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Abstract We prove the spectral invariance of the algebra of classical pseudodifferen-
tial boundary value problems on manifolds with conical singularities in the L ,-setting.
As aconsequence we also obtain the spectral invariance of the classical Boutet de Mon-
vel algebra of zero order operators with parameters. In order to establish these results,
we show the equivalence of Fredholm property and ellipticity for both cases.
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1 Introduction

Elliptic boundary value problems on manifolds with conical singularities have been
studied since the 60’s, where the work of Kondratiev [15] stands out, see also Kozlov,
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Maz’ya and Rossmann [16] for a detailed presentation. The pseudodifferential anal-
ysis started with the work of Melrose and Mendoza [20,21], Plamenevsky [22], and
Schulze [33]. Algebras of pseudodifferential boundary value problems for conical
singularities were constructed in the 90’s by Derviz [7] and Schrohe and Schulze
[30,31]. The latter approach combines elements of the Boutet de Monvel calculus
[3] with the pseudodifferential analysis developed by Schulze [32,33]. While initially
only Lj-based Sobolev spaces were used, Coriasco, Schrohe and Seiler established
the continuity also on Bessel potential and Besov spaces [5], see also [4], relying on
work of Grubb and Kokholm [9, 13].

Our main result is the spectral invariance of the algebra developed in [31] in the
L ,-setting, see Theorem 61. This algebra contains, after the composition with order
reducing operators, the classical differential boundary value problems studied by Kon-
dratiev [15], hence also their inverses, whenever these exist. As a by-product we obtain
the spectral invariance of the algebra of zero order classical Boutet de Monvel opera-
tors with parameters in the L ,-setting, see Theorem 29. This algebra includes, after
composition with order reducing operators, the differential boundary value problems
studied by Agranovich and Vishik in [1], which were an important ingredient for the
work of Kondratiev. Spectral invariance for the Boutet de Monvel algebra in the Lj-
setting was shown by Schrohe for the larger class of SG operators [27, Theorem 3.27]
and by Grubb [10, Theorem 1.14]. For the L ,-case, partial results were obtained by
Grubb [10, Theorem 1.12].

It is an immediate consequence of Theorem 61 that the invertibility of a conically
degenerate boundary value problem is to a large extent independent of the space it
is considered on: It depends neither on the Sobolev regularity parameter s nor on
1 < p < oo. This is of great practical importance as it allows to check invertibility in
the most convenient setting. A similar result holds for the Fredholm property, as we
show in Corollary 50.

In order to demonstrate the applicability of these results, we study the Dirichlet real-
ization Ap;; of the Laplacian on a 2-dimensional manifold with conical singularities,
e.g. the closure of a plane domain with finitely many conical points. In applications,
one is interested in the invertibility of A — Apjr, A ¢ ] — 00,0 ], as an unbounded
operator in the cone Sobolev space H);” (D) with domain

P(Apir) = {u € Hy 2 (D) 1 u = 0 on dD)}

for different values of s and p; see Definition 37 for the definition of the spaces. We
show that for s = 0 and p = 2, the invertibility can be checked by hand. The spectral
invariance allows us to deduce the invertibility forall 1 < p < coands > —2+1/p.

This article extends the results of [28] to conical manifolds with boundary. The
need to work with Besov spaces led to interesting new features. In Theorem 29, for
example, we consider a zero order parameter-dependent operator A = {A(A); L € A}
in Boutet de Monvel’s calculus. We show that the invertibility of A(X) for each A
together with a norm estimate || A(A)~!|| < c¢(A)" for a constant ¢ > 0 and sufficiently
small » > 0 implies that the inverse also is parameter-dependent of order zero. In
particular, the operator norm will then be uniformly bounded. Similar effects can be
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observed when showing the equivalence of parameter-ellipticity and the Fredholm
property with parameters.

This paper is a step toward the analysis of nonlinear partial differential equations
on manifolds with boundary and conical singularities, see e.g. [24,26] by Roidos and
Schrohe, [34] by Shao and Simonett or [35] by Vertman for the case without boundary.
A next step concerns the analysis of resolvents of closed extensions in the spirit of Gil
et al. [8] or [29] in the case without boundary and Krainer [17] for conic manifolds
with boundary.

2 Parameter-Dependent Boutet de Monvel Algebra

To make this article readable for non-experts, we briefly describe the parameter-
dependent Boutet de Monvel algebra with classical symbols on compact manifolds
with boundary in the L ,-setting. We first define several operator classes on the half-
space R = {x € R"; x,, > 0}.

