bump profile Φ in the case α > 0.

Theorem 1.1. Let α > 0, 1 < p < 5, and ω > α2

N2 . Let also Φα,δ be
defined by (2.9), and the space E(G) be defined in notation section. Then the
following assertions hold.

(i) If 1 < p ≤ 3, then eiωtΦα,δ is orbitally unstable in E(G).

(ii) If 3 < p < 5, then there exists ω2 >
α2

N2 such that eiωtΦα,δ is orbitally
unstable in E(G) for ω > ω2.

In the case p ≥ 5 our method does not provide any information about
orbital stability of eiωtΦα,δ (see Remark 3.20-(i)). Mention also that in the
case N = 2 the above result coincides with [28, Theorem 4].

In Subsection 3.2, we prove the following novel stability theorem for the
standing waves of the NLS-δ′ equation on the star graph with a specific
N -tail profile Φλ,δ′ satisfying δ′-interaction conditions (2.5).

Theorem 1.2. Let λ < 0, and ω > N2

λ2
. Let also Φλ,δ′ be defined by (2.11),

and the space H1
eq(G) be defined by

H1
eq(G) = {(vj)Nj=1 ∈ H1(G) : v1(x) = · · · = vN (x), x > 0}.

Then the following assertions hold.

(i) Let 1 < p ≤ 5.

1) If ω < N2

λ2
p+1
p−1 , then eitωΦλ,δ′ is orbitally stable in H1(G).

2) If ω > N2

λ2
p+1
p−1 and N is even, then eitωΦλ,δ′ is orbitally unstable

in H1(G).

(ii) Let p > 5 and ω 6= N2

λ2
p+1
p−1 . Then there exists ω∗ > N2

λ2
such that

eitωΦλ,δ′ is orbitally unstable in H1(G) for ω > ω∗, and eitωΦλ,δ′ is
orbitally stable in H1

eq(G) for ω < ω∗.

The relative position of ω∗ and N2

λ2
p+1
p−1 is discussed in Remark 3.27. In

the case N = 2 the above result coincides with Proposition 6.9(1) (partially)
and Theorem 6.11 in [3]. To our knowledge, the NLS-δ′ equation on the
star graph has never been studied before, and complete description of the
standing waves for such model is unknown (see Remark 2.5).
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In Section 4, we study the following NLS equation with logarithmic non-
linearity on the star graph G (NLS-log equation)

i∂tU(t, x) + ∂2
xU(t, x) + U(t, x) Log |U(t, x)|2 = 0, (1.3)

where U(t, x) = (uj(t, x))Nj=1 : R×R+ → CN . The nonlinearity acts compo-

nentwise, i.e., (U Log |U|2)j = uj Log |uj |2. Note that by Log |U(t, x)|2, we
mean Log(|U(t, x)|2).

For the NLS-log equation with δ-interaction, we extend the result from
[15] (for any α < 0) on the orbital stability of the Gaussian N -tail profile
Ψα,δ = (ψα,δ)

N
j=1 defined by (2.14) below. In particular, we prove

Theorem 1.3. Let ω ∈ R, and Ψα,δ be defined by (2.14). Then the standing
wave eiωtΨα,δ is orbitally stable in W 1

E (G) for any α < 0, and eiωtΨα,δ is
spectrally unstable for any α > 0.

We also show the result analogous to Theorem 1.2 for the NLS-log equa-
tion with δ′-interaction on G.

Theorem 1.4. Let λ < 0, and ω ∈ R. Let also Ψλ,δ′ be defined by (2.16).
Then the following assertions hold.

(i) If −N < λ < 0, then eitωΨλ,δ′ is orbitally stable in W 1(G).
(ii) If λ < −N , then eitωΨλ,δ′ is spectrally unstable.

The spaces W 1
E (G) and W 1(G) are defined in notation section.

In Section 5, we propose a new approach to prove some known results on
the orbital stability of standing waves for NLS equation (1.1) with δ- and δ′-
interaction on the line. It should be noted that the most of previous results
(for NLS on G and on the line) are based on either variational methods or
the abstract stability theory by Grillakis, Shatah and Strauss [33,34] which
requires spectral analysis of certain self-adjoint Schrödinger operators. In
particular, investigation of the spectrum of these operators is based on the
analytic perturbations theory and the variational methods.

Our approach relies on the theory of extensions of symmetric operators,
the spectral theory of self-adjoint Schrödinger operators and the analytic
perturbations theory. In particular, the extension theory gives the advan-
tage to estimate the number of negative eigenvalues (Morse index) of the
linear Schrödinger operator associated with the NLS equation. We empha-
size that we do not need to study any variational problem associated with
the equation, and our method does not use any minimization properties of
the standing waves studied. We would like to mention the papers [37, 38]
where the non-variational methods were used for the investigation of the
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Morse index in the case of the NLS equation on the star graph with classical
and generalized Kirchhoff conditions at the vertex. In particular, the au-
thors elaborated a kind of extension of the Sturm theory for the Schrödinger
operators on the star graph.

The paper is organized as follows. In the Preliminaries (Section 2), we
give some brief description of all the point interactions on the star graph and
explain the origin of δ- and δ′-interaction. We also review previous results on
the orbital stability. In Section 3, we discuss NLS equation (1.2) with δ- and
δ′-interaction on the star graph G. In Section 4, we study NLS-log equation
(1.3) with δ- and δ′-interaction on G. In Section 5, we briefly discuss how
the tools of the extension theory can be applied to the stability study of the
NLS equations with point interactions on the line.

Notation. By H1(R), H2(R \ {0}) = H2(R−) ⊕ H2(R+), we denote the
Sobolev spaces. Denote by G the star graph constituted by N half-lines
attached to a common vertex ν = 0. On the graph, we define the spaces

Lp(G) =

N⊕
j=1

Lp(R+), H1(G) =

N⊕
j=1

H1(R+), H2(G) =

N⊕
j=1

H2(R+),

p > 1. For instance, the norm of V = (vj)
N
j=1 in Lp(G) is defined by

||V||pLp(G) =
N∑
j=1
||vj ||pLp(R+). Depending on the context, we will use the

following notations for different objects: by || · ||, we denote the norm in
L2(R) or in L2(G) (accordingly (·, ·) denotes the scalar product in L2(R) or
in L2(G)); by || · ||p, we denote the norm in Lp(R) or in Lp(G).
Denote E(G) = {(vj)Nj=1 ∈ H1(G) : v1(0) = · · · = vN (0)}, and

L2
k(G) = {(vj)Nj=1 ∈ L2(G) : v1(x) = · · · = vk(x), vk+1(x) = · · · = vN (x)}.

In particular, Ek(G) = E(G)∩L2
k(G), and H1

k(G) = H1(G)∩L2
k(G). On G, we

define the following weighted Hilbert spaces

W j(G) =
N⊕
j=1

W j(R+), W j(R+) = {f ∈ Hj(R+) : xjf ∈ L2(R+)},

W j
k (G) = W j(G) ∩ L2

k(G), j ∈ {1, 2}, and the Banach space

W (G) =

N⊕
j=1

W (R+), W (R+) = {f ∈ H1(R+) : |f |2 Log |f |2 ∈ L1(R+)}.
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In particular, WE(G) = W (G)∩E(G), W 1
E (G) = W 1(G)∩E(G), and W 1

E,k(G) =

W 1
E (G) ∩ L2

k(G).
Let A be a densely defined symmetric operator in the Hilbert space H.

The domain of A is denoted by dom(A). The deficiency subspaces and
deficiency numbers of A are defined by N±(A) := ker(A∗∓ iI) and n±(A) :=
dim ker(A∗ ∓ iI) respectively. The number of negative eigenvalues counting
multiplicities (or the Morse index ) is denoted by n(A). The spectrum and the
resolvent set of A are denoted by σ(A) and ρ(A) respectively. In particular,
σp(A) and σc(A) denote the point and the continuous spectrum of A. Let
X be an arbitrary Banach space, then its dual is denoted by X ′.

2. Preliminaries

In this Section, we provide a brief description of point interactions on the
star graph and also discuss previous results on the orbital stability.

2.1. The NLS equation with point interactions on a star graph. The
family of self-adjoint conditions naturally arising at the vertex ν = 0 of the
star graph G has the following description

(U − I)U(t, 0) + i(U + I)U′(t, 0) = 0, (2.1)

where U(t, 0) = (uj(t, 0))Nj=1, U′(t, 0) = (u′j(t, 0))Nj=1, U is an arbitrary
unitary N ×N matrix, and I is the N ×N identity matrix. The conditions
(2.1) at ν = 0 define the N2-parametric family of self-adjoint extensions of
the closable symmetric operator (see [20, Chapter 17])

H0 =
N⊕
j=1

−d2

dx2
, dom(H0) =

N⊕
j=1

C∞0 (R+).

We consider two choices of matrix U which correspond to so-called δ-
and δ′- interactions on the star graph G. More precisely, the matrix U =

2
N+iαI − I, α ∈ R\{0}, where I is the N ×N matrix whose all entries equal
one, induces the following nonlinear Schrödinger equation with δ-interaction
on the star graph G (NLS-δ equation)

i∂tU−Hδ
αU + |U|p−1U = 0, (2.2)

where Hδ
α is the self-adjoint operator on L2(G) acting as (Hδ

αV)(x) =
(−v′′j (x))Nj=1, x > 0, on the domain dom(Hδ

α) = Dα,δ, where

Dα,δ :=
{

V ∈ H2(G) : v1(0) = · · · = vN (0),

N∑
j=1

v′j(0) = αv1(0)
}
. (2.3)
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Model (2.2)-(2.3) has been extensively studied in [1, 2]. In particular, the
authors showed well-posedness of the corresponding Cauchy problem. More-
over, they investigated the existence and the particular form of standing
waves, as well as their variational and stability properties (see Theorems 2.2
and 2.4 below).

The second model we are interested in corresponds to U = I − 2
N−iλI,

λ ∈ R \ {0}, which induces the nonlinear Schrödinger equation with δ′-
interaction on the graph G (NLS-δ′ equation)

i∂tU−Hδ′
λ U + |U|p−1U = 0, (2.4)

where Hδ′
λ is the self-adjoint operator on L2(G) acting as (Hδ′

λ V)(x) =

(−v′′j (x))Nj=1, x > 0, on the domain dom(Hδ′
λ ) = Dλ,δ′ , where

Dλ,δ′ :=
{

V ∈ H2(G) : v′1(0) = · · · = v′N (0),
N∑
j=1

vj(0) = λv′1(0)
}
. (2.5)

To our knowledge such type of interaction has never been studied for the
NLS equation on the star graph. In this connection, one of the principal
aims of this paper is to establish some results on the existence and the
orbital stability of standing wave solutions to (2.4).

In Section 4, we consider the following NLS equations with logarithmic
nonlinearity on the star graph (NLS-log-δ and NLS-log-δ′ equation):

i∂tU−Hδ
αU + U Log |U|2 = 0, (2.6)

i∂tU−Hδ′
λ U + U Log |U|2 = 0. (2.7)

Model (2.6) has been studied in [15]. In particular, the author showed well-
posedness of the Cauchy problem in the Banach space WE(G) (see Theorem
4.1), and studied stability properties of the ground state for the correspond-
ing stationary equation.

2.2. Review of the results on the orbital stability for the NLS equa-
tion with point interactions on a star graph. Crucial role in the or-
bital stability analysis of standing waves is played by the symmetries of NLS
equation (1.2) (and (1.3)) The basic symmetry associated to the mentioned
equation is phase invariance, namely, if U is a solution of (1.2) then eiθU
is also a solution for any θ ∈ [0, 2π). Thus, it is reasonable to define orbital
stability as follows (for the models (1.2) and (1.3)).

Definition 2.1. The standing wave U(t, x) = eiωtΦ(x) is said to be orbitally
stable in a Banach space X if for any ε > 0 there exists η > 0 with the
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following property: if U0 ∈ X satisfies ||U0 − Φ||X < η, then the solution
U(t) of (1.2) (resp. (1.3)) with U(0) = U0 exists for any t ∈ R and

sup
t∈R

inf
θ∈R
||U(t)− eiθΦ||X < ε.

Otherwise, the standing wave U(t, x) = eiωtΦ(x) is said to be orbitally un-
stable in X.

In particular, for the NLS-δ and NLS-δ′ equations on the star graph G
defined by (2.2) and (2.4), the space X coincides with E(G) and H1(G),
respectively.

In the first part of the paper, we study the orbital stability of the standing

wave solutions U(t, x) = eiωtΦ(x) =
(
eiωtϕj(x)

)N
j=1

for the NLS-δ equation

(2.2) on G. It is easily seen that amplitude Φ ∈ Dα,δ satisfies the following
stationary equation

Hδ
αΦ + ωΦ− |Φ|p−1Φ = 0. (2.8)

In [2], authors obtained the following description of all solutions to equation
(2.8).

Theorem 2.2. Let [s] denote the integer part of s ∈ R, and α 6= 0. Then
equation (2.8) has

[
N−1

2

]
+ 1 (up to permutations of the edges of G) vector

solutions Φα
m = (ϕαm,j)

N
j=1, m = 0, ...,

[
N−1

2

]
, which are given by

ϕαm,j(x) =


[

(p+1)ω
2 sech2

(
(p−1)

√
ω

2 x− am
)] 1

p−1
, j = 1, ..,m;[

(p+1)ω
2 sech2

(
(p−1)

√
ω

2 x+ am

)] 1
p−1

, j = m+ 1, ..., N,

where am = tanh−1( α
(2m−N)

√
ω

), and ω > α2

(N−2m)2
.

Remark 2.3. (i) Note that in the case α < 0 vector Φα
m = (ϕαm,j)

N
j=1 has m

bumps and N − m tails. It is easily seen that Φα
0 is the N-tail profile.

Moreover, the N -tail profile is the only symmetric (i.e., invariant under
permutations of the edges) solution of equation (2.8). In the case N = 5,
we have three types of profiles: 5-tail profile, 4-tail/1-bump profile and 3-
tail/2-bump profile. They are demonstrated on Figure 1 (from the left to the
right).

(ii) In the case α > 0 vector Φα
m = (ϕαm,j)

N
j=1 has m tails and N − m

bumps respectively. For N = 5, we have: 5-bump profile, 4-bump/1-tail
profile, 3-bump/ 2-tail profile. They are demonstrated on Figure 2.
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Figure 1

Figure 2

It was shown in [2] that for −N
√
ω < α < α∗ < 0, the vector solution

Φα,δ = (ϕα,δ)
N
j=1 := Φα

0 ,

ϕα,δ := ϕα0,j(x) =
[(p+ 1)ω

2
sech2

((p− 1)
√
ω

2
x+ tanh−1

( −α
N
√
ω

))] 1
p−1

(2.9)
is the ground state. The parameter α∗ above originates from the variational
problem associated with equation (2.8), and it guarantees constrained min-
imality of the action functional

Sα(V) = 1
2 ||V

′||2 + ω
2 ||V||

2− 1
p+1 ||V||

p+1
p+1 + α

2 |v1(0)|2, V = (vj)
N
j=1 ∈ E(G).

(2.10)
Namely, the vector solution Φα,δ is the ground state in the sense of the min-
imality of Sα(V) at Φα,δ with the constraint given by the Nehari manifold

N = {V ∈ E(G) \ {0} : ||V′||2 + ω||V||2 − ||V||p+1
p+1 + α|v1(0)|2 = 0}.

For α > 0 the N -bump profile Φα,δ does not have the variational character-
ization (see [30, Remark 14]). In [2] the following orbital stability result has
been shown.

Theorem 2.4. [2, Theorem 2] Let 1 < p ≤ 5, α < α∗ < 0, and ω > α2

N2 .

Then the standing wave eiωtΦα,δ is orbitally stable in E(G).

