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-
RltSUM:o. Em aistema11 de controle, estamos interessados em es-
tudar equações diferenciais da forma :i: = f(z,u), onde z E lR" 
e u E JR.m; o parãmetro u é chamado controle ou entrada e z é 
chamado variável de estado. Quando /(z, u) é um polinômio em 
z e u, podemos estudar esse tipo de sistema de um ponto de vista 
algébrico diferencial. Neste trabalho apresentamos uma equivalên­
cia entre duas definições de sistemas relativamente ftat, utilizando 
a teoria de álgebra diferencial como em [Fli89} 

1. INTRODUÇÃO 

Diremos que um anel ( k, +, ·) é diferencial se existir uma operação 
( que chamaremos de derivação) ' que satisfaz as seguintes condições: 

• (a+ b)' =a'+ b'; 
• (a-b)'=a•b'+b•a'. 

Se o anel tiver estrutura de corpo, então diremos que k é um corpo 
diferencial. 

Um corpo E/ k é uma extensão diferencial se E :, k e as derivações 
em E são derivações em k. Seja E uma extensão diferencial de k 
e X e E um subconjunto qualquer. Denotaremos k{X} o anel di­
ferencial gerado por X e suas derivadas, e k(X) o corpo de frações 
diferencial gerado por k, X e as derivadas de X [Kap78]. 

Se X e U são conjuntos de variá.veis diferenciais livres e J C 
k{X,U} é um ideal primo, podemos considerar P := Q(k{X,U}/J) 
o corpo de frações do quociente do anel k{X, U} pelo ideal primo J. 
Esta é uma extensão de k. 

1 
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Além disso, F é extensão diferencial de k que contém as raízes 
dos polinômios diferenciais contidos cm J, cm particular, dos gerado­
res de J. Dessa forma, podemos fazer aplicações da teoria algébrica 
diferencial para estudar sistemas de equações diferenciais. 

Em teoria de controle, a equação de estados é, normalmente, da 
forma 

{
i, = /,(z,u) i = 1, ... ,n 
Y;=ef,;(z,u) j=l, ... ,r· 

Para ilustrar como a álgebra diferencial pode nos auxiliar no estudo 
de alguns desses sistemas, vamos considerar o conjunto de relações 
polinomiais 

{
i;.-/,(z,u) i_= 1, ... ,n 
Y; -ef,;(z,u) J = 1,, .. ,r 

que gera um ideal primo1 e fazemos a construção citada anteriormen­
te. 

Assim estudaremos algumas estruturas num anel/corpo que cont!m 
as raízes do sistema ( * ). A aplicação que estudaremos serã um estudo 
de equações da forma z = P(:c, u), onde Pé uma relação polinomial 
entre :&, u e, eventualmente, as derivadas de u. 

2. RESULTADO PRINCIPAL 

A seguir daremos uma série de definições introduzidos por Fliess 
em [Fli89] que generalizam o exemplo 1. 

Diremos que uma extensão diferencial E/ k é finitamente gerada 
se existir uma familia finita F e E tal que E = k(F). 

Definição. Um sistema de controle é uma extensão diferencial, com 
a derivação' definida em k, E/k finitamente gerada. 

Por simplicidade, diremos apenas sistema ao nos referirmos a sis­
tema de controle. 

Definição. Entrada ( u) de um sistema é uma base de transcendência 
diferencial de E/k. 

Definição. Um estado :& relativo a uma entroda ( u ), é uma base 
de transcendência algébrica de E/k(u). 

1a demonstração desse fato foge um pouco ao escopo desta seção, assim, isso serã 
feita no apêndice. 
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Exemplo 1. Considere o sistema: x = z + u então uma entrada é u 
e um estado é :e. 

Quando não houver perigo de ambigüidade, diremos apenas estado. 

Seja E/k um sistema de controle, então dado qualquer elemento 

a E E, a obedece a uma relação polinomial da seguinte forma: 

p,.(a,z,u, ... ,u(ªl) = O. 

Se z = {z1, ... ,zn} C E então cada um dos elementos :i:, de :e 
obedece alguma relação polinomial da forma 

p,(zí,:i:,u, ... ,u(a,l) = D. 

Por simplicidade, onde se lê polinômio diferencial q(:i:,u) entenda­
se polinômio diferencial q que depende das variáveis :e, u, a:, ü, ... 

