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The emergence of Efimov levels in a three-body system is investigated near the unitarity limit character-
ized by a resonant two-body interaction. No direct evidence of Efimov levels is seen in the three-nucleon 
system since the triton is the only physical bound state. We provide a model-independent analysis of 
nucleon–deuteron scattering at low energy by formulating a consistent effective field theory. We show 
that virtual states evolve into shallow bound states, which emerge as excited triton levels as we drive the 
system towards unitarity. Even though we consider this specific system, our results for the emergence of 
the Efimov levels are universal.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

A distinctive feature of three-body physics is the Efimov ef-
fect [1–4]. In the presence of resonant two-body scattering, the 
three-body system supports a tower of bound states whose bind-
ing energies display geometric scaling. The number of three-body 
bound states was predicted to scale as ln(a0/r0), where a0 is the 
resonating two-body s-wave scattering length, and r0 � a0 is the 
range of the interaction. Experimental verification through the de-
tection of excited states was provided three decades later in cold-
atom experiments [5–9], where the ratio a0/r0 could be increased 
by varying magnetic fields near a Feshbach resonance.

Recently, the first excited Efimov state was identified [10] for 
atomic 4He, where a0/r0 is sufficiently large even in the absence 
of external magnetic fields. In complex nuclei the ratio a0/r0 is 
often unknown, but in some cases it might be large enough to 
accommodate an excited state: halo nuclei such as 11Li, 22C, or 
even as heavy as 62Ca, where two neutrons are weakly bound to 
a tight nuclear core, provide opportunities to observe the Efimov 
effect [11–13].

Neutron–deuteron (nd) at low energy is another system that 
could provide evidence of Efimov physics. Low-energy scattering 
is dominated by s waves with spins S = 3/2 (quartet) and S = 1/2
(doublet). In the quartet channel, where spins are aligned, the Pauli 
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exclusion principle prevents a three-nucleon (3N) bound state. In 
the doublet channel, the strong nuclear force leads to an attractive 
interaction that supports a 3N bound state, the triton (3H) with 
a binding energy B3 � 8.48 MeV. The next deeper Efimov state 
would appear only at ∼ 4 GeV, beyond the regime where a de-
scription in terms of nucleons makes sense. Here we search for a 
remnant of the next shallower Efimov state.

The low-energy phase shift in the doublet channel was ana-
lyzed by van Oers and Seagrave [14], who suggested a modified 
effective range expansion (ERE) to describe the data below the 
deuteron breakup momentum. The presence of a virtual state with 
binding energy � 0.515 MeV was inferred [15]. Adhikari et al. [16]
showed in a separable potential model that this virtual state is re-
lated to the Efimov spectrum. A similar connection for 20C [17,18]
and for atomic systems [19] was investigated within a zero-range 
model.

In contrast, we use the effective field theory (EFT) formalism to 
provide a model-independent analysis of the nd system at low en-
ergies. All interactions allowed by symmetries are constructed with 
the relevant low-energy degrees of freedom, without modeling the 
high-energy physics. A systematic scheme for calculations is for-
mulated by expressing observables as an expansion in the small 
ratio p/�b , where p is a typical low momentum scale associated 
with the processes of interest and �b is a high momentum scale 
that marks the breakdown of the EFT.

In the so-called pionless EFT ( /πEFT) the relevant degrees of 
freedom are nonrelativistic nucleons (and other light particles such 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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as photons, electrons and neutrinos) with �b ∼ mπ , the pion mass, 
associated with the pion physics that is not included explicitly. 
/πEFT has been very successful in describing two- and three-
nucleon systems — see for example Refs. [20–27] — when the 
typical momentum is taken to be p ∼ γ ∼ a−1

t , with γ � 45.7 MeV 
the deuteron binding momentum and at � 5.4 fm the scattering 
length in the two-nucleon (2N) 3 S1 channel.

