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Abstract. The aim of this work is to demonstrate the effectiveness of
the extension theory of symmetric operators in the investigation of the
stability of standing waves for the nonlinear Schrédinger equations with
two types of non-linearities (power and logarithmic) and two types of
point interactions (§- and 4’-) on a star graph. Our approach allows
us to overcome the use of variational techniques in the investigation of
the Morse index for self-adjoint operators with non-standard boundary
conditions which appear in the stability study. We also demonstrate
how our method simplifies the proof of the stability results known for
the NLS equation with point interactions on the line.

1. INTRODUCTION

In the last two decades the study of nonlinear dispersive models with
point interactions has attracted a lot of attention of mathematicians and
physicists. In particular, such models appear in nonlinear optics, Bose-
Einstein condensates (BEC), and quantum graphs (or networks) (see [3,
17,21-23, 28, 40, 42, 44] and references therein). The prototype equation
for description of these models is the nonlinear Schrédinger equation (NLS
henceforth)

iOpu(t, z) + ult,z) + [u(t, z) [P  u(t, ) =0, x #£0, (1.1)

(t,z) € RxR, p > 1, with specific boundary conditions at x = 0 induced by a
certain impurity or point interaction. The most studied are the models with
so-called ¢- and ¢’-interaction (see Section 5 for details). Indeed, the Dirac
distribution models an impurity or defect localized at the origin. Moreover,
the NLS-0 equation on the line can be viewed as a prototype model for the
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interaction of a wide soliton with a highly localized potential. In nonlinear
optics it models a soliton propagating in a medium with a point defect, or
interaction of a wide soliton with a much narrower one in a bimodal fiber
(see [36]). Recently, numerous results on the local well-posedness of initial
value problem and periodic boundary value problem, the long time behavior
of solutions, the existence of stationary states, blow up and scattering results
(see [3,4,8,9,12,23,24,28,32,36] and references therein) have been obtained.

In this paper, we study the existence and the orbital stability of standing
waves of the model (1.1) being extended to a star graph G, i.e., N half-lines
attached to the common vertex v = 0. Namely, we consider the following
nonlinear Schrodinger equations on the star graph G

10 U(t, x) + 9*U(t, ) + |U(t,z) P~ U(t, ) = 0, (1.2)

where U(t,z) = (uj(t,a:))jyzl :R xRy — CV, and p > 1. The nonlinearity
acts componentwise, i.e., (|UP'U); = |u;[P"tu;j, and the function U is
assumed to satisfy specific boundary - and §’-interaction at the vertex v = 0
to be defined below (see Subsection 2.1).

Equation (1.2) models propagation through junctions in networks. The
analysis of the behavior of NLS equation on networks is not yet fully devel-
oped, but it is currently growing (see [1,2,10,11, 15,16, 44| and references
therein). In particular, models of BEC on graphs/networks is a topic of
active research (see [22,29]).

We recall that the quantum graphs (metric graphs equipped with a linear
Hamiltonian H) have been a very developed subject in the last couple of
decades. They give simplified models in mathematics, physics, chemistry,
and engineering, when one considers propagation of waves of various type
through a quasi one-dimensional (e.g. meso- or nanoscale) system that looks
like a thin neighborhood of a graph (see [17,20, 22,40, 42] for details and
references).

Various recent analytical works (see [1,2,10,11,44] and references therein)
deal with special solutions of (1.2) called standing wave solutions, i.e., the
solutions of the form U(t,z) = ¢“!®(x), with the profile ® satisfying -
interaction conditions defined by (2.3) below. In [2] it was established a
complete description of the profiles ® for any o € R, and the stability in-
vestigation for the N-tail profile (see (2.9)) under the restriction oo < a* < 0
which comes from the associated variational problem. In [1] the restriction
a < o was removed. It is worth noting that the problems of the existence
and the stability /instability of standing waves are far richer and more com-
plicated in the case of the NLS models with point interactions on star graphs
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than in the case of the NLS equation with point interactions on the line. We
propose a novel short proof of the orbital stability of the N-tail profile for
any « < 0 in the framework of the extension theory approach (see Remark
3.20). Moreover, we prove the following new result on the orbital instability
of N-bump profile ® in the case a > 0.

Theorem 1.1. Let a« > 0, 1 < p < 5, and w > ]?‘7—22 Let also @5 be
defined by (2.9), and the space £(G) be defined in notation section. Then the
following assertions hold.
(i) If 1 < p <3, then e“'®, s is orbitally unstable in £(G).
(i) If 3 < p < 5, then there exists wy > ]0\‘,—22 such that et ®,, s is orbitally
unstable in E(G) for w > ws.

In the case p > 5 our method does not provide any information about
orbital stability of e™!®,, 5 (see Remark 3.20-(7)). Mention also that in the
case N = 2 the above result coincides with [28, Theorem 4].

In Subsection 3.2, we prove the following novel stability theorem for the
standing waves of the NLS-¢' equation on the star graph with a specific
N-tail profile ®) 5 satisfying ¢’-interaction conditions (2.5).

Theorem 1.2. Let A <0, and w > ])\\[—22 Let also @ 5 be defined by (2.11),
and the space H} (G) be defined by

Heo(G) = {(vj)j1 € HY(G) s vi(2) = -+ = un(), & > O}
Then the following assertions hold.

(i) Let1 < p < 5.
1) Ifw< N2ptL then e“®, 5 is orbitally stable in H'(G).

A2 p—17
2) If w > ]X—;% and N 1s even, then e"t‘”@A’g/ 1s orbitally unstable
in H* (G).
(13) Let p > 5 and w # ])\\f—;%. Then there exists w* > J/\\f—; such that

e ®, 5 is orbitally unstable in H(G) for w > w*, and ™ ®, 5 is
orbitally stable in Hl (G) for w < w*.

The relative position of w* and J/\\/—;% is discussed in Remark 3.27. In
the case N = 2 the above result coincides with Proposition 6.9(1) (partially)
and Theorem 6.11 in [3]. To our knowledge, the NLS-¢’ equation on the
star graph has never been studied before, and complete description of the

standing waves for such model is unknown (see Remark 2.5).
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In Section 4, we study the following NLS equation with logarithmic non-
linearity on the star graph G (NLS-log equation)
iy U(t, ) + 02U(t,z) + U(t,2) Log |U(t,z)|> = 0, (1.3)
where U(t, x) = (u;(t, az))jvzl : R xRy — CV. The nonlinearity acts compo-
nentwise, i.e., (ULog|U|?); = u; Log|u;|*>. Note that by Log|U(t, z)[?, we
mean Log(|U(t, z)[?).
For the NLS-log equation with §-interaction, we extend the result from

[15] (for any a < 0) on the orbital stability of the Gaussian N-tail profile
W,s5= (@Z)aﬁ);\f:l defined by (2.14) below. In particular, we prove

Theorem 1.3. Letw € R, and W, 5 be defined by (2.14). Then the standing
wave ei“’t‘Ilmg is orbitally stable in ng(g) for any o < 0, and ei“’t\I’a,g 18
spectrally unstable for any o > 0.

We also show the result analogous to Theorem 1.2 for the NLS-log equa-
tion with &’-interaction on G.

Theorem 1.4. Let A < 0, and w € R. Let also Wy 5 be defined by (2.16).
Then the following assertions hold.

(i) If =N < X< 0, then "W, s is orbitally stable in W(G).

(ii) If \ < —N, then €™ W, s is spectrally unstable.

The spaces Wi (G) and W(G) are defined in notation section.

In Section 5, we propose a new approach to prove some known results on
the orbital stability of standing waves for NLS equation (1.1) with ¢- and §'-
interaction on the line. It should be noted that the most of previous results
(for NLS on G and on the line) are based on either variational methods or
the abstract stability theory by Grillakis, Shatah and Strauss [33,34] which
requires spectral analysis of certain self-adjoint Schrédinger operators. In
particular, investigation of the spectrum of these operators is based on the
analytic perturbations theory and the variational methods.

Our approach relies on the theory of extensions of symmetric operators,
the spectral theory of self-adjoint Schrodinger operators and the analytic
perturbations theory. In particular, the extension theory gives the advan-
tage to estimate the number of negative eigenvalues (Morse index) of the
linear Schrodinger operator associated with the NLS equation. We empha-
size that we do not need to study any variational problem associated with
the equation, and our method does not use any minimization properties of
the standing waves studied. We would like to mention the papers [37, 38]
where the non-variational methods were used for the investigation of the
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Morse index in the case of the NLS equation on the star graph with classical
and generalized Kirchhoff conditions at the vertex. In particular, the au-
thors elaborated a kind of extension of the Sturm theory for the Schrodinger
operators on the star graph.

The paper is organized as follows. In the Preliminaries (Section 2), we
give some brief description of all the point interactions on the star graph and
explain the origin of - and §’-interaction. We also review previous results on
the orbital stability. In Section 3, we discuss NLS equation (1.2) with - and
d’-interaction on the star graph G. In Section 4, we study NLS-log equation
(1.3) with - and ¢’-interaction on G. In Section 5, we briefly discuss how
the tools of the extension theory can be applied to the stability study of the
NLS equations with point interactions on the line.

Notation. By H'(R), H*(R\ {0}) = H*(R_) ® H*(Ry), we denote the
Sobolev spaces. Denote by G the star graph constituted by N half-lines
attached to a common vertex v = 0. On the graph, we define the spaces

N
G =P Lrr®y), H(G @Hl R.), H*(G @HQ R.),
j=1 j=1
p > 1. For instance, the norm of V = (vj)j-\/:1 in LP(G) is defined by
N
||V|\’£p(g) = ]§1||vj||’£p(R+). Depending on the context, we will use the

following notations for different objects: by || - ||, we denote the norm in
L?(R) or in L?(G) (accordingly (-,-) denotes the scalar product in L?(R) or
in L*(G)); by || - ||p, we denote the norm in LP(R) or in LP(G).

Denote £(G) = {(vj);\f:l € HY(G) : v1(0) = --- = vn(0)}, and

L(G) = {(v)2y € L*(G) s vi(2) = -+~ = wk(2), vhpa(w) = -+ = vy (@)}

In particular, £(G) = E(G)NLA(G), and HL(G) = HY(G)NLi(G). On G, we
define the following weighted Hilbert spaces

N
i(G) = WiR,), WIR,)={f € HI(Ry):aif € *(R.)},
W,ﬁ(g) = WJ(G) N Li(G), j € {1,2}, and the Banach space

N
G) = DWRy), WRy)={feH'[Ry):|f"Log|f* € L'(Ry)}.
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In particular, We (G) = W(G)NE(G), WE(G) = WHGNE(G), and WL, (G) =
WA(G) N I2(G).

Let A be a densely defined symmetric operator in the Hilbert space H.
The domain of A is denoted by dom(A). The deficiency subspaces and
deficiency numbers of A are defined by Ny (A) := ker(A*Fil) and ny(A) :=
dim ker(A* F ¢I) respectively. The number of negative eigenvalues counting
multiplicities (or the Morse indez) is denoted by n(A). The spectrum and the
resolvent set of A are denoted by o(A) and p(A) respectively. In particular,
op(A) and o.(A) denote the point and the continuous spectrum of A. Let
X be an arbitrary Banach space, then its dual is denoted by X'.

2. PRELIMINARIES

In this Section, we provide a brief description of point interactions on the
star graph and also discuss previous results on the orbital stability.

2.1. The NLS equation with point interactions on a star graph. The
family of self-adjoint conditions naturally arising at the vertex v = 0 of the
star graph G has the following description

(U - 1)U(t,0) +i(U + I)U'(t,0) = 0, (2.1)

where U(t,0) = (u;(t, 0))] 1 U'(t,0) = (uj(t, 0))] 1, U is an arbitrary
unitary N x N matrix, and [ is the N x N 1dent1ty matrix. The conditions
(2.1) at v = 0 define the N2-parametric family of self-adjoint extensions of
the closable symmetric operator (see [20, Chapter 17))

2
Ho_@dZ, dom(Hy) = @CO (Ry).

We consider two ch01ces of matrix U Wthh correspond to so-called 9-
and ¢’- interactions on the star graph G. More precisely, the matrix U =
~ +mI I, a € R\ {0}, where 7 is the N x N matrix whose all entries equal
one, induces the following nonlinear Schrodinger equation with d-interaction
on the star graph G (NLS-§ equation)

0, U -—HU + [UPIU =0, (2.2)
where HY is the self-adjoint operator on L?(G) acting as (HOV)(z) =

(—v}’(x))év:l, z > 0, on the domain dom(H?) = D, s, where

Do = {V e H2(G) : v1(0) = ), Zv —— )} (2.3)
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Model (2.2)-(2.3) has been extensively studied in [1,2]. In particular, the
authors showed well-posedness of the corresponding Cauchy problem. More-
over, they investigated the existence and the particular form of standing
waves, as well as their variational and stability properties (see Theorems 2.2
and 2.4 below).

The second model we are interested in corresponds to U = I — ﬁI,
A € R\ {0}, which induces the nonlinear Schriodinger equation with ¢'-
interaction on the graph G (NLS-¢’ equation)

io,U—-H U+ [UP'U =0, (2.4)

where H{ is the self-adjoint operator on L?*(G) acting as (H} V)(z) =

(—v;’(:c))év:l, z > 0, on the domain dom(HY ) = Dy 5, where

N
D,y = {v € H2(G) : v} (0) = --- = uj(0), S v;(0) = Avg(O)}. (2.5)
j=1

To our knowledge such type of interaction has never been studied for the
NLS equation on the star graph. In this connection, one of the principal
aims of this paper is to establish some results on the existence and the
orbital stability of standing wave solutions to (2.4).