Teorema 1. Se E/k é um sistema de controle e k tem caracterís­
tica zero então a dimensão do estado é finita, isto é, o número 
de elementos da base de transcendência algébrica é finito para 
qualquer entrada (u). 

Demonstração. Sejam { u1, ... , u,,.} uma entrada do sistema e :i: uma 
variável de estado. Se não existisse um polinômio diferencial tal que 

p(:i:, Ui, ... , um) = D, então qualquer derivada de :i: não satisfaria 
uma equação polinomial não nula, ou seja, { :i:} U { ui, ... , um} seria 
um conjunto diferencialmente algebricamente independente, o que 
contraria a hipótese de {u1 , ... , um} ser uma entrada do sistema E/k. 

D 

Definição. Um sistema E/k é chamado de sistemaftat se existir uma 
família y = {Y1, ... , Yn} contida em uma extensão algébrica D/ E tal 
que y é uma base de transcendência diferencial de D/k e D/k(y} é 
algébrico. 

Observe que um sistema ftat é um sistema no qual não aparecem 
as variáveis de estado. 

Definição. Dado um sistema E/k, um subsistema de E/k é uma 

extensão S, de k que está contido em E e tal que S J k seja um sistema. 

Definição ( Flatness relativo). Dado um subsistema S / k do sistema 
E/k, dizemos que E é relativamente ftat com relação a S se E/S 
for ftat. 
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Definição. Dizemos que um subconjunto Y de uma extensão E de k 
é diferencialmente algebricamente livre ou independente sobre k, se 

não existir um polinômio diferencial p não nulo com coeficientes em 

k, tal que p(Y) = O. 

Definição (Extensões Algebricamente Disjuntas). Dizemos que dois 
subsistemas Ei/k e Eh/k de um sistema E/k são diferencialmente 
algebricamente disjuntos ou diferencialmente algebricamente in­
dependentes se para L1 e L2 diferencialmente algebricamente livres 
sobre k, então 

1. Li nL2 =0; 
2. L1 u L2 é diferencialmente algebricamente livre sobre k. 

Definição (Decomposição). Dizemos que E/k é decomposto pelos 
subsistemas E 1 e E 2 se os sistemas são diferencialmente independentes 
sobre k e E é algébrico sobre k(E1, E2). 

Definição. Uma sa{da de um sistema E/k é qualquer conjunto de 
elementos de E. 

Definição. Uma saída y (y e E) de um sistema E/k é chamada 
saída flat se y for uma base de transcendência diferencial de alguma 
extensão algébrica D/ E. 

Lema 2. Sejam E/k uma extensão diferencial de corpos e M, N 
duas partes de E. São equivalentes: 

1. MUN é diferencialmente algebricamente livre sobre k e Mn 
N=0; 

2. M é diferencialmente algebricamente livre sobre k e N é 
algebricamente livre sobre k(M}; 

3. N é diferencialmente algebricamente livre sobre k e M é 
algebricamente livre sobre k(N). 

Demonstração. É suficiente demonstrar a equivalência de 1 e 2. 
(1. => 2.): M é uma parte própria de M U N (que é diferencial­

mente algebricamente livre sobre k ). Se N não fosse diferencialmen­
te algebricamente livre sobre k(M), existiria um polinômio diferen­
cial p não nulo, com coeficientes em k(M) tal que p(y) = O para 
y = {yi, ... , y,.} C N. Tirando o m.m.c. dos denominadores dos coe­
ficientes de p, obtemos um polinômio diferencial não nulo q(x, y) com 
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coeficientes em k em que x = {:z:1, ••• ,:z:,,.} e M, y e N. Portanto 
M e N não seriam algebricamente livres. 

(2. :::} 1.): Temos claramente que N n /c(M) =0 e conseqüente­
mente N n M =0. Resta mostrar que quaisquer subconjuntos fini­
tos y C N e :z: e M que são diferencialmente algebricamente livres 
sobre k, tem sua união diferencialmente algebricamente livre. Su­
pondo, por absurdo, que M U N não seja um conjunto diferencial­
mente algebricamente livre, então existiriam. :z: = {:z:1, .•. , :z:,,.} e M 
e y = {Y1, ... , y,.} C N e um polinômio diferencial P, não nulo, 
em k{:z:1, ... , Xm, Y1, ... , y,.} tal que P(:z:1 , ... , :i:,,., yi, ... , y,.) = O. 
Seja g(yi, ... , y,.) := p(:z:1, ... , :i:,,., yi, ... , y,.) um polinômio diferen-
cial em k(M){y} e a relação p(:i:1, ... , x,,., y1, ... , y,.) = O se escreve 
g(yi, ... , y,.) = O. Como N é diferencialmente algebricamente livre 
sobre k(M), os coeficientes de g(y1, ... , y,.) são nulos. Mas os coe-
ficientes de g são da forma q(:z:1 , ... , :i:,,.), ou seja, são polinômios 
diferenciais em k{M), o que mostra que M não seria diferencialmente 
algebricamente livre sobre k. 

