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Abstract

Micronutrients and their metabolites are cofactors in proteins involved in lipid me-
tabolism. The present study was a subproject of the Harmonized Micronutrient
Project (ClinTrials.gov # NCT01823744). Twenty participants were randomly se-
lected from 136 children and adolescents that consumed a daily dose of 12 vitamins
and 5 minerals supplementation for 6 weeks. The 20 individuals were divided into
two pools of 10 individuals, according to their lipid profile at baseline (Pool 1 with
lower triglycerides, LDL, and VLDL). The individuals were analyzed at baseline, after
6 weeks of daily supplementation, and after 6 weeks of a washout period in rela-
tion to anthropometric, body composition, food intake, lipid profile, micronutrient
levels, and iTRAQ proteomic data. Genetic ancestry and its association with vitamin
serum levels were also determined. After supplementation, LDL levels decreased
while alpha-tocopherol and pantothenic acid levels increased in pool 2; lipid profiles
in pool 1 did not change but had higher plasma levels of pantothenic acid, pyridoxal,
and pyridoxic acid. In pool 2, expression of some proteins increased, and expression
of other ones decreased after intervention, while in pool 1, the same proteins re-
sponded inversely or did not change their levels. Plasma alpha-tocopherol and Native
American genetic ancestry explained a significant fraction of LDL plasma levels at
baseline and in response to the intervention. After intervention, changes in expres-
sion of alpha-1 antitrypsin, haptoglobin, Ig alpha-1 chain C region, plasma protease
C1 inhibitor, alpha-1-acid glycoprotein 1, fibrinogen alpha, beta, and gamma-chain in
individuals in pool 2 may be associated with levels of LDL and vitamin E. Vitamin E
and Native American genetic ancestry may also be implicated in changes of vitamin E
and LDL levels. The results of this pilot study must be validated in future studies with

larger sample size or in in vitro studies.
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1 | INTRODUCTION

Being overweight in childhood and adolescence may be associated
with established predictors of cardiovascular disease including in-
creased levels of glucose, triglycerides, total cholesterol, LDL choles-
terol, and the low levels of HDL cholesterol (Alberti, Zimmet, & Shaw,
2006; Grober-Gratz et al., 2013; Quijada et al., 2008; Rosini, Moura, &
Rosini, 2015; Tailor, Peeters, & Norat, 2010; Weiss & Kaufman, 2008).
These risk factors are sensitive to nutritional intake. Balanced, nutri-
ent-dense diets can help achieve and maintain an adequate lipid, gly-
cemic, and nutritional status profiles (Gling6r, 2014).

Micronutrients and their metabolites are cofactors in enzymes
including a subset involved in lipid metabolism (Al-Attas et al. (2014);
Kelishadi, Farajzadegan, & Bahreynian, 2014; Kelishadi et al., 2010).
Almost all recommendations for micronutrient intake are based on
the average in groups of individuals. In many cases, these recommen-
dations are based on fasting levels in (presumably) healthy people
and data for children and adolescents are sparse in many populations.
We and others proposed to evaluate metabolic responses to acute
challenges (e.g., oral glucose or mixed meal) or short-term interven-
tions (e.g., multiple micronutrient challenges) (Kaput & Morine, 2012;
Kaput et al., 2014; Mathias et al., 2018; Ommen, Greef, & Ordovas,
2014; Pellis et al., 2012; Stroeve, Wietmarschen, & Kremer, 2015) to
provide additional information about nutritional needs of individuals
rather than just at baseline status. Metabolic responses are defined
as changes in levels of not only the target metabolite or its surrogate
(e.g., vitamin or lipoprotein) but also other biochemical variables (e.g.,
plasma proteins, micro RNAs, and other metabolites). Supplementing
intake with a complex mixture of vitamins and minerals to an oth-
erwise calorie-sufficient diet improved metabolic health of Brazilian
children and adolescents (Mathias et al., 2018).

The integration of these metabolic readouts provides a more
comprehensive description of the physiological system and a more
informative description of health. The ability to analyze different
metabolites, proteins, RNA, or other blood molecules depends on
the sensitivity of technologies, which may constrain the analysis.
Isobaric Tag for relative and absolute quantitation (iTRAQ) allows for
the discovery of blood or plasma proteins altered by nutritional
intervention.

Genetic ancestry is also an important factor that can influence
metabolite requirements in individuals and also affect population-lev-
el-derived averages. We (Mathias et al., 2018) and others (Kehdy et al.,
2015; Rolim et al., 2016) have used admixture to better understand
genetic and metabolite differences of individuals in subgroups of the
Brazilian populations. We tested the relationship between an individ-
ual's genetic ancestry and micronutrient levels because the Brazilian
population is highly admixed (Amerindians, European colonizers,

African slaves, and more recent introgression due to immigration from

other world regions, e.g., Asia). Linear regressions between ancestral
components and baseline vitamin levels showed higher thiamine mo-
nophosphate (TMP) levels with higher European ancestry. Plasma vi-
tamin B12 was negatively associated with increasing Native American
ancestry. Finally, Native American ancestry was associated with
lower baseline folate levels and greater response to the intervention
(Mathias et al., (2018)). These results deserve further evaluation since
vitamin levels may be implicated in reduction of LDL (Mathias et al.,
(2018)), an important predictor of cardiovascular disease.