EFT enables us to study nd scattering in the limit at → ∞, 
where the 2N scattering amplitude is only bounded by unitarity. 
We first fit the parameters of /πEFT to reproduce the relevant 2N 
and 3N experimental data. /πEFT is then treated as the underly-
ing theory that is used to generate artificial “data” at increasingly 
large values of at . We develop a new low-energy EFT, which we 
refer to as halo EFT, to provide a model-independent analysis of 
the 3N phase shift at low momentum generated from /πEFT. This 
halo EFT, which treats the deuteron as an “elementary” particle 
and is thus applicable only below the deuteron breakup, is mod-
eled after other halo EFTs where different clusters of nucleons are 
treated as relevant degrees of freedom [28,29]. Here, the deuteron 
is the core and the neutron forms the “halo” around it, consisting 
of shallow virtual and bound states. The halo EFT provides a theo-
retical basis for the modified ERE obtained empirically by van Oers 
and Seagrave, and allows us to track the virtual state at unphysical 
scattering lengths. As we drive /πEFT towards the unitarity limit, 
the binding energy of the virtual state decreases till it becomes 
the first excited bound state of the triton, thus demonstrating its 
Efimov character. Higher Efimov states appear in the same way if 
the scattering lengths are increased further. Although we focus on 
the 3N system, our framework could be applied to study the emer-
gence of Efimov levels in other systems as well.

2. Pionless EFT

The doublet nd scattering amplitude was first calculated at 
leading order (LO) in /πEFT in Ref. [22]. It receives contribu-
tions from the LO 2N interactions, which consist of a single non-
derivative contact operator in each 2N s wave (3 S1 and 1 S0) with 
strength determined in terms of the respective scattering length. In 
addition, there is a contribution from a 3N non-derivative contact 
interaction, which is needed to render the amplitude well-defined. 
Next-to-leading-order (NLO) corrections introduce a two-derivative 
interaction in each 2N s wave, which can be constrained by the 
corresponding effective range. No new 3N interaction contributes 
at this order [22,24]. A momentum-dependent 3N interaction en-
ters at NNLO [25]. To this order, the EFT expansion has been shown 
to be convergent [26], and to reproduce both experimental data 
(when available) and results from sophisticated phenomenological 
potentials.

The unitarity limit corresponds not only to arbitrarily large 2N 
scattering lengths but also to vanishing 2N effective ranges and 
higher ERE parameters. This removes higher-order corrections in 
the 2N interaction. Higher-order 3N forces are less important for 
3N states shallower than the triton. A LO calculation is sufficient 
to explore the connection to the Efimov spectrum. The LO nd
T -matrix Tt(p) = 8πγt At(p, p)/mN is obtained from two coupled 
integral equations [22]:

At(k, p) = 1

4

[
K(k, p) + h0(λ)

]

+
λ∫

0

dqq2

2π
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]
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2mN
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dqq2

2π

{[
3K(k,q) + h0(λ)

]
Dt(E − q2

2mN
;q)At(q, p)

+
[
K(k,q) + h0(λ)

]
Ds(E − q2

2mN
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,

K(k,q) = 1

kq
ln

(
k2 + kq + q2 − mN E − i0+

k2 − kq + q2 − mN E − i0+

)
, (1)

where E = 3p2/(4mN ) − γ 2
t /mN is the total center-of-mass en-

ergy and mN � 938.9 MeV is the isospin-averaged nucleon mass. 
The intermediate 2N contribution is contained in the two-point 
Green’s function Dη(E; p) = (−γη + √−mN E + p2/4 − i0+)−1, 
where η = t (s) for the 3 S1 (1 S0) channel. In the 3 S1 channel we 
use the deuteron binding momentum to set γt = gtγ , and in the 
1 S0 channel, where no bound state exists, we use the scattering 
length as � −23.714 fm to fix γs = gs/as , which is consistent with 
the LO power counting [20,30]. The physical point corresponds 
to gt = gs = 1. The 3N amplitudes At,s do not converge when 
the regulator is removed, λ → ∞, unless we fix the 3N parame-
ter h0(λ) to guarantee that one 3N observable is made regulator 
independent. For any given cutoff λ, we tune h0 such that we 
reproduce the doublet scattering length a3 = 0.65 fm [31] for 
gt = gs = 1. This determines the independent parameter �� ap-
pearing in the log-periodic 3N force [22].