In Section 4, we consider the following NLS equations with logarithmic
nonlinearity on the star graph (NLS-log-§ and NLS-log-§’ equation):

iU — HSU 4 ULog|U|? = 0, (2.6)

i9,U —H U + ULog |UJ* = 0. (2.7)
Model (2.6) has been studied in [15]. In particular, the author showed well-
posedness of the Cauchy problem in the Banach space We(G) (see Theorem
4.1), and studied stability properties of the ground state for the correspond-
ing stationary equation.

2.2. Review of the results on the orbital stability for the NLS equa-
tion with point interactions on a star graph. Crucial role in the or-
bital stability analysis of standing waves is played by the symmetries of NLS
equation (1.2) (and (1.3)) The basic symmetry associated to the mentioned
equation is phase invariance, namely, if U is a solution of (1.2) then U
is also a solution for any 6 € [0,27). Thus, it is reasonable to define orbital
stability as follows (for the models (1.2) and (1.3)).

Definition 2.1. The standing wave U(t,x) = e™!'®(x) is said to be orbitally
stable in a Banach space X if for any € > 0 there exists n > 0 with the
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following property: if Uy € X satisfies ||Ug — ®||x < n, then the solution
U(t) of (1.2) (resp. (1.3)) with U(0) = Uy exists for any t € R and

inf [|U(t) — e ®[|x <e.
sup inf [|U() — e @llx <e

Otherwise, the standing wave U(t,x) = e™“!®(z) is said to be orbitally un-
stable in X.

In particular, for the NLS-§ and NLS-¢' equations on the star graph G
defined by (2.2) and (2.4), the space X coincides with £(G) and H(G),
respectively.

In the first part of the paper, we study the orbital stability of the standing
wave solutions U(t,z) = e“!'®(z) = (¢“'p;(x ))j\f:1 for the NLS-0 equation
(2.2) on G. It is easily seen that amplitude ® € D, s satisfies the following
stationary equation

H® +wd — @7 1® =0. (2.8)

In [2], authors obtained the following description of all solutions to equation
(2.8).

Theorem 2 2. Let [s| denote the integer part of s € R, and o # 0. Then

equation (2.8) has [Tl] +1 (up to permutations of the edges of G) vector

solutions @% = (%, 0,..., [N2 1], which are given by

N
j=01

B

_1
[7(“21)“’ sech? <(p712) T — am>] L =1, m;

(p%,j(x) = ) ) =
[Wsech2 <(p_2)\/ax+am>]p7 ,  j=m+1,...,N,

6]

where a,;, = tanhil(m)v and w > ﬁ'

Remark 2.3. (i) Note that in the case o < 0 vector @3, = (¢, ; )N has m
bumps and N — m tails. It is easily seen that ®g is the Nta,zl profile.
Moreover, the N-tail profile is the only symmetric (i.e., invariant under
permutations of the edges) solution of equation (2.8). In the case N = 5,
we have three types of profiles: 5-tail profile, 4-tail/1-bump profile and 3-
tail/2-bump profile. They are demonstrated on Figure 1 (from the left to the
right).

(7) In the case o > 0 vector ®f, = (gom])N has m tails and N —m
bumps respectively. For N = 5, we have: 5-bump profile, 4-bump/1-tail
profile, 3-bump/ 2-tail profile. They are demonstrated on Figure 2.
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Figure 2

It was shown in [2] that for —N/w < a < a* < 0, the vector solution
Qa,(s - (@a,(S);‘V:l = (1)8,

7(p+1)w sech? 7(p_1)ﬁ:n+tanh_1 —« ) =
e (5 (7)) »

is the ground state. The parameter o above originates from the variational
problem associated with equation (2.8), and it guarantees constrained min-
imality of the action functional

Sa(V) = 3IIVIP+5IIVIP = 75 IVIEL + § 1 (0P, V = (v); € £(9).

(2.10)
Namely, the vector solution ®,, s is the ground state in the sense of the min-
imality of S, (V) at ®, 5 with the constraint given by the Nehari manifold

N = (V€ £G)\ {0} : [[V'I]2 + VI~ [V + alun(0)] = 0}

For av > 0 the N-bump profile ®, s does not have the variational character-
ization (see [30, Remark 14]). In [2] the following orbital stability result has
been shown.

Pa,d = Sog,j($) =

Theorem 2.4. [2, Theorem 2] Let 1 < p <5, a < a* <0, and w > ]?‘,—22
Then the standing wave e“'®,, s is orbitally stable in E(G).

Authors in [2] showed also that for p > 5 there exists w* > ]‘i‘,—z such that

et 5 is stable in £(G) for any w € (]O\‘,—Z, w*) and unstable for any w > w*.
Stronger version of the above theorem was proved in [1, Theorem 1]. In par-
ticular, they proved orbital stability of e“!®,, 5 for & < 0 without restriction
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a < a* <0. Form # 0, a < 0 in Theorem 2.2, we have S(®%,) > S(®f)
which means that ®%, for m # 0 is an excited state. Stability properties of
the excited states as well as of ®, for o > 0 were studied in [10].

To our knowledge, the problem of orbital stability of standing waves
U(t,r) = e™“'®(x) has never been considered for NLS-§’ equation (2.4)
on the star graph. In the present paper, we study the orbital stability of
the standing waves U(t, z) = ¢“!®, 5 with N-tail profile ®, 5 = (cp,\’y)jy:l,
where

ors () = (p+21)w sech? (WJE + tanh ™! ()\_\jV(TJ))} 1%, (2.11)

with w > %2 and A < 0. In Section 4, we prove new result on stability of
e™'®, 5 (see Theorem 1.2).

Remark 2.5. The description of the set of all solutions to the stationary
equation

H ® +wd — &P '® =0, (2.12)
is unknown. We note that any L2-solution to (2.12) has the form
D(x) = (j(2))j21 = (gj00(z + ;)54

where 0; € C,|oj| = 1, z; € R, and ¢o(z) = [% sechZ(Mx)]P%l.

Hence, denoting t; = tanh(z;), from (2.5), we get the relations

1 1
0'1(1 — tl)PTltl R O'N(l — tN)Pth,
N 1 1
Yool —tj)pT = =AJwoi (1 —t1)r=1ty.
7j=1

In [3], for the case of G = R (¢’- interaction on the line), the authors es-
tablished the existence of two families (odd and asymmetric) of solutions
to (2.12). For N > 3, it seems to be very nontrivial problem to deter-
mine a complete description of the solutions to (2.12). Observe that in
the case of NLS-4 equation the situation is easier since the continuity con-
dition ¢1(0) = --- = pn(0) implies |p](0)] = --- = |¢/y(0)], therefore,
o1 =---=oyn and z; = +a, a > 0.

In the case of NLS-log-6 equation the profile of the standing wave e™!W¥
satisfies the equality

HOW + w® — ¥ Log |¥ % = 0. (2.13)
From [15] it follows that solutions to (2.13) have the following description.
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Theorem 2.6. Let o« # 0. Then equation (2.13) has [%] + 1 vector

solutions W&, = (1o )N

m,j)j:17 m=0,.., [%] , given by

wtl  (z—am)?

e 2 e 2 i=1,..,m; o
1/}%,3 (ﬂ?) = w1 (x+am)2 ’ T ’ wher@ Ay = m
e2e 2 , j=m+1,...,N,

We should note that the structure of the profiles that solve (2.13) is similar
to the one in the case of NLS-§ equation (see Remark 2.3). It was proved
in [15] that for a < af,, < 0, the vector solution W5 = (¢a,6)§\7:1 defined
by

(6]
w+1 (xfﬁ)Q

Va5 = Yo (x) =€ 2 e 2 (2.14)
is the ground state. The condition o < aiog guarantees constrained mini-

mality of the following action functional for V. € W¢(G),

N o]
w1 o
SaLog(V) = 4|IV/|? + &2 v|2 - 13 / 0|2 Log [v;[2dz + & v1 (0)[2.
j=1

(2.15)
Namely, the vector solution W, s is the ground state in the sense of the
minimality of Sy 10s(V) at W, s with the constraint given by the Nehari
manifold A, namely, V € N if and only if V € We(G) \ {0} and

N o
V'] + ||V~ Z/O |0[* Log [v;[*da + afui (0)[* = 0.
j=1

In [15] the author proved that the standing wave e“!W,, ;5 is orbitally stable
in We(g) for a < of,, < 0 and w € R. Below, we will overcome the
restriction a < aof . in the space W(G) (see Theorem 1.3), moreover, we
will show spectral instability of the standing wave ei“’t\IlW; for any @ > 0
(¥, is the N-bump profile in this case).

Similarly, to the previous case, we show that the N-tail standing wave
et ¢ for the NLS-log-8" equation, where

N wil (@
Vo = (Vae)jz1, Yo =e 2 e 2 (2.16)

is orbitally stable in W!(G) for —N < X < 0, and spectrally unstable for
A < =N (see Theorem 1.4). Note that we do not need to assume that N is
even to show the instability (compare with Theorem 1.2).
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3. STABILITY THEORY OF STANDING WAVE SOLUTIONS FOR THE NLS-§
AND THE NLS-§' EQUATIONS ON A STAR GRAPH

3.1. The NLS-§ equation on a star graph. In this Subsection, we study
the orbital stability of the standing wave U(t,z) = e“'®, s(x) of NLS-§
equation (2.2) with the particular N-bump profile ®,, 5 = (gowg);\f:l defined
by (2.9). As we are investigating orbital stability in £(G), we need to use the
well-posedness of the initial value problem for equation (2.2) in this space.
In [2] the authors established the results on local and global well-posedness
of (2.2) in £(G). Below, we complete and extend these results, aiming to use
them in the sequel for our instability analysis.

First, we establish the following property for the unitary group associated
to (2.2).

Lemma 3.1. Let {e 5}, cr be the family of unitary operators associated
to NLS-6 model (2.2). Then, for every V. = (v;)X, € £(G), we have

Dp (eI V) = —e7HI V' 4 B(V), (3.1)
/
— it02 ~ \N s _ [ vj(), ©=0, ito2
where B(V') = (2¢"%9;)5,, with v;(x) = (9)7 <0 and €% is

the unitary group associated with the free Schriodinger operator on R.

Proof. Without loss of generality, we assume that o > 0. Using functional

calculus for unbounded self-adjoint operators and the classical expression for
2

the resolvent of —dd? on the positive half-line, we get the formulas

eiitHgV(l’) — :r/ e—it‘rQTRiTV(aj)dT, (32)

—00

where R,V = (H$ + p2I)~'V has the components

1 (0.9}
(R,V)(z) = ¢je " + 2#/ vj(y)e_lx_y“*dy. (3.3)
0

The coefficients ¢; are determined by the condition R,V € D, s. It is easily
seen (e.g. [16, Appendix-6]) that V € D, s iff AV(0) + BV'(0) = 0, where

1 =1 0 .. 0 0 .. 0

1 -1 .. 0 0 0

a-| . S D .
0 0 0 .. -1

o & o e o |
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Let | oo
ti(n) =5 / vi(y)e *dy,
0
then from (3.3), we get (R,V);(0) = ¢ + %tj(u) and 0;[(R,V);](0) =

—ué;j +t;(u). Therefore, (¢;)%_; is the unique solution to the system

J
t1(p) — ta(p)

1 -1 0 .. 0 &
0 1 “1 .. 0
. 1
: : : : = o ¢
0 0 0 .. -1 ol tveale) ()
Ytu ftue FAp o ftu N (%—M)thj(u)
iz
(3.4)

Below, we find R, V'. Suppose initially that v; € C°(Ry), 1 < j < N,
then there are coefficients d; such that

~ 1 o
(R, V))j(z) = dje ™™ + 2#/() U;.(y)e—ulz—y\dy
(3.5)
~ 1 o0
= dje " — 2/ vj(y) sign(z — y)e_”‘x_mdy’
0

where in the last equality, we have used integration by parts. Thus, we
obtain (R, V’);(0) = d; + t;(n). Moreover, since

. 1 [ ' e
xR,V j(x) = —pdje ™™ — 2/ v;(y) sign(z — y)e =yl gy,
0

it follows from integration by parts d,(R,V’);(0) = —pud; + pt;(11). Hence,
from the uniqueness of solution to system (3.4) it follows that R, V' € D s
iff d; = pé;. Therefore, we obtain from (3.3) and the second equality in (3.5)

(R V) (0) = =RV (o) = [ uylo)sienia = e ey

1 [ —ule—
= (R V')y () + /0 o (y)e Yl
Thus, from representation (3.2), we get
8w(ef’itHilv) — _efitHi VI + B(V/)7

where

BV = [ it /0 (e Y dydr.