We hypothesized that a metabolic group with a poor lipid profile
would benefit most from micronutrient intervention and thus im-
prove metabolic health through changes in expression of some pro-
teins closely related to lipid metabolism. We also hypothesized that
some improvements on vitamins and lipid levels could be associated
with genetic ancestry.

The study aimed to: (a) evaluate the changes in proteomic pro-
file, nutritional status, and vitamin serum levels after a micronutrient
intervention in two lipid profile groups and (b) associate vitamin and
lipid levels with genetic ancestry. The results of this pilot study must
be validated in future studies with larger sample size or in vitro and
experimental designs.

2 | METHODS
2.1 | Pilot study design and Population

This study was a subproject of the Harmonized Micronutrient
Project (ClinTrials.gov # NCT01823744) that analyzed omics, bio-
chemical, and nutritional status (Mathias et al., 2018) at baseline
(time point or visit 1); after 6 weeks of daily supplementation of
vitamins and minerals (time point or visit 2); and after 6 weeks of
a washout period (time point or visit 3). Participants were healthy
children and adolescents (ages 9-13) recruited from the west side
of Ribeirdo Preto (Brazil) in two county schools and one private
school. For this specific pilot study, 20 participants were randomly
selected from a sample size of 136 children and adolescents that
were previously included following specific exclusion criteria: (a)
one or more episodes of axillary temperature higher than 37°C
within the 15 days preceding the data collection, (b) three or more
episodes of liquid stools within the 24 hr before assessment, (c)
current intake of vitamin or mineral supplement; dietary restric-
tions of any time, including weight-loss interventions, and (d)
history of chronic diseases; participation in another clinical trial
within the 4 weeks preceding the study (Mathias et al., 2018). The
20 participants were divided into two metabolic groups accord-
ing only to their lipid profiles: individuals in pool 1 (n = 10) had
lower triglycerides, LDL, and VLDL levels, and individuals in pool 2
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TABLE 1 Milk Bar Composition by tablets and comparisons with Dietary Reference Intakes (DRIs) and Upper Tolerable Intake Levels (UL)

Micronutrients 2 Milk bars 3 Milk bars
Vitamin A 534 pg 801 pg
Vitamin E 6.6 mg 9.9 mg
Folate 133.3 ug 200 ug
Vitamin B1 0.93 mg 1.4 mg
Vitamin B2 1.17 mg 1.76 mg
Niacin 12 mg 18 mg
Vitamin B6 1.33 mg 2mg
Vitamin B12 0.73 ug 1.1 pg
Vitamin D3 3.4 ug 51pug
Vitamin C 40 mg 60 mg
Biothine 13.3 pg 150 pg
Pantothenate 4 mg 6 mg
Calcium 191.3 mg 287 mg
Phosphorus 144.6 mg 217 mg
Iron 4.3 mg 6.5mg
Magnesium 83.3 mg 125 mg
Zinc 5.3mg 6 mg

DRIs 9-13 years

UL 9-13 years

Boys Girls Boys Girls

600 pg 600 pg 1,700 pg 1,700 pg
11 mg 11 mg 600 mg 600 mg
300 ug 300 pg 600 pg 600 pg
0.9 mg 0.9 mg - -

0.9 mg 0.9 mg - -

12 mg 12 mg 20 mg 20 mg
1.0 mg 1.0 mg 60 mg 60 mg
1.8 ug 1.8 ug - -

5.0 ug 5.0 ug 50 pug 50 pg

45 mg 45 mg 1,200 mg 1,200 mg
20 pg 20 pg - -

4 mg 4 mg = =

1,300 mg 1,300 mg 2,500 mg 2,500 mg
1,250 mg 1,250 mg 4,000 mg 4,000 mg
8 mg 8 mg 40 mg 40 mg
240 mg 240 mg 350 mg 350 mg

8 mg 8 mg 23 mg 23 mg

Note: Comercial name: “Nestrovit”, brand: “Nestlé”. 2 milk bars (10 g): 51.3 kcal, 4.4 g of carbohydrate, 0.5 g of protein and 3.4 g of lipid. 3 milk bars

(15 g): 77 kcal, 6.7 g of carbohydrate, 0.8 g of protein and 5.2 g of lipid.

(n = 10) had higher triglycerides, LDL, and VLDL levels at baseline.
The participants were evaluated by a pediatrician to determine
their clinical conditions and pubertal stage, according to Tanner's
criteria (Tanner, 1962) in visit 1, 2, and 3.

All participants received a daily supplement of 12 vitamins and 5
minerals in a commercial milk bar (Nestrovit®) (Table 1) for 5 days per
week for 6 weeks. This product was chosen because it (a) was palatable
(which would facilitate acceptance by participants), (b) had low amounts
of calories (3 milk bars contains 75 calories), (c) has been commercially
available in Switzerland since 1936 but never sold in Brazil, and (d) had
a known and standard nutritional composition, all of which met the ob-
jectives of this study. Six of the authors individually monitored supple-
ment intake at the beginning of each school period, and therefore, the

compliance rate for the individuals in this substudy was 100%.

