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The emergence of Efimov levels in a three-body system is investigated near the unitarity limit character-
ized by a resonant two-body interaction. No direct evidence of Efimov levels is seen in the three-nucleon
system since the triton is the only physical bound state. We provide a model-independent analysis of
nucleon-deuteron scattering at low energy by formulating a consistent effective field theory. We show
that virtual states evolve into shallow bound states, which emerge as excited triton levels as we drive the

system towards unitarity. Even though we consider this specific system, our results for the emergence of
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the Efimov levels are universal.
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1. Introduction

A distinctive feature of three-body physics is the Efimov ef-
fect [1-4]. In the presence of resonant two-body scattering, the
three-body system supports a tower of bound states whose bind-
ing energies display geometric scaling. The number of three-body
bound states was predicted to scale as In(ag/ro), where ag is the
resonating two-body s-wave scattering length, and ro < ag is the
range of the interaction. Experimental verification through the de-
tection of excited states was provided three decades later in cold-
atom experiments [5-9], where the ratio ag/r¢ could be increased
by varying magnetic fields near a Feshbach resonance.

Recently, the first excited Efimov state was identified [10] for
atomic 4He, where ag/rg is sufficiently large even in the absence
of external magnetic fields. In complex nuclei the ratio ag/ro is
often unknown, but in some cases it might be large enough to
accommodate an excited state: halo nuclei such as ''Li, 2°C, or
even as heavy as 62Ca, where two neutrons are weakly bound to
a tight nuclear core, provide opportunities to observe the Efimov
effect [11-13].

Neutron-deuteron (nd) at low energy is another system that
could provide evidence of Efimov physics. Low-energy scattering
is dominated by s waves with spins S =3/2 (quartet) and S =1/2
(doublet). In the quartet channel, where spins are aligned, the Pauli
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exclusion principle prevents a three-nucleon (3N) bound state. In
the doublet channel, the strong nuclear force leads to an attractive
interaction that supports a 3N bound state, the triton (°*H) with
a binding energy B3 ~ 8.48 MeV. The next deeper Efimov state
would appear only at ~ 4 GeV, beyond the regime where a de-
scription in terms of nucleons makes sense. Here we search for a
remnant of the next shallower Efimov state.

The low-energy phase shift in the doublet channel was ana-
lyzed by van Oers and Seagrave [14], who suggested a modified
effective range expansion (ERE) to describe the data below the
deuteron breakup momentum. The presence of a virtual state with
binding energy ~ 0.515 MeV was inferred [15]. Adhikari et al. [16]
showed in a separable potential model that this virtual state is re-
lated to the Efimov spectrum. A similar connection for 2°C [17,18]
and for atomic systems [19] was investigated within a zero-range
model.

In contrast, we use the effective field theory (EFT) formalism to
provide a model-independent analysis of the nd system at low en-
ergies. All interactions allowed by symmetries are constructed with
the relevant low-energy degrees of freedom, without modeling the
high-energy physics. A systematic scheme for calculations is for-
mulated by expressing observables as an expansion in the small
ratio p/Ap, where p is a typical low momentum scale associated
with the processes of interest and Ajp is a high momentum scale
that marks the breakdown of the EFT.

In the so-called pionless EFT (7 EFT) the relevant degrees of
freedom are nonrelativistic nucleons (and other light particles such
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as photons, electrons and neutrinos) with Ap ~ my, the pion mass,
associated with the pion physics that is not included explicitly.
#tEFT has been very successful in describing two- and three-
nucleon systems — see for example Refs. [20-27] — when the
typical momentum is taken to be p ~ y ~ at_1, with y ~45.7 MeV
the deuteron binding momentum and a; ~ 5.4 fm the scattering
length in the two-nucleon (2N) 3S; channel.