7T—C)O
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Below, we find B(V’). It is well-known that €92 can be represented as
% p = S, * ¢, where Si(&) = e~€* Since for t #0 and z € R
© , 52 1/2 .2
Si(x) = 1/ eI i 4y = iﬁe”/‘lezﬂ = (L) / etar
21 J_ 2w \/—t 4mit
(), = =0,
, z <0

/
it follows for ¢(z) = { vé

1 > —itT o iT(y—x
=1 / et / ()X 0.0 ()™ dydr

T (3.6)
— / (U X040y (& — 1)t — 9)dy = 2(x(0.+00)S1) * B(2).
Similarly,
1 [ 00 .
IT=— / e / DY) X[, 100) )T TV dydT = 2(X (_oo.0))St) * D().
(3.7)

Thus, from (3.6)-(3.7), we have (B(V'))j(x) = I 4+ II = 25; % ¢(z) =
2¢0z (). Hence relation (3.1) follows provided that each component of V
has compact support. The general case follows from a density argument. [J

Remark 3.2. Observe that e *H§ V = ¢ "H{ P _V 4 ¢ ~#tH§ P,V, where P,
and P, are L?-orthogonal projections onto the subspaces corresponding to
the continuous and the discrete spectral part of H§. For o > 0, we have
o.(H§) = [0,00) and o,(H§) = 0, therefore, P, = 0. For a < 0, 0.(H}) =
[0,00) and 0,(HY) = {—23} = {—%22}, where the corresponding eigenfunc-
tion is V,,(z) = (e%x)é\’:l, and therefore e “*HS P,V = €t (V, V.)Vs- In
this case the formula (3.2) takes the form

o0

e*itH?V(m) = ;/ e*i”QTRiTV(m)dT + ¢it#d (V, V)V (2),

—0o0
which however does not affect the proof of the well-posedness result. The
proof of the spectral properties of H§ repeats the one of [5, Theorem 3.1.4]
for the case of the Schrédinger operator with the d-interaction on the line.
In particular, to describe the point spectrum for o < 0 one needs to consider
Hj as the self-adjoint extension of the symmetric non-negative operator
L defined by (3.17) with deficiency indices ny(L) = 1 and then to apply
Proposition 3.9.

Lemma 3.3. The family of unitary operators {e*it%l? ber on L2(G) pre-
serves the space £(G), i.e., for V. € £(G), we have e "5V € £(G).
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Proof. Assume a > 0. Let V € £(G), then it follows from (3.1) that
e "5V ¢ H'(G). Further, since R,V € D,;, we get from (3.2) the
equality (e "™5V)1(0) = --- = (e7"H5V) 5 (0). O

Theorem 3.4. Let p > 1. Then for any Uy € E(G) there exists T >
0 such that equation (2.2) has a unique solution U € C([-T,T],£(G)) N
CH[-T,T),E(G)) satisfying U(0) = Ug. For each Ty € (0,T) the mapping
Uy € €(G) —» U € C([-To,T0],£(G)), is continuous. In particular, for
p > 2 this mapping is at least of class C%. Moreover, if Uy € £,(G), then
U(t) € Ex(G) for allt € [-T,T].

Proof. The local well-posedness result in £(G) follows from standard argu-
ments of the Banach fixed point theorem applied to non-linear Schrédinger
equations (see [27]). We will give the sketch of the proof for the case a > 0.
Consider the mapping Jy, : C([-T,T],£(G)) — C([-T,T],E(G)) given by

t
Ju,[U](t) = e Uy + 4 / e~ =IHF U (s) P U(s)ds,
0
where e *H5 is the unitary group given by (3.2). One needs to show that the
mapping Jy, is well-defined. To do this it is necessary to estimate initially
the nonlinear term |U(s)|P~'U(s). Using the one-dimensional Gagliardo-
Nirenberg inequality one may show (see formula (2.3) in [2])

1_1 1,1
IUlly < U4 [[U)>¥s,  ¢>2,C>0. (3-8)

Using (3.8), the relation |(|f[P~1f)| < Co|f|P~t|f| and Hélder’s inequality,
we obtain for U € H'(G)

Let Up, U € £(G), then from Lemmas 3.1-3.3 and (3.9) it follows that
Ju,[U](t) € £(G). Moreover, using (3.1), (3.9), L?-unitarity of e~#Hs and

402
€% we get

170, [O10)1 16y < Cal[Uollm gy + CsT sup [[U(s)][7g),
s€[0,T]

where the positive constants Co, C3 do not depend on Ug. The continuity
and contraction property of Jyy, are proved in a standard way. Therefore, we
obtain the existence of a unique solution to the Cauchy problem associated
to (2.2) on £(9).

Next, we recall that the argument based on the contraction mapping prin-
ciple above has the advantage that if the nonlinearity F(U,U) = |U|P~'U
has a specific regularity, then it is inherited by the mapping data-solution. In
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particular, following the ideas in the proof of [41, Corollary 5.6], we consider
for (Vo, V) € B(Ugp;¢) x C([—T,T],£(G)) the mapping

I'(Vo, V)(t) = V() — Jv,[V](t), te[-T,T).

Then I'(Up, U)(t) = 0 for all ¢t € [-T,T]. For p — 1 being an even integer,
F(U,U) is smooth, and therefore I' is smooth. Hence, using the arguments
applied for obtaining the local well-posedness in £(G) above, we can show
that the operator dyI'(Up, U) is one-to-one and onto. Thus, by the Im-
plicit Function Theorem there exists a smooth mapping A : B(Ug;d) —
C([-T,T],£(G)) such that I'(Vg, A(Vy)) = 0 for all V € B(Uy;d). This
argument establishes the smoothness property of the mapping data-solution
associated to equation (2.4) when p — 1 is an even integer.

If p— 1 is not an even integer and p > 2, then F(U,U) is CPl-function,
and consequently the mapping data-solution is of class CP! (see [41, Remark
5.7]). Therefore, for p > 2, we conclude that the mapping data-solution is
at least of class C2.

Next, we show that the unitary group e~

tH preserves the subspace & (G).

Indeed, let V = (vj) € &(G), then we obtain ¢;(u) = --- = t(p) and
top1 () = -+ = ty(p), where t;(u) = 3 [;° vi(y)e *dy. Hence, from (3.4)
it follows ¢; = -+ = & and ¢y = --- = ¢éy. Thus, by (3.2), we get

e 5V ¢ £.(G). Lastly, the well-posedness in £5(G) follows from the
uniqueness of the solution to the Cauchy problem in £(G) and the invariance
of the space £(G) for the unitary group e~*H5 shown above. O

Remark 3.5. (i) In [2, Proposition 2.2] the authors proved that for any
solution to Cauchy problem associated with (2.2), the conservation of charge
and energy hold, i.e.,

Q(U(1) = |[UM? = [|Uo||?, and Eo(U(t)) = Ea(Uy), t € [-T,T],
where E,, is defined for V = (vj)év:l € £(G) by

1 a
Eo(V) = 3IV'[]> = S5 IIVIEL + § v (0)]2.

Using the Sobolev embedding theorem, Gagliardo-Nirenberg inequality (3.8),
the above conservation laws, one can induce global well-posedness of (2.2)
for 1 <p <5 (i.e., we can choose T' = 400).

(ii) Observe that E, € C?(£(G),R) since p > 1. This fact allows us to
apply the results by Ohta [45] in our instability analysis.

Next, we introduce the basic objects of the classical theory by Grillakis,
Shatah and Strauss. Consider the following two self-adjoint matrix operators
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associated with @45 = (£a,5)}1

Lio= << - j; +w-— p(%,&)p_l)&c,j),

Ly = << - dd; +w— (soa,a)p_l)5k,j>,
dom(Ly ) = dom(L2 o) = Dag,

where 6y, ; is the Kronecker symbol, D, s and ¢, s are defined by (2.3) and
(2.9). The operators L; , and Ly, are associated with the functional S,
defined by (2.10) via the following equality

(80)"(®0,5)(U, V) = (L1,aU1, V1) + (L2,aUz, V),

where U = U; + iUz and V = V1 +iV5,. The vector functions U;, V;, j €
{1,2}, are assumed to be real valued.
Formally (So)”(®4,5) can be considered as a self-adjoint 2N x 2N matrix
operator (see [33,34] for the details) H, = Lia 0O . Define
0 Lo,
1 ifO||®asll* >0 at w = w,
plwo) = { 0 if O||@e 5] < 0 at w = wp.

Having established Assumptions 1, 2 in [33], i.e., well-posedness of the as-
sociated Cauchy problem (see Theorem 3.4) and the existence of C! in w
standing wave, the next stability /instability result follows from [33, Theorem
3] and [45, Corollary 3 and 4].

Theorem 3.6. Let a # 0, w > ]‘i‘,—z, and n(Hy,) be the number of negative
eigenvalues of Hy. Suppose also that
1) ker(La o) = span{®qs},
2) ker(L; ) = {0},
3) the negative spectrum of Ly o and Lg o consists of a finite number of
negative eigenvalues (counting multiplicities),
4) the rest of the spectrum of Ly o and Lg o is positive and bounded away
from zero. Then the following assertions hold.
(i) If n(Hy) = p(w) = 1, then the standing wave e*'®, 5 is orbitally
stable in £(G).
(i1) If n(Hy) — p(w) = 1 in L3(G), then the standing wave e“'®, 5 is
orbitally unstable in E,(G) and, consequently, in E(G).

Remark 3.7. The instability part of the above theorem needs some addi-
tional comments.
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(7) It is known from [34] that when n(H,) — p(w) is odd, we obtain only
spectral instability of e“!®,s. To obtain orbital instability due to [34,
Theorem 6.1], it is sufficient to show estimate (6.2) in [34] for the semigroup
etAe generated by A, = ( _1(1)1706 L(Z)’O‘
clear how to prove estimate (6.2).

(49) When n(H,) = 2 (which happens for a« > 0), we can apply the
results by Ohta [45, Corollary 3 and 4] to get the instability part of the
above Theorem. We note that in this case the orbital instability follows
without using spectral instability.

(7i1) Generally, to imply the orbital instability from the spectral one, the
approach by [35] can be used (see Theorem 2). The key point of this method
is to use the fact that the mapping data-solution associated to the model is of
class C2. In particular, for the NLS-§ and NLS-§" models the mapping data-
solution is of class C? as p > 2 (see Theorem 3.4 and 3.22). The approach
by [35] have been applied successfully in [13] and [14] for the models of
KdV-type.

> . In our particular case it is not

Below, we describe the spectrum of the operators L;, and Lo, which
will help us to verify the conditions of Theorem 3.6. Our ideas are based on
the extension theory of symmetric operators and the perturbation theory.
For convenience of the reader and for the future references, we formulate the
following extension theory results (see [43, Chapter IV, §14]).

Proposition 3.8. (von Neumann decomposition) Let A be a closed densely
defined symmetric operator. Then the following decomposition holds

dom(A*) = dom(A) & Ny (A) d N_(A). (3.10)

Therefore, for u € dom(A*) such that w = f + f; + f—;, with f € dom(A),
fri € NL(A), we get A*u = Af +if; —if_,.

Proposition 3.9. Let A be a densely defined lower semi-bounded symmetric
operator (that is, A > ml) with finite deficiency indices ny(A) = k < o0
in the Hilbert space H, and let Abea self-adjoint extension of A. Then the
spectrum ofg in (—oo,m) is discrete and consists of at most k eigenvalues
counting multiplicities.

Remark 3.10. When m = 0, Proposition 3.9 provides an estimate for n(A).

Below, using the perturbation theory, we show the equality n(Lj o) = 2
in the space L2(G) for any k € {1,..., N —1}, i.e., n(Ll,a|L§(g)) = 2. For this
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purpose let us define the following self-adjoint matrix Schrédinger operator
on L?(G) with Kirchhoff condition at v = 0

Lip= (( - j; +w —p9015_1>5i,j)7 (3.11)
dom(Ly 0) = {V € H2(G) : v1(0) = --- = vy (0), > w(0) = o},

Jj=1

2 2
classical NLS model (1.1).

Let & = (goo)é-vzl, then it is not difficult to see that ®,s5 — ®g, as
a — 0, in H'(G). The following lemma states the analyticity of the family
of operators (Lj o).

_1
where g = [M sech? (M.CE)] pil, x > 0, is the half-soliton for the

Lemma 3.11. As a function of o, (L1,4) is real-analytic family of self-
adjoint operators of type (B) in the sense of Kato.

Proof. By [39, Theorem VII-4.2], it suffices to note that the family of bi-
linear forms (B ) defined for U = (uj)é-v:l,V = (vj)é-v:l € £(G) by

N
BLO((U, V) = Z/ (u;vz + wujv; — p(goa,g)p*lujvj)dx + aul(O)vl (0),
j=179

is real-analytic of type (B). O

As we intend to study the negative spectrum of L , using perturbation
theory, we need to describe spectral properties of Lig (which is a ”limit
value” of Lj o as a — 0).

Theorem 3.12. Let Ly be defined by (3.11) and k € {1,...,N — 1}. Then
the following assertions hold.

(i) ker(L1,) = span{®q1,..., 8o n_1}, where
@07]- = (07 ey 07 @65 7@6, o,..., 0)

i i+l
(i4) In the space L2(G), we have ker(Ly ) = Span{;f)g,k}, where
QO,k‘ = (T_kspé)aa%(pé)v_(pgva_@{))v (312)
1 k kil N

i.e., ker(LLO]Li(g)) = span{‘i’mk}.
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(i3i) The operator Ly o has one simple negative eigenvalue in L*(G), i.e.,
n(L1o) = 1. Moreover, Lo has one simple negative eigenvalue in
L2(G) for any k, i.e., n(L1,0|L§(g)) =1.

(tv) The rest of the spectrum of Ly o is positive and bounded away from
zero.