The set of parameters of the operators and symbols will always be a conical open
set A C R/, thatis, p € A implies that tp € A for t > 0. It can be the empty
set, in which case we recover the usual symbols and operators. We write Ng :=
{0,1,2,...} and R%H_ = R4 x R;. For a Fréchet space W, the Schwartz space

S (R", W) consists of all u € C*° (R", W) such that sup, s p (x"‘afu (x)) < 00
for every continuous seminorm p of W. We simply write S (R"?),if W = C.If 2 Cc R”

is an open set, C°(€2) denotes the space of smooth functions with compact support
in Q. The operator of restriction of distributions defined in R” to €2 is denoted by

rg : D'(R") — D' (). It allows us to define the spaces S (M) = rge. (S (R™))
and S (@ X M) = IR? xR (S (R™ x R™)). When n = 1, we also use the notation
S =8 (E) and S14+ =S (E X E) =S (Ri +). The extension by zero of a
function u defined in 2 to R” will be denoted by eq:

emmu):{gfx)’;;g.

If @ = R’} we denote rg: also by r* and eg: by ™. The open ball in R" with the
Euclidean norm whose center is x and radius is r > 0 will be denoted by B, (x). Our
convention for the Fourier transform is Fu(§) = u (§) = f e €y (x)dx. We shall
often use the function (.) : R” — R defined by

(€)== /1+ |7

and sometimes we use (&, A) := /1 + | (£, 1)|? and similar expressions, as well.
Finally, given two Banach spaces E an F, we denote by B (E, F) the bounded
operators from E to F and use the notation 5 (E) := B (E, E).

Birkhauser



J Fourier Anal Appl

Definition 1 The space S” (R" x R”, A) of parameter-dependent symbols of order
m € R consists of all functions p € C*° (R" x R" x A) that satisty

Of920) p (x. & M)| < Capy (&, 1" (x,8,0) e R x R" x A.

A symbol p defines a parameter-dependent pseudodifferential operator op (p) (1) :
S (R") — S (R") by the formula:

op (p) M u(x) = (2ﬂ)_”f€ixsp(x,§,k)ﬁ(%’)dé.

We say that p is classical, if there are symbols p,— j) € Sm=Ji (R" x R”, A), j € Ny,

such that

(1) Forallt > 1 and [(§,A)| > 1, wehave pu,—j) (x, 1§, tA) = t’"_jp(%,jl) (x, &, 0).

(2) We have the asymptotic expansion p ~ 27020 Pn—j)s 1€, p =250 Pm—j) €
SN (R" x R", A), forall N € Nj.

This subset is denoted by S7; (R" x R", A). It is a Fréchet space with the natural
seminorms.

Definition 2 Let p € S (R" xR",A), m € Z, be written as a function of
(X', xn, & &0, ) € RTIXR xR xR x A. We say that it satisfies the transmission
condition, if p ~ Z?O:O Pm—j) and if, for all k € Ng and for all & € NS'H, we have

Dy D, pon—jy (x,0,0,1,0) = (= )"~ D} D, pen—jy (x',0,0,—1,0).

In this case, the operator P (A\), := rtop(p)(X)et: S(M) — S(}RT_D is well
defined.

Two more classes of functions are required. Our notation here follows Grubb [12].
Definition 3 We denote by S (R 1, S+, A), m € R, the space of all functions

fec> (R”‘l x Ry x R 1 x A) that satisfy:

kDK DE DYDY F (50 €3 |y < Chary (612711

The subset S7; (R"', 8., A) consists of all f with an asymptotic expansion f ~
Z;io f~(m,j), i.e. there are functions f(m,j) e §m—J(Rn-1, S4, A), j € Ny, such
that f — Y2 fon—jy € SN R™L Sy, A) forall N € N, and

N 1 .
Foniy (s 5w 16 13) = 17 fo ) (6,20, 02 1, (€ 0)] 2 1.
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Similarly, §” (R, 84, A) denotes all § € C (R”*‘ xRZ, x R x A) with

X X X s oo ++(xn,

< Crp o py (€5 4)
Write § € S"(R"™!, 84, A), if § ~ 3720 &m—jy With gu—j) € s (RS
A) such that § — Y"1 3o j) belongs to SN (R"~1, S1 ;. A), forall N € No,
and

- 1 1 i
g(m_j)(x’, —n ;yn,té’,tk) =" gy (X X, v, €)= 1 |(E )] = L

We may now define the operators that, together with the pseudodifferential ones,
appear in the Boutet de Monvel calculus: the Poisson, trace and singular Green oper-
ators. We will always restrict ourselves to the classical elements. The notation y; :

S(M) — S(R"1), j € Ny, indicates the operator yju (x’) = limy, 0 Dy, u (x’, x,,)
as well as its extension to Sobolev, Bessel and Besov spaces.