EFT enables us to study nd scattering in the limit a; — oo,
where the 2N scattering amplitude is only bounded by unitarity.
We first fit the parameters of 7 EFT to reproduce the relevant 2N
and 3N experimental data. 7#EFT is then treated as the underly-
ing theory that is used to generate artificial “data” at increasingly
large values of a;. We develop a new low-energy EFT, which we
refer to as halo EFT, to provide a model-independent analysis of
the 3N phase shift at low momentum generated from i EFT. This
halo EFT, which treats the deuteron as an “elementary” particle
and is thus applicable only below the deuteron breakup, is mod-
eled after other halo EFTs where different clusters of nucleons are
treated as relevant degrees of freedom [28,29]. Here, the deuteron
is the core and the neutron forms the “halo” around it, consisting
of shallow virtual and bound states. The halo EFT provides a theo-
retical basis for the modified ERE obtained empirically by van Oers
and Seagrave, and allows us to track the virtual state at unphysical
scattering lengths. As we drive 7#EFT towards the unitarity limit,
the binding energy of the virtual state decreases till it becomes
the first excited bound state of the triton, thus demonstrating its
Efimov character. Higher Efimov states appear in the same way if
the scattering lengths are increased further. Although we focus on
the 3N system, our framework could be applied to study the emer-
gence of Efimov levels in other systems as well.

2. Pionless EFT

The doublet nd scattering amplitude was first calculated at
leading order (LO) in #EFT in Ref. [22]. It receives contribu-
tions from the LO 2N interactions, which consist of a single non-
derivative contact operator in each 2N s wave (3S; and 'Sg) with
strength determined in terms of the respective scattering length. In
addition, there is a contribution from a 3N non-derivative contact
interaction, which is needed to render the amplitude well-defined.
Next-to-leading-order (NLO) corrections introduce a two-derivative
interaction in each 2N s wave, which can be constrained by the
corresponding effective range. No new 3N interaction contributes
at this order [22,24]. A momentum-dependent 3N interaction en-
ters at NNLO [25]. To this order, the EFT expansion has been shown
to be convergent [26], and to reproduce both experimental data
(when available) and results from sophisticated phenomenological
potentials.

The unitarity limit corresponds not only to arbitrarily large 2N
scattering lengths but also to vanishing 2N effective ranges and
higher ERE parameters. This removes higher-order corrections in
the 2N interaction. Higher-order 3N forces are less important for
3N states shallower than the triton. A LO calculation is sufficient
to explore the connection to the Efimov spectrum. The LO nd
T-matrix T;(p) = 87 y:A:(p, p)/mn is obtained from two coupled
integral equations [22]:
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where E = 3p?/(4my) — y2/my is the total center-of-mass en-
ergy and my >~ 938.9 MeV is the isospin-averaged nucleon mass.
The intermediate 2N contribution is contained in the two-point
Green’s function Dy(E;p) = (=yy + \/—mNE+p2/4—i0+)‘l,
where n =t (s) for the 3S; (1Sg) channel. In the 3S; channel we
use the deuteron binding momentum to set y; = g:y, and in the
1Sy channel, where no bound state exists, we use the scattering
length a; >~ —23.714 fm to fix ys = gs/as, which is consistent with
the LO power counting [20,30]. The physical point corresponds
to g+ = gs = 1. The 3N amplitudes A;s do not converge when
the regulator is removed, A — oo, unless we fix the 3N parame-
ter ho(A) to guarantee that one 3N observable is made regulator
independent. For any given cutoff A, we tune hgy such that we
reproduce the doublet scattering length a3 = 0.65 fm [31] for
g+ = gs = 1. This determines the independent parameter A, ap-
pearing in the log-periodic 3N force [22].

The doublet phase shift is obtained from pcotd§ =ip + 27/
[mTe(p)], with =~ 2mpy /3 the nd reduced mass. In Fig. 1, we show
the phase shift calculated from the three-body integral equations
in Eq. (1) at the physical point and a few results as we approach
the unitarity limit. The only physical parameters that enter the mi-
croscopic calculation using 7 EFT are g;, g5, and A,. We approach
unitarity taking g; =0 and making the deuteron arbitrarily shal-
low, g — 0, while keeping A, fixed.