Proof. (i) Recall that the only L?(R, )-solution to the equation
—v;/ + wv; — pcp‘gflvj =0

is v; = ¢ (up to a factor). Thus, any element of ker(L;) has the form
V= (vj)évzl = (cjcp{));\’:l, ¢; € R. The continuity condition is satisfied since
¢((0) = 0. Condition Z;VZI v:(0) = 0 gives rise to (N — 1)-dimensional
kernel of Ly o. It is easily seen that the functions 'i’o’j, j=1,...,N—1, form
basis there.

(77) Arguing as in the previous item, we can see that ker(Lj ) is one-

dimensional in Li (G), and it is spanned on @ .
(7i7) The main idea of the proof is to apply Proposition 3.9. In what

follows, we use the notation Iy = (( — % 4+ w— pgog_1>5k’j>. First, note

that Ly is the self-adjoint extension of the following symmetric operator
(see Remark 3.14)
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Below, we show that the operator Ly is non-negative, and ny(Lg) = 1.
First, let us show that the adjoint operator of Lg is given by

Ly =1l, dom(L§)={V e H*G):v(0)=-=vn(0)}. (3.14)

Using standard arguments one can prove that dom(L§j) C H%(G) and L} = Iy
(see [43, Chapter V,§17]). Denoting

Di:={V € H*(G) : v1(0) = - -- = vn(0)},

we easily arrive at D§ C dom(Lg). Indeed, for any U = (uj)é-vzl € D and
V= (vj)éyzl € dom(Lg) denoting U* = h(U) € L?(G), we get

N
(LoV,U) = (V,h(U) + Y [—vhu; + vjuf]” = (V, (U)) = (V,U*),
j=1
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which, by definition of the adjoint operator, means that U € dom(Lf) or
D§ € dom(Lg).

Let us show the inverse inclusion D§ 2 dom(L{). Take U € dom(Lyg),
then for any V € dom(Ly), we have

(LoV,U) = Z —vju; + vl C = (V,LiU) = (V, (V).

Thus, we arrive at the equality

N N
Z [—U;Uj + Uju;-]go = Zv}(O)uj(O) =0 (3.15)

j=1 j=1
for any V € dom(Lg). Let W = (u)j)é-\/:1 € dom(Lg) such that w}(0) =
wy(0) = --- = wh(0) = 0. Then for U € dom(Lg) from (3.15) it follows that
Z w’;(0)u;(0) = wy (0)uy (0) + wy(0)uz(0) = 0. (3.16)

Recalling that Zjvzl w’(0) = wy(0) + w5(0) = 0 and assuming wy(0) # 0,
we obtain from (3.16) the equality u1(0) = wu2(0). Repeating the similar
arguments for W = (wj)évzl € dom(Lg) such that w}(0) = w{(0) = --- =
why(0) = 0, we get u1(0) = u2(0) = ug(0) and so on. Finally taking W =
(wj)j-vzl € dom(Lg) such that w/\(0) = 0, we arrive at u1(0) = u2(0) = --- =
un—1(0), and consequently u1(0) = u2(0) = --- = uy(0). Thus, U € D or
D§ O dom(Lg), and (3.14) holds.

Let us show that the operator Ly is non-negative. First, note that every
component of the vector V = (Uj)é-vzl € H?(G) satisfies the following identity

L —1d d
—vj +wj —pef vy = %dx[@p )2d$( )} x> 0.

Using the above equality and integrating by parts, we get for V € dom(Ly)

(LoV, V) = Z/ )}d +Z[ vvj—i—qﬂ:zﬂo
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Note that the equality

N
Z [ — U5 + vQﬁ =0
i=1 T #olo
follows from the condition v;(0) = 0 and the fact that z = 0 is the first-order
zero for ¢f(z) (i.e., ¢((0) # 0).

Due to the von Neumann decomposition (3.10),

dom(L{) = {V € H*(G) : v1(0) = --- = vn(0) }

= dom(Lg) @ span{V,;} @ span{V _;},

where Vi; = (eVE )jv 1, S(v*i) > 0. Indeed, since pg € L®(Ry), it
follows dom( 5) = dom(L*) = dom(L) & span{V;} @ span{V_;}, where

L= << > ) dom(L) = dom(Lg), MNi(L)=span{V;}. (3.17)

Since ni(L) = 1, by [43, Chapter IV, Theorem 6], it follows that ny (Lg) = 1.
Due to Propos1t10n 3.9, n(Lyp) < 1. For ®, = (goo)] 1, we obviously have
(L1,0%®0,®0) = —(p — 1)]|<I>0H£ﬁ < 0. By minimax principle, we arrive at
n(L1,0) = 1. Noting that ®¢ € LZ(G) for any k, we get ”i(LOILz(g)) =1
(iv) By Weyl’s theorem (see [46, Theorem XIII.14]), the essential spectrum
of Ly ¢ coincides with [w, 00). Since ®g € L*°(G), there can be only finitely

many isolated eigenvalues in (—oo,w’) for any w’ < w. Then (iv) follows
easily. ]

Remark 3.13. Observe that, when we deal with deficiency indices, the
operator Ly is assumed to act on complex-valued functions which however
does not affect the analysis of negative spectrum of L o acting on real-valued
functions.

Remark 3.14. Let us show that the domain of any self-adjoint extension L
of the operator Lg defined by (3.13)(and acting on complex-valued functions)
is given by

b@ﬂz

dom(i):{V6H2(g):v1(0):--~:m\/ , ) = zv1( )zER}.

Indeed, due to [5, Theorem A.1],
dom(L) = {F =Fy + cF; 4+ ce?F_; : Fy e dom(Lg),c e C,0 €0, 27r)} :
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where Fi; = (ﬁei\/ﬂw)é\f:l, S(v/£i) > 0. It is easily seen that for F €

dom(L), we have

~

N
D (F);(0) = —Ne(1 + ), (F);(0) =c (eiw/4 i 6i(0—7r/4)) .
j=1

From the last equalities it follows that

_ it
D O(R)0) = 2FR0), where = i e

J=1

Combining Lemma 3.11 and Theorem 3.12, in the framework of the per-
turbation theory, we obtain the following proposition.

Proposition 3.15. Let k € {1,..., N — 1}. Then there exist ag > 0 and two
analytic functions p: (—ag, ap) = R and F : (—ag, ag) — L2(G) such that

(7) 1(0) =0 and F(0) = <i>07k, where :I;o,k is defined by (3.12).
(73) For all a € (—ap, ), p(a) is the simple isolated second eigenvalue
of Li,o in L2(G), and F(a) is the associated eigenvector for u(a).
(7i1) ap can be chosen small enough to ensure that for a € (—ay, ap) the
spectrum of Ly o in Li(g) is positive, except at most the first two
ergenvalues.

Proof. Using the spectral structure of the operator L o (see Theorem 3.12),
we can separate the spectrum o (L) into two parts oo = {u{ o, 0} and oy
by a closed curve I' (for example, a circle), such that o belongs to the inner
domain of I" and o7 to the outer domain of I' (note that o1 C (e, +00) for
€ > 0). Next, Lemma 3.11 and the analytic perturbations theory imply that
I' C p(Ly,) for sufficiently small o], and o(L1 ) is likewise separated by
I' into two parts, such that the part of o(L; ) inside I" consists of a finite
number of eigenvalues with total multiplicity (algebraic) two. Therefore,
we obtain from the Kato-Rellich Theorem (see [46, Theorem XIIL.8]) the
existence of two analytic functions u, F defined in a neighborhood of zero
such that items (i), (i7), and (i7i) hold. O

Below, we investigate how the perturbed second eigenvalue moves depend-
ing on the sign of .

Proposition 3.16. There exists 0 < oy < g such that u(a) > 0 for any
a € (—a1,0), and p(a) < 0 for any o € (0,011). Thus, in the space L2(G)
for o small, we have n(L; ) =1 as a <0, and n(L14) =2 as a > 0.
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Proof. From Taylor’s theorem, we have the following expansions

(@) = oo+ 0(a?) and  F(a) = B¢ + aFg + O(a?), (3.18)
where pg = 1/(0) € R, Fy = 0,F(a)]amo € Li(G), and ;I;OJ€ is defined by
(3.12). The desired result will follow if we show that puy < 0. We compute
(L1,oF(a),®o ) in two different ways.

In what follows, we will use the following decomposition for @, s defined
by (2.9)

_ N
P, 5(a) = B9+ aGo + O(a?), Gy = Ia(®as)la=0 = s (90) =1 -
(3.19)
From (3.18), we obtain
(LioF(a), @o) = poal[Roil|* + O(a?). (3.20)
By LL()(AI;OJC = 0 and (3.18), we get
Lia®os = p (20) " = (®as)"") Bok (3.21)

= —ap(p — 1)(®0)P 3G P 1 + O(a?).

The operations in the last equality are componentwise. Equations (3.21) and
(3.19) induce

(L1 aF (@), Bo) = — (Bo, ap(p — 1)(B0)"*Godo ) + 0(a?)  (3.22)
= 720‘7’%_’“) /0 (20)>eh2dz + O(a?).

Finally, combining (3.22) and (3.20), we obtain for k € {1,..., N — 1}

2p(N — k) /OO 13, p—2
po = PN =B [ st =2as 4 O(a).
k|| ®o k|[* Jo
It follows that pg is negative for sufficiently small || (due to the negativity
of ¢ on Ry ), which in view of (3.18) ends the proof. O

Now, we can count the number of negative eigenvalues of Li, for any
« using the classical continuation argument based on the Riesz-projection
(see [28]) and the extension theory.

Proposition 3.17. Let k € {1,....,N — 1} and oo # 0. Then
(i) ker(Loo) = span{®,. s} and Ly, > 0,
(73) ker(Ly o) = {0},
(iii) for o> 0, n(L1q) = 2 in L(G), i.e., ”(L17a|L§(g)) =2,
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(tv) for a <0, n(Lyq)

=1 in L(G), i.e., n(Ll,a‘Li(g)) = 1, moreover,
n(L1a) =1 in L*(G).

Proof. Assertions (i)-(ii) were proved in [2, Proposition 6.1].
(#7i) Recall that ker(Lj o) = {0} for a # 0. Define as by

Qoo = inf{@ > 0 : Ly , has two negative eigenvalues for all a € (0, &)}.

Proposition 3.16 implies that a is well defined and a € (0, 00]. We claim
that ae = 00. Suppose that o < 0o. Let M = n(Lj 4. ) and I" be a closed
curve (for example, a circle or a rectangle) such that 0 € I' C p(Lj ), and
all the negative eigenvalues of Lj ,_ belong to the inner domain of I'. The
existence of such I' can be deduced from the lower semi-boundedness of the
quadratic form associated to Lj o .

Next, from Lemma 3.11 it follows that there is € > 0 such that for a €
(oo — €, oo + €], we have I' C p(L14) and for £ € T, o — (L1 — &)L is
analytic. Therefore, the existence of an analytic family of Riesz-projections
a — P(a) given by

Pla) = = [ (Loq — &) de
T oom S
implies that dim(Ran P(«)) = dim(Ran P(as)) = M for all a € oo —
€, (oo + €]. Next, by definition of aeo, Lj 4. — has two negative eigenvalues,
and M = 2, hence L; , has two negative eigenvalues for o € (0, ao + €,
which contradicts with the definition of a,. Therefore, as, = 0.

(iv) Analogously, we can prove that n(Li,) = 1 in L2(G) in the case
a < 0. To show the equality in the whole space L?(G), we need to repeat the
arguments of the proof of Theorem 3.12-(7ii) (i.e., L o has to be replaced by
L1, and ®q by ®,5). Namely, L; o, has to be considered as the self-adjoint
extension of the non-negative symmetric operator

L, = << ~& - p(%,a)”_1>5k,g‘),

dom(La) = {V € HX(G) : v1(0) = --- = vy (0) = 0, 3 v/(0) = 0},
j=1
with deficiency indices ni(L,) = 1. Note that since @ < 0, we have
Pos(x) <0, 2 >0. O

Remark 3.18. (i) Using instruments of the extension theory, it can be
shown that n(Lj ) < N in L?(G).
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(74) Note that by Weyl’s theorem (see [46, Theorem XIII.14]) the rest of
the spectrum of L o and Ly in L?(G) is positive and bounded away from
Z€ro.

To apply Theorem 3.6, we need to study the sign of 9,,||®a s/

Proposition 3.19. Let w > JO\‘,—QQ and J(w) = 0,||®as||?. Then the following
assertions hold.

(i) Let a < 0, then
1) for 1 <p <5, we have J(w) > 0;
2) for p > 5, there exists wi such that J(wi) = 0, and J(w) > 0
forw e (%227%); while J(w) < 0 for w € (wy,00).
(73) Let o > 0, then
1) for 1 < p <3, we have J(w) > 0;
2) for3 <p< 5, there exists wy such that J(w2) =0, and J(w) < 0
for w € (§z,w2), while J(w) >0 for w € (wa,0);
3) for p > 5, we have J(w) < 0.

