
Estudo do efeito do tamanho de partículas de ouro nas reações de redução do oxigênio para a eletrogeração de peróxido de hidrogênio

V Figuerôa^{1*}, J C Lourenço², T P Pôrto¹, M R V Lanza², R S Rocha^{1*}

¹*Lorena School of Engineering - USP, Campinho Municipal Road, Campinho, Lorena, São Paulo, Brazil*

²*São Carlos Institute of Chemistry, USP, Trabalhador São Carlense Avenue 400, São Carlos, SP, Brazil*

*e-mail: viniciusfigueroa@usp.br, robson.rocha@usp.br

Hydrogen peroxide (H_2O_2) is one of the most widely used chemicals globally due to its environmentally friendly oxidant profile. The most common method to produce H_2O_2 , the reduction of anthraquinone, presents several safety and environmental risks. In contrast, electrochemical approaches stand out for offering a safer and greener route for H_2O_2 production[1]. Although catalysts based on noble metals (e.g., Pt, Pd, Au) are thermodynamically favorable for this reaction in acidic media, their high cost makes large-scale application unfeasible. To overcome this limitation, the single-atom catalyst approach is employed, which maximizes catalyst efficiency while reducing the amount of noble metal and maintaining high activity[2]. Therefore, the objective of this work was to synthesize and evaluate gold single-atom catalysts supported on carbon (XE2B) and nitrogen-doped carbon (N-XE2B) matrices for H_2O_2 electrogeneration. The synthesis was performed via a wet impregnation method using a gold(III) precursor on the supports. Results from rotating ring-disk electrode (RRDE) analysis demonstrated that the modified material (Au/XE2B) exhibited higher catalytic activity, reaching disk and ring currents of -2.20 and 1.48 mA cm⁻², respectively, superior to those of pure carbon (XE2B) (-1.88 mA and 1.37 mA). Furthermore, a significant catalytic gain was observed, with the reaction onset potential showing a 70 mV positive shift from -0.12 V (XE2B) to -0.05 V (Au/XE2B). The selectivity towards H_2O_2 production also increased, reaching 93% for the modified material at the onset potential, compared to 82% for the pure carbon.

Acknowledgments:

The research is funded by the São Paulo Research Foundation(FAPESP – grants no. #2023/04230-2, #2021/12053-8, #2022/12895-1, #2024/20403-7, 2023/12207-0)

References:

- [1]H. Malik, M.A. Nadeem, Unlocking the two electron ORR: Synergistic roles of MOFs and COFs in mechanistic insights and performance optimization, *Coordination Chemistry Reviews*, Volume 544 (2025)
- [2]Guilherme V. Fortunato, Daniele C. Jung, Benchmarking the Stability of State-of-the-Art H_2O_2 Electrocatalysts under Acidic Conditions, *ACS Catalysis*, Volume15 (2025)