The doublet phase shift is obtained from p cot δ = ip + 2π/

[μTt(p)], with μ ≈ 2mN/3 the nd reduced mass. In Fig. 1, we show 
the phase shift calculated from the three-body integral equations 
in Eq. (1) at the physical point and a few results as we approach 
the unitarity limit. The only physical parameters that enter the mi-
croscopic calculation using /πEFT are gt , gs , and �� . We approach 
unitarity taking gs = 0 and making the deuteron arbitrarily shal-
low, gt → 0, while keeping �� fixed.

For short-ranged interactions, p cot δ is an analytic function 
of p2. However, p cot δ rises rapidly at low momenta — see 
panel (a) of Fig. 1 — and for gt = gs = 1 a simple Taylor series 
expansion around p = 0 gives a poor description even at relatively 
small momenta p ∼ 10 MeV. Instead, the modified ERE [14]

p cot δ = −1/a + rp2/2 + sp4/4 + · · ·
1 + p2/p2

0

= − R

1 + p2/p2
0

− A + Bp2 + · · · , (2)

works remarkably well up to about the deuteron breakup momen-
tum 2γ /

√
3 � 53 MeV. While bound and virtual states correspond 

to poles of the T -matrix Tt(p) at imaginary momenta p = iκ j , 
there is also a pole in p cot δ at p2 = −p2

0 that corresponds to a 
zero of Tt(p). When we fit the modified ERE to the LO phase shift 
in panel (a) of Fig. 1, we get the fit parameters a ≈ 0.65 fm = a3, 
r ≈ −141 fm, s ≈ 62 fm3, and p0 ≈ 16.1 MeV, which translate into 
a shallow virtual state at κ1 ≈ −26.8 MeV with a binding energy 
≈ 0.574 MeV. Naively one might expect all the scattering parame-
ters to scale with some power of the range of nuclear interaction 
∼ m−1

π � 1.4 fm. The fitted parameters p−1
0 , a−1 and r are un-

usually large compared to the naive expectation. The standard ERE 
holds only for p � p0, with large inverse scattering length a−1, 
effective range r + 2(ap2)−1, etc.
0
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Fig. 1. Phase shift: p cot δ as function of the momentum p, both in units of the 
deuteron binding momentum γt . The (blue) dots and (red) squares are numerical 
results from solving Eq. (1) for several values of gt , gs as indicated, once the 3N 
parameter �� is determined by imposing a3 = 0.65 fm for gt = gs = 1. The (black) 
dashed curves are modified ERE fits to the data over a small momentum range in-
dicated as (red) squares. We expect the modified ERE fits to describe the numerical 
results for p/γt � 2/

√
3. (For interpretation of the colors in the figure(s), the reader 

is referred to the web version of this article.)

3. Halo EFT and modified ERE

We now formulate the halo EFT that describes nd scattering 
below the deuteron breakup momentum 2γt/

√
3, and provides a 

justification for Eq. (2). In this theory the deuteron is treated as 
a fundamental particle, and so the breakup momentum sets the 
breakdown scale �b ∼ γt . A shallow s-wave pole by itself can be 
accounted for in the standard ERE by a large scattering length 
such as in the 2N 1 S0 and 3 S1 channels, requiring a fine-tuned 
interaction to be treated nonpertubatively at LO [20,30]. A shallow 
amplitude zero by itself requires another fine-tuning that leads to 
a perturbative amplitude with a large effective range and a small 
scattering length [30]. Here we identify two momentum scales 
associated with the presence of both zero and virtual pole, re-
spectively |p0| ∼ Q and |κ1| ∼ ℵ. The parameters a, r and p0 are 
fine-tuned, and we require three fine-tuned couplings to reproduce 
the desired modified ERE. The halo EFT is conveniently written us-
ing two auxiliary fields as

L =n†

(
i∂0 + ∇2

2mN

)
n + �d † ·

(
i∂0 + ∇2

2md

)
�d

+
2∑

j=1

ψ( j)†
[
� j + c j

(
i∂0 + ∇2

2M

)]
ψ( j)

+
√

2π

3μ

[(
ψ(1)† + ψ(2)†

)
�σ · n�d + H. c.