2.2 | Blood collection and Laboratory analyses

Blood samples were taken after 12 hr fasting in EDTA tubes for me-
tabolomics and proteomics, in PAXgene tubes for DNA analysis, and
separately in ACD tubes for clinical biochemistry. After centrifuga-
tion, plasma was removed and 100 pl was frozen for iTRAQ prot-
eomic analysis. Clinical biochemistry, micronutrient, dietary intake,
genotype analyses, and plasma vitamin response were described
previously (Mathias et al., 2018).

For the iTRAQ proteomic analysis, 6 sample pools were made:
pool 1 at Visit 1 (P1V1), Visit 2 (P1V2), and Visit 3 (P1V3), and

pool 2 at Visit 1 (P2V1), Visit 2 (P2V2), and Visit 3 (P2V3). These 6
pooled plasma samples were dilapidated and depleted of the most
abundant plasma proteins using the Proteopep Immunoaffinity
Albumin and IgG depletion kit (Sigma®), according to manufac-
turer's protocol. Total proteins of each pool were quantified by
the method of Bradford (1976). After preparation, the samples
were submitted to enzymatic hydrolysis with trypsin. Tryptic pep-
tides from each pool were labeled with isobaric tag for relative
and absolute quantitation using the iTRAQ 8-plex kit (AB Sciex®)
according to the manufacturer's instructions. Each peptide solu-
tion was labeled at room temperature for 2 hr with one iTRAQ
reagent vial (mass tag 113 (P1V1), 114 (P1V2), 115 (P1V3), 116
(P2V1), 117(P2V2), and 118 (P2V3)). iTRAQ reagent-labeled sam-
ples were combined into one tube and then dried to complete-
ness. After lyophilization, the fractions were dissolved in 25 pl
of 0.1 M ammonium formate and 5% (v/v) acetonitrile and taken
for liquid chromatography (LC)-mass spectrometry (MS) anal-
ysis. The LC-MS was composed of an ultra-HPLC NanoAcquity
(Waters) coupled to an ESI-Q-TOF-MS instrument. MS/MS spec-
tra were extracted with Thermo Scientific Xtract software. The
generated data were analyzed using Mascot® (Matrix Science) by
Proteome Discoverer (v1.3, Thermo Scientific) software. Scaffold
Q + S (Proteome Software Inc.) was used to sum the spectral
counts.

Vitamin measurements were previously analyzed (Mathias et
al., 2018). In this study, vitamin medians (minimum-maximum) were

used for individuals in pool 1 and pool 2.

85U80|7 SUOWWIOD 3Aea.0 (el (dde aLy Aq peusenob afe sejonse VO @sn Jo sajnJ Joj A%eiqiauljuO A8 |1 UO (SUORIPUD-pUe-SWLR)AL0D A8 1M ATeJq U1 UO//:SANY) SUORIPUOD PUe Swie | 8y} 89S *[£202/0T/0T] Uo AriqiTaulluo A8|IM ‘|1Zeig - Ofred 0eS Jo AN Aq ZGET EUS}/Z00T OT/I0p/L0D A8 |im Aeiq Ul |uo//:Sdny woly pepeojumod ‘T ‘0202 ‘LLT.8Y02



COELHO-LANDELL ET AL.

% | wiLEy—

2.3 | Anthropometric and body composition data

Height and weight were measured immediately following blood col-
lection (Jelliffe, 1968). Body mass index (BMI) was used as criteria for
weight status (World Health Organization, 2007). Waist circumference
was measured at the level of the imaginary horizontal line in the middle
region between the last rib and the iliac crest (Heyward & Stolarczyk,
1996). Body composition analysis was performed by bioelectrical im-
pedance analysis, according to Lukaski, Bolonchuk, and Hall (1986) im-

mediately following the blood draw and before breakfast.

2.4 | Food intake data

The usual dietary intake was assessed by a food frequency ques-
tionnaire (FFQ) of the preceding month using a previously validated
questionnaire for Brazil children at each of the three study time points
(Fumagalli, Monteiro, & Sartorelli, 2008). The food frequency ques-
tionnaire was applied using pictures from Monteiro and Chiarello
(2007) depicting three portion sizes (small, medium, and large) of usual
Brazilian foods. DietWin Profissional® software version 2011 (Dietwin
Software de Nutricdo, 2018) was used for analyzing the nutritive value

of the foods regarding energy, carbohydrate, protein, and lipids.

2.5 | Genetic ancestry

Genetic analysis and ancestry determination were previously ana-
lyzed and reported in Mathias et al. (2018). Average ancestry data
for individuals in each pool were calculated by summing percent of
individual ancestry and dividing by 10.