Authors in [2] showed also that for p > 5 there exists ω∗ > α2

N2 such that

eiωtΦα,δ is stable in E(G) for any ω ∈ ( α
2

N2 , ω
∗) and unstable for any ω > ω∗.

Stronger version of the above theorem was proved in [1, Theorem 1]. In par-
ticular, they proved orbital stability of eiωtΦα,δ for α < 0 without restriction
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α < α∗ < 0. For m 6= 0, α < 0 in Theorem 2.2, we have S(Φα
m) > S(Φα

0 )
which means that Φα

m for m 6= 0 is an excited state. Stability properties of
the excited states as well as of Φα

m for α > 0 were studied in [10].
To our knowledge, the problem of orbital stability of standing waves

U(t, x) = eiωtΦ(x) has never been considered for NLS-δ′ equation (2.4)
on the star graph. In the present paper, we study the orbital stability of
the standing waves U(t, x) = eiωtΦλ,δ′ with N -tail profile Φλ,δ′ = (ϕλ,δ′)

N
j=1,

where

ϕλ,δ′(x) =
[(p+ 1)ω

2
sech2

((p− 1)
√
ω

2
x+ tanh−1

( −N
λ
√
ω

))] 1
p−1

, (2.11)

with ω > N2

λ2
and λ < 0. In Section 4, we prove new result on stability of

eiωtΦλ,δ′ (see Theorem 1.2).

Remark 2.5. The description of the set of all solutions to the stationary
equation

Hδ′
λ Φ + ωΦ− |Φ|p−1Φ = 0, (2.12)

is unknown. We note that any L2-solution to (2.12) has the form

Φ(x) = (ϕj(x))Nj=1 = (σjϕ0(x+ xj))
N
j=1,

where σj ∈ C, |σj | = 1, xj ∈ R, and ϕ0(x) = [ (p+1)ω
2 sech2( (p−1)

√
ω

2 x)]
1
p−1 .

Hence, denoting tj = tanh(xj), from (2.5), we get the relations
σ1(1− t1)

1
p−1 t1 = · · · = σN (1− tN )

1
p−1 tN ,

N∑
j=1

σj(1− tj)
1
p−1 = −λ

√
ωσ1(1− t1)

1
p−1 t1.

In [3], for the case of G = R (δ′- interaction on the line), the authors es-
tablished the existence of two families (odd and asymmetric) of solutions
to (2.12). For N ≥ 3, it seems to be very nontrivial problem to deter-
mine a complete description of the solutions to (2.12). Observe that in
the case of NLS-δ equation the situation is easier since the continuity con-
dition ϕ1(0) = · · · = ϕN (0) implies |ϕ′1(0)| = · · · = |ϕ′N (0)|, therefore,
σ1 = · · · = σN and xj = ±a, a > 0.

In the case of NLS-log-δ equation the profile of the standing wave eiωtΨ
satisfies the equality

Hδ
αΨ + ωΨ−Ψ Log |Ψ|2 = 0. (2.13)

From [15] it follows that solutions to (2.13) have the following description.
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Theorem 2.6. Let α 6= 0. Then equation (2.13) has
[
N−1

2

]
+ 1 vector

solutions Ψα
m = (ψαm,j)

N
j=1, m = 0, ...,

[
N−1

2

]
, given by

ψαm,j(x) =

 e
ω+1

2 e−
(x−am)2

2 , j = 1, ..,m;

e
ω+1

2 e−
(x+am)2

2 , j = m+ 1, ..., N,

where am =
α

2m−N
.

We should note that the structure of the profiles that solve (2.13) is similar
to the one in the case of NLS-δ equation (see Remark 2.3). It was proved
in [15] that for α < α∗Log < 0, the vector solution Ψα,δ = (ψα,δ)

N
j=1 defined

by

ψα,δ = ψα0,j(x) = e
ω+1

2 e−
(x− αN )2

2 (2.14)

is the ground state. The condition α < α∗Log guarantees constrained mini-

mality of the following action functional for V ∈WE(G),

Sα,Log(V) = 1
2 ||V

′||2 + (ω+1)
2 ||V||2 − 1

2

N∑
j=1

∫ ∞
0
|vj |2 Log |vj |2dx+ α

2 |v1(0)|2.

(2.15)
Namely, the vector solution Ψα,δ is the ground state in the sense of the
minimality of Sα,Log(V) at Ψα,δ with the constraint given by the Nehari
manifold N , namely, V ∈ N if and only if V ∈WE(G) \ {0} and

||V′||2 + ω||V||2 −
N∑
j=1

∫ ∞
0
|vj |2 Log |vj |2dx+ α|v1(0)|2 = 0.

In [15] the author proved that the standing wave eiωtΨα,δ is orbitally stable
in WE(G) for α < α∗Log < 0 and ω ∈ R. Below, we will overcome the

restriction α < α∗Log in the space W 1
E (G) (see Theorem 1.3), moreover, we

will show spectral instability of the standing wave eiωtΨα,δ for any α > 0
(Ψα,δ is the N -bump profile in this case).

Similarly, to the previous case, we show that the N -tail standing wave
eωitΨλ,δ′ for the NLS-log-δ′ equation, where

Ψλ,δ′ = (ψλ,δ′)
N
j=1, ψλ,δ′ = e

ω+1
2 e−

(x−Nλ )2

2 , (2.16)

is orbitally stable in W 1(G) for −N < λ < 0, and spectrally unstable for
λ < −N (see Theorem 1.4). Note that we do not need to assume that N is
even to show the instability (compare with Theorem 1.2).
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3. Stability theory of standing wave solutions for the NLS-δ
and the NLS-δ′ equations on a star graph

3.1. The NLS-δ equation on a star graph. In this Subsection, we study
the orbital stability of the standing wave U(t, x) = eiωtΦα,δ(x) of NLS-δ

equation (2.2) with the particular N -bump profile Φα,δ = (ϕα,δ)
N
j=1 defined

by (2.9). As we are investigating orbital stability in E(G), we need to use the
well-posedness of the initial value problem for equation (2.2) in this space.
In [2] the authors established the results on local and global well-posedness
of (2.2) in E(G). Below, we complete and extend these results, aiming to use
them in the sequel for our instability analysis.

First, we establish the following property for the unitary group associated
to (2.2).

Lemma 3.1. Let {e−itHα
δ }t∈R be the family of unitary operators associated

to NLS-δ model (2.2). Then, for every V = (vj)
N
i=1 ∈ E(G), we have

∂x(e−itH
α
δ V) = −e−itHα

δ V′ + B(V′), (3.1)

where B(V′) = (2eit∂
2
x ṽj)

N
j=1, with ṽj(x) =

{
v′j(x), x ≥ 0,

0, x < 0
, and eit∂

2
x is

the unitary group associated with the free Schrödinger operator on R.

Proof. Without loss of generality, we assume that α > 0. Using functional
calculus for unbounded self-adjoint operators and the classical expression for

the resolvent of − d2

dx2
on the positive half-line, we get the formulas

e−itH
α
δ V(x) = i

π

∫ ∞
−∞

e−itτ
2
τRiτV(x)dτ, (3.2)

where RµV = (Hα
δ + µ2I)−1V has the components

(RµV)j(x) = c̃je
−µx +

1

2µ

∫ ∞
0

vj(y)e−|x−y|µdy. (3.3)

The coefficients c̃j are determined by the condition RµV ∈ Dα,δ. It is easily
seen (e.g. [16, Appendix-6]) that V ∈ Dα,δ iff AV(0) +BV′(0) = 0, where

A =


1 −1 0 ... 0
0 1 −1 ... 0
...

...
...

...
0 0 0 ... −1
α
N

α
N

α
N ... α

N

 , B =


0 ... 0
0 0
...

...

−1 ... −1

 .
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Let

tj(µ) =
1

2

∫ ∞
0

vj(y)e−µydy,

then from (3.3), we get (RµV)j(0) = c̃j + 1
µ tj(µ) and ∂x[(RµV)j ](0) =

−µc̃j + tj(µ). Therefore, (c̃j)
N
j=1 is the unique solution to the system


1 −1 0 ... 0
0 1 −1 ... 0
...

...
...

...
0 0 0 ... −1

α
N + µ α

N + µ α
N + µ ... α

N + µ




c̃1

...

c̃N

=− 1

µ



t1(µ)− t2(µ)
...

tN−1(µ)− tN (µ)

( αN − µ)
N∑
j=1

tj(µ)


.

(3.4)

Below, we find RµV
′. Suppose initially that vj ∈ C∞0 (R+), 1 ≤ j ≤ N ,

then there are coefficients d̃j such that

(RµV
′)j(x) = d̃je

−µx +
1

2µ

∫ ∞
0

v′j(y)e−µ|x−y|dy

= d̃je
−µx − 1

2

∫ ∞
0

vj(y) sign(x− y)e−µ|x−y|dy,

(3.5)

where in the last equality, we have used integration by parts. Thus, we
obtain (RµV

′)j(0) = d̃j + tj(µ). Moreover, since

∂x(RµV
′)j(x) = −µd̃je−µx −

1

2

∫ ∞
0

v′j(y) sign(x− y)e−µ|x−y|dy,

it follows from integration by parts ∂x(RµV
′)j(0) = −µd̃j + µtj(µ). Hence,

from the uniqueness of solution to system (3.4) it follows that RµV
′ ∈ Dα,δ

iff d̃j = µc̃j . Therefore, we obtain from (3.3) and the second equality in (3.5)

∂x(RµV)j(x) = −(RµV
′)j(x)−

∫ ∞
0

vj(y) sign(x− y)e−µ|x−y|dy

= −(RµV
′)j(x) +

1

µ

∫ ∞
0

v′j(y)e−µ|x−y|dy.

Thus, from representation (3.2), we get

∂x(e−itH
δ′
λ V) = −e−itHδ′

λ V′ + B(V′),

where

(B(V′))j(x) =
1

π

∫ ∞
−∞

e−itτ
2

∫ ∞
0

v′j(y)e−iτ |x−y|dydτ.



806 Jaime Angulo Pava and Nataliia Goloshchapova

Below, we find B(V′). It is well-known that eit∂
2
x can be represented as

eit∂
2
xφ = St ∗ φ, where Ŝt(ξ) = e−itξ

2
. Since for t 6= 0 and x ∈ R

St(x) =
1

2π

∫ ∞
−∞

e−itτ
2
eiτxdτ =

1

2π

√
π√
−t
eiπ/4ei

x2

4t =
( 1

4πit

)1/2
ei
x2

4t ,

it follows for φ(x) =

{
v′j(x), x ≥ 0,

0, x < 0

I =
1

π

∫ ∞
−∞

e−itτ
2

∫ ∞
−∞

φ(y)χ[0,x](y)eiτ(y−x)dydτ

=2

∫ ∞
−∞

φ(y)χ[0,+∞)(x− y)St(x− y)dy = 2(χ[0,+∞)St) ∗ φ(x).

(3.6)

Similarly,

II =
1

π

∫ ∞
−∞

e−itτ
2

∫ ∞
−∞

φ(y)χ[x,+∞)(y)eiτ(x−y)dydτ = 2(χ(−∞,0])St) ∗ φ(x).

(3.7)
Thus, from (3.6)-(3.7), we have (B(V′))j(x) = I + II = 2St ∗ φ(x) =

2eit∂
2
xφ(x). Hence relation (3.1) follows provided that each component of V

has compact support. The general case follows from a density argument. �

Remark 3.2. Observe that e−itH
α
δ V = e−itH

α
δ PcV +e−itH

α
δ PpV, where Pc

and Pp are L2-orthogonal projections onto the subspaces corresponding to
the continuous and the discrete spectral part of Hα

δ . For α > 0, we have
σc(H

α
δ ) = [0,∞) and σp(H

α
δ ) = ∅, therefore, Pp = 0. For α < 0, σc(H

α
δ ) =

[0,∞) and σp(H
α
δ ) = {−z2

0} = {− α2

N2 }, where the corresponding eigenfunc-

tion is Vz0(x) = (e
α
N
x)Nj=1, and therefore e−itH

α
δ PpV = eitz

2
0 (V,Vz0)Vz0 . In

this case the formula (3.2) takes the form

e−itH
α
δ V(x) = i

π

∫ ∞
−∞

e−itτ
2
τRiτV(x)dτ + eitz

2
0 (V,Vz0)Vz0(x),

which however does not affect the proof of the well-posedness result. The
proof of the spectral properties of Hα

δ repeats the one of [5, Theorem 3.1.4]
for the case of the Schrödinger operator with the δ-interaction on the line.
In particular, to describe the point spectrum for α < 0 one needs to consider
Hα
δ as the self-adjoint extension of the symmetric non-negative operator

L defined by (3.17) with deficiency indices n±(L) = 1 and then to apply
Proposition 3.9.

Lemma 3.3. The family of unitary operators {e−itHα
δ }t∈R on L2(G) pre-

serves the space E(G), i.e., for V ∈ E(G), we have e−itH
α
δ V ∈ E(G).
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Proof. Assume α > 0. Let V ∈ E(G), then it follows from (3.1) that
e−itH

α
δ V ∈ H1(G). Further, since RµV ∈ Dα,δ, we get from (3.2) the

equality (e−itH
α
δ V)1(0) = · · · = (e−itH

α
δ V)N (0). �

Theorem 3.4. Let p > 1. Then for any U0 ∈ E(G) there exists T >
0 such that equation (2.2) has a unique solution U ∈ C([−T, T ], E(G)) ∩
C1([−T, T ], E ′(G)) satisfying U(0) = U0. For each T0 ∈ (0, T ) the mapping
U0 ∈ E(G) → U ∈ C([−T0, T0], E(G)), is continuous. In particular, for
p > 2 this mapping is at least of class C2. Moreover, if U0 ∈ Ek(G), then
U(t) ∈ Ek(G) for all t ∈ [−T, T ].

Proof. The local well-posedness result in E(G) follows from standard argu-
ments of the Banach fixed point theorem applied to non-linear Schrödinger
equations (see [27]). We will give the sketch of the proof for the case α > 0.
Consider the mapping JU0 : C([−T, T ], E(G)) −→ C([−T, T ], E(G)) given by

JU0 [U](t) = e−itH
α
δ U0 + i

∫ t

0
e−i(t−s)H

α
δ |U(s)|p−1U(s)ds,

where e−itH
α
δ is the unitary group given by (3.2). One needs to show that the

mapping JU0 is well-defined. To do this it is necessary to estimate initially
the nonlinear term |U(s)|p−1U(s). Using the one-dimensional Gagliardo-
Nirenberg inequality one may show (see formula (2.3) in [2])

‖U‖q ≤ C‖U′‖
1
2
− 1
q ‖U‖

1
2

+ 1
q , q > 2, C > 0. (3.8)

Using (3.8), the relation |(|f |p−1f)′| ≤ C0|f |p−1|f ′| and Hölder’s inequality,
we obtain for U ∈ H1(G)

|||U|p−1U||H1(G) ≤ C1||U||pH1(G)
. (3.9)

Let U0,U ∈ E(G), then from Lemmas 3.1-3.3 and (3.9) it follows that
JU0 [U](t) ∈ E(G). Moreover, using (3.1), (3.9), L2-unitarity of e−itH

α
δ and

eit∂
2
x , we get

||JU0 [U](t)||H1(G) ≤ C2||U0||H1(G) + C3T sup
s∈[0,T ]

||U(s)||p
H1(G)

,

where the positive constants C2, C3 do not depend on U0. The continuity
and contraction property of JU0 are proved in a standard way. Therefore, we
obtain the existence of a unique solution to the Cauchy problem associated
to (2.2) on E(G).