o 

Teorema 3. Sejam E/ k um sistema e L / k um subsistema de E/ k. 
Então são equivalentes: 

1. O sistema E/k é relativamente flat com respeito ao subsis­
tema L/k; 

2. E:z:iste uma e:z:tensão algébrica D de E e um .subsistema fiat 
P/k de D/k tal que D se decompõe em relação a P e a L. 

Demonstração. ( 1. => 2.) Se E/ L é ftat , tomamos y = {Y1, ... , Ym} 
uma saída ftat em uma extensão algébrica D de E. Fazemos P = 
k(y). Então L/k e P/k são diferencialmente independentes sobre k e 
D é algébrico sobre k(P,L) = L(P). Para mostrar que y é algebrica­
mente livre sobre k, suponhamos que exista p polinômio diferencial 
tal que p(y) = O, p com coeficientes em k. Como k C L, podemos ima­
ginar que pé um polinômio com coeficientes em L, como p(y) = O, e 
y é uma base de transcendência diferencial de E/ L, temos que p = O. 

(2. => 1.) Seja y uma baJJe de transcendência diferencial de E/k 
onde E é uma extensão algébrica finita de F. Podemos supor que 
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D contém E, pois caso contrário, fazemos a extensão D(E) que con­
tinua sendo uma extensão algébrica finita sobre E. Como D se de­
compõe em relação aos sistemas F e L, isto é, D é algébrico sobre 
k(F, L} = L(F). Dessa forma, precisamos mostrar que y é uma base 
de transcendência diferencial de D/ L e que D é algébrico sobre L(y). 
Como D é algébrico sobre L(F) = k(F, L) = L{y), temos que D é 
algébrico sobre L(F) = L(y). Pelo lema anterior, temos que y é uma 
base de transcendência diferencial de D/ L. □ 

3. AP!NDICE 

Neste apêndice, mostraremos que o ideal diferencial gerado pelas 

• {X,-h(X,U) i = 1, ... ,n . . . 
relaçoes . . . _ é um ideal pnmo no anel di-

Y, - rp3(X, U) J - 1, ... , r 
ferencial k{Xi, ... , X,., Yí, ... , Yr, U1, ... , U,}. Um resultado mais 
geral é obtido em [Dio92] em que é citado um resultado encontrado 
em [Kol73}. 

3.1. Definições E Notações Gerais. Denotaremos por Rum anel 
diferencial comutativo com unidade genérico e p um elemento de 
R{y1 , ... , y,.} \ R. Seja .6. um conjunto de derivações comutativo e E> 
representa o monóide, com 1 = 1 d, gerado por .6.. 

A classe de p é o maior r tal que Yr realmente aparece em p. 
Denotaremo-lo por cl(p ). 

A ordem de p em relação a Yr é o maior j tal que y!/) que real­
mente aparece em p. Denotaremo-lo por o,.(p). Se ar = cl(p) então 
denotaremos o,.(p) simplesmente por o(p ). 

O grau de um polinômio p em relação à variável y!;) é o maior ex­
poente de y!i> que realmente aparece em p. Denotaremo-lo por d,.J(p). 
Ser = cl(p) e j = o(p) então denotaremos d,..;(p) simplesmente por 
d(p). 

O líder de pé up = y!'>, onde r = cl(p) e j = o(p). 
O inicial, Ip, de p é o coeficiente da maior potência de up. 

O separante, Sp, é o polinômio diferencial ~p. 
uu,. 