For short-ranged interactions, pcotd is an analytic function
of p%. However, pcoté rises rapidly at low momenta — see
panel (a) of Fig. 1 — and for gr = gs =1 a simple Taylor series
expansion around p = 0 gives a poor description even at relatively
small momenta p ~ 10 MeV. Instead, the modified ERE [14]

—1/a+rp?/2 +sp*/4+ -
1+ p?/p§
R

AP, (2)
1+ p2/p3

pcots =

works remarkably well up to about the deuteron breakup momen-
tum 2y /+/3 =~ 53 MeV. While bound and virtual states correspond
to poles of the T-matrix T¢(p) at imaginary momenta p = ixj,
there is also a pole in pcoté at p? = —p% that corresponds to a
zero of T;(p). When we fit the modified ERE to the LO phase shift
in panel (a) of Fig. 1, we get the fit parameters a ~ 0.65 fm =as,
r~—141 fm, s ~ 62 fm3, and pg ~ 16.1 MeV, which translate into
a shallow virtual state at k1 ~ —26.8 MeV with a binding energy
~ 0.574 MeV. Naively one might expect all the scattering parame-
ters to scale with some power of the range of nuclear interaction
~m;!' ~ 1.4 fm. The fitted parameters p,', a~! and r are un-
usually large compared to the naive expectation. The standard ERE
holds only for p <« po, with large inverse scattering length a~1,
effective range r + 2(ap3)~!, etc.
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Fig. 1. Phase shift: pcots§ as function of the momentum p, both in units of the
deuteron binding momentum y;. The (blue) dots and (red) squares are numerical
results from solving Eq. (1) for several values of g;, g5 as indicated, once the 3N
parameter A, is determined by imposing az = 0.65 fm for g; = gs = 1. The (black)
dashed curves are modified ERE fits to the data over a small momentum range in-
dicated as (red) squares. We expect the modified ERE fits to describe the numerical
results for p/y; < Z/ﬁ. (For interpretation of the colors in the figure(s), the reader
is referred to the web version of this article.)

3. Halo EFT and modified ERE

We now formulate the halo EFT that describes nd scattering
below the deuteron breakup momentum 2y; /+/3, and provides a
justification for Eq. (2). In this theory the deuteron is treated as
a fundamental particle, and so the breakup momentum sets the
breakdown scale A ~ y;. A shallow s-wave pole by itself can be
accounted for in the standard ERE by a large scattering length
such as in the 2N 1Sy and 3S; channels, requiring a fine-tuned
interaction to be treated nonpertubatively at LO [20,30]. A shallow
amplitude zero by itself requires another fine-tuning that leads to
a perturbative amplitude with a large effective range and a small
scattering length [30]. Here we identify two momentum scales
associated with the presence of both zero and virtual pole, re-
spectively |po| ~ Q and |«1| ~ R. The parameters a, r and po are
fine-tuned, and we require three fine-tuned couplings to reproduce
the desired modified ERE. The halo EFT is conveniently written us-
ing two auxiliary fields as
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Here, n is the spin-doublet neutron field with mass my, d is the
spin-triplet deuteron field with mass my ~ 2my, and ¢ with
j=1,2 are two auxiliary spin-1/2 fields with total mass M =
my +mg ~ 3my and residual masses A ;. o are Pauli matrices that
act on the (suppressed) spinor indices of n and ). We chose to
fix the couplings of both auxiliary fields to neutron and deuteron
in terms of the reduced mass u, transferring their strength to pa-
rameters c; [32]. In the power counting discussed below, c; « c1
and the corresponding interaction appears at subleading orders to-
gether with the interactions lumped into the “---”. Integrating out
¥ @ one recovers the Lagrangian from Ref. [33], but the scaling of
parameters is different here. Our approach inspired a reformulation
of chiral EFT in the 2N 1S, channel where not only the shallow vir-
tual state but also the amplitude zero is taken into account [34].