Next, we recall that the argument based on the contraction mapping prin-
ciple above has the advantage that if the nonlinearity F (U,U) = |U|p−1U
has a specific regularity, then it is inherited by the mapping data-solution. In
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particular, following the ideas in the proof of [41, Corollary 5.6], we consider
for (V0,V) ∈ B(U0; ε)× C([−T, T ], E(G)) the mapping

Γ(V0,V)(t) = V(t)− JV0 [V](t), t ∈ [−T, T ].

Then Γ(U0,U)(t) = 0 for all t ∈ [−T, T ]. For p − 1 being an even integer,
F (U,U) is smooth, and therefore Γ is smooth. Hence, using the arguments
applied for obtaining the local well-posedness in E(G) above, we can show
that the operator ∂VΓ(U0,U) is one-to-one and onto. Thus, by the Im-
plicit Function Theorem there exists a smooth mapping Λ : B(U0; δ) →
C([−T, T ], E(G)) such that Γ(V0,Λ(V0)) = 0 for all V0 ∈ B(U0; δ). This
argument establishes the smoothness property of the mapping data-solution
associated to equation (2.4) when p− 1 is an even integer.

If p − 1 is not an even integer and p > 2, then F (U,U) is C [p]-function,

and consequently the mapping data-solution is of class C [p] (see [41, Remark
5.7]). Therefore, for p > 2, we conclude that the mapping data-solution is
at least of class C2.

Next, we show that the unitary group e−itH
α
δ preserves the subspace Ek(G).

Indeed, let V = (vj) ∈ Ek(G), then we obtain t1(µ) = · · · = tk(µ) and
tk+1(µ) = · · · = tN (µ), where tj(µ) = 1

2

∫∞
0 vj(y)e−µydy. Hence, from (3.4)

it follows c̃1 = · · · = c̃k and c̃k+1 = · · · = c̃N . Thus, by (3.2), we get
e−itH

α
δ V ∈ Ek(G). Lastly, the well-posedness in Ek(G) follows from the

uniqueness of the solution to the Cauchy problem in E(G) and the invariance
of the space Ek(G) for the unitary group e−itH

α
δ shown above. �

Remark 3.5. (i) In [2, Proposition 2.2] the authors proved that for any
solution to Cauchy problem associated with (2.2), the conservation of charge
and energy hold, i.e.,

Q(U(t)) = ||U(t)||2 = ||U0||2, and Eα(U(t)) = Eα(U0), t ∈ [−T, T ],

where Eα is defined for V = (vj)
N
j=1 ∈ E(G) by

Eα(V) = 1
2 ||V

′||2 − 1
p+1 ||V||

p+1
p+1 + α

2 |v1(0)|2 .

Using the Sobolev embedding theorem, Gagliardo-Nirenberg inequality (3.8),
the above conservation laws, one can induce global well-posedness of (2.2)
for 1 < p < 5 (i.e., we can choose T = +∞).

(ii) Observe that Eα ∈ C2(E(G),R) since p > 1. This fact allows us to
apply the results by Ohta [45] in our instability analysis.

Next, we introduce the basic objects of the classical theory by Grillakis,
Shatah and Strauss. Consider the following two self-adjoint matrix operators
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associated with Φα,δ = (ϕα,δ)
N
j=1

L1,α =
((
− d2

dx2
+ ω − p(ϕα,δ)p−1

)
δk,j

)
,

L2,α =
((
− d2

dx2
+ ω − (ϕα,δ)

p−1
)
δk,j

)
,

dom(L1,α) = dom(L2,α) = Dα,δ,

where δk,j is the Kronecker symbol, Dα,δ and ϕα,δ are defined by (2.3) and
(2.9). The operators L1,α and L2,α are associated with the functional Sα
defined by (2.10) via the following equality

(Sα)′′(Φα,δ)(U,V) = (L1,αU1,V1) + (L2,αU2,V2),

where U = U1 + iU2 and V = V1 + iV2. The vector functions Uj ,Vj , j ∈
{1, 2}, are assumed to be real valued.

Formally (Sα)′′(Φα,δ) can be considered as a self-adjoint 2N × 2N matrix

operator (see [33,34] for the details) Hα =

(
L1,α 0
0 L2,α

)
. Define

p(ω0) =

{
1 if ∂ω||Φα,δ||2 > 0 at ω = ω0,
0 if ∂ω||Φα,δ||2 < 0 at ω = ω0.

Having established Assumptions 1, 2 in [33], i.e., well-posedness of the as-
sociated Cauchy problem (see Theorem 3.4) and the existence of C1 in ω
standing wave, the next stability/instability result follows from [33, Theorem
3] and [45, Corollary 3 and 4].

Theorem 3.6. Let α 6= 0, ω > α2

N2 , and n(Hα) be the number of negative
eigenvalues of Hα. Suppose also that

1) ker(L2,α) = span{Φα,δ},
2) ker(L1,α) = {0},
3) the negative spectrum of L1,α and L2,α consists of a finite number of

negative eigenvalues (counting multiplicities),
4) the rest of the spectrum of L1,α and L2,α is positive and bounded away

from zero. Then the following assertions hold.

(i) If n(Hα) = p(ω) = 1, then the standing wave eiωtΦα,δ is orbitally
stable in E(G).

(ii) If n(Hα) − p(ω) = 1 in L2
k(G), then the standing wave eiωtΦα,δ is

orbitally unstable in Ek(G) and, consequently, in E(G).

Remark 3.7. The instability part of the above theorem needs some addi-
tional comments.
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(i) It is known from [34] that when n(Hα)− p(ω) is odd, we obtain only
spectral instability of eiωtΦα,δ. To obtain orbital instability due to [34,
Theorem 6.1], it is sufficient to show estimate (6.2) in [34] for the semigroup

etAα generated by Aα =

(
0 L2,α

−L1,α 0

)
. In our particular case it is not

clear how to prove estimate (6.2).
(ii) When n(Hα) = 2 (which happens for α > 0), we can apply the

results by Ohta [45, Corollary 3 and 4] to get the instability part of the
above Theorem. We note that in this case the orbital instability follows
without using spectral instability.

(iii) Generally, to imply the orbital instability from the spectral one, the
approach by [35] can be used (see Theorem 2). The key point of this method
is to use the fact that the mapping data-solution associated to the model is of
class C2. In particular, for the NLS-δ and NLS-δ′ models the mapping data-
solution is of class C2 as p > 2 (see Theorem 3.4 and 3.22). The approach
by [35] have been applied successfully in [13] and [14] for the models of
KdV-type.

Below, we describe the spectrum of the operators L1,α and L2,α which
will help us to verify the conditions of Theorem 3.6. Our ideas are based on
the extension theory of symmetric operators and the perturbation theory.
For convenience of the reader and for the future references, we formulate the
following extension theory results (see [43, Chapter IV, §14]).

Proposition 3.8. (von Neumann decomposition) Let A be a closed densely
defined symmetric operator. Then the following decomposition holds

dom(A∗) = dom(A)⊕N+(A)⊕N−(A). (3.10)

Therefore, for u ∈ dom(A∗) such that u = f + fi + f−i, with f ∈ dom(A),
f±i ∈ N±(A), we get A∗u = Af + ifi − if−i.

Proposition 3.9. Let A be a densely defined lower semi-bounded symmetric
operator (that is, A ≥ mI) with finite deficiency indices n±(A) = k < ∞
in the Hilbert space H, and let Ã be a self-adjoint extension of A. Then the

spectrum of Ã in (−∞,m) is discrete and consists of at most k eigenvalues
counting multiplicities.

Remark 3.10. When m = 0, Proposition 3.9 provides an estimate for n(Ã).

Below, using the perturbation theory, we show the equality n(L1,α) = 2
in the space L2

k(G) for any k ∈ {1, ..., N −1}, i.e., n(L1,α|L2
k(G)) = 2. For this
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purpose let us define the following self-adjoint matrix Schrödinger operator
on L2(G) with Kirchhoff condition at ν = 0

L1,0 =
((
− d2

dx2
+ ω − pϕp−1

0

)
δi,j

)
, (3.11)

dom(L1,0) =
{

V ∈ H2(G) : v1(0) = · · · = vN (0),
N∑
j=1

v′j(0) = 0
}
,

where ϕ0 =
[

(p+1)ω
2 sech2

(
(p−1)

√
ω

2 x
)] 1

p−1
, x > 0, is the half-soliton for the

classical NLS model (1.1).
Let Φ0 = (ϕ0)Nj=1, then it is not difficult to see that Φα,δ → Φ0, as

α → 0, in H1(G). The following lemma states the analyticity of the family
of operators (L1,α).

Lemma 3.11. As a function of α, (L1,α) is real-analytic family of self-
adjoint operators of type (B) in the sense of Kato.

Proof. By [39, Theorem VII-4.2], it suffices to note that the family of bi-
linear forms (B1,α) defined for U = (uj)

N
j=1,V = (vj)

N
j=1 ∈ E(G) by

B1,α(U,V) =
N∑
j=1

∫ ∞
0

(u′jv
′
j + ωujvj − p(ϕα,δ)p−1ujvj)dx+ αu1(0)v1(0),

is real-analytic of type (B). �

As we intend to study the negative spectrum of L1,α using perturbation
theory, we need to describe spectral properties of L1,0 (which is a ”limit
value” of L1,α as α→ 0).

Theorem 3.12. Let L1,0 be defined by (3.11) and k ∈ {1, ..., N − 1}. Then
the following assertions hold.

(i) ker(L1,0) = span{Φ̂0,1, ..., Φ̂0,N−1}, where

Φ̂0,j = (0, ..., 0, ϕ′0
j

,−ϕ′0
j+1

, 0, ..., 0).

(ii) In the space L2
k(G), we have ker(L1,0) = span{Φ̃0,k}, where

Φ̃0,k =
(
N−k
k ϕ′0
1

, ..., N−kk ϕ′0
k

,−ϕ′0
k+1

, ...,−ϕ′0
N

)
, (3.12)

i.e., ker(L1,0|L2
k(G)) = span{Φ̃0,k}.
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(iii) The operator L1,0 has one simple negative eigenvalue in L2(G), i.e.,
n(L1,0) = 1. Moreover, L1,0 has one simple negative eigenvalue in
L2
k(G) for any k, i.e., n(L1,0|L2

k(G)) = 1.

(iv) The rest of the spectrum of L1,0 is positive and bounded away from
zero.

Proof. (i) Recall that the only L2(R+)-solution to the equation

−v′′j + ωvj − pϕp−1
0 vj = 0

is vj = ϕ′0 (up to a factor). Thus, any element of ker(L1,0) has the form
V = (vj)

N
j=1 = (cjϕ

′
0)Nj=1, cj ∈ R. The continuity condition is satisfied since

ϕ′0(0) = 0. Condition
∑N

j=1 v
′
j(0) = 0 gives rise to (N − 1)-dimensional

kernel of L1,0. It is easily seen that the functions Φ̂0,j , j = 1, ..., N − 1, form
basis there.

(ii) Arguing as in the previous item, we can see that ker(L1,0) is one-

dimensional in L2
k(G), and it is spanned on Φ̃0,k.

(iii) The main idea of the proof is to apply Proposition 3.9. In what

follows, we use the notation l0 =
((
− d2

dx2
+ ω − pϕp−1

0

)
δk,j

)
. First, note

that L1,0 is the self-adjoint extension of the following symmetric operator
(see Remark 3.14)

L0 = l0,

dom(L0) =
{

V ∈ H2(G) : v1(0) = · · · = vN (0) = 0,
N∑
j=1

v′j(0) = 0
}
.

(3.13)
Below, we show that the operator L0 is non-negative, and n±(L0) = 1.

First, let us show that the adjoint operator of L0 is given by

L∗0 = l0, dom(L∗0) =
{
V ∈ H2(G) : v1(0) = · · · = vN (0)

}
. (3.14)

Using standard arguments one can prove that dom(L∗0) ⊂ H2(G) and L∗0 = l0
(see [43, Chapter V,§17]). Denoting

D∗0 := {V ∈ H2(G) : v1(0) = · · · = vN (0)},

we easily arrive at D∗0 ⊆ dom(L∗0). Indeed, for any U = (uj)
N
j=1 ∈ D∗0 and

V = (vj)
N
j=1 ∈ dom(L0) denoting U∗ = l0(U) ∈ L2(G), we get

(L0V,U) = (V, l0(U)) +
N∑
j=1

[
−v′juj + vju

′
j

]∞
0

= (V, l0(U)) = (V,U∗),
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which, by definition of the adjoint operator, means that U ∈ dom(L∗0) or
D∗0 ⊆ dom(L∗0).

Let us show the inverse inclusion D∗0 ⊇ dom(L∗0). Take U ∈ dom(L∗0),
then for any V ∈ dom(L0), we have

(L0V,U) = (V, l0(U)) +

N∑
j=1

[
−v′juj + vju

′
j

]∞
0

= (V,L∗0U) = (V, l0(U)).

Thus, we arrive at the equality

N∑
j=1

[
−v′juj + vju

′
j

]∞
0

=
N∑
j=1

v′j(0)uj(0) = 0 (3.15)

for any V ∈ dom(L0). Let W = (wj)
N
j=1 ∈ dom(L0) such that w′3(0) =

w′4(0) = · · · = w′N (0) = 0. Then for U ∈ dom(L∗0) from (3.15) it follows that

N∑
j=1

w′j(0)uj(0) = w′1(0)u1(0) + w′2(0)u2(0) = 0. (3.16)

Recalling that
∑N

j=1w
′
j(0) = w′1(0) + w′2(0) = 0 and assuming w′2(0) 6= 0,

we obtain from (3.16) the equality u1(0) = u2(0). Repeating the similar
arguments for W = (wj)

N
j=1 ∈ dom(L0) such that w′4(0) = w′5(0) = · · · =

w′N (0) = 0, we get u1(0) = u2(0) = u3(0) and so on. Finally taking W =
(wj)

N
j=1 ∈ dom(L0) such that w′N (0) = 0, we arrive at u1(0) = u2(0) = · · · =

uN−1(0), and consequently u1(0) = u2(0) = · · · = uN (0). Thus, U ∈ D∗0 or
D∗0 ⊇ dom(L∗0), and (3.14) holds.

Let us show that the operator L0 is non-negative. First, note that every
component of the vector V = (vj)

N
j=1 ∈ H2(G) satisfies the following identity

−v′′j + ωvj − pϕp−1
0 vj =

−1

ϕ′0

d

dx

[
(ϕ′0)2 d

dx

( vj
ϕ′0

)]
, x > 0.

Using the above equality and integrating by parts, we get for V ∈ dom(L0)

(L0V,V) =

N∑
j=1

∫ ∞
0

(ϕ′0)2
[ d
dx

( vj
ϕ′0

)]2
dx+

N∑
j=1

[
− v′jvj + v2

j

ϕ′′0
ϕ′0

]∞
0

=

N∑
j=1

∫ ∞
0

(ϕ′0)2
[ d
dx

( vj
ϕ′0

)]2
dx ≥ 0.
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Note that the equality

N∑
j=1

[
− v′jvj + v2

j

ϕ′′0
ϕ′0

]∞
0

= 0

follows from the condition vj(0) = 0 and the fact that x = 0 is the first-order
zero for ϕ′0(x) (i.e., ϕ′′0(0) 6= 0).

Due to the von Neumann decomposition (3.10),

dom(L∗0) =
{
V ∈ H2(G) : v1(0) = · · · = vN (0)

}
= dom(L0)⊕ span{Vi} ⊕ span{V−i},

where V±i = (ei
√
±ix)Nj=1, =(

√
±i) > 0. Indeed, since ϕ0 ∈ L∞(R+), it

follows dom(L∗0) = dom(L∗) = dom(L)⊕ span{Vi} ⊕ span{V−i}, where

L =
((
− d2

dx2

)
δk,j

)
, dom(L) = dom(L0), N±(L) = span{V±i}. (3.17)

Since n±(L) = 1, by [43, Chapter IV, Theorem 6], it follows that n±(L0) = 1.
Due to Proposition 3.9, n(L1,0) ≤ 1. For Φ0 = (ϕ0)Nj=1, we obviously have

(L1,0Φ0,Φ0) = −(p − 1)||Φ0||p+1
p+1 < 0. By minimax principle, we arrive at

n(L1,0) = 1. Noting that Φ0 ∈ L2
k(G) for any k, we get n±(L0|L2

k(G)) = 1.