]
+ · · · . (3)
Here, n is the spin-doublet neutron field with mass mN , �d is the 
spin-triplet deuteron field with mass md ≈ 2mN , and ψ( j) with 
j = 1, 2 are two auxiliary spin-1/2 fields with total mass M =
mN + md ≈ 3mN and residual masses � j . �σ are Pauli matrices that 
act on the (suppressed) spinor indices of n and ψ( j) . We chose to 
fix the couplings of both auxiliary fields to neutron and deuteron 
in terms of the reduced mass μ, transferring their strength to pa-
rameters c j [32]. In the power counting discussed below, c2 � c1
and the corresponding interaction appears at subleading orders to-
gether with the interactions lumped into the “· · · ”. Integrating out 
ψ(2) one recovers the Lagrangian from Ref. [33], but the scaling of 
parameters is different here. Our approach inspired a reformulation 
of chiral EFT in the 2N 1 S0 channel where not only the shallow vir-
tual state but also the amplitude zero is taken into account [34].

A straightforward calculation of the nd scattering amplitude 
Tt(p) at LO in the halo EFT, where the contribution from the loops 
is resummed, gives

iTt(p) = 2π i

μ

[
−

(
1

�1+c1 p2/(2μ)
+ 1

�2

)−1

− L(p)

]−1

. (4)

The loop contribution,

L(p) = 4π

∫
d3q

(2π)3

1

q2 − p2 − i0+ = ip , (5)

was, for simplicity, evaluated in dimensional regularization using 
minimal subtraction. The final result is independent of the regu-
larization method. We obtain the modified ERE (2) from Eq. (4)
with

p2
0 =2μ

c1
(�1 + �2) ,

1

a
=A + R = �1�2

�1 + �2
,

− r

2
= A

p2
0

= c1

2μ

�2

�1 + �2
, (6)

the shape-like parameter s ∝ B appearing at higher order.

4. Analysis

To develop a consistent power counting for the halo EFT, 
we start with the analytic structure of the T -matrix Tt(p). The 
T -matrix poles here are the roots of

p cot δ − ip =−1/a + rp2/2

1 + p2/p2
0

− ip

= − i
(p − iκ1)(p − iκ2)(p − iκ3)

p2 + p2
0

, (7)

with

κ1 + κ2 + κ3 = − r

2
p2

0 = A ,

κ1κ2 + κ2κ3 + κ3κ1 = − p2
0 , κ1κ2κ3 = − p2

0

a
. (8)

Using the parameters a, r, p0 fitted earlier for gt = gs = 1, the 
three roots iκ1 ≈ −27i MeV, iκ2 ≈ 35i MeV, and iκ3 ≈ 83i MeV 
are imaginary. As we move towards unitarity (gs = 0, gt → 0), we 
refit the /πEFT results with Eq. (7), as shown in Fig. 1. The roots 
remain imaginary. The third root is always deeper than the break-
down scale �b ∼ γt of the halo EFT, and is, therefore, not relevant. 
We have checked that the position of the shallow poles change by 
at most a few percent when the shape-like parameter s (or B) is 
included, in agreement with the power counting.
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Fig. 2. Normalizations |N j |2 for the imaginary roots iκ1 (red solid curve) and iκ2

(blue dashed curve). The arrows indicate the evolution of the states as we make 
gt smaller. A few gt values are indicated as (black) circles on the κ1 curve and as 
(black) squares on the κ2 curve. The breakdown scale �b gets smaller as gt → 0 and 
the redundant pole moves beyond the range of the halo EFT near the emergence of 
the excited state.