Exemplo 2. Considere em R{:i:,y} (identificamos :i:1 :=::: :i: e :i:2 := y), 
com a derivação', os seguintes polinômios p(:i:, y) = :i:<3>

2 + 5y<2>:i:3 -

7:z:9y7:i:<2>y<3>
2 

e q(:i:,y) =::: y(7)3y2:i::i:<3> -3y<2lz(3l:i:. Então temoa: 
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p q 
classe 2 2 
ordem 3 7 
líder y (3) y (7) 

inicial -7z9y7z(2) y2zz (a) 

separante -14z9y7 z(2}y(3) 3yc1? y2zz(ª) 

3.2. Ranking. Em [Kol73], Kolchin define rank (rk) no anel dife­
rencial R{yi, ... , Yn} como uma ordem em R{yi, . .. , Yn}, que deve 
satisfazer as duas seguintes condições para todo u, v E R{y1, ••• , Yn}, 
e 9 E e, 

1. rk(u) ~ rk(Bu); 
2. rk(u) ~ rk(v) ~ rk(8u) ~ rk(6v). 

Nós estamos interessados em estudar sistemas de equações diferen­

ciais com apenas uma derivação, a saber ' := :t. Dessa forma, um 

possível rank definido em R{y1 , •.• , Yn} com apenas uma derivação, 
é a aplicação R{y1, •.• , Yn} \ R ➔ N3 definida da seguinte maneira: 

R{Yt,• .. , y,.} \ R ➔ N3 
p ...+ (cl(p), o(p), d(p)) 

Observe que se invertermos as posições da classe com a ordem, na 
tripla, obtemos outro rank possível. Também podemos fazer uma 
mesclagem, em que as derivadas das variâveis y, tenham rank menor 
que o rank de Y; parai< j. 

Assim, como não existe unicidade do rank e a partir deste ponto, 
neste texto, quando se falar em rank serâ o p ...+ (cl(p),o(p),d(p)) 
exceto menção em contrãrio. 

3.3. Conjuntos Auto-Reduzidos. Consideremos dois polinômios p 
e F no conjunto R{y1, ... , y,_} \ R. Se F é livre de toda derivada 
própria de up, então F é dito parcialmente reduzido em relação a 
p. Se P é parcialmente reduzido em relação a p e deg11p F < degu,, p, 
então F é dito reduzido em relação a p. 

Dizemos que um polinômio Pé (parcialmente) reduzido em re­
lação a um conjunto A e R{yi, ... , y,.} \ R se P for (parcialmente) 
reduzido em relação aos elementos de A. 
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Dizemos que um conjunto A C R{yi, ... , Yµ} \ R é auto-reduzido 
se cada elemento Ai de A é reduzido em relação ao conjunto A\ {Aí}. 

Observação 1. Em um conjunto auto-reduzido A o líder de um po­
linômio não pode ser líder de outro polinômio de A. 

Exemplo 3. Considere em R{Xi, ... ,Xn}, com a derivada 1
1 um 

conjunto de polinômios diferenciais {Pi : i = 1, ... , n}, nos quais 
xy> não aparece em Pi para i -:J. j qualquer que seja r E N. Então o 
conjunto {Pi: i = 1, ... , n} é auto-reduzido. 

Dado um ranking para polinômios em R{yi, ... , Yr }, definimos o 
rank de um conjunto auto-reduzido de n polinômios que, por 
abuso de linguagem denotaremos por rk, como a 3n-upla formada 
pelas concatenações dos rank's dos polinômios quando colocados em 
ordem crescente. 

Podemos colocar a seguinte ordem para comparar os rank's de dois 
conjuntos auto-reduzidos: 

• Ordenamos A e B através de seus ran/c's lexicograficamente 
até min{#A, #B} e caso rk(Ai) = rk(Bi) para todo 1 ::; i ~ 
min{#A, #B},. o conjunto que tiver maior cardinalidade tem 
rank menor; 

• Caso rk(Ai) = rk(Bi) para todo 1 ~ i ~ #A = #B, então A e 
B são ditos de mesmo rank. 

Exemplo 4. Consideremos em R{:z:1, :z:2} a derivada' e os polinômios 
P = :Z:i3>, Q = :z:i2l(:z:;)3

• Então {P,Q} forma um conjunto auto­
reduzido. P é um polinômio cujo líder é :z:13>, cujo inicial é 1 e cujo 
separante é 1; Q é um polinômio cujo líder é :z:;, cujo inicial é :z:i2> e 
cujo separante de Q é 3(:z:i2>)2. O rank de {P, Q} é ( 1, 3, 1 , 2, 1, 3 ). 

----- -----7'4 M de P rAn.11 de Q 

Um conjunto A de um ideal diferencial a é chamado de conjunto 
característico se for um elemento minimal de 

{XIX C A,X é auto-reduzido e /y 1 Sy (/.apara todo Y e X}. 