2.6 | Statistical analysis

SPSS 20.0 program® was used to analyze metabolic and nutritional
data. Mann-Whitney and Student's t tests were used to compare
two pools. For longitudinal analysis, ANOVA for repeated meas-
urements was used adjusting by Bonferroni test. Chi-square test

was used to compare proportions. The intensities found in iTRAQ

Variable pool 1 (n = 10)

BMI (kg/m?) V1 20.5 (14.5-31.0)
WC (cm) V1 69.4 (55.5-107.2)
LM (% weight) V1 75.3 (62.3-79.9)
FM (% weight) V1 24.7 (20.1-37.7)

Percentage of Females (%) 70.0 30.0

pool 2 (n = 10)
23.6 (16.0-41.3)
81.4 (43.6-127.4)
68.9 (61.3-79.9)
31.0(20.1-38.7)

analyses were expressed by fold change of the pool and not of the
individual. The fold change of the pool is the ratio between the quan-
titative values of a given protein between baseline and postinter-
vention. Proteins with fold change 21.20 or <0.80 were considered
as differentially expressed proteins, as described in other studies
(Duthie, Osborne, & Foster, 2007; Moulder et al., 2010; Seshi, 2006;
Unwin et al., 2006). Simple and multiple variate linear regression ap-
proaches were used to test associations between the ancestral com-
ponents and lipid and vitamin levels in the 20 participants. Statistical

significance was considered when p < .05.

3 | RESULTS

Twenty individuals from a larger cohort were classified according to
their lipid profile in two pools (ool 1 with lower triglycerides, LDL, and
VLDL than pool 2). Tables 2-5 present variables statistically different
or close to statistical significance between pool 1 (n = 10 individuals)
and ool 2 (n = 10 individuals). pool 1 had more females (70%) and less
males compared with pool 2 (female = 30%; male = 70%), which almost
reach statistical significance (p = .074). Age was not different among
pools (pool 1 was 11.4 + 1.2 vs. 11.8 £ 0.8 years old, p = .481).

At baseline, pool 1 had lower gamma-tocopherol (a form of
vitamin E), retinol (vitamin A), and higher TMP (thiamine mono-
phosphate, a form of vitamin B1) and vitamin B12 when compared
to pool 2. At baseline, average nutrient intake, anthropometric
measurements, and body composition did not differ between the
pools (Tables 2 and 3) and also did not vary throughout the study
in individuals of either pool (p > .05 for all parameters, data not
shown). The lipid profile improved only in individuals in pool 2 with
a decrease in LDL from V1 to V2 (Table 4). Although many vita-
mins increased from V1 to V2 after intervention and decreased
from V2 to V3 (after wash out), only pantothenic acid (vitamin B5),
pyridoxal (a form of vitamin Bé), and pyridoxic acid (a catabolic
product of vitamin Bé) plasma levels in pool 1 and alpha-tocoph-
erol (a form of vitamin E) and pantothenic acid in pool 2 reached
statistical significance (Table 5).

Twenty plasma proteins were identified by proteomic analysis
that changed expression after micronutrient supplementation in at

least one of the pools, and 18 presented fold change ratio 21.20

TABLE 2 Comparison of

| .
S anthropometric measurements, body
138 composition profile, and gender at
250 baseline between the pools
188
.206
.074

Note: Results are presented as median (minimum-maximum) in visit 1 (V1). Student's t test was
applied for comparison between pools. Chi-square test was used to compare gender proportions.

Abbreviations: %, percentage; BMI, body mass index; cm, centimeter; dl, deciliter; FM, fat mass by
bioimpedance; kg, kilogram; LM, lean mass by bioimpedance; m, meter; mg, milligram; V1, visit 1;

WC, waist circumference.
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or <0.80. In addition, most of the identified proteins had differ-
ent levels between the pools after the intervention (i.e., the same
protein had increased expression in a pool and had decreased or
unchanged expression in the other pool after the supplementa-
tion) (Table 6).

TABLE 3 Comparison of energy and macronutrients intake
between pools

Variable pool 1 (n =10) pool 2 (n = 10) p value

Mean Energy 1,725.6 £ 395.0 1,852.8 +578.4 .573

(kcal)
Mean CHO (g) 235.1+£51.5 254.5+97.1 .584
Mean LIP (g) 57.6+16.2 61.7 £17.3 .593
Mean PTN (g) 66.6 +23.1 70.0 + 13.6 .692

Note: Results are presented as mean + standard deviation, according to
average of the three visits. Student's t test was applied for comparison
between pools.

Abbreviations: CHO, carbohydrates intake; FFQ, food frequency
questionnaire; g, grams; Kcal, kilocalorie; LIP, lipid intake; PTN, protein
intake.