(iv) By Weyl’s theorem (see [46, Theorem XIII.14]), the essential spectrum
of L1,0 coincides with [ω,∞). Since Φ0 ∈ L∞(G), there can be only finitely
many isolated eigenvalues in (−∞, ω′) for any ω′ < ω. Then (iv) follows
easily. �

Remark 3.13. Observe that, when we deal with deficiency indices, the
operator L0 is assumed to act on complex-valued functions which however
does not affect the analysis of negative spectrum of L1,0 acting on real-valued
functions.

Remark 3.14. Let us show that the domain of any self-adjoint extension L̂
of the operator L0 defined by (3.13)(and acting on complex-valued functions)
is given by

dom(L̂) =
{

V ∈ H2(G) : v1(0) = · · · = vN (0),
N∑
j=1

v′j(0) = zv1(0), z ∈ R
}
.

Indeed, due to [5, Theorem A.1],

dom(L̂) =
{

F = F0 + cFi + ceiθF−i : F0 ∈ dom(L0), c ∈ C, θ ∈ [0, 2π)
}
,
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where F±i = ( i√
±ie

i
√
±ix)Nj=1, =(

√
±i) > 0. It is easily seen that for F ∈

dom(L̂), we have

N∑
j=1

(F)′j(0) = −Nc(1 + eiθ), (F)j(0) = c
(
eiπ/4 + ei(θ−π/4)

)
.

From the last equalities it follows that

N∑
j=1

(F)′j(0) = z(F)1(0), where z =
−N(1 + eiθ)(

eiπ/4 + ei(θ−π/4)
) ∈ R.

Combining Lemma 3.11 and Theorem 3.12, in the framework of the per-
turbation theory, we obtain the following proposition.

Proposition 3.15. Let k ∈ {1, ..., N − 1}. Then there exist α0 > 0 and two
analytic functions µ : (−α0, α0)→ R and F : (−α0, α0)→ L2

k(G) such that

(i) µ(0) = 0 and F(0) = Φ̃0,k, where Φ̃0,k is defined by (3.12).
(ii) For all α ∈ (−α0, α0), µ(α) is the simple isolated second eigenvalue

of L1,α in L2
k(G), and F(α) is the associated eigenvector for µ(α).

(iii) α0 can be chosen small enough to ensure that for α ∈ (−α0, α0) the
spectrum of L1,α in L2

k(G) is positive, except at most the first two
eigenvalues.

Proof. Using the spectral structure of the operator L1,0 (see Theorem 3.12),
we can separate the spectrum σ(L1,0) into two parts σ0 = {µ0

1,0, 0} and σ1

by a closed curve Γ (for example, a circle), such that σ0 belongs to the inner
domain of Γ and σ1 to the outer domain of Γ (note that σ1 ⊂ (ε,+∞) for
ε > 0). Next, Lemma 3.11 and the analytic perturbations theory imply that
Γ ⊂ ρ(L1,α) for sufficiently small |α|, and σ(L1,α) is likewise separated by
Γ into two parts, such that the part of σ(L1,α) inside Γ consists of a finite
number of eigenvalues with total multiplicity (algebraic) two. Therefore,
we obtain from the Kato-Rellich Theorem (see [46, Theorem XII.8]) the
existence of two analytic functions µ,F defined in a neighborhood of zero
such that items (i), (ii), and (iii) hold. �

Below, we investigate how the perturbed second eigenvalue moves depend-
ing on the sign of α.

Proposition 3.16. There exists 0 < α1 < α0 such that µ(α) > 0 for any
α ∈ (−α1, 0), and µ(α) < 0 for any α ∈ (0, α1). Thus, in the space L2

k(G)
for α small, we have n(L1,α) = 1 as α < 0, and n(L1,α) = 2 as α > 0.
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Proof. From Taylor’s theorem, we have the following expansions

µ(α) = µ0α+O(α2) and F(α) = Φ̃0,k + αF0 + O(α2), (3.18)

where µ0 = µ′(0) ∈ R, F0 = ∂αF(α)|α=0 ∈ L2
k(G), and Φ̃0,k is defined by

(3.12). The desired result will follow if we show that µ0 < 0. We compute

(L1,αF(α), Φ̃0,k) in two different ways.
In what follows, we will use the following decomposition for Φα,δ defined

by (2.9)

Φα,δ(α) = Φ0 + αG0 + O(α2), G0 = ∂α(Φα,δ)|α=0 = −2
(p−1)Nω

(
ϕ′0
)N
j=1

.

(3.19)
From (3.18), we obtain

(L1,αF(α), Φ̃0,k) = µ0α||Φ̃0,k||2 +O(α2). (3.20)

By L1,0Φ̃0,k = 0 and (3.18), we get

L1,αΦ̃0,k = p
(
(Φ0)p−1 − (Φα,δ)

p−1
)
Φ̃0,k (3.21)

= −αp(p− 1)(Φ0)p−2G0Φ̃0,k + O(α2).

The operations in the last equality are componentwise. Equations (3.21) and
(3.19) induce

(L1,αF(α), Φ̃0,k) = −
(
Φ̃0,k, αp(p− 1)(Φ0)p−2G0Φ̃0,k

)
+O(α2) (3.22)

= 2αp(N−k)
kω

∫ ∞
0

(ϕ′0)3ϕp−2
0 dx+O(α2).

Finally, combining (3.22) and (3.20), we obtain for k ∈ {1, ..., N − 1}

µ0 =
2p(N − k)

kω||Φ̃0,k||2

∫ ∞
0

(ϕ′0)3ϕp−2
0 dx+O(α).

It follows that µ0 is negative for sufficiently small |α| (due to the negativity
of ϕ′0 on R+), which in view of (3.18) ends the proof. �

Now, we can count the number of negative eigenvalues of L1,α for any
α using the classical continuation argument based on the Riesz-projection
(see [28]) and the extension theory.

Proposition 3.17. Let k ∈ {1, ..., N − 1} and α 6= 0. Then

(i) ker(L2,α) = span{Φα,δ} and L2,α ≥ 0,
(ii) ker(L1,α) = {0},

(iii) for α > 0, n(L1,α) = 2 in L2
k(G), i.e., n(L1,α|L2

k(G)) = 2,
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(iv) for α < 0, n(L1,α) = 1 in L2
k(G), i.e., n(L1,α|L2

k(G)) = 1, moreover,

n(L1,α) = 1 in L2(G).

Proof. Assertions (i)-(ii) were proved in [2, Proposition 6.1].
(iii) Recall that ker(L1,α) = {0} for α 6= 0. Define α∞ by

α∞ = inf{α̃ > 0 : L1,α has two negative eigenvalues for all α ∈ (0, α̃)}.

Proposition 3.16 implies that α∞ is well defined and α∞ ∈ (0,∞]. We claim
that α∞ =∞. Suppose that α∞ <∞. Let M = n(L1,α∞) and Γ be a closed
curve (for example, a circle or a rectangle) such that 0 ∈ Γ ⊂ ρ(L1,α∞), and
all the negative eigenvalues of L1,α∞ belong to the inner domain of Γ. The
existence of such Γ can be deduced from the lower semi-boundedness of the
quadratic form associated to L1,α∞ .

Next, from Lemma 3.11 it follows that there is ε > 0 such that for α ∈
[α∞ − ε, α∞ + ε], we have Γ ⊂ ρ(L1,α) and for ξ ∈ Γ, α → (L1,α − ξ)−1 is
analytic. Therefore, the existence of an analytic family of Riesz-projections
α→ P (α) given by

P (α) = − 1

2πi

∫
Γ
(L1,α − ξ)−1dξ

implies that dim(RanP (α)) = dim(RanP (α∞)) = M for all α ∈ [α∞ −
ε, α∞+ ε]. Next, by definition of α∞, L1,α∞−ε has two negative eigenvalues,
and M = 2, hence L1,α has two negative eigenvalues for α ∈ (0, α∞ + ε],
which contradicts with the definition of α∞. Therefore, α∞ =∞.

(iv) Analogously, we can prove that n(L1,α) = 1 in L2
k(G) in the case

α < 0. To show the equality in the whole space L2(G), we need to repeat the
arguments of the proof of Theorem 3.12-(iii) (i.e., L1,0 has to be replaced by
L1,α, and Φ0 by Φα,δ). Namely, L1,α has to be considered as the self-adjoint
extension of the non-negative symmetric operator

Lα =
((
− d2

dx2
+ ω − p(ϕα,δ)p−1

)
δk,j

)
,

dom(Lα) =
{

V ∈ H2(G) : v1(0) = · · · = vN (0) = 0,
N∑
j=1

v′j(0) = 0
}
,

with deficiency indices n±(Lα) = 1. Note that since α < 0, we have
ϕ′α,δ(x) < 0, x ≥ 0. �

Remark 3.18. (i) Using instruments of the extension theory, it can be
shown that n(L1,α) ≤ N in L2(G).
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(ii) Note that by Weyl’s theorem (see [46, Theorem XIII.14]) the rest of
the spectrum of L1,α and L2,α in L2(G) is positive and bounded away from
zero.

To apply Theorem 3.6, we need to study the sign of ∂ω||Φα,δ||2.

Proposition 3.19. Let ω > α2

N2 and J(ω) = ∂ω||Φα,δ||2. Then the following
assertions hold.

(i) Let α < 0, then
1) for 1 < p ≤ 5, we have J(ω) > 0;
2) for p > 5, there exists ω1 such that J(ω1) = 0, and J(ω) > 0

for ω ∈ ( α
2

N2 , ω1), while J(ω) < 0 for ω ∈ (ω1,∞).
(ii) Let α > 0, then

1) for 1 < p ≤ 3, we have J(ω) > 0;
2) for 3 < p < 5, there exists ω2 such that J(ω2) = 0, and J(ω) < 0

for ω ∈ ( α
2

N2 , ω2), while J(ω) > 0 for ω ∈ (ω2,∞);
3) for p ≥ 5, we have J(ω) < 0.

Proof. To prove all the assertions, we will use the equality (see [2])

J(ω) = Cω
7−3p

2(p−1)J1(ω),

where C = N
p−1(p+1

2 )
2
p−1 > 0 and

J1(ω) = 5−p
p−1

∫ 1

−α
N
√
ω

(1− t2)
3−p
p−1dt+ −α

N
√
ω

(1− α2

N2ω
)

3−p
p−1 .

Thus,

J ′1(ω) = −α
Nω3/2

3−p
p−1

[(
1− α2

N2ω

)3−p
p−1

+ α2

N2ω

(
1− α2

N2ω

)−2(p−2)
p−1

]
.

Item (i) was proved in [2].
Let us prove the assertion (ii). Item 3) is immediate. Consider p ∈ (1, 5).

It is easily seen that

a0 = lim
ω→+∞

J1(ω) =
5− p
p− 1

∫ 1

0
(1− t2)

3−p
p−1dt > 0, (3.23)

and

lim
ω→ α2

N2

J1(ω) =

{
2a0, p ∈ (1, 3],
−∞, p ∈ (3, 5).

(3.24)
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Observing that J ′1(ω) ≤ 0 for p ∈ (1, 3] (J ′1(ω) ≡ 0 as p = 3) and using
(3.23)-(3.24), we get J(ω) > 0. Let p ∈ (3, 5), then J ′1(ω) > 0. Thus,

from (3.23)-(3.24) it follows that there exists unique ω2 > α2

N2 such that

J1(ω2) = J(ω2) = 0, and J(ω) < 0 for ω ∈ ( α
2

N2 , ω2), while J(ω) > 0 for
ω ∈ (ω2,∞). �

Proof of Theorem 1.1. From Theorem 3.4, we obtain well-posedness of
(2.2) in Ek(G) for any k ∈ {1, ..., N − 1}. For α > 0, from Proposition
3.17-(iii) and Proposition 3.19 -(ii), we obtain n(Hα|L2

k(G)) − p(ω) = 1 as

p ∈ (1, 3], ω > α2

N2 , and p ∈ (3, 5), ω > ω2. Thus, from Theorem 3.6, we get

orbital instability of eiωtΦα,δ in Ek(G) and consequently in E(G). �

Remark 3.20. (i) Let p ≥ 5 and α > 0, then by Proposition 3.19-(ii) and
Proposition 3.17-(iii), we get n(Hα|L2

k(G)) − p(ω) = 2. This means that

Theorem 3.6 does not provide any information about stability properties of
eiωtΦα,δ in Ek(G).

(ii) Since the mapping data-solution is of class C2 for p > 2, we can apply
the approach by [35], to imply the orbital instability from the spectral one
for p ∈ (2, 5).

(iii) Theorem 2.4 above initially established in [2] easily follows for any
α < 0 from our approach. Indeed, combining Theorem 3.4, Proposition
3.17-(i)-(ii)-(iv), Proposition 3.19-(i) and Theorem 3.6, we get the orbital
stability of eiωtΦα,δ in E(G) for 1 < p ≤ 5. Moreover, applying the approach
by [35], we may deduce the orbital instability of eiωtΦα,δ from the spectral
one for p > 5 and ω > ω∗ (see [2, Remark 6.1]).

3.2. The NLS-δ′ equation on a star graph. As it was announced in the
Introduction, in this Subsection, we discuss a new problem. In particular,
we study the orbital stability of the standing wave U(t, x) = eiωtΦ(x) of
NLS-δ′ equation (2.4) with the particular N -tail profile Φλ,δ′ = (ϕλ,j)

N
j=1

satisfying the stationary equation

Hδ′
λ Φ + ωΦ− |Φ|p−1Φ = 0

under the conditions ϕλ,1 = · · · = ϕλ,N =: ϕλ,δ′ and Nϕλ,j(0) = λϕ′λ,j(0). It

is easily seen that Φλ,δ′ is defined by (2.11) for λ < 0 and ω > N2

λ2
.

As we are investigating orbital stability in H1(G) we need to show the
well-posedness of the initial value problem for equation (2.4) in this space
(Assumption 2 in [34]). First, we establish the following property for the
unitary group associated to (2.4).
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Lemma 3.21. Let {e−itHδ′
λ }t∈R be the family of unitary operators associ-

ated to NLS-δ′ model (2.4). Then for every V ∈ H1(G) we have the rela-

tion ∂x(e−itH
δ′
λ V) = −e−itHδ′

λ V′+B(V′), where B(V′) = (2eit∂
2
x ṽj)

N
j=1, with

ṽj(x) =

{
v′j(x), x ≥ 0,

0, x < 0
, and eit∂

2
x is the unitary group associated with the

free Schrödinger operator on R.

Proof. The proof repeats the one of Lemma 3.1. The only difference is that
δ′-interaction on G is induced by the following condition

V ∈ Dλ,δ′ iff ÃV(0) + B̃V′(0) = 0, where

Ã =


0 ... 0
0 0
...

...

−1 ... −1

 , B̃ =


1 −1 0 ... 0
0 1 −1 ... 0
...

...
...

...
0 0 0 ... −1
λ
N

λ
N

λ
N ... λ

N

 .

�

Theorem 3.22. Let p > 1. Then for any U0 ∈ H1(G) there exists T > 0
such that equation (2.2) has a unique solution U ∈ C([−T, T ], H1(G)) ∩
C1([−T, T ], [H1(G)]′) satisfying U(0) = U0. For each T0 ∈ (0, T ) the map-
ping U0 ∈ H1(G) → U ∈ C([−T0, T0], H1(G)), is continuous. In particular,
for p > 2 this mapping is at least of class C2.