Proof. To prove all the assertions, we will use the equality (see [2])

7—3p
J(w) = Cw2e—1) J; (w),

2
where C' = %(1%1)?*1 > 0 and

1 3—p 3—p
T =5 [, - - )

Thus,

Item (i) was proved in [2].
Let us prove the assertion (iz). Item 3) is immediate. Consider p € (1,5).
It is easily seen that

. 5—p [* o S=P
a0 = wgr-lr-loo Jl(W) - ]i 0 (1 -t )P—ldt >0, (3'23)
and
1 — 2a0, pe€ (173}7
llIn2 Jl(w) — { —00, pE (375) (324)

a
w—>ﬁ
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Observing that Jj(w) < 0 for p € (1,3] (Jj(w) = 0 as p = 3) and using
(3.23)-(3.24), we get J(w) > 0. Let p € (3,5), then Jj(w) > 0. Thus,
from (3.23)-(3.24) it follows that there exists unique wy > ]‘\‘[—22 such that
Ji(w2) = J(wz2) = 0, and J(w) < 0 for w € (10\‘7—22,0‘)2), while J(w) > 0 for
w € (wg,00). O

Proof of Theorem 1.1. From Theorem 3.4, we obtain well-posedness of
(2.2) in &(G) for any k € {1,...,N —1}. For a > 0, from Proposition
3.17-(i7i) and Proposition 3.19 -(i7), we obtain n(Ha|L%(g)) —pw) =1 as

p€ (1,3, w> %22, and p € (3,5), w > wy. Thus, from Theorem 3.6, we get
orbital instability of e™!®, 5 in £(G) and consequently in £(G). O

Remark 3.20. (i) Let p > 5 and o > 0, then by Proposition 3.19-(¢i) and
Proposition 3.17-(iii), we get n(Ha|L%(g)) — p(w) = 2. This means that
Theorem 3.6 does not provide any information about stability properties of
ethq)a,é in gk(g)

(ii) Since the mapping data-solution is of class C? for p > 2, we can apply
the approach by [35], to imply the orbital instability from the spectral one
for p € (2,5).

(747) Theorem 2.4 above initially established in [2] easily follows for any
a < 0 from our approach. Indeed, combining Theorem 3.4, Proposition
3.17-(7)-(i7)-(iv), Proposition 3.19-(i) and Theorem 3.6, we get the orbital
stability of e“!®, 5 in £(G) for 1 < p < 5. Moreover, applying the approach
by [35], we may deduce the orbital instability of e“!®, s from the spectral
one for p > 5 and w > w* (see [2, Remark 6.1]).

3.2. The NLS-¥' equation on a star graph. As it was announced in the
Introduction, in this Subsection, we discuss a new problem. In particular,
we study the orbital stability of the standing wave U(t,x) = e“!®(z) of
NLS-¢" equation (2.4) with the particular N-tail profile ®) 5 = (go,\vj)é-v:l
satisfying the stationary equation
H ® 4+ wd — [P '@ =0

under the conditions @)1 =--- = @A\ N =: pr 5 and Ny, ;(0) = )\cp’/\,j(()). It
is easily seen that ®) 5 is defined by (2.11) for A < 0 and w > J/\\[—;

As we are investigating orbital stability in H'(G) we need to show the
well-posedness of the initial value problem for equation (2.4) in this space

(Assumption 2 in [34]). First, we establish the following property for the
unitary group associated to (2.4).
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Lemma 3.21. Let {e‘itHi’ ter be the family of unitary operators associ-
ated to NLS-0' model (2.4). Then for every V. € H'(G) we have the rela-
tion Oy (e A V) = —e BV 4+ B(V'), where B(V') = (2€it8§1~}j)§\le, with
8 vi(z), ©>0

. — ] ) - b
%(®) 0, x<0
free Schréodinger operator on R.

, and 9% s the unitary group associated with the

Proof. The proof repeats the one of Lemma 3.1. The only difference is that
d’-interaction on G is induced by the following condition

VeDyy iff AV(0)+ BV'(0) =0, where

0 0 1 -1 0 .. 0
0 0 0 1 -1 0

0 0 0 -1

-1 .. -1 2 2 2 2

O

Theorem 3.22. Let p > 1. Then for any Uy € HY(G) there exists T > 0
such that equation (2.2) has a unique solution U € C([-T,T],H'(G)) N
CYH[-T,T],[H*(G)])) satisfying U(0) = Uy. For each Ty € (0,T) the map-
ping Ug € HY(G) — U € C([-Tv, To), H'(G)), is continuous. In particular,
for p > 2 this mapping is at least of class C?.

Moreover, the conservation of energy and charge holds:

E\(U(t)) = Ex(Uo), and Q(U(t)) = |[U)[]> = [|Uol*, t € [-T.T],
where the energy E is defined for V. = (vj)ﬁ-vzl € HY(G) by

N
2
1
EA(V) = 3IVI2 = S IIVIED + 25| D 0i(0)] -
j=1

Consequently, for 1 < p <5, we can choose T' = +o00.

Proof. The prove repeats the one of Theorem 3.4. In particular, it essen-
tially uses Lemma 3.21 and the Banach contraction theorem. O

Remark 3.23. Analogously to the case of NLS-§ equation the following
equality holds e "MV = ¢ ™y PV + ¢ ™y P V. Similarly, for A >
0, we have o.(Hj) = [0,00) and 0,(H}) = 0, therefore, P, = 0. For
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A <0, 0.(H)) = [0,00) and 0,(H)) = {—22} = {—]X—;}, where the corre-
sponding eigenfunction is V,(z) = (e¥$ W j=1, and therefore, ¢ itH, P,V =
e (V, V)V,

The proof of the spectral properties of H(;A/ repeats the one of [5, Theorem
4.3] for the case of the Schrodinger operator with §’-interaction on the line.
In particular, to describe the point spectrum for A < 0 one needs to consider
Hg, as the self-adjoint extension of the symmetric non-negative operator
L’ defined by (3.30) with deficiency indices ny(L’) = 1 and then to apply
Proposition 3.9.

Consider the following two self-adjoint matrix operators
d2
Liy = (( g2 Tw—pleas)” )51@]‘),
Loy = (( Tz tw— (oxs)P™ )5k,j)7

with dom(L; ) = dom(Lg y) = Dy . Here, dj ; is the Kronecker symbol.
These operators are associated in a standard way with the second derivative
of the following action functional

1
SA(V) = 4[V'|? - pﬂuvuzilmlzv] | +5ivie

where V = (Uj)j-vzl S Hl(g) Namely, (SA),/(¢A75/)(U,V) = (LL)\Ul,Vl) +
(L2\U, Vy) with U = Uy + iUy and V = V; +iVa. As in the previous
paragraph, we consider the form (S,)"”(®) ) as a linear operator

(L, O
H,\_< 5 L2,A>' (3.25)

The energy functional E) defined by (3.22) belongs to C*(H'(G),R) and
Assumptions 1,2 in [33] are satisfied. Thus, the analog of stability /instability
Theorem 3.6 is true for e™“'®, 5.

Below, we give the description of the spectrum of the operators L; ) and
Ly 5, which due to formula (3.25), will help us to verify the conditions of
mentioned stability /instability result.

Proposition 3.24. Let A <0 and w > ]X—;, then the following results hold.
(’L) keI‘(L2 )\) = span{fIb\,(;/}, and L2’>\ > 0.

(i) Ifw <Dy piL, then ker(Ly x) = {0}, and n(Ly ) = 1.
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(1i1) If w = ]X—Qp—l then n(Ly ) = 1, and the kernel of Ly y is given by
ker(Ly \) = an{<I>>\71,..,<I>>\,N,1}, where

é)\’j = (07"’0’¢&,5/’_¢&,5’707"70)' (326)
J j+1

(iv) If w > 55 Zﬂ, then ker(Lj ) = {0}, and n(Ly \) < N. Moreover,

for N even in the space L2 (G), we have n(Ly, A|L2 @) = 2.

(v) The rest of the spectrum of Ly and Loy is posztwe and bounded
away from zero.

Proof. (i) Itis clear that @) 5 € ker(Lg »). To show the equality ker(Lg ) =
span{®, s } let us note that any V = (vj)j-vzl € H?(G) satisfies the following
identity

-1 d d [ vj
! 4wy — (o )P0 = R ()] z>0. @27
J i~ (oaa )0 = oxg da LM du Ny 5 (3:27)

Thus, for V € D, 5, we obtain from (3.27), (2.5), and (2.11)

(LyaV, V) = Z/ 03 dx )] dz + Ry, where

owy
N

Bax =Y [0(0)25(0) = v3(0)

j=1

A 5/ }
PN, 6’

>/\'—‘

(S -5 20

The term R y if positive for A < 0 by Jensen’s inequality applied to f(z) =
z2. Thus, (L2, V,V) >0 for V € D, 5 \ span{®, 5} which proves (i).

(4i) Concerning the kernel of L; , we recall that the only L?(R; )-solution
of the equation —v7 + wv; — p(prs )P lvj = 0 is given by v; = @)\5 (up to
a factor). Thus, any element of ker(L; ) has the form V = (vj)é-v:l =
(cjgo’)\ﬁ,)jy:l, ¢; € R If ) (0) = --- = v)y(0) # 0, then by (2.5), we get
cp = -+ =cn # 0, and consequently Ny 5(0) = Ap} 5(0). Therefore,

%’2’ 0 implies
that ¢} 5(0) = 0, which is equivalent to the identity w =
get that ¢; = - —cN—OandV_Oforw#prl.

)-
w = which is impossible. Otherwise, the condition v(0)
+

N2 pi1

2 —1 Thus, we
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p+1
p—1

in the case of the operator Lj o defined by (3. 11) N amely, denoting

The proof of the equality n(L; y) =1 for w < 55 is similar to the one

h=((- dd22+w plors ) )ons). (3.28)

we define the following symmetric operator Lj, = I, with
N
dom(Ly) = {V € HA(G) : v}(0) = -+ = vv(0) = 0, D" v;(0) = 0},
j=1

It is easily seen that Ly  is the self-adjoint extension of L{,. Let us show that
the operator L, is non-negative. First, note that any V = (vj)évzl € H*(G)
satisfies the following identity

-1 d d [/ v
—v + wvj — plore )P vy = ——— [( L) ( . )}, x> 0.
J J ’ J 901\,5/ dx dz (p//\’é,

Using the above equality and integrating by parts, we get for V € dom(Ly)

LAV, V) = SN dx - Nﬁ(of"?ﬁ’(o).
z [ @ [ ()] a2

(’0/\ o’ j=1 @A,&’ (0)

Taking into account that

©,(0) Aw N2

2 2

—2(0) 22— 2(0) 22 (p—1 - ). 2

02y = O (p =1 0+ D (3.29)
N2 p+l

we get non-negativity of L for w < 1]; —

Next, the adjoint operator of Ly is glven by
(Lo)* =1, dom((Ly)*) = {V € H*G) : v{(0) = --- = vy (0)} .

The last formula can be shown analogously to (3.14). Due to the von Neu-
mann decomposition (3.10), we get (assuming that Lj acts on complex-
valued functions)

dom((Lg)*) = dom(Ly) ® span{V;} @ span{V_;},

where Vy; = (e/VE ) S(v+t) > 0. Indeed, since ¢y 5 € L>®(Ry), we
get dom((L§)*) = do (( ) ) where

<( )%) dom (L) = dom(L). (3.30)
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Finally, by [43, Chapter IV, Theorem 6], n4 (L) = n+(L’) = 1. By Propo-
sition 3.9, n(Lq») < 1. Due to (L1 x®y s, Prs) = —(p — 1)|[Pxrs |ZI} <0,
we finally arrive at n(L; y) = 1, and (i7) is proved.

(#4i) From the proof of item (ii), we induce that n(L; ) = 1, and the
kernel of L ) is nonempty as w = J)\\[—jg—%. Moreover, we know that any
element of the kernel has the form V = (fuj)évzl = (cjga’)\ﬁ,);\f:l, ¢; € R, and

it is necessary that v}(0) = --- = v/\/(0) = 0. Hence, the condition

N

Avp(0) =D v;(0) =0 (3.31)

J=1

gives rise to (N — 1)-dimensional kernel of L; 5. Since the functions d A
1 < j < N —1, defined in (3.26) are linearly independent and satisfy the
condition (3.31), they form the basis in ker(L; ), and (i4i) is proved.

(tv) The identity ker(L; ) = {0} was shown in (i¢). To show the inequal-
ity n(Lix) < N, we introduce the following minimal symmetric operator
Lmin = l)\ with

/ /
dom(Liyin) = {V € H2(G) : 1;11((%)) _ :ZJJVV ((%)) :%’ } : (3.32)
where Iy is defined in (3.28). The operator L  is self-adjoint extension
of Lyjn. From the formula (3.29) it follows that Ly, is a non-negative
operator. It is obvious that L*. = I\, dom(L*. ) = H?(G). Then, due to
the von Neumann formula (for Ly,;, acting on complex-valued functions)

dom(L,;.) = dom(Lyin) @ span{V},., V¥} @ span{ V%, .., VN1,

—17
where Vjﬂ = (0, ..., ei‘/_Ex, 0,...,0), 3(v/+£i) > 0, and consequently n (Lyin)

J
= N. By Proposition 3.9, n(L; ) < N.
Let N be even. It is easily seen that ny(Lpyi,) = 2 in Lzﬂ(g). Indeed,
2

dom(L} ;) = dom(Lyin) & span{\Nfil,\N/iQ} @ span{\N/'lﬂ-, \731}, where \7&2 =
(eVEx _eVET g 0), and VI, = (0,.., 0 ,eVFEr _ civVET) By
1 777 UNy2 INj2er N N T N2 Ny24 N

Proposition 3.9, we get n(L; ) < 2 in L% (G).