A straightforward calculation of the nd scattering amplitude
T:(p) at LO in the halo EFT, where the contribution from the loops
is resummed, gives
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was, for simplicity, evaluated in dimensional regularization using
minimal subtraction. The final result is independent of the regu-
larization method. We obtain the modified ERE (2) from Eq. (4)
with
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the shape-like parameter s o« B appearing at higher order.
4. Analysis
To develop a consistent power counting for the halo EFT,

we start with the analytic structure of the T-matrix T¢(p). The
T-matrix poles here are the roots of

—1/a+r1p?/2
pcota_lp:%_
14+ p?/pg
. (p —ik1)(p —ik2)(p — ik3)
= —1 > 2 5 (7)
p“+Dpp
with
L)
K1+K2+K3=—5POZA,
p2
K1k + Kok + K3k1 = — p3, K1K2K3=—70~ (8)

Using the parameters a, r, po fitted earlier for g = gs = 1, the
three roots ik ~ —27i MeV, iky ~ 35i MeV, and ik3 ~ 83i MeV
are imaginary. As we move towards unitarity (gs =0, g — 0), we
refit the 7 EFT results with Eq. (7), as shown in Fig. 1. The roots
remain imaginary. The third root is always deeper than the break-
down scale Ap ~ y; of the halo EFT, and is, therefore, not relevant.
We have checked that the position of the shallow poles change by
at most a few percent when the shape-like parameter s (or B) is
included, in agreement with the power counting.
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Fig. 2. Normalizations \Nj|2 for the imaginary roots ixq (red solid curve) and ik,
(blue dashed curve). The arrows indicate the evolution of the states as we make
g smaller. A few g; values are indicated as (black) circles on the «; curve and as
(black) squares on the x, curve. The breakdown scale Aj gets smaller as gr — 0 and
the redundant pole moves beyond the range of the halo EFT near the emergence of
the excited state.

Near the poles we can write the S-matrix S¢(p) = exp[i2§(p)] ~
Zj R;/(p —ikj) + f(p), where R; are the residues at the poles,
and f(p) some finite piece. We provide an interpretation of the
shallower roots based on the residues Ry . The wavefunction nor-
malizations for the two shallowest poles are

2K1(kf — p})
(K1 —Kk2) (K1 —K3) '
2162 (K3 — P3)
(K2 — K1) (k2 —K3)

and their evolution towards unitarity is shown in Fig. 2. For a
bound state, the normalization must be non-negative. At the phys-
ical point g = gs = 1, the shallowest root ixq with x1 <0 is a
pole on the second Riemann energy sheet with a negative normal-
ization iRy < 0, and thus describes the virtual state that has been
identified in the past [15]. The second root ik is a pole on the
first energy sheet since «, > 0. However, its normalization is also
negative, iRy <0 — it is a “redundant pole” [35,36] and does not
describe a physical state. As we take the limit g — 0 at g, =0,
the second root ik; remains a redundant pole and the first root
ix1 evolves from a virtual to a real bound state.

In devising the power counting for the halo EFT, the three
physical scales identified earlier, |po| ~ Q, |k1| ~ N and Ap ~ ¥,
have to be taken into account. The scale Q starts as the small-
est, gets smaller in size and then grows. When |pg| grows beyond
the breakdown scale, |pg| = Ap, it stops being relevant in halo EFT.
We find it convenient to separate the evolution into three intervals
of g; to account for different relative sizes of Q. Moreover, as the
modified ERE is most easily expressed in terms of the scattering
parameters a, 1, po and s, we use these to write the power count-
ing for the renormalized halo EFT couplings c1, c2, A1 and A».

Initially, for 1> g; 2 0.55, we have Q < 8 <« Ap. The sizes of
|k1] and |«;| are similar and we also identify |k;| ~ R to avoid in-
troducing another scale. As we make g; smaller, we find that «3
gets deeper while x; gets shallower, so we take k3 ~ A ~ A%/N.
These roots arise if the halo EFT couplings are large, Aq 3 ~ AE/N
and c1/(2p) ~ Aj/R3, but with a cancellation in Aj + Ay ~
A2Q?/8¥3 <« Aq . From Eq. (6) we see that po comes out shal-
low as assumed, while 1/a~ R ~8A2/Q%> A and r ~ A2/(RQ?)
are large. For p <« R, Eq. (7) is dominated by the a term con-
taining the amplitude zero, and for p <« Q the effective range is
~ 2(ap(2))*]. In contrast, for p 2> X the r term and the unitarity
term (—ip) become comparable to the 1/a contribution and gen-

IN1|? = iRy =

IN2|> = iRy = 9)

erate the T-matrix poles. If we take c;/(2u) ~ Qz/Ag <L c1/2u),
then the shape-like parameter s = —(cica/1?) /(A1 + Ap) ~ 1/A3,
which is consistent with its fit value at g = 1. Its contribution for
p ~ N is suppressed by a factor of sp?/r ~ Q*83/A? < 1 com-
pared to the r and a contributions. Other modified ERE parameters
appear at even higher orders. The halo EFT with the power count-
ing we propose leads to a model-independent derivation of the
modified ERE, and describes the data accurately.