Moreover, the conservation of energy and charge holds:
Eλ(U(t)) = Eλ(U0), and Q(U(t)) = ||U(t)||2 = ||U0||2, t ∈ [−T, T ],

where the energy Eλ is defined for V = (vj)
N
j=1 ∈ H1(G) by

Eλ(V) = 1
2 ||V

′||2 − 1
p+1 ||V||

p+1
p+1 + 1

2λ

∣∣∣ N∑
j=1

vj(0)
∣∣∣2.

Consequently, for 1 < p < 5, we can choose T = +∞.

Proof. The prove repeats the one of Theorem 3.4. In particular, it essen-
tially uses Lemma 3.21 and the Banach contraction theorem. �

Remark 3.23. Analogously to the case of NLS-δ equation the following

equality holds e−itH
λ
δ′V = e−itH

λ
δ′PcV + e−itH

λ
δ′PpV. Similarly, for λ >

0, we have σc(H
λ
δ′) = [0,∞) and σp(H

λ
δ′) = ∅, therefore, Pp = 0. For
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λ < 0, σc(H
λ
δ′) = [0,∞) and σp(H

λ
δ′) = {−z2

0} = {−N2

λ2
}, where the corre-

sponding eigenfunction is Vz0(x) = (e
N
λ
x)Nj=1, and therefore, e−itH

λ
δ′PpV =

eitz
2
0 (V,Vz0)Vz0 .
The proof of the spectral properties of Hλ

δ′ repeats the one of [5, Theorem
4.3] for the case of the Schrödinger operator with δ′-interaction on the line.
In particular, to describe the point spectrum for λ < 0 one needs to consider
Hλ
δ′ as the self-adjoint extension of the symmetric non-negative operator

L′ defined by (3.30) with deficiency indices n±(L′) = 1 and then to apply
Proposition 3.9.

Consider the following two self-adjoint matrix operators

L1,λ =
((
− d2

dx2
+ ω − p(ϕλ,δ′)p−1

)
δk,j

)
,

L2,λ =
((
− d2

dx2
+ ω − (ϕλ,δ′)

p−1
)
δk,j

)
,

with dom(L1,λ) = dom(L2,λ) = Dλ,δ′ . Here, δk,j is the Kronecker symbol.
These operators are associated in a standard way with the second derivative
of the following action functional

Sλ(V) = 1
2 ||V

′||2 − 1
p+1 ||V||

p+1
p+1 + 1

2λ

∣∣∣ N∑
j=1

vj(0)
∣∣∣2 + ω

2 ||V||
2,

where V = (vj)
N
j=1 ∈ H1(G). Namely, (Sλ)′′(Φλ,δ′)(U,V) = (L1,λU1,V1) +

(L2,λU2,V2) with U = U1 + iU2 and V = V1 + iV2. As in the previous
paragraph, we consider the form (Sλ)′′(Φλ,δ′) as a linear operator

Hλ =

(
L1,λ 0
0 L2,λ

)
. (3.25)

The energy functional Eλ defined by (3.22) belongs to C2(H1(G),R) and
Assumptions 1,2 in [33] are satisfied. Thus, the analog of stability/instability
Theorem 3.6 is true for eiωtΦλ,δ′ .

Below, we give the description of the spectrum of the operators L1,λ and
L2,λ, which due to formula (3.25), will help us to verify the conditions of
mentioned stability/instability result.

Proposition 3.24. Let λ < 0 and ω > N2

λ2
, then the following results hold.

(i) ker(L2,λ) = span{Φλ,δ′}, and L2,λ ≥ 0.

(ii) If ω < N2

λ2
p+1
p−1 , then ker(L1,λ) = {0}, and n(L1,λ) = 1.
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(iii) If ω = N2

λ2
p+1
p−1 , then n(L1,λ) = 1, and the kernel of L1,λ is given by

ker(L1,λ) = span{Φ̂λ,1, .., Φ̂λ,N−1}, where

Φ̂λ,j = (0, .., 0, ϕ′λ,δ′
j

,−ϕ′λ,δ′
j+1

, 0, .., 0). (3.26)

(iv) If ω > N2

λ2
p+1
p−1 , then ker(L1,λ) = {0}, and n(L1,λ) ≤ N . Moreover,

for N even in the space L2
N
2

(G), we have n(L1,λ|L2
N
2

(G)) = 2.

(v) The rest of the spectrum of L1,λ and L2,λ is positive and bounded
away from zero.

Proof. (i) It is clear that Φλ,δ′ ∈ ker(L2,λ). To show the equality ker(L2,λ) =

span{Φλ,δ′} let us note that any V = (vj)
N
j=1 ∈ H2(G) satisfies the following

identity

−v′′j + ωvj − (ϕλ,δ′)
p−1vj =

−1

ϕλ,δ′

d

dx

[
ϕ2
λ,δ′

d

dx

( vj
ϕλ,δ′

)]
, x > 0. (3.27)

Thus, for V ∈ Dλ,δ′ , we obtain from (3.27), (2.5), and (2.11)

(L2,λV,V) =
N∑
j=1

∫ ∞
0

ϕ2
λ,δ′

[ d
dx

( vj
ϕλ,δ′

)]2
dx+Rλ,N , where

Rλ,N =

N∑
j=1

[
v′j(0)vj(0)− v2

j (0)
ϕ′λ,δ′(0)

ϕλ,δ′(0)

]
=

1

λ

[ N∑
j=1

vj(0)
]2
− N

λ

N∑
j=1

v2
j (0).

The term Rλ,N if positive for λ < 0 by Jensen’s inequality applied to f(x) =
x2. Thus, (L2,λV,V) > 0 for V ∈ Dλ,δ′ \ span{Φλ,δ′} which proves (i).

(ii) Concerning the kernel of L1,λ, we recall that the only L2(R+)-solution
of the equation −v′′j + ωvj − p(ϕλ,δ′)p−1vj = 0 is given by vj = ϕ′λ,δ′ (up to

a factor). Thus, any element of ker(L1,λ) has the form V = (vj)
N
j=1 =

(cjϕ
′
λ,δ′)

N
j=1, cj ∈ R. If v′1(0) = · · · = v′N (0) 6= 0, then by (2.5), we get

c1 = · · · = cN 6= 0, and consequently Nϕ′λ,δ′(0) = λϕ′′λ,δ′(0). Therefore,

ω = N2

λ2
, which is impossible. Otherwise, the condition v′j(0) = 0 implies

that ϕ′′λ,δ′(0) = 0, which is equivalent to the identity ω = N2

λ2
p+1
p−1 . Thus, we

get that c1 = · · · = cN = 0 and V ≡ 0 for ω 6= N2

λ2
p+1
p−1 .
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The proof of the equality n(L1,λ) = 1 for ω < N2

λ2
p+1
p−1 is similar to the one

in the case of the operator L1,0 defined by (3.11). Namely, denoting

lλ =
((
− d2

dx2
+ ω − p(ϕλ,δ′)p−1

)
δk,j

)
, (3.28)

we define the following symmetric operator L′0 = lλ with

dom(L′0) =
{

V ∈ H2(G) : v′1(0) = · · · = v′N (0) = 0,
N∑
j=1

vj(0) = 0
}
.

It is easily seen that L1,λ is the self-adjoint extension of L′0. Let us show that

the operator L′0 is non-negative. First, note that any V = (vj)
N
j=1 ∈ H2(G)

satisfies the following identity

−v′′j + ωvj − p(ϕλ,δ′)p−1vj =
−1

ϕ′λ,δ′

d

dx

[
(ϕ′λ,δ′)

2 d

dx

( vj
ϕ′λ,δ′

)]
, x > 0.

Using the above equality and integrating by parts, we get for V ∈ dom(L′0)

(L′0V,V) =

N∑
j=1

∫ ∞
0

(ϕ′λ,δ′)
2
[ d
dx

( vj
ϕ′λ,δ′

)]2
dx−

N∑
j=1

v2
j (0)

ϕ′′λ,δ′(0)

ϕ′λ,δ′(0)
.

Taking into account that

−v2
j (0)

ϕ′′λ,δ′(0)

ϕ′λ,δ′(0)
= v2

j (0)
λω

2N

(
p− 1− (p+ 1)

N2

λ2ω

)
, (3.29)

we get non-negativity of L′0 for ω ≤ N2

λ2
p+1
p−1 .

Next, the adjoint operator of L′0 is given by

(L′0)∗ = lλ, dom((L′0)∗) =
{
V ∈ H2(G) : v′1(0) = · · · = v′N (0)

}
.

The last formula can be shown analogously to (3.14). Due to the von Neu-
mann decomposition (3.10), we get (assuming that L′0 acts on complex-
valued functions)

dom((L′0)∗) = dom(L′0)⊕ span{Vi} ⊕ span{V−i},

where V±i = (ei
√
±ix)Nj=1, =(

√
±i) > 0. Indeed, since ϕλ,δ′ ∈ L∞(R+), we

get dom((L′0)∗) = dom((L′)∗), where

L′ =
((
− d2

dx2

)
δk,j

)
, dom(L′) = dom(L′0). (3.30)
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Finally, by [43, Chapter IV, Theorem 6], n±(L′0) = n±(L′) = 1. By Propo-

sition 3.9, n(L1,λ) ≤ 1. Due to (L1,λΦλ,δ′ ,Φλ,δ′) = −(p− 1)||Φλ,δ′ ||p+1
p+1 < 0,

we finally arrive at n(L1,λ) = 1, and (ii) is proved.
(iii) From the proof of item (ii), we induce that n(L1,λ) = 1, and the

kernel of L1,λ is nonempty as ω = N2

λ2
p+1
p−1 . Moreover, we know that any

element of the kernel has the form V = (vj)
N
j=1 = (cjϕ

′
λ,δ′)

N
j=1, cj ∈ R, and

it is necessary that v′1(0) = · · · = v′N (0) = 0. Hence, the condition

λv′1(0) =

N∑
j=1

vj(0) = 0 (3.31)

gives rise to (N − 1)-dimensional kernel of L1,λ. Since the functions Φ̂λ,j ,
1 ≤ j ≤ N − 1, defined in (3.26) are linearly independent and satisfy the
condition (3.31), they form the basis in ker(L1,λ), and (iii) is proved.

(iv) The identity ker(L1,λ) = {0} was shown in (ii). To show the inequal-
ity n(L1,λ) ≤ N , we introduce the following minimal symmetric operator
Lmin = lλ with

dom(Lmin) =

{
V ∈ H2(G) :

v′1(0) = · · · = v′N (0) = 0,
v1(0) = · · · = vN (0) = 0

}
, (3.32)

where lλ is defined in (3.28). The operator L1,λ is self-adjoint extension
of Lmin. From the formula (3.29) it follows that Lmin is a non-negative
operator. It is obvious that L∗min = lλ, dom(L∗min) = H2(G). Then, due to
the von Neumann formula (for Lmin acting on complex-valued functions)

dom(L∗min) = dom(Lmin)⊕ span{V1
i , ..,V

N
i } ⊕ span{V1

−i, ..,V
N
−i},

where Vj
±i = (0, ..., ei

√
±ix
j

, 0, ..., 0), =(
√
±i) > 0, and consequently n±(Lmin)

= N . By Proposition 3.9, n(L1,λ) ≤ N .
Let N be even. It is easily seen that n±(Lmin) = 2 in L2

N
2

(G). Indeed,

dom(L∗min) = dom(Lmin) ⊕ span{Ṽ1
i , Ṽ

2
i } ⊕ span{Ṽ1

−i, Ṽ
2
−i}, where Ṽ1

±i =

(ei
√
±ix
1

, ..., ei
√
±ix

N/2
, 0
N/2+1

, ..., 0
N

), and Ṽ2
±i = (0

1
, ..., 0

N/2
, ei
√
±ix

N/2+1
, ..., ei

√
±ix
N

). By

Proposition 3.9, we get n(L1,λ) ≤ 2 in L2
N
2

(G).

Let us introduce the following quadratic form F1,λ associated with the
operator L1,λ

F1,λ(V) = ||V′||2 + ω||V||2 − p
N∑
j=1

∫ ∞
0

(ϕλ,δ′)
p−1|vj |2dx+ 1

λ

∣∣∣ N∑
j=1

vj(0)
∣∣∣2,
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with dom(F1,λ) = H1(G). Let Φ−λ = (ϕ′λ,δ′
1

, ..., ϕ′λ,δ′
N/2

,−ϕ′λ,δ′
N/2+1

, ...,−ϕ′λ,δ′
N

), then

integrating by parts, we obtain

F1,λ(Φ−λ ) = N

∫ ∞
0

ϕ′λ,δ′
(
−ϕ′′′λ,δ′ + ωϕ′λ,δ′ − p(ϕλ,δ′)p−1ϕ′λ,δ′

)
dx

−Nϕ′λ,δ′(0)ϕ′′λ,δ′(0) = N2

2λ ω
[(

(p+1)ω
2

)(
1− N2

λ2ω

)] 2
p−1

(
p− 1− (p+ 1) N

2

λ2ω

)
,

which is negative for ω > N2

λ2
p+1
p−1 . Since (L1,λΦλ,δ′ ,Φλ,δ′) < 0, we get by

orthogonality of Φ−λ and Φλ,δ′

F1,λ(sΦλ,δ′ + rΦ−λ ) = |s|2F λ1,ω(Φλ,δ′) + |r|2F λ1,ω(Φ−λ ) < 0.

Thus, we obtain that F1,λ is negative on two-dimensional subspace M =

span{Φλ,δ′ ,Φ
−
λ }. Therefore, by minimax principle, we get n(L1,λ) ≥ 2. The

assertion (iv) is proved. The proof of item (v) is standard and relies on
Weyl’s theorem. This finishes the proof of the Proposition. �

Finally, we have to study the sign of ∂ω||Φλ,δ′ ||2.

Proposition 3.25. Let ω > N2

λ2
, λ < 0, and J(ω) = ∂ω||Φλ,δ′ ||2.

(i) If 1 < p ≤ 5, then J(ω) > 0.
(ii) If p > 5, then there exists ω∗ such that J(ω∗) = 0, and J(ω) > 0 for

ω ∈ (N
2

λ2
, ω∗), while J(ω) < 0 for ω ∈ (ω∗,∞).

Proof. Recall that Φλ,δ′ = (ϕλ,δ′)
N
j=1, where ϕλ,δ′ is defined by (2.11), we

have via change of variables∫ ∞
0

(ϕλ,δ′(x))2dx =
(p+ 1

2

) 2
p−1 2ω

2
p−1−

1
2

p− 1

∫ 1

N
|λ|
√
ω

(1− t2)
2
p−1−1

dt.

From the last equality, we get

J(ω) = Cω
7−3p

2(p−1)J1(ω), C = N
p−1

(p+ 1

2

) 2
p−1

, (3.33)

where

J1(ω) = 5−p
p−1

∫ 1

N
|λ|
√
ω

(1− t2)
3−p
p−1dt+ N

|λ|
√
ω

(1− N2

λ2ω
)

3−p
p−1 .

Thus,

J ′1(ω) = N
|λ|ω3/2

3−p
p−1

[(
1− N2

λ2ω

)3−p
p−1

+ N2

λ2ω

(
1− N2

λ2ω

)−2(p−2)
p−1

]
. (3.34)
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It is immediate that J(ω) > 0 for 1 < p ≤ 5. Consider the case p > 5. It is
easily seen

lim
ω→+∞

J1(ω) =
5− p
p− 1

∫ 1

0
(1− t2)

3−p
p−1dt < 0, lim

ω→N2

λ2

J1(ω) =∞.