2
Let us introduce the following quadratic form F; ) associated with the
operator L )

ceey

Y

N N )
PLa(V) = IVIE +6lVIE =23 [ (ons) s Pda+ 43 0,00)
=1 j=1
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with dom(F1,) = H'(G). Let @, = (¢} 51 - Ph 51s — P 511 --» —Ph g ), then
1 N/2 N/2+1 N
integrating by parts, we obtain

o0
FiA\(®))=N /0 s (s + wph s — plornsg ) P\ y) do

N O 0) = B [(252) (1= )] (-1 - (e 1),

which is negative for w > J/\\/—;%. Since (L @5, Prs) < 0, we get by

orthogonality of @) and ®, 5
Fia(s®yg +r®)) = [s2F,(Prg) + |r[PF1,(@)) < 0.
Thus, we obtain that F; ) is negative on two-dimensional subspace M =
span{®, 5, @, }. Therefore, by minimax principle, we get n(L; ) > 2. The
assertion (iv) is proved. The proof of item (v) is standard and relies on
Weyl’s theorem. This finishes the proof of the Proposition. O
Finally, we have to study the sign of 8,,||® s ||?.

Proposition 3.25. Let w > ]X—;, A <0, and J(w) = O,||®x s %
(1) If 1 < p <5, then J(w) > 0.
(1) If p > 5, then there exists w* such that J(w*) =0, and J(w) > 0 for

w e (37 ,w*), while J(w) < 0 for w € (w*,00).

Proof. Recall that ®) 5 = (go)\75/)§v:1, where @) 5 is defined by (2.11), we
have via change of variables

—_

2
0 _2 1~ 1 2
2 p+ 1\ p1 2wP! 2/ o7 1
())2d :( 1— 21 'gt.
J N o L N

[Alvw
From the last equality, we get
7—3p 2
= p+ 1 1
) =C @), o= (BT e
where
5—p [1 , 3P N =
J1(w) = p—1/ N (1 —t*)p—Ldt + W(l _ m)p—l.
[Alvw
Thus,
3—p 2(p—2)

— 2 fl 2 2 - —1
(@) = [ oot [(1 - %)p + Ajgﬁ(l - ﬁﬁ) : } (3.34)
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It is immediate that J(w) > 0 for 1 < p < 5. Consider the case p > 5. It is
easily seen

5— P 1 9 3=p
lim Jij(w)=——= [ (1—-t)pldt <0, lim Jj(w)= 0.
w—+00 b= 0 w2
A2

Moreover, from (3.34) it follows that J{(w) < 0 for w > ];\7—22, and consequently
J1(w) is strictly decreasing. Therefore, there exists a unique w* > J/\\f—; such

that Ji(w*) = J(w*) = 0, consequently, J(w) > 0 for w € (]X—;,w*), and
J(w) <0 for w € (W*,0). O
Proof of Theorem 1.2. (i) 1) Combining Theorem 3.22, Theorem 3.6
(adapted to the case of the NLS-¢" equation), Proposition 3.24 (items (i),
(44) and (v)), and Proposition 3.25-(i), we get stability of e“!®, 5 in H(G).

2) Combining Theorem 3.6, Proposition 3.24 (items (i), (iv) and (v)),
and Proposition 3.25-(i), we get orbital instability of e™!®, s in H} (G)

2
(compare with Remark 3.7-(i7)). We note that well-posedness of the Cauchy
problem associated with equation (2.4) in HY (G) follows from the uniqueness

2
of the solution to the Cauchy problem in H'(G) and the fact that the group

e~ itH} preserves the space H g(g) Finally, instability in the smaller space

2
HY (G) induces instability in all H(G).
2

(7i) Relative position of w* and w = ]X—;% is not clear (see Remark 3.27),

which complicates the analysis in the framework of Theorem 3.6. But we can
overcome this difficulty restricting the operator L ) onto the space qu(g)
defined by L2,(G) = {V = (vj)é\f:l € L*(G) :vi(x) = --- = vn(x), z > 0}.
Moreover, we introduce Hy,(G) = H'(G) N LZ,(G). We note that H} (G) is
also preserved by the group e‘itHéA/.

Recall that L is the self-adjoint extension of the minimal symmet-
ric operator Ly, defined by (3.32). It is easily seen that the operator
Liin|12,(g) satisfies N (Lmin|z2 () = Span{(e“/gx)é\’:l}. The last equality,
by Proposition 3.9, implies n(LL)\|qu(g)) = 1 since (L1 \®)5,Pr5) <0
and (I’/\’(;/ € qu(g)

Without loss of generality, we can assume that w* # ]X—;%. All our
forthcoming conclusions about orbital stability are based on Theorem 3.6
for the spaces H'(G) and ng(g), Remark 3.7, Theorem 3.22, Proposition

3.24, and Proposition 3.25. Consider 2 cases.
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1. Suppose that w* < J/\\[—;%.

Letw < w* < ]X—;%, then n(Ly ») = 1in L?(G) and we have 9,,||®, »||* >
0. Therefore, e™'®) s is orbitally stable in H*(G), and hence in H,(G).
fw <w< J/\\[—;%, then n(Ly \) = 1 in L?(G) and 8,,||®, +||? < 0, which
induces orbital instability of e“!®, 5 in H(G).
N2 ptl

Let w > 52757 > w*. Then n(Lyx|zz (g)) =1 and also || ®rs]|? <0,

which induces orbital instability of ¢“!®, 5 in ng(g) and consequently in
HL(G). .
2. Suppose that w* > %%.

If w < 3725 < w*, then n(Lyy) = 1 in L*(G) and 0,/|®xy| > 0,

consequently, e“!®, 5 is orbitally stable in H!(G), and therefore in ng(g).
2 .

If %% <w < g*, then n(Ly [z (g)) = 1 and Ou||®xs])* > 0, which

induces stability of ¢!®) 5 in H}(G) .

2 .

Let w > w* > %%, then ‘n(LL)\\qu(g)) =1 and 9,||®)¢||* < 0, which

induces orbital instability of e"'®, 5 in H.,(G) and consequently in H'(G).

Summarizing all the cases, we get for w > w” nonlinear instability of

WPy 5 in HY(G), and for w < w* stability of P, 5 at least in Helq(g).

This finishes the proof. O

Remark 3.26. (i) It is worth mentioning that the orbital instability result
follows easily for 2 < p < 5 from the spectral instability using the fact that
the mapping data-solution for (2.4) is of class C? (see Theorem 3.22 and
Remark 3.7-(ii)).

(73) Observe that for p > 5 the orbital instability results are obtained via
classical approach by [33] without using spectral instability. Otherwise, the
orbital instability can be deduced from the spectral one since for p > 5 the
mapping data-solution for (2.4) is of class C?.

Remark 3.27. Note that the integral appearing in (3.33) (via change of
variables) is related to the incomplete Beta function

1 Vo1 -
R — 2 _
B(y, 2,b> —/0 x 2(1—x)" du,

with b = ]%. Using basic numerical simulations, one can show that for
p=6,7,..., relation w* > ]X—;% holds. By the continuity of the function J
as a function of p, we get the relation w* > ]X—;% in the neighborhood of

every integer p > 5.
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We conjecture that w* > ]X—;% holds for any p > 5. This conjecture by

Theorem 3.6 implies the following stability properties of e™!® 6 in the case
p > 5

(i) if w e (& ]X—;Lﬂ), then e™“!®, 5 is stable in H(G);

T A% P
(#1) ifw € (852X w*) and N is even, then e™!®, 5 is unstable in H'(G).

4. STABILITY THEORY OF STANDING WAVE SOLUTIONS FOR THE
NLS-L0G-§ AND THE NLS-LOG-§' EQUATION ON A STAR GRAPH

4.1. The NLS-log-) equation on a star graph. In this subsection, we
prove spectral instability of the N-bump stationary state solution ¥, s =

(6]
w1 (E=§)?

(me(g);y:l of Gaussian type, where ¢, 5(z) =e 2 e 2 ,a>0,weR.
We also extend the stability result in [15] for any a < 0 (see Theorem 1.3).

Since well-posedness is a crucial assumption for stability theory, it is worth
proving that equation (2.6) is well-posed in the space W2(G). In [15] the
following well-posedness result in Wg(G) was proved.

Proposition 4.1. For any Uy € We(G) there is a unique solution U €
C(R,We(G)) N CHR,WL(G)) of (2.6) such that

U(0) =Up and sup|[UD)]|we(g) < oo
S

Furthermore, the conservation of energy and charge holds, that is,
Ea,10g(U(t)) = Ea,10g(Uo), and Q(U(t)) = [[U(#)|]* = ||Uol[?,
where the energy Eq, 1og is defined for V = (Uj)j-vzl € We(G) by

N o0
Ea,Log(V) = 5I[V'[]” — 52/0 [0;1? Log Jvj|*da + §[v1(0) .
Jj=1

Using the above result, we obtain well-posedness in W(G).

Theorem 4.2. If Uy € W2(G), there is a unique solution U(t) of (2.6)
such that U(t) € C(R,W2(G)) and U(0) = Uj.

Proof. The proof can be found in [11]. Basically it follows from Proposition
4.1 and two additional facts. The first one is that W2(G) C We(G) (see [9,
Lemma 3.1]), and the second one is the continuity of the mapping t
[|zU(#)||* on R. O
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The strategy of the proof of Theorem 1.3 is analogous to the one in the
previous case of the NLS equation with power nonlinearity. In particular,
we will use the adapted (weaker) version of the stability /instability Theorem
3.6 (to the specific Gaussian profile ¥, 5 and the space W (G)).

Consider the following two harmonic oscillator self-adjoint matrix opera-
tors with domain dom(T ) = dom(Ty ) = Di?f defined by

To= (- 5w 5 8)).
Too= (= o+ §F - 1)),
D% = {V eW2(G) :v(0)=--- = vN(O),iV:vj(O) = avl(O)},

where 0, ; is the Kronecker symbol. These operators are associated with
H, 1og == (Sa,Log)” (¥a,s) (Where S 1,0g is defined by (2.15)) in a standard

way, i.e.,
T 0
(T )

Noting that O,||Was/> > 0, Earog € C(W2(G),R) (see [11, Proposition
2.3]), and combining [33, Theorem 3.5] with [34, Theorem 5.1], we can for-
mulate the stability /instability theorem for the NLS-log-§ equation.

Theorem 4.3. Let a # 0, and n(Hq,109) be the number of negative eigen-
values of Hy 1o4. Suppose also that

1) ker(T9,) = span{¥, 5},

2) ker(T; o) = {0},

3) the negative spectrum of T and Ta o consists of a finite number of
negative eigenvalues (counting multiplicities),

4) the rest of the spectrum of Tq o and T o is positive and bounded away
from zero. Then the following assertions hold.

(i) If n(Ha, Log) = 1, then the standing wave e“'W¥,, s is orbitally stable
in W(G).

(i3) If n(Ha,1og) = 2 in L(G), then the standing wave ' W, 5 is spec-
trally unstable.

Remark 4.4. (i) By saying e™'®, 5 “is spectrally unstable,” we mean that
0 T2

the spectrum of the linear part A, 105 = ( T 0
B e

) of the linearization
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of the NLS-log-d equation around ¥, s contains an eigenvalue with positive
real part.

(7i) In item (éi), we affirm only spectral instability since we cannot ap-
ply neither [45, Corollary 3 and 4] (since we do not know if Eqyos €
C%(WZ(G),R)), nor [35, Theorem 2 Remark, Section 2] (since we do not
know if the mapping data-solution associated to the NLS-log-d equation is
of class C? around ¥, 5) to prove orbital instability (see Remark 3.7 above).

Below, we study the spectral properties of T, and T2 ,. To investigate
the spectrum of the operator T ,, we will use the perturbation theory anal-
ogously to the previous case of the NLS-0 equation with power nonlinearity.
In particular, define the following self-adjoint Schrédinger operator on L?(G)
with Kirchhoff condition at v =0

Tio= (=5 +a2—3)s,)). (11)
dom(Ty) = {V € W2(G) : v1(0) = - - = vy (0), ZN:U;.(O) - o}.
j=1

As above Ty, “tends” to Ty for @« — 0. In the next Theorem, we describe
the spectral properties of T g.

Theorem 4.5. Let T1 be defined by (4.1) and k € {1,....,N —1}. Then
the following assertions hold
(1) ker(T1p) = span{\ilgjl, - ‘i’O,Nfl}y where

A 2

‘1’07]‘ = (0, ceey 0, w(/), —1/}6,0, ...,O), 1/)()(1’) = 6_7.
i+t

(i4) In the space L2(G), we have ker(Ty ) = span{{Ivlo7k}, where

\IIO,I{ = (NT_I%/}(IM“'7%@%)7_1#6?'“7_1#6)7 (42)
1 k k+1 N

i.e., ker(Tl,osz(g)) = span{Wo}.

(t3i) The operator T1 o has one simple negative eigenvalue, i.e., n(T1 ) =
1. Moreover, the operator T has one simple negative eigenvalue
m L%(g), 7;.6., TL(TLO‘Li(g)) =1.

(tv) The spectrum of Ty is discrete.

Proof. The proof of items (i)-(i7) repeats the one of Theorem 3.12 (7)-(i7).
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(797) We will follow the ideas of the proof of item (iii) of Theorem 3.12

and Lemma 4.11 in [9]. Denote &) = ((—% + 2% — 3)d, ;). First, one needs
to show that the operator Ty acting as To = £y on

N
dom(Ty) = {V EW2(G): v1(0) = - = vy (0) = 0, (0) = o}.
j=1
is non-negative. The proof follows from the identity

—vff + (2 = 3)v; = ;; d [(wo) - (ZZ)H x>0,

for any V = (vj)év:l € W2(G).