TABLE 4 Comparison of lipid profile
between the pools and throughout the
study TC (mg/dl) V1

TC (mg/dl) V2
TC (mg/dl) V3

Mean TC (mg/dl) (V1,
V2,V3)

TG (mg/dl) V1
TG (mg/dl) V2
TG (mg/dl) V3

Mean TG (mg/dl) (V1,
V2,V3)

VLDL (mg/dl) V1
VLDL (mg/dl) V2
VLDL (mg/dl) V3

Variable

Mean VLDL (mg/dl) (V1,

V2,V3)
LDL (mg/dl) V1
LDL (mg/dl) V2
LDL (mg/dl) V3
Mean LDL (mg/dl)
HDL (mg/dl) V1
HDL (mg/dl) V2
HDL (mg/dl) V3
Mean HDL (mg/dl)

CWILEY-¥

Average genetic admixture differed between pools with a higher
percentage of Native American ancestry in pool 2 compared to a higher
percentage of ancestry from Europe in pool 1 (Table 7). African genetic
ancestry was greater in pool 2 although the difference did not reach
statistical significance. However, simple linear regression analysis ap-
plied to all subjects (n = 20) shows that genetic ancestry alone could
not explain statistically different vitamin levels at baseline (Table 8).

Multiple regression analysis was used to find associations
among metabolite levels in response to the intervention using
alpha-tocopherol and pantothenic acid (whose plasma levels
changed after consumption of micronutrients), genetic ancestry,
and sex. The small sample size in each pool (n = 10) required that
all subjects (n = 20) be included in the analysis and just statistically
significant results are presented. An increase in the percentage
of Native America genetic ancestry and differences in sex can,
together, predict 33% of alpha-tocopherol plasma-level varia-
tion in V2 (r = .64; R? = .41; adjusted R? = .33; ANOVA p = .01)
as well as predict 29% of the fold change variation for alpha-to-
copherol from visit 1 to visit 2 (r = .62; R? = .38; adjusted R? = .29;
ANOVA p = .007). Regression analysis did not find any association

pool 1 (n = 10) pool 2 (n = 10) p value
155.5(119.0-210.0) 201.0(112.0-240.0) 105
148.5 (108.0-193.0) 171.5 (119.0-202.0) 165
144.0 (119.0-212.0) 178.0 (96.0-214.0) 063
150.0 (118.0-205.0) 190.2 (109.0-208.7) .089
70.5 (34.0-100.0) 98.0(73.0-173.0) .011
60.0 (33.0-119.0) 134.5(101.0-385.0) <.001
58.5(40.0-104.0) 128.0(25.0-206.0) .063
63.3 (39.3-103.7) 133.7 (75.0-220.3) <.001
14.5 (7.0-20.0) 19.5(15.0-35.0) .011
12.0(7.0-24.0) 27.0 (20.0-77.0) .000
11.5(8.0-21.0) 26.0(5.0-41.0) .035
12.7 (8.0-21.0) 26.7 (15.7-44.0) <.001
91.0(67.0-128.0) 130.5 (62.0-179.0)* .042
85.5(59.0-112.0) 95.5(27.0-137.0) .393
83.0 (64.0-135.0) 101.5 (54.0-141.0) .052
85.5 (66.7-124.0) 114.5 (47.7-152.3) 143
46.5(33.0-67.0) 42.0(28.0-66.0) .280
51.0(39.0-77.0) 33.0(26.0-68.0) .035
47.5 (31.0-66.0) 40.0 (26.0-60.0) .218
48.5 (35.7-70.0) 38.7 (29.3-64.7) 123

Note: Results are presented as median (minimum-maximum) according to study visit. Mann-
Whitney test was applied for comparison between pools (p values < .05 are in bold). Longitudinal

analysis by pairwise comparisons adjusted for Bonferroni.

Abbreviations: dl, deciliter; HDL, HDL cholesterol; LDL, LDL cholesterol; mg, milligram; TC, total
serum cholesterol; TG, triglycerides; V1, visit 1; V2, visit 2; V3, visit 3; VLDL, VLDL cholesterol.

?Decreased from V1 to V2 (p < .05).
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TABLE 5 Statistically different vitamins between pools and throughout the study

Variable

a-tocopherol (Vit E) V1 (ug/ml)
a-tocopherol (Vit E) V2 (ug/ml)
y-tocopherol (Vit E) V1(pg/ml)
Retinol (Vit A) V1 (ug/ml)
Retinol (Vit A) V2 (ug/ml)

5-Methyl-tetrahydrofolic acid (Vit B9) Mean (nmol/L)
Thiamine monophosphate (Vit B1) V1 (nmol/L)

Nicotinamide (Vit B3) V3 (hmol/L)
Pantothenic Acid (Vit B5) V1 (nmol/L)
Pantothenic Acid (Vit B5) V2 (nmol/L)
Pantothenic Acid (Vit B5) V3 (nmol/L)
Pyridoxal (Vit B6) V1 (nmol/L)
Pyridoxal (Vit B6) V2 (nmol/L)
Pyridoxal (Vit B6) V3 (nmol/L)
Pyridoxic Acid (Vit B6) V1 (nmol/L)
Pyridoxic Acid (Vit B6) V2 (nmol/L)
Cobalamin (Vit B12) Vi(pg/ml)
Cobalamin (Vit B12) V2 (pg/ml)
Cobalamin (Vit B12) V3 (pg/ml)
Cobalamin (Vit B12) Mean (pg/ml)