Moreover, from (3.34) it follows that J ′1(ω) < 0 for ω > N2

λ2
, and consequently

J1(ω) is strictly decreasing. Therefore, there exists a unique ω∗ > N2

λ2
such

that J1(ω∗) = J(ω∗) = 0, consequently, J(ω) > 0 for ω ∈ (N
2

λ2
, ω∗), and

J(ω) < 0 for ω ∈ (ω∗,∞). �

Proof of Theorem 1.2. (i) 1) Combining Theorem 3.22, Theorem 3.6
(adapted to the case of the NLS-δ′ equation), Proposition 3.24 (items (i),
(ii) and (v)), and Proposition 3.25-(i), we get stability of eiωtΦλ,δ′ in H1(G).

2) Combining Theorem 3.6, Proposition 3.24 (items (i), (iv) and (v)),
and Proposition 3.25-(i), we get orbital instability of eiωtΦλ,δ′ in H1

N
2

(G)

(compare with Remark 3.7-(ii)). We note that well-posedness of the Cauchy
problem associated with equation (2.4) inH1

N
2

(G) follows from the uniqueness

of the solution to the Cauchy problem in H1(G) and the fact that the group

e−itH
δ′
λ preserves the space H1

N
2

(G). Finally, instability in the smaller space

H1
N
2

(G) induces instability in all H1(G).

(ii) Relative position of ω∗ and ω = N2

λ2
p+1
p−1 is not clear (see Remark 3.27),

which complicates the analysis in the framework of Theorem 3.6. But we can
overcome this difficulty restricting the operator L1,λ onto the space L2

eq(G)

defined by L2
eq(G) = {V = (vj)

N
j=1 ∈ L2(G) : v1(x) = · · · = vN (x), x > 0}.

Moreover, we introduce H1
eq(G) = H1(G) ∩ L2

eq(G). We note that H1
eq(G) is

also preserved by the group e−itH
δ′
λ .

Recall that L1,λ is the self-adjoint extension of the minimal symmet-
ric operator Lmin defined by (3.32). It is easily seen that the operator

Lmin|L2
eq(G) satisfies N±(Lmin|L2

eq(G)) = span{(ei
√
±ix)Nj=1}. The last equality,

by Proposition 3.9, implies n(L1,λ|L2
eq(G)) = 1 since (L1,λΦλ,δ′ ,Φλ,δ′) < 0

and Φλ,δ′ ∈ L2
eq(G).

Without loss of generality, we can assume that ω∗ 6= N2

λ2
p+1
p−1 . All our

forthcoming conclusions about orbital stability are based on Theorem 3.6
for the spaces H1(G) and H1

eq(G), Remark 3.7, Theorem 3.22, Proposition
3.24, and Proposition 3.25. Consider 2 cases.
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1. Suppose that ω∗ < N2

λ2
p+1
p−1 .

Let ω < ω∗ < N2

λ2
p+1
p−1 , then n(L1,λ) = 1 in L2(G) and we have ∂ω||Φλ,δ′ ||2 >

0. Therefore, eiωtΦλ,δ′ is orbitally stable in H1(G), and hence in H1
eq(G).

If ω∗ < ω < N2

λ2
p+1
p−1 , then n(L1,λ) = 1 in L2(G) and ∂ω||Φλ,δ′ ||2 < 0, which

induces orbital instability of eiωtΦλ,δ′ in H1(G).

Let ω > N2

λ2
p+1
p−1 > ω∗. Then n(L1,λ|L2

eq(G)) = 1 and also ∂ω||Φλ,δ′ ||2 < 0,

which induces orbital instability of eiωtΦλ,δ′ in H1
eq(G) and consequently in

H1(G).

2. Suppose that ω∗ > N2

λ2
p+1
p−1 .

If ω < N2

λ2
p+1
p−1 < ω∗, then n(L1,λ) = 1 in L2(G) and ∂ω||Φλ,δ′ ||2 > 0,

consequently, eiωtΦλ,δ′ is orbitally stable in H1(G), and therefore in H1
eq(G).

If N2

λ2
p+1
p−1 < ω < ω∗, then n(L1,λ|L2

eq(G)) = 1 and ∂ω||Φλ,δ′ ||2 > 0, which

induces stability of eiωtΦλ,δ′ in H1
eq(G) .

Let ω > ω∗ > N2

λ2
p+1
p−1 , then n(L1,λ|L2

eq(G)) = 1 and ∂ω||Φλ,δ′ ||2 < 0, which

induces orbital instability of eiωtΦλ,δ′ in H1
eq(G) and consequently in H1(G).

Summarizing all the cases, we get for ω > ω∗ nonlinear instability of
eiωtΦλ,δ′ in H1(G), and for ω < ω∗ stability of eiωtΦλ,δ′ at least in H1

eq(G).
This finishes the proof. �

Remark 3.26. (i) It is worth mentioning that the orbital instability result
follows easily for 2 < p < 5 from the spectral instability using the fact that
the mapping data-solution for (2.4) is of class C2 (see Theorem 3.22 and
Remark 3.7-(iii)).

(ii) Observe that for p > 5 the orbital instability results are obtained via
classical approach by [33] without using spectral instability. Otherwise, the
orbital instability can be deduced from the spectral one since for p > 5 the
mapping data-solution for (2.4) is of class C2.

Remark 3.27. Note that the integral appearing in (3.33) (via change of
variables) is related to the incomplete Beta function

B
(
y;

1

2
, b
)

=

∫ y

0
x−

1
2 (1− x)b−1dx,

with b = 2
p−1 . Using basic numerical simulations, one can show that for

p = 6, 7, ..., relation ω∗ > N2

λ2
p+1
p−1 holds. By the continuity of the function J

as a function of p, we get the relation ω∗ > N2

λ2
p+1
p−1 in the neighborhood of

every integer p > 5.
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We conjecture that ω∗ > N2

λ2
p+1
p−1 holds for any p > 5. This conjecture by

Theorem 3.6 implies the following stability properties of eiωtΦλ,δ′ in the case
p > 5:

(i) if ω ∈ (N
2

λ2
, N

2

λ2
p+1
p−1), then eiωtΦλ,δ′ is stable in H1(G);

(ii) if ω ∈ (N
2

λ2
p+1
p−1 , ω

∗) and N is even, then eiωtΦλ,δ′ is unstable in H1(G).

4. Stability theory of standing wave solutions for the
NLS-log-δ and the NLS-log-δ′ equation on a star graph

4.1. The NLS-log-δ equation on a star graph. In this subsection, we
prove spectral instability of the N -bump stationary state solution Ψα,δ =

(ψα,δ)
N
j=1 of Gaussian type, where ψα,δ(x) = e

ω+1
2 e−

(x− αN )2

2 , α > 0, ω ∈ R.
We also extend the stability result in [15] for any α < 0 (see Theorem 1.3).

Since well-posedness is a crucial assumption for stability theory, it is worth
proving that equation (2.6) is well-posed in the space W 1

E (G). In [15] the
following well-posedness result in WE(G) was proved.

Proposition 4.1. For any U0 ∈ WE(G) there is a unique solution U ∈
C(R,WE(G)) ∩ C1(R,W ′E(G)) of (2.6) such that

U(0) = U0 and sup
t∈R
||U(t)||WE(G) <∞.

Furthermore, the conservation of energy and charge holds, that is,

Eα,Log(U(t)) = Eα,Log(U0), and Q(U(t)) = ||U(t)||2 = ||U0||2,

where the energy Eα,Log is defined for V = (vj)
N
j=1 ∈WE(G) by

Eα,Log(V) = 1
2 ||V

′||2 − 1
2

N∑
j=1

∫ ∞
0
|vj |2 Log |vj |2dx+ α

2 |v1(0)|2.

Using the above result, we obtain well-posedness in W 1
E (G).

Theorem 4.2. If U0 ∈ W 1
E (G), there is a unique solution U(t) of (2.6)

such that U(t) ∈ C(R,W 1
E (G)) and U(0) = U0.

Proof. The proof can be found in [11]. Basically it follows from Proposition
4.1 and two additional facts. The first one is that W 1

E (G) ⊂ WE(G) (see [9,
Lemma 3.1]), and the second one is the continuity of the mapping t 7→
||xU(t)||2 on R. �
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The strategy of the proof of Theorem 1.3 is analogous to the one in the
previous case of the NLS equation with power nonlinearity. In particular,
we will use the adapted (weaker) version of the stability/instability Theorem
3.6 (to the specific Gaussian profile Ψα,δ and the space W 1

E (G)).
Consider the following two harmonic oscillator self-adjoint matrix opera-

tors with domain dom(T1,α) = dom(T2,α) = DLog
α,δ defined by

T1,α =
((
− d2

dx2
+ (x− α

N )2 − 3
)
δk,j

)
,

T2,α =
((
− d2

dx2
+ (x− α

N )2 − 1
)
δk,j

)
,

DLog
α,δ : =

{
V ∈W 2(G) : v1(0) = · · · = vN (0),

N∑
j=1

v′j(0) = αv1(0)
}
,

where δk,j is the Kronecker symbol. These operators are associated with
Hα,Log := (Sα,Log)′′(Ψα,δ) (where Sα,Log is defined by (2.15)) in a standard
way, i.e.,

Hα,Log =

(
T1,α 0

0 T2,α

)
.

Noting that ∂ω||Ψα,δ||2 > 0, Eα,Log ∈ C(W 1
E (G),R) (see [11, Proposition

2.3]), and combining [33, Theorem 3.5] with [34, Theorem 5.1], we can for-
mulate the stability/instability theorem for the NLS-log-δ equation.

Theorem 4.3. Let α 6= 0, and n(Hα,Log) be the number of negative eigen-
values of Hα,Log. Suppose also that

1) ker(T2,α) = span{Ψα,δ},
2) ker(T1,α) = {0},
3) the negative spectrum of T1,α and T2,α consists of a finite number of

negative eigenvalues (counting multiplicities),
4) the rest of the spectrum of T2,α and T1,α is positive and bounded away

from zero. Then the following assertions hold.

(i) If n(Hα,Log) = 1, then the standing wave eiωtΨα,δ is orbitally stable
in W 1

E (G).
(ii) If n(Hα,Log) = 2 in L2

k(G), then the standing wave eiωtΨα,δ is spec-
trally unstable.

Remark 4.4. (i) By saying eiωtΨα,δ “is spectrally unstable,” we mean that

the spectrum of the linear part Aα,Log =

(
0 T2,α

−T1,α 0

)
of the linearization
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of the NLS-log-δ equation around Ψα,δ contains an eigenvalue with positive
real part.

(ii) In item (ii), we affirm only spectral instability since we cannot ap-
ply neither [45, Corollary 3 and 4] (since we do not know if Eα,Log ∈
C2(W 1

E (G),R)), nor [35, Theorem 2 Remark, Section 2] (since we do not
know if the mapping data-solution associated to the NLS-log-δ equation is
of class C2 around Ψα,δ) to prove orbital instability (see Remark 3.7 above).

Below, we study the spectral properties of T1,α and T2,α. To investigate
the spectrum of the operator T1,α, we will use the perturbation theory anal-
ogously to the previous case of the NLS-δ equation with power nonlinearity.
In particular, define the following self-adjoint Schrödinger operator on L2(G)
with Kirchhoff condition at ν = 0

T1,0 =
((
− d2

dx2
+ x2 − 3

)
δi,j

)
, (4.1)

dom(T1,0) =
{

V ∈W 2(G) : v1(0) = · · · = vN (0),

N∑
j=1

v′j(0) = 0
}
.

As above T1,α “tends” to T1,0 for α→ 0. In the next Theorem, we describe
the spectral properties of T1,0.

Theorem 4.5. Let T1,0 be defined by (4.1) and k ∈ {1, ..., N − 1}. Then
the following assertions hold

(i) ker(T1,0) = span{Ψ̂0,1, ..., Ψ̂0,N−1}, where

Ψ̂0,j = (0, ..., 0, ψ′0
j

,−ψ′0
j+1

, 0, ..., 0), ψ0(x) = e−
x2

2 .

(ii) In the space L2
k(G), we have ker(T1,0) = span{Ψ̃0,k}, where

Ψ̃0,k =
(
N−k
k ψ′0
1

, ..., N−kk ψ′0
k

,−ψ′0
k+1

, ...,−ψ′0
N

)
, (4.2)

i.e., ker(T1,0|L2
k(G)) = span{Ψ̃0,k}.

(iii) The operator T1,0 has one simple negative eigenvalue, i.e., n(T1,0) =
1. Moreover, the operator T1,0 has one simple negative eigenvalue
in L2

k(G), i.e., n(T1,0|L2
k(G)) = 1.

(iv) The spectrum of T1,0 is discrete.

Proof. The proof of items (i)-(ii) repeats the one of Theorem 3.12 (i)-(ii).
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(iii) We will follow the ideas of the proof of item (iii) of Theorem 3.12

and Lemma 4.11 in [9]. Denote t0 = ((− d2

dx2
+ x2 − 3)δk,j). First, one needs

to show that the operator T0 acting as T0 = t0 on

dom(T0) =
{

V ∈W 2(G) : v1(0) = · · · = vN (0) = 0,
N∑
j=1

v′j(0) = 0
}
.

is non-negative. The proof follows from the identity

−v′′j + (x2 − 3)vj =
−1

ψ′0

d

dx

[
(ψ′0)2 d

dx

( vj
ψ′0

)]
, x > 0,

for any V = (vj)
N
j=1 ∈W 2(G).

Next, we need to prove that n±(T0) = 1. We use the ideas of the proof
of [9, Lemma 4.11]. First, we establish the scale of Hilbert spaces associated
with the self-adjoint non-negative operator (see [6, Section I,§1.2.2]) T =
t0 +3I defined on

dom(T) =
{

V ∈W 2(G) : v1(0) = · · · = vN (0),
N∑
j=1

v′j(0) = 0
}
.

Define for s ≥ 0 the space

Hs(T) =
{

V ∈ L2(G) : ‖V‖s,2 =
∥∥∥(T + I)s/2V

∥∥∥ <∞} .
The space Hs(T) with norm ‖ · ‖s,2 is complete. The dual space of Hs(T) is
denoted by H−s(T) = Hs(T)′. The norm in the space H−s(T) is defined by

the formula ‖V‖−s,2 = ‖(T+I)−s/2V‖. The spaces Hs(T) form the following
chain ... ⊂ H2(T) ⊂ H1(T) ⊂ L2(G) = H0(T) ⊂ H−1(T) ⊂ H−2(T) ⊂ ...

The norm in the space H1(T) can be calculated as follows

‖V‖21,2 = ((T + I)1/2V, (T + I)1/2V)

=
N∑
j=1

∫ ∞
0

(
|v′j(x)|2 + |vj(x)|2 + x2|vj(x)|2

)
dx.

Therefore, we have the embedding H1(T) ↪→ H1(G) and, by the Sobolev
embedding, H1(T) ↪→ L∞(G). From the former remark, we obtain that the
functional δ1 : H1(T) → C acting as δ1(V) = v1(0) belongs to H1(T)′ =
H−1(T), and consequently δ1 ∈ H−2(T). Therefore, using [6, Lemma 1.2.3],

it follows that the restriction T̂0 of the operator T onto the domain dom(T̂0)
= {V ∈ dom(T) : δ1(V) = v1(0) = 0} = dom(T0) is a densely defined sym-

metric operator with equal deficiency indices n±(T̂0) = 1. By [43, Chapter
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IV, Theorem 6], the operators T̂0 and T0 have equal deficiency indices.
Therefore, n(T1,0) ≤ 1. Since T1,0Ψ0 = −2Ψ0, where Ψ0 = (ψ0)Nj=1, we get

n(T1,0) = 1. As Ψ0 ∈ L2
k(G) for any k, we get n(T1,0|L2

k(G)) = 1.