Next, we need to prove that ny(Tp) = 1. We use the ideas of the proof
of [9, Lemma 4.11]. First, we establish the scale of Hilbert spaces associated
with the self-adjoint non-negative operator (see [6, Section 1,§1.2.2]) T =
to +31 defined on

N
dom(T) = {V € W(G): 0a(0) = -+~ = un(0), 3 vj(0) }

Define for s > 0 the space
74(T) = {V € L2(G) : [V]s2 = H(T n I)S/QVH < oo} .

The space $s(T) with norm || - ||s2 is complete. The dual space of $,4(T) is
denoted by $_s(T) = $H5(T)". The norm in the space $_4(T) is defined by
the formula | V| _s2 = ||(T+1)"%/?V/||. The spaces $(T) form the following
chain ... C 92(T) C H1(T) C L*(G) = H0(T) C H_1(T) C H_»(T) C

The norm in the space $1(T) can be calculated as follows

VT2 = (T + D'V (T +1)V?V)

N o0
= 'UI‘IL’2 'U‘IL’2 .CC2'U‘IL’2 T
=3 [ (@ + @ + o) d

Therefore, we have the embedding $;(T) — H'(G) and, by the Sobolev
embedding, $1(T) — L*°(G). From the former remark, we obtain that the
functional ¢; : $1(T) — C acting as 6;(V) = v1(0) belongs to $H:(T) =
$-1(T), and consequently 61 € $H_5(T). Therefore, using [6, Lemma 1.2.3],
it follows that the restriction T of the operator T onto the domain dom(TO)
={V € dom(T) : 01(V) = v1(0) = 0} = dom(Ty) is a densely defined sym-
metric operator with equal deficiency indices ni(Tg) = 1. By [43, Chapter
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IV, Theorem 6], the operators Ty and T, have equal deficiency indices.
Therefore, n(T ) < 1. Since Ty ¥y = —2¥(, where ¥, = (wo)j-v:l, we get
n(Tip) = 1. As ¥y € L3(G) for any k, we get ”(TLO’Lz(g)) =1.

(17v) With slight modifications, we can repeat the proof of [19, Theorem
3.1, Chapter II] to show that the spectrum of T} g is discrete by lim (2% —

T—>+00
3) = +oo, ie., 0(Ti9) = 0p(T10) = {Ho;}jen. In particular, we have the
following distribution of the eigenvalues pg1 < po2 <--- < po; < -- -, with
Ho,j — +00 as j — +oo. g
Proposition 4.6. Let k € {1,....N —1}, a # 0, and ¥, 5 be defined by
(2.14). Then
(i) ker(T2q) = span{¥, s} and Ty, >0,
(73) ker(T1,4) = {0},
(i4i) for a >0, n(T1) =2 in L3(G), i.e., ”(Tl,a’Li(g)) =2,
(iv) for a <0, n(T14) =1 in L*(G),
(v) the spectrum of the operators T1 o and Ta, in L*(G) is discrete.

Proof. (i) The proof repeats the one of [2, Proposition 6.1]. We only need
to note that any V = (vj)é-v:l € W?2(G) satisfies the following identity

-1 d d / vj
/" a2 2 J
St groomm AR ()) oo
Uj + ((‘T N) )UJ 1;/}047(5 dZE a,d dilf 7,[)04,5 T

(74) The proof is standard. It is sufficient to note that any vector from
the kernel of T , has the form V = (vj)j»vzl, where v; = ¢;1), 5 ¢j € R.

(7i7) The proof of this item is analogous to the one of the item (iii) of
Proposition 3.17. It suffices to note that for the operator T , the coefficient
o in decomposition (3.18) is negative. Indeed, (see the proof of Proposition
4.17 in [9])

2(N — k)

k|02

where \ilo,k is defined by (4.2).

(iv) To show the equality in the whole space L?(G), we need to repeat the
arguments of the proof of Theorem 4.5-(¢i¢) (i.e., T has to be replaced by
Tl,on and ‘I’O by ‘I’a,(g).

(v) The proof follows from [19, Chapter II, Theorem 3.1]. O

o = /0 " a()%dz + O(a),

Proof of Theorem 1.3. Combining Theorem 4.2, Theorem 4.3, Proposi-
tion 4.6, we get orbital stability of e"*®¥,, 5 in ng(g) for a < 0 and spectral
instability of e“!'®, s for a > 0. O
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4.2. The NLS-log-é' equation on a star graph. In this subsection, we

study the stability properties for the N-tail profile ¥y 5 = (@DA,&’);‘V: 1, where
w1 @)

Prs =€ 2 e 2, A <0, weR. Similarly to [15, Proposition 1.1}, we

get the well-posedness result in W (G).

Proposition 4.7. For any Uy € W(G) there is a unique solution U €
C(R,W(G)) NCHR,W'(G)) of (2.7) such that U(0) = Uy and

sup |[U(#)||w(g) < oo. Furthermore, the conservation of energy and charge
teR

holds, that is,
B 10g(U(1)) = Bx 104(Uo), and Q(U(1)) = [[U®)|* = || Uo|[*,
where the energy E) o4 is defined for V = (vj)j-vzl e W(3G) by
N e N )
E)\,Log(v) = %HV/||2 - ;Z/O ‘Uj‘QLOg ‘Uj|2d'r + %‘ Zvj(())‘
j=1 j=1

Proof. The proof repeats the one of [15, Proposition 1.1]. One just needs
to replace

N
Sl =" [ e =P
=1 7R+

by
N N )
2/ o P+ | 3 ws(0)]
j=1 R4 7j=1
We also refer the reader to [27, Section 9.2]. O

Using the above result, one may show the well-posedness in W1(G).

Theorem 4.8. If Uy € W(G), there is a unique solution U(t) of (2.7)
such that U(t) € C(R,W(G)) and U(0) = Uy.

Proof. One should repeat the proof of [11, Theorem 2.2] substituting W2 (G)
by W(G). O

Consider the action functional associated with equation (2.7) for V €
wg),
X N oo N )
Satoe(V)=3lIV/IP+ 2 VIP =5 D /0 02 Log o *da-+ 35| 3 v;(0)|
j=1 j=1
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As above our idea is to study the spectral properties of the self-adjoint
operators associated with (S rog)”(®xs)

N
D% = {V e W2(0) : f(0) = - = oy (0), 3 05(0) = M} (0)}.
j=1
Using arguments from the proof of Proposition 4.6 and Proposition 3.24, we
can show the following result.

Proposition 4.9. Let k € {1,...,.N — 1}, A < 0, and ¥, 5 be defined by
(2.16). Then the following assertions hold.

(Z) kel"(TgA) = Span{\Il)\y(;/}, and T27)\ 2 0.
(i) If =N < X <0, then ker(Ty,) = {0}, and n(T1 ) =1 in L*(G).
(i43) If X = —N, then n(T; ) = 1, and the kernel of T ) is given by
ker(Tq ) = span{¥y 1,.., ¥y n_1}, where
‘i’)\’j — (0, ..y 0, wl_N75/, —wl_N’(gl, 07 ..y O)
J J+1
In parEicular, in this case ”(TLA‘Li(g)) =1, and ker(TLA|L%(g)) =
span{W_y 1}, where
T _yy= (NT—w_ N eoes N s Nﬁé,).
1 Kk k+1 N
(iv) If A < =N, then ker(Tyy) = {0}, and n(T1[r2(g) = 2.
(v) The spectrum of T; y and Ts y is discrete.
Proof. (i) The proof is analogous to the one of item (¢) of Proposition 3.24.
(74) The proof repeats the one of item (ii) of Proposition 3.24. We only
need to note that the non-negative (for —N < A < 0) symmetric operator
d2
e (- -5,

N
dom(T}) = {v EW2(G): 04 (0) = - = viy(0) =0, Y v;(0) = o}.
j=1
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has deficiency indices equal one. It can be shown repeating the arguments
of the proof of item (ii7) of Theorem 4.5.

(7i7) It suffices to repeat the arguments of the proof of item (iii) of Propo-
sition 3.24.

(tv) By the analyticity of the family (T; ) as a function of A < 0 and
the spectral properties of T , for A = —N, we obtain (via the Kato-Rellich
Theorem):

1) There exist § > 0 small and two analytic functions pu(A) : (=N —
§,—N +0) = Rand F(\) : (-N —6,—N +§) — L2(G) such that
((—N)=0and F(—-N) = ¥_p .

2) p(A) is a simple isolated eigenvalue of T y, and F()) is an associated
eigenvector for pi(A).

3) Except at most the first two eigenvalues, the spectrum of T} ;| 12(9)
is positive.

Below, we show that u(\) < 0 for A < —N, and p(\) > 0 for v > —N.
From Taylor’s theorem, we have the following expansions

1#(N) = p_n(A+ N) 4+ O((A+ N)?), and (4.3)
F(A) =¥+ (A+N)G_y +O((A+N)?),
where H_N = ,u’(—N) €eRand G_y = 8)\F()\)‘)\:_N S Li(g)
Let us show that p_n > 0. To show the positivity of u_pn, we compute

(Tl,)\F()\),"IVLNyk) in two different ways. Since T \F(A) = p(N)F(X), it
follows from (4.3) that

(T1AF(\), @ _ni) = pon(A+ N)|[®_ni|® + O((A + N)?). (4.4)
By Tl,_N(IV'_NJc = 0, we obtain
TPy = (_Qmw n Ni;”) Ty (4.5)

Since T y is self-adjoint, we obtain from (4.3) and (4.5)
(TIAF(A), ®ong) = (FO), Tin® oy ) (4.6)
— (@_Mk, {—2x¥ + NQA;AQ} @_N,k) +O((\+ N)?).

Combination of (4.4) and (4.6) leads to

Hon T nk]? = (@,N,k, [~ 20 + 2] {IZ,N,,C) +OMN+N). (47
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Define g(\) := (\ILN ks [—%:c + %] \AIJLN,;C), then

)

o) = O [ a4 22 ()P

By Taylor’s theorem, g(A\) = g(—N) + ¢'(=N)(A+ N) + O((A + N)?). Tt is
easily seen that

g(=N) = 2ew+1Nk’f/ (x4 1)%e~ @D gz > 0.
0

From (4.7), we get

g(N)

g(—N
—N,k

= OO

H-N

and consequently p_ > 0 for A close to —N.

Let A be close to —N and A < —N, then from item (¢i¢) and the analysis
above (u(A) < 0) it follows that n(T1alr2(g) = 2. Finally, by the contin-
uation argument (see item (7ii) of Proposition 3.17), we extend the former
property for all A < —NV.

(7v) To prove the last spectral property it is sufficient to note that the
spectrum of T ) and Ty is discrete due to the growth of ¢(z) = (x — %)2
as r — 00. g

Proof of Theorem 1.4. Combining Theorem 4.7, Proposition 4.9, The-
orem 4.3 (adapted to the case of the NLS-log-¢’ equation), we get orbital
stability of ei“’t\IlA,(g/ in WY(G) for —N < X < 0. Spectral instability of
e, 5 follows for A < —N. O

5. APPLICATIONS TO OTHER MODELS

In the above sections the use of the extension theory of symmetric oper-
ators was essential for the estimates of the Morse index of the specific self-
adjoint Schrodinger operators. In this section, we show how this approach
can be applied to the case of the nonlinear Schrodinger equations with spe-
cific point interactions on the line. In particular, we reprove in concise form
(avoiding the use of variational techniques) some stability results for these
equations established recently by the other authors (see [3,28,31,32]).
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5.1. The NLS with point interactions on the line. In the scalar case
the family of self-adjoint boundary conditions for (1.1) at z = 0 is formally

defined by
(S00) () (5. e

with a, b, ¢, d and 7 satisfying the conditions (see [6, Theorem 3.2.3] or for-
mula (K.1.2) from [5, Appendix K])

{a,b,c,de R, 7€ C:ad—bc=1, |7| =1} (5.2)

The parameters (5.1) label the self-adjoint extensions of the closable sym-
metric operator Hy = —% defined, for instance, on the space Cg°(R\ {0}).

We are interested in two specific choices of the parameters in (5.2), which
are relevant in physical applications (see [3,24]). The first choice 7 = a =
d=1,b=0,c= —v,7 € R\{0} corresponds to the J-interaction of strength
—~ which gives rise to the following NLS-0 model

10yu — H;Su + JulP~tu =0, (5.3)

(5 i 2 : é _
where HY is the self-adjoint operator on L*(R) acting as (H{v)(x) = —v"(x),

for « # 0, on the domain dom(H,‘i) = D, 5, where

D, s :={ve H(R)NH*(R\ {0}) : v'(0+) — v/ (0—) = —yv(0)}.

The operator Hg is formally defined by the expression lﬁsy = —% — 70(x),
where §(z) is the Dirac delta distribution.

The second choice of parameters T =a=d =1,c=0,b= -3, 8 € R\{0}
corresponds to the case of so-called ¢-interaction of strength —f3. It gives
rise to the following model (NLS-¢" henceforth)

i0yu — Hg/u + JulP~ ' =0, (5.4)

in which H g/ is the self-adjoint operator on L?(R) acting as (Hg,/v)(m) =
—v"(x), for  # 0, on the domain dom(Hg,) = Dg g, where
Dgg = {v € H*(R\ {0}) : v(0+) —v(0—) = —Bv'(0), v'(0+) = v'(0-)}.