3.4. O algoritmo de Redução. 

3.4.1. Diwão Euclidiana. A divisão euclidiana que introduziremos 
aqui é uma generalização da divisão euclidiana de polinômios, pois 
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pode ser usada em anéis sem inverso multiplicativo. Como resultado 
dessa divisão, obtemos um polinômio R' e um inteiro u tais que 
IqPo = RI (mod Q). Sejam P0 e Q polinômios em R[Y], com Q f O. 
entrada: Po e Q 
saída: RI eu 

i := o 
uo :=O 
enquanto (Po f O) e (degy P0 ~ degy Q) faça 

d; := degy A - degy Q 

A+1 := lqP; -lp;Y,1;Q 

Ui+l := U; + 1 
i := i + 1 

fim de laço 
R# ;;; P; 

U := U; 

Observação 2. Observemos que, em cada passo do laço, P;+l tem 
grau menor que o grau de P; em Y. Notemos também, que esse 
processo deve parar, pois a seqüência (d;) é estritamente decrescente, 
o que mostra que se P, nunca for o polinõmio nulo, o processo teanina; 
além disso, o natural u, obtido no término do processo, é o menor 
valor que podemos colocar como expoente de lq para que IQP = R 1 

(mod (Q)). 

3.4.2. Redução Parcial. Seja P um polinômio diferencial e A C 
R{Yi, ... , Yn}, Queremos encontrar um polinômio Rf e um nwne­
ro inteiro r:, tais que Rf seja parcialmente reduzido em relação a A e 
Rt ·= SAP mod (A}. 
entrada: P0, A 
saída: Rf e r:, 

i :=O 
r:10:= Q 

se ~m P; só há. variá.veis que não estão no conjunto 
{Y; 1,j é a classe de Ai} então vã para fim: 

enquanto rk(A) >= min{rk(A;)IA; E A} faça 
tJ := mµ {j t.q. P; não é reduzido em relação a A;} 

1<,<n 
O.Av :;; ã derivada de A11 tal que OA11 tem menor 

rank possível e o líder de OA11 aparece em A 
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P,+1 :== resto da divisão euclidiana de P. por OA., 
-r := inteiro obtido na divisão euclidiana de P; por A, 

O'i+i := O'i + -r 
i:= i + 1 

fim de laço 
.im: Rt := P, 

Observação 3. Em cada passo, fazemos a multiplicação de P, por um 
separante de um A; e com isso não introduzimos termos que tenham 
rank maior que o ranlc de O;uA; e, portanto, a seqüência dos indices j 
na qual P, ê reduzido em relação a A; ê estritamente decrescente. Ao 
final, obtemos um polinômio pt tal que pt ê livre de toda derivada 
própria de elementos de A, isto é, pt ê parcialmente reduzido em 
relação a A. 

3.4.3. Redução. Seja P um polinõmiQ diferencial que E parcialmente 

redµzido em relação a AC R{Yi, ... , Y,.}. Queremos encontrar um 
polinômio Rº e um número inteiro u tais que Rº seja reduzido em 
relação a A e SÃP = Rº mod [A]. 

Lema 4. SeJãm P0 um polinômio diferencial nas variáveis dife• 
renciais Y1 , ••• , Y,. e suas derivadas com coeficientes em R e A 
um conjunto contido em R{Yi, ... , Y,.}. Então P é reduzido em 
relação a A se e somente se fi:,;ado um ranking para a., 1Jariáveis 
Yij ... , Y11: 

1. rk(P) < min{rk(A;)JA; E A} ou; 
2. se em P não aparecer cl(A;) para todo A; E A. 

Demonstração. ( ~) Se P for parcialmente reduzido em relação a 
A então, ou rk(P) < min{rk(A;)JA, E A}, ou P só tem variáveis que 
não pertencem ao conjunto {Y;!j é a classe de A, para A, E A}. 
( <=) Se P for tal que rk{P) < min{rk(A,)JA; E A} então P ê redu­
zido em relação a A. Se P for tal que em P 16 aparecem variáveis 
que não pertencem ao conjunto {Y;lj é a classe de Âi para A, E A}, 
então P é reduzido parcialmente em relação a A. □ 

entrada: P0 e A 
saída: Rº eu 
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i :=O 

enquanto A não for reduzido em relação a A faça 
j := max{A1clPi não é reduzido em relação a A1c} 
i == i + 1 
Pi:= resto da divisão euclidiana de P;_1 por A; 

quando escritos em termos de uA, 

,,. := inteiro obtido na divisão euclidiana de P;_1 por A; 