(iv) With slight modifications, we can repeat the proof of [19, Theorem
3.1, Chapter II] to show that the spectrum of T1,0 is discrete by lim

x→+∞
(x2−

3) = +∞, i.e., σ(T1,0) = σp(T1,0) = {µ0,j}j∈N. In particular, we have the
following distribution of the eigenvalues µ0,1 < µ0,2 < · · · < µ0,j < · · ·, with
µ0,j → +∞ as j → +∞. �

Proposition 4.6. Let k ∈ {1, ..., N − 1}, α 6= 0, and Ψα,δ be defined by
(2.14). Then

(i) ker(T2,α) = span{Ψα,δ} and T2,α ≥ 0,
(ii) ker(T1,α) = {0},

(iii) for α > 0, n(T1,α) = 2 in L2
k(G), i.e., n(T1,α|L2

k(G)) = 2,

(iv) for α < 0, n(T1,α) = 1 in L2(G),
(v) the spectrum of the operators T1,α and T2,α in L2(G) is discrete.

Proof. (i) The proof repeats the one of [2, Proposition 6.1]. We only need
to note that any V = (vj)

N
j=1 ∈W 2(G) satisfies the following identity

−v′′j + ((x− α
N )2 − 1)vj =

−1

ψα,δ

d

dx

[
ψ2
α,δ

d

dx

( vj
ψα,δ

)]
, x > 0.

(ii) The proof is standard. It is sufficient to note that any vector from
the kernel of T1,α has the form V = (vj)

N
j=1, where vj = cjψ

′
α,δ cj ∈ R.

(iii) The proof of this item is analogous to the one of the item (iii) of
Proposition 3.17. It suffices to note that for the operator T1,α the coefficient
µ0 in decomposition (3.18) is negative. Indeed, (see the proof of Proposition
4.17 in [9])

µ0 = − 2(N − k)

k||Ψ̃0,k||2

∫ ∞
0

x(ψ′0)2dx+O(α),

where Ψ̃0,k is defined by (4.2).
(iv) To show the equality in the whole space L2(G), we need to repeat the

arguments of the proof of Theorem 4.5-(iii) (i.e., T1,0 has to be replaced by
T1,α, and Ψ0 by Ψα,δ).

(v) The proof follows from [19, Chapter II, Theorem 3.1]. �

Proof of Theorem 1.3. Combining Theorem 4.2, Theorem 4.3, Proposi-
tion 4.6, we get orbital stability of eiωtΨα,δ in W 1

E (G) for α < 0 and spectral
instability of eiωtΨα,δ for α > 0. �
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4.2. The NLS-log-δ′ equation on a star graph. In this subsection, we
study the stability properties for the N-tail profile Ψλ,δ′ = (ψλ,δ′)

N
j=1, where

ψλ,δ′ = e
ω+1

2 e−
(x−Nλ )2

2 , λ < 0, ω ∈ R. Similarly to [15, Proposition 1.1], we
get the well-posedness result in W (G).

Proposition 4.7. For any U0 ∈ W (G) there is a unique solution U ∈
C(R,W (G)) ∩ C1(R,W ′(G)) of (2.7) such that U(0) = U0 and
sup
t∈R
||U(t)||W (G) < ∞. Furthermore, the conservation of energy and charge

holds, that is,

Eλ,Log(U(t)) = Eλ,Log(U0), and Q(U(t)) = ||U(t)||2 = ||U0||2,

where the energy Eλ,Log is defined for V = (vj)
N
j=1 ∈W (G) by

Eλ,Log(V) = 1
2 ||V

′||2 − 1
2

N∑
j=1

∫ ∞
0
|vj |2 Log |vj |2dx+ 1

2λ

∣∣∣ N∑
j=1

vj(0)
∣∣∣2.

Proof. The proof repeats the one of [15, Proposition 1.1]. One just needs
to replace

Fγ [u] =
N∑
j=1

∫
R+

|u′j |2dx− γ|u1(0)|2

by
N∑
j=1

∫
R+

|u′j |2dx+ 1
λ

∣∣∣ N∑
j=1

uj(0)
∣∣∣2.

We also refer the reader to [27, Section 9.2]. �

Using the above result, one may show the well-posedness in W 1(G).

Theorem 4.8. If U0 ∈ W 1(G), there is a unique solution U(t) of (2.7)
such that U(t) ∈ C(R,W 1(G)) and U(0) = U0.

Proof. One should repeat the proof of [11, Theorem 2.2] substituting W 1
E (G)

by W 1(G). �

Consider the action functional associated with equation (2.7) for V ∈
W 1(G),

Sλ,Log(V)= 1
2 ||V

′||2+ (ω+1)
2 ||V||2− 1

2

N∑
j=1

∫ ∞
0
|vj |2 Log |vj |2dx+ 1

2λ

∣∣∣ N∑
j=1

vj(0)
∣∣∣2.
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As above our idea is to study the spectral properties of the self-adjoint
operators associated with (Sλ,Log)′′(Φλ,δ′)

T1,λ =
((
− d2

dx2
+ (x− N

λ )2 − 3
)
δk,j

)
,

T2,λ =
((
− d2

dx2
+ (x− N

λ )2 − 1
)
δk,j

)
,

acting on dom(T1,λ) = dom(T2,λ) = DLog
λ,δ′ , where

DLog
λ,δ′ :=

{
V ∈W 2(G) : v′1(0) = · · · = v′N (0),

N∑
j=1

vj(0) = λv′1(0)
}
.

Using arguments from the proof of Proposition 4.6 and Proposition 3.24, we
can show the following result.

Proposition 4.9. Let k ∈ {1, ..., N − 1}, λ < 0, and Ψλ,δ′ be defined by
(2.16). Then the following assertions hold.

(i) ker(T2,λ) = span{Ψλ,δ′}, and T2,λ ≥ 0.
(ii) If −N < λ < 0, then ker(T1,λ) = {0}, and n(T1,λ) = 1 in L2(G).

(iii) If λ = −N , then n(T1,λ) = 1, and the kernel of T1,λ is given by

ker(T1,λ) = span{Ψ̂λ,1, .., Ψ̂λ,N−1}, where

Ψ̂λ,j = (0, .., 0, ψ′−N,δ′
j

,−ψ′−N,δ′
j+1

, 0, .., 0).

In particular, in this case n(T1,λ|L2
k(G)) = 1, and ker(T1,λ|L2

k(G)) =

span{Ψ̃−N,k}, where

Ψ̃−N,k =
(
N−k
k ψ′−N,δ′

1

, ..., N−kk ψ′−N,δ′
k

,−ψ′−N,δ′
k+1

, ...,−ψ′−N,δ′
N

)
.

(iv) If λ < −N , then ker(T1,λ) = {0}, and n(T1,λ|L2
k(G)) = 2.

(v) The spectrum of T1,λ and T2,λ is discrete.

Proof. (i) The proof is analogous to the one of item (i) of Proposition 3.24.
(ii) The proof repeats the one of item (ii) of Proposition 3.24. We only

need to note that the non-negative (for −N < λ < 0) symmetric operator

T′0 =
((
− d2

dx2
+ (x− N

λ )2 − 3
)
δk,j

)
,

dom(T′0) =
{

V ∈W 2(G) : v′1(0) = · · · = v′N (0) = 0,

N∑
j=1

vj(0) = 0
}
.
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has deficiency indices equal one. It can be shown repeating the arguments
of the proof of item (iii) of Theorem 4.5.

(iii) It suffices to repeat the arguments of the proof of item (iii) of Propo-
sition 3.24.

(iv) By the analyticity of the family (T1,λ) as a function of λ < 0 and
the spectral properties of T1,λ, for λ = −N , we obtain (via the Kato-Rellich
Theorem):

1) There exist δ > 0 small and two analytic functions µ(λ) : (−N −
δ,−N + δ) → R and F(λ) : (−N − δ,−N + δ) → L2

k(G) such that

µ(−N) = 0 and F(−N) = Ψ̃−N,k.
2) µ(λ) is a simple isolated eigenvalue of T1,λ, and F(λ) is an associated

eigenvector for µ(λ).
3) Except at most the first two eigenvalues, the spectrum of T1,λ|L2

k(G)

is positive.

Below, we show that µ(λ) < 0 for λ < −N , and µ(λ) > 0 for γ > −N .
From Taylor’s theorem, we have the following expansions

µ(λ) = µ−N (λ+N) +O((λ+N)2), and (4.3)

F(λ) = Ψ̃−N,k + (λ+N)G−N + O((λ+N)2),

where µ−N = µ′(−N) ∈ R and G−N = ∂λF(λ)|λ=−N ∈ L2
k(G).

Let us show that µ−N > 0. To show the positivity of µ−N , we compute

(T1,λF(λ), Ψ̃−N,k) in two different ways. Since T1,λF(λ) = µ(λ)F(λ), it
follows from (4.3) that

(T1,λF(λ), Ψ̃−N,k) = µ−N (λ+N)‖Ψ̃−N,k‖2 +O((λ+N)2). (4.4)

By T1,−NΨ̃−N,k = 0, we obtain

T1,λΨ̃−N,k =
(
−2xN+λ

λ + N2−λ2
λ2

)
Ψ̃−N,k. (4.5)

Since T1,λ is self-adjoint, we obtain from (4.3) and (4.5)

(T1,λF(λ), Ψ̃−N,k) = (F(λ),T1,λΨ̃−N,k) (4.6)

=
(
Ψ̃−N,k,

[
−2xN+λ

λ + N2−λ2
λ2

]
Ψ̃−N,k

)
+O((λ+N)2).

Combination of (4.4) and (4.6) leads to

µ−N‖Ψ̃−N,k‖2 =
(
Ψ̃−N,k,

[
− 2
λx+ N−λ

λ2

]
Ψ̃−N,k

)
+O(λ+N). (4.7)
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Define g(λ) :=
(
Ψ̃−N,k,

[
− 2
λx+ N−λ

λ2

]
Ψ̃−N,k

)
, then

g(λ) = (N−k)N
k

∫ ∞
0

[
− 2
λx+ N−λ

λ2

]
(ψ′−N,δ′)

2dx.

By Taylor’s theorem, g(λ) = g(−N) + g′(−N)(λ+N) +O((λ+N)2). It is
easily seen that

g(−N) = 2eω+1N−k
k

∫ ∞
0

(x+ 1)3e−(x+1)2dx > 0.

From (4.7), we get

µ−N =
g(λ)

‖Ψ̃−N,k‖2
+O(λ+N) =

g(−N)

‖Ψ̃−N,k‖2
+O(λ+N),

and consequently µ−N > 0 for λ close to −N .
Let λ be close to −N and λ < −N , then from item (iii) and the analysis

above (µ(λ) < 0) it follows that n(T1,λ|L2
k(G)) = 2. Finally, by the contin-

uation argument (see item (iii) of Proposition 3.17), we extend the former
property for all λ < −N .

(iv) To prove the last spectral property it is sufficient to note that the
spectrum of T1,λ and T2,λ is discrete due to the growth of q(x) = (x− N

λ )2

as x→∞. �

Proof of Theorem 1.4. Combining Theorem 4.7, Proposition 4.9, The-
orem 4.3 (adapted to the case of the NLS-log-δ′ equation), we get orbital
stability of eiωtΨλ,δ′ in W 1(G) for −N < λ < 0. Spectral instability of
eiωtΨλ,δ′ follows for λ < −N . �

5. Applications to other models

In the above sections the use of the extension theory of symmetric oper-
ators was essential for the estimates of the Morse index of the specific self-
adjoint Schrödinger operators. In this section, we show how this approach
can be applied to the case of the nonlinear Schrödinger equations with spe-
cific point interactions on the line. In particular, we reprove in concise form
(avoiding the use of variational techniques) some stability results for these
equations established recently by the other authors (see [3, 28,31,32]).
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5.1. The NLS with point interactions on the line. In the scalar case
the family of self-adjoint boundary conditions for (1.1) at x = 0 is formally
defined by (

ψ(0+)
ψ′(0+)

)
= τ

(
a b
c d

)(
ψ(0−)
ψ′(0−)

)
, (5.1)

with a, b, c, d and τ satisfying the conditions (see [6, Theorem 3.2.3] or for-
mula (K.1.2) from [5, Appendix K])

{a, b, c, d ∈ R, τ ∈ C : ad− bc = 1, |τ | = 1}. (5.2)

The parameters (5.1) label the self-adjoint extensions of the closable sym-

metric operator H0 = − d2

dx2
defined, for instance, on the space C∞0 (R \ {0}).

We are interested in two specific choices of the parameters in (5.2), which
are relevant in physical applications (see [3, 24]). The first choice τ = a =
d = 1, b = 0, c = −γ, γ ∈ R\{0} corresponds to the δ-interaction of strength
−γ which gives rise to the following NLS-δ model

i∂tu−Hδ
γu+ |u|p−1u = 0, (5.3)

where Hδ
γ is the self-adjoint operator on L2(R) acting as (Hδ

γv)(x) = −v′′(x),

for x 6= 0, on the domain dom(Hδ
γ) = Dγ,δ, where

Dγ,δ :=
{
v ∈ H1(R) ∩H2(R \ {0}) : v′(0+)− v′(0−) = −γv(0)

}
.

The operator Hδ
γ is formally defined by the expression lδγ = − d2

dx2
− γδ(x),

where δ(x) is the Dirac delta distribution.
The second choice of parameters τ = a = d = 1, c = 0, b = −β, β ∈ R\{0}

corresponds to the case of so-called δ′-interaction of strength −β. It gives
rise to the following model (NLS-δ′ henceforth)

i∂tu−Hδ′
β u+ |u|p−1u = 0, (5.4)

in which Hδ′
β is the self-adjoint operator on L2(R) acting as (Hδ′

β v)(x) =

−v′′(x), for x 6= 0, on the domain dom(Hδ′
β ) = Dβ,δ′ , where

Dβ,δ′ := {v ∈ H2(R \ {0}) : v(0+)− v(0−) = −βv′(0), v′(0+) = v′(0−)}.

Recall thatHδ′
β is formally defined by the expression lδ

′
β = − d2

dx2
−β〈·, δ′〉δ′(x).

The NLS-δ model has been extensively studied in the last decade (see
[8, 12, 23, 24, 28, 30–32, 36, 45] and reference therein). The NLS-δ′ model
is less studied, in [3, 4] the authors investigated variational properties and
the orbital stability of the ground states of the NLS-δ′ equation with the
repulsive δ′-interaction (β > 0).
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5.2. The NLS-δ′ equation on the line. As above the existence of stand-
ing wave solutions u(t, x) = eiωtϕ(x) of equation (5.4) requires that the
profile ϕ ∈ Dβ,δ′ satisfies the semi-linear elliptic equation

Hδ′
β ϕ+ ωϕ− |ϕ|p−1ϕ = 0. (5.5)

It was shown in [3] that for β > 0 equation (5.5) has two types of solutions
(odd and asymmetric)

ϕoddω,β(x) = sign(x)
[(p+ 1)ω

2
sech2

((p− 1)
√
ω

2
(|x|+ y)

)] 1
p−1

, (5.6)

with x 6= 0 and ω > 4
β2 ,

ϕasω,β(x) =


[

(p+1)ω
2 sech2

(
(p−1)

√
ω

2 (x+ y1)
)] 1

p−1
, x > 0;

−
[

(p+1)ω
2 sech2

(
(p−1)

√
ω

2 (x− y2)
)] 1

p−1
, x < 0,

, ω > 4
β2

p+1
p−1 ,

where y, y1 and y2 are positive constants depending on β, p, ω (see [3, The-
orem 5.3]). Moreover, in [3, 4] were established the following stability re-
sults. The standing wave eiωtϕoddω,β is stable in H1(R \ {0}) for p > 1,

ω ∈ ( 4
β2 ,

4
β2

p+1
p−1), and unstable in H1(R \ {0}) for p > 1, ω > 4

β2
p+1
p−1 . The

standing wave eiωtϕassω,β is stable in H1(R \ {0}) for 1 < p ≤ 5, ω > 4
β2

p+1
p−1 ,

and p > 5, ω ∈ ( 4
β2

p+1
p−1 , ω1), meanwhile eiωtϕassω,β is unstable in H1(R \ {0})

for p > 5, ω > ω2 > ω1.
In what follows, we will use the notation ϕβ = ϕoddω,β. Due to Grillakis,

Shatah and Strauss approach, we need to study the spectral properties of
the following two self-adjoint operators

L1,β = − d2

dx2
+ ω − p|ϕβ|p−1, L2,β = − d2

dx2
+ ω − |ϕβ|p−1,

dom(Lj,β) = Dβ,δ′ , j ∈ {1, 2}.