As we make g; smaller, p(Z) gets smaller and changes sign such
that pcot$ develops a pole at real momentum around g = 0.9,
analogous to the Ramsauer-Townsend effect [37,38]. This is shown
in panel (b) of Fig. 1. The halo EFT (and the modified ERE) still
gives a good description of the phase shift through the pole in
p cotd even though the EFT couplings are fitted at momentum be-
low the pole, as indicated in the figure. As g; gets smaller, |p%|
gets larger and we look at the second interval below.

For 0.55 2 g = 0.35, |po| continues to grow, approaching and
exceeding Ap. The first root is a progressively shallower virtual
state with k1 <0 and iRy < 0, while the second root stays a re-
dundant pole with x2 > 0 and iR, < 0. Making Q — Ay in the
relations of the first interval leads to a ~r ~ 1/X. Numerically, this
works well. It can be accomplished with Aj ~R, Ay ~ AZ/R >
A1, and ¢1/(2un) ~ 1/X. From Eq. (4), one sees that the second
auxiliary field contribution is suppressed by NZ/Aﬁ at small mo-
menta p ~ N, and the modified ERE increasingly looks similar to
the traditional ERE written as a Taylor series around p = 0. The
situation is depicted in panel (c) in Fig. 1. With c2/(2u) ~1/Ap <
c1/(2u), the shape-like parameter contribution continues to be
suppressed by sp?/r ~ N3 /A2 « 1.

In the third interval, 0.35 > g; = 0.1, |po| ~ Q becomes very
large. The fits to 7 EFT scattering phase shift are not sensitive to
po which decouples from the theory. The S-matrix now has only
two poles constrained by k1 +k2 = 2/r and k1k2 = 2/(ar), and two
residues

4 kK
INiP=iRy=—-—"
rK1 —K2
4 kK
IN22 = iRy = — = —2—. (10)
K — K1

The first root continues to get smaller, and at around g; ~ 0.3 it
vanishes. Then it moves to the first Riemann energy sheet as a real
bound state with a positive normalization iR > 0. The second root
remains a redundant pole, and eventually moves slightly beyond
the breakdown scale Aj. Near the emergence of the shallow bound
state, the phase shift is characterized by a large scattering length
and a small effective range, as seen in panel (d) of Fig. 1. Qual-
itatively, the phase shift goes from something similar to the 1S
2N system with a shallow virtual state to the 3S; 2N channel with
a shallow bound state. The scattering length scales as |a] ~ 1/R
whereas the effective range r remains fixed at some other small
momentum scale set by the second root, k3 ~ X' ~ 1/r > X, We
did not explore how X’ scales with variation of the nd input pa-
rameter az (through A,) in #EFT. The halo EFT couplings scale
as A1 ~R, c1/2u) ~1/X’, and A; — oo. The second auxiliary
field is integrated out of the low-momentum theory, and we re-
cover the traditional ERE. The shape-parameter contribution can
be included in the single auxiliary-field formulation as a higher-
order operator. With a scaling s ~ l/Ag, the shape parameter is
suppressed by asp* ~ 83/A} compared to the LO scattering-length
contribution, whereas the effective-range correction is suppressed
by arp? ~ R/,

The subsequent evolution of the new bound state is shown in
Fig. 3, the “Efimov plot” calculated directly in 7 EFT. The physi-
cal triton at gt = g; =1 is seen below the diagonal line on the
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Fig. 3. Efimov states: the negative of the three-nucleon binding momentum
(—+/4myB3/3) is plotted as a function of the deuteron binding momentum (y:),
both in MeV. The diagonal dashed line in the fourth quadrant shows the threshold
for breakup into neutron and deuteron. The physical value of y; is indicated by the
vertical (blue) dashed line and the triton, by a (black) diamond. The evolution of
the triton at 'Sy unitarity (gs = 0) is represented by the (blue) squares connected
by a (blue) dashed line. The evolution of the first-excited state is represented by the
(red) circles connected by a (red) dashed line.