Near the poles we can write the S-matrix St(p) = exp[i2δ(p)] ≈∑
j R j/(p − iκ j) + f (p), where R j are the residues at the poles, 

and f (p) some finite piece. We provide an interpretation of the 
shallower roots based on the residues R1,2. The wavefunction nor-
malizations for the two shallowest poles are

|N1|2 = iR1 = 2κ1(κ
2
1 − p2

0)

(κ1 − κ2)(κ1 − κ3)
,

|N2|2 = iR2 = 2κ2(κ
2
2 − p2

0)

(κ2 − κ1)(κ2 − κ3)
, (9)

and their evolution towards unitarity is shown in Fig. 2. For a 
bound state, the normalization must be non-negative. At the phys-
ical point gt = gs = 1, the shallowest root iκ1 with κ1 < 0 is a 
pole on the second Riemann energy sheet with a negative normal-
ization iR1 < 0, and thus describes the virtual state that has been 
identified in the past [15]. The second root iκ2 is a pole on the 
first energy sheet since κ2 > 0. However, its normalization is also 
negative, iR2 < 0 — it is a “redundant pole” [35,36] and does not 
describe a physical state. As we take the limit gt → 0 at gs = 0, 
the second root iκ2 remains a redundant pole and the first root 
iκ1 evolves from a virtual to a real bound state.

In devising the power counting for the halo EFT, the three 
physical scales identified earlier, |p0| ∼ Q , |κ1| ∼ ℵ and �b ∼ γt , 
have to be taken into account. The scale Q starts as the small-
est, gets smaller in size and then grows. When |p0| grows beyond 
the breakdown scale, |p0| � �b , it stops being relevant in halo EFT. 
We find it convenient to separate the evolution into three intervals 
of gt to account for different relative sizes of Q . Moreover, as the 
modified ERE is most easily expressed in terms of the scattering 
parameters a, r, p0 and s, we use these to write the power count-
ing for the renormalized halo EFT couplings c1, c2, �1 and �2.

Initially, for 1 � gt � 0.55, we have Q � ℵ � �b . The sizes of 
|κ1| and |κ2| are similar and we also identify |κ2| ∼ ℵ to avoid in-
troducing another scale. As we make gt smaller, we find that κ3
gets deeper while κ1 gets shallower, so we take κ3 ∼ A ∼ �2

b/ℵ. 
These roots arise if the halo EFT couplings are large, �1,2 ∼ �2

b/ℵ
and c1/(2μ) ∼ �2

b/ℵ3, but with a cancellation in �1 + �2 ∼
�2

b Q 2/ℵ3 � �1,2. From Eq. (6) we see that p0 comes out shal-
low as assumed, while 1/a ∼ R ∼ ℵ�2

b/Q 2 
 A and r ∼ �2
b/(ℵQ 2)

are large. For p � ℵ, Eq. (7) is dominated by the a term con-
taining the amplitude zero, and for p � Q the effective range is 
∼ 2(ap2

0)
−1. In contrast, for p � ℵ the r term and the unitarity 

term (−ip) become comparable to the 1/a contribution and gen-
erate the T -matrix poles. If we take c2/(2μ) ∼ Q 2/�3
b � c1/(2μ), 

then the shape-like parameter s = −(c1c2/μ
2)/(�1 + �2) ∼ 1/�3

b , 
which is consistent with its fit value at gt = 1. Its contribution for 
p ∼ ℵ is suppressed by a factor of sp2/r ∼ Q 2ℵ3/�5

b � 1 com-
pared to the r and a contributions. Other modified ERE parameters 
appear at even higher orders. The halo EFT with the power count-
ing we propose leads to a model-independent derivation of the 
modified ERE, and describes the data accurately.

As we make gt smaller, p2
0 gets smaller and changes sign such 

that p cot δ develops a pole at real momentum around gt = 0.9, 
analogous to the Ramsauer–Townsend effect [37,38]. This is shown 
in panel (b) of Fig. 1. The halo EFT (and the modified ERE) still 
gives a good description of the phase shift through the pole in 
p cot δ even though the EFT couplings are fitted at momentum be-
low the pole, as indicated in the figure. As gt gets smaller, |p2

0|
gets larger and we look at the second interval below.