pool 1 (n = 10) pool 2 (n = 10) p value
5.5(3.3-7.2) 7.0 (3.2-8.3)* 123
5.6 (3.1-7.5) 8.0(3.1-10.1)* .063
0.6 (0.3-1.2) 0.9 (0.6-1.1) .043
0.3(0.2-0.4) 0.4 (0.3-0.5) .035
0.3(0.2-0.4) 0.4 (0.3-0.6) .015
15.0(7.8-34.3) 26.4(12.7-45.3) .035
12.0(7.0-21.6) 7.3(5.0-14.0) .017
311.0 (244.0-404.0) 381.0(277.0-627.0) .007
216.0 (186.0-416.0)° 215.0(131.0-299.0) .684
411.0 (225.0-559.0)*° 402.0 (244.0-516.0)*° 912
233.5 (140.0-480.0)° 231.0 (153.0-290.0)° .684
9.6 (3.9-12.4)° 9.5(4.8-12.3) .780
13.1(9.5-19.2)*P 10.4 (6.7-19.0) .278
7.7 (5.4-14.4)° 8.3 (4.0-19.6) .684
18.3(5.0-29.1)° 17.0 (10.3-42.7) .853
29.7 (14.5-65.3)° 27.5(13.1-56.1) .579
604.0 (355.0-1,539.0) 393.0(227.0-843.0) .015
604.0 (470.0-978.0) 402.5 (144.0-1,474.0) .043
549.5(253.0-1,207.0) 373.0(294.0-538.0) .012
595.0 (368.7-1,241.3) 394.2 (274.5-850.5) .035

Note: Results are presented as median (minimum-maximum), according to study visit. Mann-Whitney test was applied for comparison between pools
(p values < .05 are in bold). Longitudinal analysis by pairwise comparisons adjusted for Bonferroni.

Increased from V1 to V2 (p < .05).
PDecreased from V2 to V3 (p < .05).

between the percentage of Native America ancestry and sex with
plasma pantothenic acid in V1, V2, or for the fold change (V2-V1).
Statistically significant associations were also not found between
the percentage of European ancestry and sex with plasma al-
pha-tocopherol or pantothenic acid in V1, V2, and for fold change
(V2-V1).

Plasma alpha-tocopherol and differences in sex in combination
also predicted 32% of LDL plasma levels variation in V1 (r = .62;
R? = .39; adjusted R? = .32; ANOVA p = .015) and 11% of LDL plasma
levels variation in V2 (r = .45; R? = .20:; adjusted R? = .11; ANOVA
p = .05) using multiple regression analysis. The fold change for al-
pha-tocopherol (V2-V1) and sex predicted 31% of fold change vari-
ation of LDL (r = .62; R? = .39; adjusted R? = .31; ANOVA p = .02).
Plasma pantothenic acid fold change and differences in sex can pre-
dict 34% of the variation in fold change for LDL (r = .64; R? = 41;
adjusted R? = .34; ANOVA p = .012).

Genetic ancestry from Native Americans and differences in sex
predicted 43% of changes in LDL plasma levels (r = .71; R? = .49;
adjusted R? = .43; ANOVA p = .006), while genetic ancestry from
Europe and differences in sex predicted 30% of the variation in
LDL plasma levels (r = .62; R? = .38; adjusted R? = .30; ANOVA
p =.02).

We tested whether pantothenic acid, alpha-tocopherol, sex,

and genetic ancestry could together predict baseline LDL and after

intervention. The fold change in plasma alpha-tocopherol, fold
change in plasma pantothenic acid, differences in sex, and the per-
centage of American and Europeans ancestry explained 39% of the
variation in LDL levels (r = .75; R? = .56; adjusted R% = .39; ANOVA
p =.04). We could not link genetic ancestry with proteomics because

the samples were pooled.

4 | DISCUSSION

iTRAQ methodology was used to identify plasma proteins altered
by a multiple micronutrient intervention. Pooled analysis was
done based on lipid profiles because of the required volume of
sample needed for this technology. Although both pools were
similar regarding age, food intake, and nutritional status, they dif-
fered in sex (although not statistically), certain plasma vitamins,
and the proteins identified in this study. Individuals in pool 1 had
lower triglyceride, LDL, VLDL, gamma-tocopherol, retinol, and
higher TMP and vitamin B12 when compared to individuals in
pool 2. After supplementation, LDL levels of individuals in pool
2 decreased and also improved plasma levels of alpha-tocopherol
and pantothenic acid. pool 1 did not change lipid profile but had
improvements in pantothenic acid, pyridoxal, and pyridoxic acid