The operators L1,β and L2,β are associated with the action functional

Sβ(ψ) = 1
2 ||ψ

′||2 + ω
2 ||ψ||

2 − 1
p+1 ||ψ||

p+1
p+1 − 1

2β |ψ(0+)− ψ(0−)|2,

defined on H1(R \ {0}), in the following sense:
(Sβ)′′(ϕβ)(u, v) = (L1,βu1, v1) + (L2,βu2, v2), where u = u1 + iu2 and

v = v1 + iv2. The well-posedness for (5.4) in H1(R \ {0}) was established
in [3, Proposition 3.3]. Moreover, it was shown that ker(L2,β) = span{ϕβ},
and ker(L1,β) = {0}, and the sign of ∂ω||ϕβ||2 was computed.
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The following result on the Morse index of L1,β was proved in [3] via
variational approach. We propose an alternative proof in the framework of
the extension theory.

Proposition 5.1. Let β > 0 and ω > 4
β2 . Then

(i) n(L1,β) = 1 for ω ∈ ( 4
β2 ,

4
β2

p+1
p−1 ],

(ii) n(L1,β) = 2 for ω ∈ ( 4
β2

p+1
p−1 ,∞).

Proof. It is easily seen that L1,β is the self-adjoint extension of the sym-
metric operator Lmin defined by

Lmin = − d2

dx2
+ω−p|ϕβ|p−1, dom(Lmin) = {v ∈ H2(R) : v(0) = v′(0) = 0}.

(5.7)
Since ϕβ ∈ L∞(R), we obtain dom(L∗min) = H2(R \ {0}). Moreover, the
operator Lmin is non-negative for β > 0. Indeed, it is easy to verify that for
β > 0 and v ∈ H2(R \ {0}) the following identity holds

−v′′ + ωv − p|ϕβ|p−1v =
−1

ϕ′β

d

dx

[
(ϕ′β)2 d

dx

( v

ϕ′β

)]
, x 6= 0. (5.8)

Using (5.8) and integrating by parts, we get

(Lminv, v) =
(∫ 0−

−∞
+

∫ ∞
0+

)
(ϕ′β)2

[ d
dx

( v

ϕ′β

)]2
dx+

[
v′v − v2

ϕ′′β
ϕ′β

]0+

0−
. (5.9)

The integral terms in (5.9) are non-negative. Due to the conditions v(0) =
v′(0) = 0, non-integral term vanishes, and we get Lmin ≥ 0. Note that

dom(L∗min) = H2(R \ {0}) = dom(Lmin)⊕ span{v1
i , v

2
i } ⊕ span{v1

−i, v
2
−i},

where

v1
±i =

{
ei
√
±ix x > 0;

0 x < 0.
, v2

±i =

{
0 x > 0;

e−i
√
±ix x < 0.

, =(
√
±i) > 0.

Indeed, due to the fact that ϕβ ∈ L∞(R), we get dom(L∗min) = dom(L∗),
where

L = − d2

dx2
, dom(L) = dom(Lmin).

Moreover, n±(Lmin) = n±(L) = 2. Since L1,β is the self-adjoint extension of
the non-negative symmetric operator Lmin and n±(Lmin) = 2, by Proposition
3.9, n(L1,β) ≤ 2. Otherwise, we obtain from (5.5) that (L1,βϕβ, ϕβ) < 0,
and therefore n(L1,β) ≥ 1. Thus, we get 1 ≤ n(L1,β) ≤ 2.
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(i) Note that L1,β is the self-adjoint extension of the following symmetric
operator

L′0 = − d2

dx2
+ ω − p|ϕβ|p−1, dom(L′0) =

{
v ∈ H2(R) : v′(0) = 0

}
.

Let us show that L′0 ≥ 0. Using (5.8) and integrating by parts,

(L′0v, v) =
(∫ 0−

−∞
+

∫ ∞
0+

)
(ϕ′β)2

[ d
dx

( v

ϕ′β

)]2
dx+

[
v′v − v2

ϕ′′β
ϕ′β

]0+

0−
. (5.10)

The integral terms in (5.10) are non-negative. Let us focus on the non-
integral term. Due to the conditions v′(0) = 0, v(0+) = v(0−), and formula
(5.6), we deduce[

v′v − v2
ϕ′′β
ϕ′β

]0+

0−
= −

[
v2
ϕ′′β
ϕ′β

]0+

0−
= v2(0)

ϕ′′β(0−)− ϕ′′β(0+)

ϕ′β(0−)

= −v2(0)
βω

2

(
p− 1− (p+ 1)

4

β2ω

)
≥ 0.

The last inequality follows from ω ≤ 4
β2

p+1
p−1 .

Using arguments numerously repeated above, we get
dom((L′0)∗) =

{
v ∈ H2(R \ {0}) : v′(0+) = v′(0−)

}
, and dom((L′0)∗) =

dom(L′0)⊕ span{vi} ⊕ span{v−i}, where

v±i =

{
ei
√
±ix x > 0,

−e−i
√
±ix x < 0,

, =(
√
±i) > 0.

Then n±(L′0) = 1, and by Proposition 3.9, we obtain n(L1,β) ≤ 1, and finally
n(L1,β) = 1.

(ii) The quadratic form of the operator L1,β is defined on H1(R \ {0}) by

F1,β(u) = ||u′||2 +ω||u||2− p(|ϕβ|p−1u, u)− 1
β |u(0+)− u(0−)|2. Noting that

ϕ′β(0+) = ϕ′β(0−) and integrating by parts, we get

F1,β(ϕ′β) =
(∫ 0−

−∞
+

∫ +∞

0+

)
ϕ′β

(
− ϕ′′′β + ωϕ′β − p|ϕβ|p−1ϕ′β

)
dx

+ ϕ′β(0+)(ϕ′′β(0−)− ϕ′′β(0+)) = ϕ′β(0+)(ϕ′′β(0−)− ϕ′′β(0+))

= − 2
βω
[(

(p+1)ω
2

)(
1− 4

β2ω

)] 2
p−1

(
p− 1− (p+ 1) 4

β2ω

)
.
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The last one expression is negative due to ω > 4
β2

p+1
p−1 . Since F1,β(ϕβ) =

(L1,βϕβ, ϕβ) < 0, and the functions ϕβ, ϕ
′
β have different parity, we ob-

tain F1,β(sϕβ + rϕ′β) = |s|2F β1,ω(ϕβ) + |r|2F β1,ω(ϕ′β) < 0. Therefore, we have

that F1,β is negative on two-dimensional subspace M = span{ϕβ, ϕ′β} ⊂
H1(R\{0}). Thus, minimax principle induces n(L1,β) ≥ 2, and consequently
n(L1,β) = 2. �

In [3, Proposition 6.5] it was shown that ∂ω||ϕβ||2 is positive for any p > 1

and ω ∈ ( 4
β2 ,

4
β2

p+1
p−1). Thus, due to Proposition 5.1, we conclude that eiωtϕβ

is orbitally stable in this case.
Below, we briefly discuss how to demonstrate the orbital instability of

eiωtϕβ for p > 1 and ω > 4
β2

p+1
p−1 proved in [3, Theorem 6.11]. To do that,

we need the following key result.

Proposition 5.2. Let ω > 4
β2 , β > 0, and operator L̃1,β be defined as

L̃1,β = − d2

dx2
+ ω − p|ϕβ|p−1, dom(L̃1,β) = Dβ,δ′ ∩Xodd,

where Xodd is the set of odd functions in L2(R). Then n(L̃1,β) = 1.

Proof. It is obvious that n(L̃1,β) ≤ 1 in Xodd. Indeed, n±(Lmin) = 1 in

Xodd for Lmin defined by (5.7). Since ϕβ ∈ dom(L̃1,β) and (L̃1,βϕβ, ϕβ) < 0,

then we get n(L̃1,β) = 1. �

Well-posedness of the Cauchy problem in H1(R \ {0}) ∩Xodd associated
with equation (5.4) was shown in [3, Theorem 6.11]. Thus, we induce orbital

instability of eiωtϕβ for p > 1 and ω > 4
β2

p+1
p−1 . Indeed, when ∂ω||ϕβ||2 > 0,

instability follows from Proposition 5.1-(ii) and from the results by Ohta
in [45]. In the case ∂ω||ϕβ||2 < 0, we can conclude by Proposition 5.2 orbital
instability of eiωtϕβ in H1(R \ {0}) ∩Xodd which naturally induces orbital
instability in H1(R \ {0}).

5.3. The NLS-δ equation on the line. The existence of standing wave
solutions u(t, x) = eiωtϕ to equation (5.3) requires that the profile ϕ ∈ Dγ,δ

satisfies the semi-linear elliptic equation

Hδ
γϕ+ ωϕ− |ϕ|p−1ϕ = 0. (5.11)
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The authors in [30] (see also [32]) showed that (5.11) for ω > γ2

4 has a unique
positive even solution modulo rotation

ϕγ(x) =
[(p+ 1)ω

2
sech2

((p− 1)
√
ω

2
|x|+ tanh−1

( γ

2
√
ω

))] 1
p−1

, (5.12)

x ∈ R. For the sake of completeness, we recall the main results on the
stability of soliton solutions to (5.3). For γ = 0, the orbital stability has
been extensively studied in [18,25,26,47]. Namely, eiωtϕ0 is stable in H1(R)
for any ω > 0 and 1 < p < 5 (see [25]), and unstable in H1(R) for any ω > 0
and p ≥ 5 (see [18] for p > 5 and [47] for p = 5).

The case γ > 0 was studied in [31]. In particular, the authors showed that

the standing wave eiωtϕγ is stable in H1(R) for any ω > γ2

4 and 1 < p ≤ 5,

and if p > 5, there exists a critical ω∗ such that eiωtϕγ is stable in H1(R)

for any ω ∈ (γ
2

4 , ω
∗) and unstable in H1(R) for any ω > ω∗. In the case

γ < 0, the standing wave eiωtϕγ is unstable ”almost for sure” in H1(R) for
any p > 1 (see [28,30,45]).

Linearization of the NLS-δ equation on the line gives the following two
self-adjoint linear operators

L1,γ = − d2

dx2
+ ω − pϕp−1

γ , L2,γ = − d2

dx2
+ ω − ϕp−1

γ ,

with dom(Lj,γ) = Dγ,δ, j ∈ {1, 2}. The operators L1,γ and L2,γ are associ-
ated with the key action functional

Sγ(ψ) = 1
2 ||ψ

′||2 + ω
2 ||ψ||

2 − 1
p+1 ||ψ||

p+1
p+1 −

γ
2 |ψ(0)|2, ψ ∈ H1(R),

by (Sγ)′′(ϕγ)(u, v) = (L1,γu1, v1) + (L2,γu2, v2), where u = u1 + iu2 and
v = v1 + iv2.

The initial value problem associated to the NLS-δ equation is locally well-
posed in H1(R) (see [26, Theorem 4.6.1]) for any p > 1. Making use of the
explicit form (5.12) for ϕγ , the sign of ∂ω||ϕγ ||2 was computed in [30, 31].
By variational methods, it was shown in [30] that n(L1,γ) = 1 in H1

rad(R),
for arbitrary γ. Moreover, by using analytic perturbation theory and con-
tinuation argument, it was shown in [28] that n(L1,γ) = 1 in H1(R) for any
γ > 0, as well as n(L1,γ) = 2 for γ < 0.

Below, we establish two novel proofs of the equality n(L1,γ) = 1 in H1(R)
for any γ > 0. The first one is based on a generalization of the classical
Sturm oscillation theorem to the case of the δ-interaction (see [7, 19] and
Lemma 5.3 below). The second one uses the extension theory. Note also
that the equality ker(L2,γ) = span{ϕγ} and Lemma 5.3 imply n(L2,γ) = 0.
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Lemma 5.3. Let V (x) be real-valued continuous function on R such that
lim
|x|→∞

V (x) = c. Let also ϕ1, ϕ2 ∈ L2(R) be eigenfunctions of the operator

LV = − d2

dx2
+ V (x), dom(LV ) = Dγ,δ,

corresponding to the eigenvalues λ1 < λ2 < c respectively. Suppose that n1

and n2 are the number of zeroes of ϕ1, ϕ2 respectively. Then n2 > n1.

Proposition 5.4. Let γ > 0 and ω > γ2

4 . Then n(L1,γ) = 1.

The first proof of Proposition 5.4. Initially, we obtain from (5.11) that
(L1,γϕγ , ϕγ) < 0, and therefore n(L1,γ) ≥ 1. To evaluate n(L1,γ) precisely
consider the following self-adjoint operator

L̃1,γ = − d2

dx2
+ ω − pϕp−1

0 , dom(L̃1,γ) = Dγ,δ,

where ϕ0 = [ (p+1)ω
2 sech2( (p−1)

√
ω

2 x)]
1
p−1 is the classical soliton solution for

the NLS equation. It is easily seen that ϕ′0 ∈ ker(L̃1,γ). From Lemma 5.3

and the fact that x = 0 is the only zero of ϕ′0, we have n(L̃1,γ) ≤ 1. Since
ϕ0(x) > ϕγ(x) for all x ∈ R and γ > 0, we get the following inequality

(L1,γv, v) ≥ (L̃1,γv, v), for all v ∈ Dγ,δ.

Therefore, we get 1 ≤ n(L1,γ) ≤ n(L̃1,γ) ≤ 1. Thereby, in the case γ > 0, we
get n(L1,γ) = 1. �

The second proof of Proposition 5.4. Recall that L1,γ is the self-adjoint
extension of the following symmetric operator

L0 = − d2

dx2
+ ω − pϕp−1

γ , dom(L0) =
{
v ∈ H2(R) : v(0) = 0

}
.

Moreover, it is known (see [5, Chapter I.3]) that

dom(L∗0) = H1(R)∩H2(R\{0}) = dom(L0)⊕span{ei
√
i|x|}⊕span{ei

√
−i|x|},

with =(
√
±i) > 0. Indeed, since ϕγ ∈ L∞(R), we have dom(L∗0) = dom(L∗),

where L = − d2

dx2
, dom(L) = dom(L0). In particular, n±(L0) = n±(L) = 1.

Next, it is easy to verify that for γ > 0 and v ∈ H2(R \ {0}) the following
identity holds

−v′′ + ωv − pϕp−1
γ v =

−1

ϕ′γ

d

dx

[
(ϕ′γ)2 d

dx

( v

ϕ′γ

)]
, x 6= 0. (5.13)
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Then, using (5.13) and integrating by parts, we get

(L0v, v) =
(∫ 0−

−∞
+

∫ ∞
0+

)
(ϕ′γ)2

[ d
dx

( v

ϕ′γ

)]2
dx+

[
v′v − v2

ϕ′′γ
ϕ′γ

]0+

0−
.

Due to the condition v(0) = 0, non-integral term vanishes, and we get
L0 ≥ 0 on dom(L0). Then, using Proposition 3.9, we get n(Lγ1,ω) ≤ 1. This

finishes the proof due to the inequality (L1,γϕγ , ϕγ) < 0. �
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