For 0.55 � gt � 0.35, |p0| continues to grow, approaching and 
exceeding �b . The first root is a progressively shallower virtual 
state with κ1 < 0 and iR1 < 0, while the second root stays a re-
dundant pole with κ2 > 0 and iR2 < 0. Making Q → �b in the 
relations of the first interval leads to a ∼ r ∼ 1/ℵ. Numerically, this 
works well. It can be accomplished with �1 ∼ ℵ, �2 ∼ �2

b/ℵ 

�1, and c1/(2μ) ∼ 1/ℵ. From Eq. (4), one sees that the second 
auxiliary field contribution is suppressed by ℵ2/�2

b at small mo-
menta p ∼ ℵ, and the modified ERE increasingly looks similar to 
the traditional ERE written as a Taylor series around p = 0. The 
situation is depicted in panel (c) in Fig. 1. With c2/(2μ) ∼ 1/�b �
c1/(2μ), the shape-like parameter contribution continues to be 
suppressed by sp2/r ∼ ℵ3/�3

b � 1.
In the third interval, 0.35 � gt � 0.1, |p0| ∼ Q becomes very 

large. The fits to /πEFT scattering phase shift are not sensitive to 
p0 which decouples from the theory. The S-matrix now has only 
two poles constrained by κ1 +κ2 = 2/r and κ1κ2 = 2/(ar), and two 
residues

|N1|2 = iR1 = − 4

r

κ1

κ1 − κ2
,

|N2|2 = iR2 = − 4

r

κ2

κ2 − κ1
. (10)

The first root continues to get smaller, and at around gt � 0.3 it 
vanishes. Then it moves to the first Riemann energy sheet as a real 
bound state with a positive normalization iR1 > 0. The second root 
remains a redundant pole, and eventually moves slightly beyond 
the breakdown scale �b . Near the emergence of the shallow bound 
state, the phase shift is characterized by a large scattering length 
and a small effective range, as seen in panel (d) of Fig. 1. Qual-
itatively, the phase shift goes from something similar to the 1 S0
2N system with a shallow virtual state to the 3 S1 2N channel with 
a shallow bound state. The scattering length scales as |a| ∼ 1/ℵ
whereas the effective range r remains fixed at some other small 
momentum scale set by the second root, κ2 ∼ ℵ′ ∼ 1/r 
 ℵ. We 
did not explore how ℵ′ scales with variation of the nd input pa-
rameter a3 (through ��) in /πEFT. The halo EFT couplings scale 
as �1 ∼ ℵ, c1/(2μ) ∼ 1/ℵ′ , and �2 → ∞. The second auxiliary 
field is integrated out of the low-momentum theory, and we re-
cover the traditional ERE. The shape-parameter contribution can 
be included in the single auxiliary-field formulation as a higher-
order operator. With a scaling s ∼ 1/�3

b , the shape parameter is 
suppressed by asp4 ∼ ℵ3/�3

b compared to the LO scattering-length 
contribution, whereas the effective-range correction is suppressed 
by arp2 ∼ ℵ/ℵ′ .

The subsequent evolution of the new bound state is shown in 
Fig. 3, the “Efimov plot” calculated directly in /πEFT. The physi-
cal triton at gt = gs = 1 is seen below the diagonal line on the 
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Fig. 3. Efimov states: the negative of the three-nucleon binding momentum 
(−√

4mN B3/3) is plotted as a function of the deuteron binding momentum (γt ), 
both in MeV. The diagonal dashed line in the fourth quadrant shows the threshold 
for breakup into neutron and deuteron. The physical value of γt is indicated by the 
vertical (blue) dashed line and the triton, by a (black) diamond. The evolution of 
the triton at 1 S0 unitarity (gs = 0) is represented by the (blue) squares connected 
by a (blue) dashed line. The evolution of the first-excited state is represented by the 
(red) circles connected by a (red) dashed line.