levels. These differences could not be explained by food intake,
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TABLE 6 Expression of the proteins in pool samples* identified by iTRAQ proteomic analysis
Fold Change pool 1 Fold Change pool 2
Identified Protein Protein_ID V2/V1 V3/V2 V3/V1 V2/V1 V3/V2 V3/V1
Alpha-1-acid glycopro- A1AG1_HUMAN 1.92 0.52 1.24 0.65 1.24 1.00
tein 1
Alpha-1-antitrypsin AIAT_HUMAN 1.00 1.24 1.24 1.24 1.00 1.00
Alpha-2-HS-glycoprotein FETUA_HUMAN 1.24 0.52 0.81 0.81 1.54 1.00
Alpha-2-macroglobulin A2MG_HUMAN 0.81 1.54 1.00 1.00 1.00 1.00
Apolipoprotein A-1 APOA1_HUMAN 0.81 0.81 0.81 1.00 0.81 1.00
Apolipoprotein A-IV APOA4_HUMAN 0.65 1.54 0.96 0.96 0.81 1.00
Apolipoprotein B-100 APOB_HUMAN 1.01 1.54 1.56 0.81 1.40 1.19
Ceruloplasmin CERU_HUMAN 1.24 0.54 0.65 1.66 0.92 1.54
Complement C3 CO3_HUMAN 0.81 1.24 1.00 1.00 1.24 1.24
Complement C4-A CO4A_HUMAN(+1) 1.00 1.24 1.24 0.81 1.24 1.00
Fibrinogen alpha chain FIBA_HUMAN 1.54 0.65 1.00 0.65 1.54 1.00
Fibrinogen beta chain FIBB_LHUMAN 1.24 1.00 1.24 0.65 1.54 1.24
Fibrinogen gamma-chain FIBG_HUMAN 1.54 0.65 1.00 0.65 1.92 1.24
Haptoglobin HPT_HUMAN 0.65 1.71 1.24 1.54 0.81 1.24
Ig alpha-1 chain C region IGHA1_HUMAN 0.58 1.54 1.00 1.54 0.92 1.20
Ig mu chain C region IGHM_HUMAN 1.00 0.94 1.00 0.81 1.24 1.00
Plasma protease C1 IC1_HUMAN 1.00 1.33 1.51 1.25 0.75 1.00
inhibitor
Serotransferrin TRFE_HUMAN 0.52 1.54 1.00 1.00 0.81 1.00
Serum albumin ALBU_HUMAN 0.81 0.81 0.81 1.00 1.01 1.00
Vitamin D-binding VTDB_HUMAN 0.65 0.65 0.42 0.81 1.00 1.00

protein

Note: V1, visit 1; V2, visit 2; V3, visit 3.

*Fold change ratio = 1.20 or <0.80 are in bold and represent the differentially expressed proteins (see statistical analysis section).

TABLE 7 Comparison of genetic ancestry frequency between
pools*

Variable pool 1 (n = 10) pool 2 (n = 10) p value
African (%) 16.8 (4.8-58.6) 35.1(10.4-96.8) .06
Europe (%) 71.3 (17-89.9) 29.1 (0-69) .004
Native 7.1(0-23.7) 14 (3.1-43.8) .031

America (%)

*Participants were genetically admixed.

body composition, or nutritional status (which did not change
throughout the study).

Proteomic analysis identified twenty plasma proteins whose
levels varied between pools. Their main metabolic functions in-
cluded lipid and glucose metabolism, transport/metabolism of vi-
tamins and minerals, immune system function, blood clotting, and
acute phase reactions (Bisoendial et al., 2015; Calder et al., 2013;
Campenhout, Campenhout, & Lagrou, 2003; Carter & Worwood,
2007; Clerc et al., 2016; Dabrowska, Tarach, Wojtysiak-Duma,
& Duma, 2015; Davis, Mejia, & Lu, 2008; Engstrém, Hedblad,
& Janzon, 2007; Gomme & Bertolini, 2004; Gruys, Toussaint, &
Niewold, 2005; Hovland et al., 2015; Ix et al., 2006; Jenkins, Best,

& Klein, 2004; Kohan, Wang, & Lo, 2015; Lee et al., 2010; Luo,
Lei, & Sun, 2015; Musci, Polticelli, & Bonaccorsi di Patti, 2014;
Ortiz, Salica, & Chuluyan, 2014; Rehman, Ahsan, & Khan, 2013;
Sitar, Aydin, & Cakatay, 2013; Tesseromatis, Alevizou, & Tigka,
2011; Toonen et al., 2016; UniProt, 2016, 2017a, 2017b; Walldius
& Jungner, 2004; Wang et al., 2015; Wu & Lyons, 2011). The lev-
els of most of these proteins were altered after the micronutrient
supplementation based on the observed fold changes.

In pool 2, expression of alpha-1 antitrypsin, haptoglobin, Ig alpha-1
chain C region, and plasma protease C1 inhibitor increased. These
changes may be associated with the improvements in plasma LDL. The
above proteins have been shown to be associated with positive physi-
ological effects in lipid/glucose metabolism, micronutrients transport/
metabolism, and in the immune system (Carter & Worwood, 2007,
Davis et al., 2008; Toonen et al., 2016; UniProt, 2016, 2017a). In pool 2,
expression of alpha-1-acid glycoprotein 1 and fibrinogen alpha-, beta-,
and gamma-chains decreased in response to the intervention. Alpha-
1-acid glycoprotein 1 is a positive acute phase plasma protein (Luo et
al., 2015; Tesseromatis et al., 2011), and high fibrinogen (Gruys et al.,
2005) levels were positively associated with atherothrombotic disease
(Aleman, Walton, & Byrnes, 2014; Perl et al., 2016; Poredos$ & Jezovnik,

2015). A decrease in levels of these markers after intervention may
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Variables Gamma-tocopherol Retinol TMP

r; R?; p value*
African .21;.05; .38 .24; .06; .33 -.37; .14; 13
Europe -.27,.07; .27 -.27,.07; .28 .33;.11; .18
America .17;.03; .48 .12;.02; .62 .06; .00; .82

Abbreviation: TMP, thiamine monophosphate.