<li := <li-1 + 'r 

fim de laço 

R*:=P 

Observação 4. Esse processo termina, pois j 1 > j 2 > • • • , isto é, a 
seqüência (j;) é estritamente decrescente, como de fato j. > Ji+1, pois 
a multiplicação de P;_1 por li, tem rank menor que o rank de uA,· 

Além disso, A:= I;,A-1 - A;Q; tem rank menor ou igual a de P;_ 1 

e P; é reduzido em relação a A,, A,+1, .... 

Fixemos um rank em k{y1 , ••• , y,.}. Então temos o seguinte 

Lema 5 (Ritt ). Seja A um conjunto auto-reduzido de 0-/, I:: C 

k{yi, ... , y,.}. Então são equivalentes: 

a. A é um conjunto característico de E; 
b. todo polinômio, em E, reduzido em relação a A é nulo. 

Demonstração. (b. ⇒ a.) Suponhamos que A não seja um conjunto 
característico de E, então existe um conjunto B tal que B é um 
conjunto característico de E e portanto rk(B) < rk(A). Isto significa 
que B tem mais elementos que A e rk(Ai) = rk(B;) para 1 $ i $ #A 
ou que existe um j tal que rk{Bj) < rk(A;) para algum 1 $ j $ 
min{#A, #B}. Se acontecer: B tem mais elementos que A e rk(A;) = 
rk(B;) para todo 1 $ i $ #A então Btl:A+l é reduzido em relação a 
A. Se acontecer: rk(B,) < rk(A,) para algum 1 $ i $ min{#A, #B}, 
então existe algum 1 $ i $ min{#A, #B} tal que B, é reduzido em 
relação a A. 

( a. ⇒ b.) Suponhamos que A seja um conjunto característico 
e que E contenha um polinômio não nulo F que seja reduzido em 
relação a A. Se a classe de F for maior que a de A1A, conseguimos um 
conjunto auto-reduzido de rank menor que o de A, fazendo A u {F}; 
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caso contrário, se o elemento de A que não é excedido por F é A;, 
então o conjunto {A1, .•. ,A;-1,F} tem rank menor que A. □ 

Um conjunto auto-reduzido A é dito coerente se dados a, a' E 

A e se Ua e Ua• ( os líderes de a e a') com uma menor derivada 
comum 1) = BaUa = Ba,Ua,, então Sa,Baa - SaBa,a' E (A.,) : Hf, 
onde A., é o conjunto dos polinômios diferenciais 8b em que 8 E 
e, b E A e rk(Bu&) < rk(v). Denotaremos por (A) o ideal algébri­
co gerado por A, [A] o ideal diferencial gerado por A. Se E C 
R{yi, ... , Yn} e a E R{y1, ... , Yn}, então E : an denota o conjun­
to {z E R{Y1, ... , y,.}janz E E para algum n E N} e E: a"" denota 
o conjunto LJ E : a". Observemos que se E for um ideal, E : a 00 

nEN 
também será um ideal. 

Em [Kol73], Kolchin demonstra o seguinte resultado válido para 
anéis com várias derivações. 

Lema 6 (Kolchin). Sejam Rum anel diferencial e A um subcon­
junto de R{y1 , ... , yµ} auto-reduzido, coerente. Então todo poli­
nômio em [A] : Hf reduzido em relação a A está em (A) : Hf. 

Em anéis diferenciais com apenas uma derivação, todo conjunto 
auto-reduzido é coerente. Assim, podemos tirar como corolário deste 
lema, o seguinte resultado: 

Corolário 7. Sejam R um anel diferencial, com a derivação ' e 
A C R{Y1, ... , yµ} um conjunto auto-reduzido. Então todo poli­
nômio em (A] : Hf reduzido em relação a A está em (A) : Hf. 

Como o corolário exige que o anel diferencial tenha apenas uma 
derivação - a demonstração a partir do lema (6) é imediata, porém 
por exigir mais sobre o anel diferencial, tal demonstração pode ser 
simplificada ao ponto que o mesmo argumento que será. usado para 
demonstrar o lema (8) pode ser aplicado. 

Observação 5. Se A é um conjunto auto-reduzido, então IA e SA são 
reduzidos em relação a A. 