Recall that Hg’ is formally defined by the expression lg’ =— % —B(-, 80" (z).

The NLS-§ model has been extensively studied in the last decade (see
8,12, 23, 24, 28, 30-32, 36, 45] and reference therein). The NLS-0' model
is less studied, in [3,4] the authors investigated variational properties and
the orbital stability of the ground states of the NLS-0' equation with the
repulsive ¢’-interaction (5 > 0).
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5.2. The NLS-§’ equation on the line. As above the existence of stand-
ing wave solutions u(t,z) = ') of equation (5.4) requires that the
profile ¢ € Dg s satisfies the semi-linear elliptic equation

HY o +wp — ol 1o =0. (5.5)

It was shown in [3] that for 5 > 0 equation (5.5) has two types of solutions
(odd and asymmetric)

gofu‘fg(x) = sign(x) {(]9—{—21)(;) sech? ((]?—21)\/07(|x| + y))] E, (5.6)
withx;é()andw>%,

[ (e w)] P, oo
(pwﬁ(x) - —[@ sech? ((p*12)\/‘;(33 — y2))} ”%1’ x <0, R

where y, y; and yy are positive constants depending on 3, p,w (see [3, The-
orem 5.3]). Moreover, in [3,4] were established the following stability re-
sults. The standing wave eZthogdg is stable in H'(R \ {0}) for p > 1,

w € (%,%%), and unstable in HY(R \ {0}) for p > 1, w > %%. The

standing wave €% is stable in H'(R\ {0}) for 1 <p <5, w > %%,
and p > 5, w € (%%,wl), meanwhile e“"tcpffg is unstable in HY(R \ {0})
for p > 5, w > ws > wi.

In what follows, we will use the notation g = (pg‘fg. Due to Grillakis,
Shatah and Strauss approach, we need to study the spectral properties of

the following two self-adjoint operators

2 2

d _ d _
LLB:_E +W_P’¢B’p 1» L2,B:—@ +W_|<P6|p 17

dOHl(Ljﬂg) = D/&(s/, Jje {1,2}.

The operators L1 g and Lo g are associated with the action functional
+1
Sp() = IV [17 + 51911 — szl — 2510 (04) — (0=,

defined on H*(R \ {0}), in the following sense:

(S8)"(¢p)(u,v) = (L1pui,vi) + (L2 pusz,ve), where u = uj + iug and
v = vy + ivg. The well-posedness for (5.4) in H'(R \ {0}) was established
in [3, Proposition 3.3]. Moreover, it was shown that ker(Ls g) = span{¢g},
and ker(L g) = {0}, and the sign of 9,||¢g||* was computed.
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The following result on the Morse index of L; g was proved in [3] via
variational approach. We propose an alternative proof in the framework of
the extension theory.

Proposition 5.1. Let > 0 and w > Then

62
(i) n(L1g) =1 for w € (55, 5 27],
(i) n(Lng) = 2 for w € (425 oc).
Proof. It is easily seen that L; g is the self-adjoint extension of the sym-
metric operator Ly, defined by

d2
Linin = ———5+w —plpsP™t,  dom (L) = {v € H*(R) : v(0) = v'(0) = 0}.
(5.7)
Since 5 € L°(R), we obtain dom(L?; ) = H%*(R\ {0}). Moreover, the

operator L, is non-negative for § > 0. Indeed, it is easy to verify that for
B>0and v e H2(R\ {0}) the following identity holds

N e d‘i[«ow? = I ero 69

Using (5.8) and integrating by parts we get

(Lminv, v) / / Y )} dx + { Uzzjﬁl}t_ (5.9)

B

The integral terms in (5.9) are non—negative. Due to the conditions v(0) =
v'(0) = 0, non-integral term vanishes, and we get Ly, > 0. Note that

dom(Lyy;,) = H*(R\ {0}) = dom(Luin) ® span{v;, v} @ span{vl,, v?;},

where

eVET 45 0; 0 x> 0; i
/U;lti = { 0 T < 0 Y 1):2‘:7: = { e*i\/gx T < 0 Y %( :l:/l’) > 0
Indeed, due to the fact that pg € L*°(R), we get dom(L}; ) = dom(L*),

where
d2
L= L dom(L) = dom( Ly )-
Moreover, 14 (Lmin) = n+ (L) = 2. Since L; g is the self-adjoint extension of
the non-negative symmetric operator L,y and ni (Lyin) = 2, by Proposition
3.9, n(Ly13) < 2. Otherwise, we obtain from (5.5) that (L1 gpg,¢5) < 0,
and therefore n(L; g) > 1. Thus, we get 1 <n(L;g) < 2.
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(1) Note that Ly g is the self-adjoint extension of the following symmetric
operator

d2
L= o pioab, dom(z) = o€ 1R): V(0) =0},

Let us show that L > 0. Using (5.8) and integrating by parts,

Hv,v) / / ©5)° Y >rdw+ [v’v — vzz:é}zt. (5.10)

B

The integral terms in (5.10) are non-negative. Let us focus on the non-
integral term. Due to the conditions v'(0) = 0,v(0+) = v(0—), and formula
(5.6), we deduce

1

R e R L

pplo- Pl o- ©5(0-)
Bw 4
= —02(0) 5 (p-1- ) =0,
2(0)5 -+ V55 2
The last inequality follows from w < %%.

Using arguments numerously repeated above, we get
dom((Ly)*) = {ve H*(R\{0}): v/(0+) =2'(0—)}, and dom((L{)*) =
dom(L{) @ Span{vz} @ span{v_; }, where
eiVEe z >0, —
,Uii = { _e—i\/EZ‘ T < 07 3 %( :l:Z) > O
Then n4 (L) = 1, and by Proposition 3.9, we obtain n(L; g) < 1, and finally
n(Ll,,B) =1.
(4i) The quadratic form of the operator L; g is defined on H*(R\ {0}) by
Frg(u) = |[u']|* +wllul]* = p(lpsP~ u, u) — 5|u(0+) — u(0-)[*. Noting that
©5(0+) = ¢}3(0—) and integrating by parts, we get

+<>o
Fip(pp) = / / s% — ¢+ wels — pleslP e )dw

+ 03(04+)(25(0—) = ¥3(04)) = ¥3(0+)((0—) — ¥}3(0+))

=[5 (- )] - 1- e vst)
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The last one expression is negative due to w > ;2 Pl - Since Fy Bleg) =

(L1,spp:pp) < 0, and the functions pg, )y have dlfferent parity, we ob-

tain F1 g(spp +r¢)) = |s |2F16w(<p,3) - \TPFlﬂw(LpB) < 0. Therefore, we have
that F) g is negative on two-dimensional subspace M = span{yg, goﬁ} -

H'(R\{0}). Thus, minimax principle induces n(Ly g) > 2, and consequently
n(LLB) = 2. ]

In [3, Proposition 6.5 it was shown that 8,||¢||? is positive for any p > 1
and w € (62’ /342?}
is orbitally stable in this case.

Below, we briefly discuss how to demonstrate the orbital instability of

e“tog for p > 1 and w > ;2 2+l proved in [3, Theorem 6.11]. To do that,

we need the following key result

twt

). Thus, due to Proposition 5.1, we conclude that e™*yg

Proposition 5.2. Let w > %, B > 0, and operator El,g be defined as

2

pre) +w — pleglP !, dom(zlﬁ) = Dg s N Xodd,

leB = -

where Xoqq s the set of odd functions in L>(R). Then n(zlﬁ) =1.

Proof. It is obvious that n(L1 8) < 1in Xoqq. Indeed, ni(me) =11in
Xodd for Ly defined by (5.7). Since ¢g € dom(L, ) and (L B8P, ¢8) <0,
then we get n(L15) = 1. O

Well-posedness of the Cauchy problem in H}(R \ {0}) N X,qq associated
with equation (5.4) was shown in [3, Theorem 6.11]. Thus, we induce orbital
instability of e™pg for p > 1 and w > /;,1 ZH Indeed, when d,||¢s]> > 0,
instability follows from Proposition 5.1-(i7) and from the results by Ohta
in [45]. In the case d,||¢s]|* < 0, we can conclude by Proposition 5.2 orbital
instability of e“*¢g in H'(R \ {0}) N Xoqa which naturally induces orbital

instability in H*(R \ {0}).

5.3. The NLS-) equation on the line. The existence of standing wave
solutions u(t, z) = €™’y to equation (5.3) requires that the profile p € D, 5
satisfies the semi-linear elliptic equation

Hlp+wp — oo =0. (5.11)
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The authors in [30] (see also [32]) showed that (5.11) for w > % has a unique
positive even solution modulo rotation

1

oy () = (p—|—21)w sech? (WM + tanh™? (2\%))} T (5.12)
xz € R. For the sake of completeness, we recall the main results on the
stability of soliton solutions to (5.3). For v = 0, the orbital stability has
been extensively studied in [18,25,26,47]. Namely, e“?yy is stable in H!(R)
for any w > 0 and 1 < p < 5 (see [25]), and unstable in H!(R) for any w > 0
and p > 5 (see [18] for p > 5 and [47] for p = 5).

The case 7 > 0 was studied in [31]. In particular, the authors showed that
the standing wave €™, is stable in H!(R) for any w > % and 1 < p <5,
and if p > 5, there exists a critical w* such that ™', is stable in H!(R)
for any w € (7;,
v < 0, the standing wave e
any p > 1 (see [28,30,45]).

Linearization of the NLS-§ equation on the line gives the following two
self-adjoint linear operators

2 d2
2 +w — pph Lo Ly, = 02

with dom(L;~) = D5, j € {1,2}. The operators L; and La, are associ-
ated with the key action functional

Sy(@) = sl[/I + 511011 = s llellpis — 31e(0), ¢ € H'(R),

by (S4)"(¢y)(w,v) = (L1yur,v1) + (La2yu2,v2), where u = uy + iug and
vV = v] + V9.

The initial value problem associated to the NLS-§ equation is locally well-
posed in H'(R) (see [26, Theorem 4.6.1]) for any p > 1. Making use of the
explicit form (5.12) for ¢, the sign of 8,||¢||* was computed in [30, 31].
By variational methods, it was shown in [30] that n(L1,) = 1 in H. ;(R),
for arbitrary . Moreover, by using analytic perturbation theory and con-
tinuation argument, it was shown in [28] that n(L; ) =1 in H'(R) for any
v >0, as well as n(Lq ) = 2 for v < 0.

Below, we establish two novel proofs of the equality n(Li ) = 1 in H!(R)
for any v > 0. The first one is based on a generalization of the classical
Sturm oscillation theorem to the case of the d-interaction (see [7,19] and
Lemma 5.3 below). The second one uses the extension theory. Note also
that the equality ker(Lo ) = span{y,} and Lemma 5.3 imply n(Ls ) = 0.

w*) and unstable in H'(R) for any w > w*. In the case
Wty is unstable "almost for sure” in H(R) for

Ly = tw— gk,
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Lemma 5.3. Let V(z) be real-valued continuous function on R such that
lim V(x) =c. Let also p1,p2 € L*(R) be eigenfunctions of the operator

|z| =00

d2
LV = —@ —+ V(I’), dOHl(LV) = D%g,
corresponding to the eigenvalues A1 < Ao < ¢ respectively. Suppose that ny

and ny are the number of zeroes of w1, 2 respectively. Then ne > ny.

Proposition 5.4. Let v >0 and w > 1—2. Then n(L1) = 1.

The first proof of Proposition 5.4. Initially, we obtain from (5.11) that
(L1~®~,9) < 0, and therefore n(L;,) > 1. To evaluate n(L;,) precisely
consider the following self-adjoint operator

~ d? _ ~
Ly = T2 +w — pyj g dom(L1,) = Dy,
where ¢o = [% sech%%:c)]p+1 is the classical soliton solution for

the NLS equation. It is easily seen that ¢ € ker(zlﬁ). From Lemma 5.3
and the fact that z = 0 is the only zero of ¢, we have n(L1,) < 1. Since
wo(x) > ¢, (x) for all z € R and v > 0, we get the following inequality

(Liyv,0) > (Zlﬁv,v), for all v € D, 5.
Therefore, we get 1 < n(Lqy) < n(flﬁ) < 1. Thereby, in the case v > 0, we
get n(Lyy) = 1. O

The second proof of Proposition 5.4. Recall that L , is the self-adjoint
extension of the following symmetric operator

2
dx?
Moreover, it is known (see [5, Chapter 1.3]) that

Lo = +w—pet~t,  dom(Lg) = {v € H*R): v(0)=0}.

dom(L) = HY(R)NH2(R\ {0}) = dom(Lo) @span{e’¥il*} & span{e’v =1},

with (v/+£i) > 0. Indeed, since ¢, € L*(R), we have dom(L{) = dom(L*),
where [ = —-2 dom(L) = dom(Lg). In particular, ny(Lo) = ny (L) = 1.

T dx2»

Next, it is easy to verify that for v > 0 and v € H*(R \ {0}) the following
identity holds

—-1d

d v
o _ p—1 - _ - AV
V" +wu —pphT v o [(@7) d:v(go/v)}’ x #0. (5.13)
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Then, using (5.13) and integrating by parts, we get

(Lov,v) / / (¢5,) dm((py)] dzx + {vv 2£V}Z+.

Due to the condition v(0) = 0, non-integral term vanishes, and we get
Lo > 0 on dom(Lg). Then, using Proposition 3.9, we get n(Llw) < 1. This
finishes the proof due to the inequality (L1, ) < 0. O
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