TABLE 8 Baseline vitamins statistically

viegiz different between pools and their
association with percentages of genetic

-.30;.09; .22 ancestry

.27;.07; .27

.01;.00; .96

*Simple linear regression analysis; p value according to ANOVA,; r = Pearson correlation; R? = R

Square.

benefit individuals in pool 2. Individuals in pool 1 did not show any
improvements in lipid profile, and the analyzed proteins responded in-
versely or did not change their levels.

Multiple linear regression analysis applied to all subjects (n = 20)
showed that sex and plasma alpha-tocopherol predicted 32% of LDL
plasma variation at baseline and 11% of LDL plasma levels variation
in V2. Sex and fold change in alpha-tocopherol and fold change in
pantothenic acid plasma levels explained 31% and 34% of the fold
change variation in plasma LDL levels, respectively. In addition, the
percentage of America genetic ancestry and differences in sex could
together predict 33% of alpha-tocopherol plasma levels variation in
V2, as well as 29% in fold change variation of alpha-tocopherol that
was found between visit 1 to visit 2. This is the first study showing
a possible association between American genetic ancestry and vi-
tamin E in children and adolescents. The role of vitamin E as an an-
tioxidant is well known, but it also contributes to anti-inflammatory
responses through interleukin-4, interleukin 8, TNF-a, and inhibition
of lipopolysaccharide secretion (Wu, Liu, & Ng, 2008). Moreover,
vitamin E may protect against cardiovascular disease, improve lipid
profiles, and reduce LDL oxidation (Burdeos, Nakagawa, & Kimura,
2012; Daud et al., 2013; Heng et al., 2013; Qureshi, Salser, & Parmar,
2001; Wu et al., 2008). Micronutrients, including pantothenic acid
(vitamin B5), play an important role in lipid metabolism (Al-Attas
et al., 2014; Evans et al., 2014; Hadjistavri et al., 2010; Heng et al.,
2013; Kelishadi et al., 2014, 2010), which supports the changes in
LDL metabolism in the pool 2.

Differences in sex and genetic ancestry from Americans and
from Europeans predicted 43% and 30% of fold change LDL
plasma levels variation. Others have found association between
American and Europeans genetic ancestry with LDL, even after
adjusting for interactions with vitamin E (Dumitrescu et al., 2012,
2010).

The present pilot study found that the fold change in plasma al-
pha-tocopherol, fold change in plasma pantothenic acid, differences
in sex, and the percentage of American and Europeans ancestry ex-
plained 39% of the variation in fold change for LDL, corroborating
some studies (Burdeos et al., 2012; Daud et al., 2013; Dumitrescu et
al., 2012, 2010; Evans et al., 2014; Heng et al., 2013; Qureshi et al.,
2001; Wu et al., 2008). To our knowledge, this is the first study that
found these variables explained variation in LDL plasma levels after
micronutrient supplementation.

This study has some limitations. Samples for pooling were se-

lected based on differences in lipid profiles and were few in number.

In addition, pooling eliminated the possibility of analyzing samples
individually or testing the association of vitamin levels, proteomic
data, and ancestry. These experimental choices were due to the
high cost and time for this procedure. However, the use of pooling
samples has been successfully used in several studies of proteomic
analysis (Karp & Lilley, 2009; Kaur, Rizk, & Ibrahim, 2012; Weinkauf,
Hiddemann, & Dreyling, 2006).

5 | CONCLUSIONS

Ten individuals with similar high lipid profile at baseline responded
positively (i.e., decreased LDL) to the intervention and also had
increased alpha-tocopherol and pantothenic acid levels. Changes
after the intervention in the level of alpha-, beta-, and gamma-
fibrinogen chains, haptoglobin, Ig alpha-1 chain C region, plasma
protease C1 inhibitor, alpha-2-HS-glycoprotein, alpha-1 antit-
rypsin, and alpha-1-acid glycoproteinl may be associated with
changes of plasma LDL. Many of the proteins differed inversely
between individuals in each of the pools, that is, while a protein
had increased expression in one pool, the same protein had de-
creased or unchanged expression in the other pool. These results
were consistent with the emerging awareness that individuals dif-
fer in response to the same nutritional intervention. The use of
pools allowed for the identification of proteins correlated with
changes in LDL levels using iTRAQ methodology. In addition, dif-
ferences in sex, plasma alpha-tocopherol, plasma pantothenic acid,
and genetic ancestry directly or indirectly predicted LDL plasma
levels in the total sample. The results of this pilot study must be
validated in future studies in vitro, with animal models, and in

human studies with larger sample sizes.
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