Definição. Um conjunto auto-reduzido é dito ortonômico ae 11e11S 

elementos tem grau 1 em seus líderes. 
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Observação 6. Se A é um conjunto auto-reduzido ortonômico, então 

o separante de Ai E A e o inicial de Ai E A coincidem. 

Lema 8 (Diop, S.). Se A é um conjunto auto-reduzido, coerente 
e ortonlSmico contido em k{Yi, ... , Yµ} então 

a. se P E {A] : IÃ e P é reduzido em relação a A então P = O. 
b. [A]: IÃ é primo com conjunto característico A. 

Demonstração. a. Sejam A1,A2,--· ,Am com rk(Ai) < rk(A2) < 
.. · < rk(Am) os elementos de A. Suponhamos que exista O -f: P E 
[A] : IÃ que seja reduzido em relação a A. Pelo corolário 7, P E (A) : 
IÃ então podemos escrever: 

t 

{1) 11P = LP,A, + Pa, 
i=l 

para algum n E N e· P0 = O. Como P 1- O, então existe pelo menos 
um P; -::/- O. Suponhamos, por absurdo, que s seja o menor valor que 
t pode assumir em (1) tal que, para algum n E N, Pa seja livre de 
u •. Escrevendo P; = If + u,Qi para 1 S i S s, onde Qi é polinômio, 
A,= I,u. + R,, R. livre deu., temos: 

• •-1 

11P = (P~I. + L Q,Ai)u. + (Po + P~R. + LP;ºA,) 
i=l 

livre d.eu, 

Impondo que o polinômio que multiplica u, seja O, pois TÃ,P é livre 
•-1 

de u., temos: f1P = P0 + P~ R. + L Pf A,. 
i=l 

Não sabemos, a priori, se P0 + ~R. é ou não livre de u._1 . 

Porém, podemos, eventualmente, aumentar o valor de n para que 
possamos fazer a divisão de P0 + ~ R. por A,_1 e dessa maneira, 
observando que na divisão, não introduzimos elementos maiores que 

- •-1 - -
u,_1 , então podemos re-escrever 11P como Pa + E P,A, com Po livre 

i=l 
de u,_1 , o que contraria a minimalidade de s. 

b. Pelo lema 5, temos que A é um conjunto característico de 
[A] : I'~. Sejam p• e q• os reduzidos de P e Q respectivamente 
com relação a A. Então, do fato de A ser auto-reduzido e orlonômico 
temos que todo polinômio reduzido em relação a A é livre de qualquer 
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líder dos elementos de A. Assim, o produto de reduzidos é reduzido e 
pela parle a. do lema, p•q• = O. Logo, lembrando que iA e S.it( = 1.it) 
não estão em [A] : J'f pois A é um conjunto característico, temos que 
P ou Q está em [A] : I'f, o que prova que [A] : l'f é primo. D 

3.4.4. Aplicação. Agora trabalharemos com o ideal diferencial gera-

.. {Xi-/i(X,U) i = l, ... ,n . 
do pelas relações polinomiéllS . . . _ . no anel di-

Y, - 4,3 (X, U) J -1, ... ,J 
ferencial R{Xi, ... , Xn, Yi, ... , Y;, U1 , ... , U,}. Mostraremos que esse 
ideal diferencial é primo. 

Definamos o seguinte rank para as variáveis diferenciais 
rk(X1) < rk(X2) < · · · < rk(Xn) < rk(Yi) < · · · < rk(Y,.) < 

rk(U1) < · · · < rk(U1 ) < rk(UD < · · · < rk(U!) < rk(Un < · · · < 
rk(U!') < todas as derivadas de elementos de U 

< rk(XD < rk(X~) < · · · rk(X~) < rk(Y{) < · · · < rk(Y:) < · · · . 
Assim, {Xi - h(X, U), Y; - 4';(X, U) : i = 1, ... , n e j = 1, ... , r} 

é auto-reduzido. Como só temos uma derivação a ser considerada ( a 

saber :t)' claramente esse conjunto é coerente e ortonOmico. Logo o 
ideal diferencial 

[X; -h(X,U), Y, -1/J;(X,U): i = 1, ... ,n e j = 1, ... ,m]: 100 = 
= (X; -f;(X,U), Y, -1/J;(X,U): i = 1, ... ,n e j = 1, ... ,m] 

é um ideal primo. 
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