fourth quadrant that marks the breakup threshold. For this bound 
state, there is no significant difference between gs = 0 and gs = 1
as the scaling violation due to nonzero γs = 1/as � −8 MeV is 
a small effect compared to the binding momentum of the tri-
ton ∼ 100 MeV [27]. As we move towards unitarity with gs = 0, 
gt → 0, the new, shallow Efimov state appears around gt � 0.3. 
It occurs exactly at the place indicated earlier by the halo EFT 
based on the analytic structure of the S-matrix. We verified that 
the value of gt where the excited state emerges changes by only 
a few percent at NNLO. The LO triton binding energy at this point 
is 5.5 MeV compared to 8.6 MeV at gt = 1. At the unitarity point 
gt = 0, the ratio of binding momenta between the triton and the 
first-excited state gives the geometric factor 22.7 predicted by Efi-
mov [1–4].

Efimov physics displays a limit-cycle behavior [39,40], and shal-
lower bound states (not shown in Fig. 3) also appear. For exam-
ple, we have found that, as we evolve towards unitarity, around 
gt � 0.05 a new shallow virtual state is present and the phase 
shift goes through the same qualitative behavior as for the first 
excited state. Again a modified ERE with a new set of scattering 
parameters describes this virtual state, which becomes shallower, 
and finally emerges as the second-excited state of the triton. The 
same process repeats ad infinitum at progressively smaller gt inter-
vals.

5. Conclusions

We studied the relation between virtual state and bound Efimov 
level in a three-body system. We chose nd scattering in the spin-
doublet channel as it had been shown to support a virtual state 
and a bound triton. The geometric scaling between bound states 
had not been observed in this system because deeper Efimov lev-
els are beyond the range of applicability of any reasonable nuclear 
theory. We have demonstrated that a new shallow Efimov state 
emerges from the virtual state as we drive the system towards 
unitarity, as shown in Ref. [16] with a separable potential model. 
The shallow state displays the geometric scaling predicted by Efi-
mov at unitarity, and we find evidence that the accumulation of 
shallow Efimov levels involve pulling in shallow virtual states from 
the second Riemann energy sheet to the first sheet. Though we 
consider a specific nuclear system, our results are universal to any 
three-body system of bosons or three- or more-state fermions with 
resonating zero-ranged two-body interactions, at least one of them 
supporting a two-body bound state. The linear combination of the 
nuclear amplitudes As,t that supports Efimov states has the same 
properties as the amplitude for bosons [22]. Moreover, our argu-
ment is reversible and implies that an Efimov level turns into a 
virtual state as we move away from unitarity at positive scattering 
length. In addition to atomic systems near a Feshbach resonance, 
recent lattice QCD calculations, even at unphysical quark masses, 
provide another interesting scenario where in the presence of a 
strong magnetic field the 2N interaction is driven towards unitar-
ity [41].

Recently it has been argued [42] that nuclear ground states 
beyond the deuteron are characterized by a momentum scale in-
termediate between the pion mass and the inverse 2N scattering 
lengths. In this case, nuclei are accessible through /πEFT with an 
additional expansion around the unitarity limit of infinite 2N scat-
tering lengths. The existence of a shallow virtual nd state that 
becomes the triton excited state supports this picture.

A low-energy halo EFT was formulated for a model-independent 
description of the transition of the shallow virtual to the shallow 
bound state. We studied the analyticity of the S-matrix on the 
complex energy plane in order to interpret the various poles that 
correspond to bound, virtual or redundant states. The halo EFT 
formulated here could be useful in the study of low-energy pd
scattering, for example for the model-independent extraction of 
doublet ERE parameters from /πEFT [43]. In halo EFT, the Coulomb 
interaction is simpler as pd is effectively a two-body system. The 
halo EFT could also be useful in the low-energy description of the 
reactions d(n, γ )3H and d(p, γ )3He, which are relevant in big-bang 
nucleosynthesis.
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