fourth quadrant that marks the breakup threshold. For this bound
state, there is no significant difference between g =0 and g; =1
as the scaling violation due to nonzero ys = 1/as >~ —8 MeV is
a small effect compared to the binding momentum of the tri-
ton ~ 100 MeV [27]. As we move towards unitarity with g5 =0,
g — 0, the new, shallow Efimov state appears around g; ~ 0.3.
It occurs exactly at the place indicated earlier by the halo EFT
based on the analytic structure of the S-matrix. We verified that
the value of g; where the excited state emerges changes by only
a few percent at NNLO. The LO triton binding energy at this point
is 5.5 MeV compared to 8.6 MeV at g = 1. At the unitarity point
g; =0, the ratio of binding momenta between the triton and the
first-excited state gives the geometric factor 22.7 predicted by Efi-
mov [1-4].

Efimov physics displays a limit-cycle behavior [39,40], and shal-
lower bound states (not shown in Fig. 3) also appear. For exam-
ple, we have found that, as we evolve towards unitarity, around
gr >~ 0.05 a new shallow virtual state is present and the phase
shift goes through the same qualitative behavior as for the first
excited state. Again a modified ERE with a new set of scattering
parameters describes this virtual state, which becomes shallower,
and finally emerges as the second-excited state of the triton. The
same process repeats ad infinitum at progressively smaller g; inter-
vals.

5. Conclusions

We studied the relation between virtual state and bound Efimov
level in a three-body system. We chose nd scattering in the spin-
doublet channel as it had been shown to support a virtual state
and a bound triton. The geometric scaling between bound states
had not been observed in this system because deeper Efimov lev-
els are beyond the range of applicability of any reasonable nuclear
theory. We have demonstrated that a new shallow Efimov state
emerges from the virtual state as we drive the system towards
unitarity, as shown in Ref. [16] with a separable potential model.
The shallow state displays the geometric scaling predicted by Efi-
mov at unitarity, and we find evidence that the accumulation of
shallow Efimov levels involve pulling in shallow virtual states from

the second Riemann energy sheet to the first sheet. Though we
consider a specific nuclear system, our results are universal to any
three-body system of bosons or three- or more-state fermions with
resonating zero-ranged two-body interactions, at least one of them
supporting a two-body bound state. The linear combination of the
nuclear amplitudes As; that supports Efimov states has the same
properties as the amplitude for bosons [22]. Moreover, our argu-
ment is reversible and implies that an Efimov level turns into a
virtual state as we move away from unitarity at positive scattering
length. In addition to atomic systems near a Feshbach resonance,
recent lattice QCD calculations, even at unphysical quark masses,
provide another interesting scenario where in the presence of a
strong magnetic field the 2N interaction is driven towards unitar-
ity [41].

Recently it has been argued [42] that nuclear ground states
beyond the deuteron are characterized by a momentum scale in-
termediate between the pion mass and the inverse 2N scattering
lengths. In this case, nuclei are accessible through 7 EFT with an
additional expansion around the unitarity limit of infinite 2N scat-
tering lengths. The existence of a shallow virtual nd state that
becomes the triton excited state supports this picture.

A low-energy halo EFT was formulated for a model-independent
description of the transition of the shallow virtual to the shallow
bound state. We studied the analyticity of the S-matrix on the
complex energy plane in order to interpret the various poles that
correspond to bound, virtual or redundant states. The halo EFT
formulated here could be useful in the study of low-energy pd
scattering, for example for the model-independent extraction of
doublet ERE parameters from 7 EFT [43]. In halo EFT, the Coulomb
interaction is simpler as pd is effectively a two-body system. The
halo EFT could also be useful in the low-energy description of the
reactions d(n, y)3H and d(p, y)3He, which are relevant in big-bang
nucleosynthesis.
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