Definition 4 Let A € A,m € Randd € Ny.

(1) A classical parameter-dependent Poisson operator of order /m is an operator family
K@) : SR - S(R}) associated with k € Sz,’l'_l (R*1, S, , A) of the form

KWu(x', x,) = (27[)1*”/ NERG X, €, M) (€7) dE Q2.1

Rn—1

For k ~ Z?io I;(m_l_j), we define k(1) (x,&,Dy,2):C—> S (E) by

kon—1y (x', &', Dy, 1) (v) = vk@n—1y (¥, Xn, £/, 1) .

(2) A classical parameter-dependent trace operator of order m and class d is an oper-
ator family T (1) : S(RY) — S (R"~1) of the form

d—1

TM=) SiMy+T (),
j=0

where S; (1) is a parameter-dependent pseudodifferential operator of order m — j
onR*land 7" (1) : S(M) — S(R" 1) is of the form

T'Wu (x') = @)t /

) e""/é/l; f(x’, Xn, &, A) (fx/_)g/u) (S’, x,,) dx,dg’
+

(2.2)
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with7 € S”(R"™!, S}, A). For f ~ 3520 fon—j) we define 7g) (x'. €. Dy, 1) :
S (E) — Cby

Ty (X', &', Dy, M) u = /R fomy (X', X, &', ) u (xp) dxy.
+

(3) A classical parameter-dependent singular Green operator of order m and class d
is an operator family G (1) : S(R"}) — S(R'}) of the form

d—1

GO =) K;Myj+G k),
Jj=0

where K ; are Poisson operators of orderm — j and G’ (A) : S (M) —- S (]RT}F)
is an operator of the form

G' (Mu(x) = 2m)' ™" / e / GO, X, Yy €0
R"71 R+
S (}—x’—>§’u) (S/s yn) dynd§’, (2.3)

where g € SZ’}fl(R"’l , Sy, A). We define the operator gu—1) (X', €', Dy, 1)
S (RT) =S (E) by

= ];l/(mflfl) (X/, Xns ‘S;:/’ )\) Dinlzt 0)
+/ Zm—1) (X', X, yn, &', XY u (v) dyn.
Ry

Remark 5 With a symbol p € S7; (R" x R", A) that satisfies the transmission condi-
tion, we associate the operator p(;)+ (x’, 0,¢, D,, A) : S (E) - S (E) defined
by:

1 : —
p(m)+ (x/’ 07 é/a Dn’ )") u (xn) = Z \/Relxngnp(m) (x/’ 07 é/a Snﬂ )\') €+u (‘i:n) ds’l

Definition 6 Let ny, no, n3 and ns € Ny. The set of classical parameter-dependent
Boutet de Monvel operators on R” , denoted by B;znf,cfzz,nsm (R™, A) for m € Z and

d € Ny, or just by B (R", A), consists of all operators A given by
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s(®p)” s(rp)”

(P +FGC) KR . N N

A(A)_< 7 o0 Sm). o ~ o . 2.4)
SER-H™ SERH™

where P, is a pseudodifferential operator of order m satisfying the transmission con-
dition, G is a singular Green operators of order m and class d, K is a Poisson operator
of order m, T is a trace operator of order m and class d and § is a pseudodifferential
operator of order m. All are parameter-dependent in the respective classes.

The following algebra is also useful to prove spectral invariance:

Qeﬁniti0n7 Let ny, ny, n3, ng € NO and 1 < p < oo. We define the set
B’,’,’l,nz,nw4 (R, A), also denoted by B?” (R", A), as the set of all operators A of
the form (2.4), where: Py is of order 0, G is of order 0 and class 0, K is of order %,

T is of order —% and class 0 and S is of order 0. All are parameter-dependent in the
respective classes.

Definition 8 With A € B,’f’{imm . (R", A), we associate the operator-valued princi-
pal boundary symbol o (A), defined on R"~! x ((R"~! x A)\ {0}). The operator

_\n] _\n3
oo(A) (', & 3) S (IR{+> ®C"” > S <R+> @ C" 2.5)
is given by

<p(m)+ (x/, 0,&, Dy, )») + gum—1) (x/, &, Dy, )») km—1) (x’, &, Dy, )»))
tom) (x’, &, D,, A) Sm) (x’,é

where the entries are the matrix version of the operators in Definition 4 and Remark 5.
Similarly, with A € B}, 1,.n3.ns (R", A), we associate an operator o (A) (x', &', )
acting as in (2.5), given as

poy+ (x/.0.8". Dy, 1) + g1y (x'. & Dyp. 1) ki (x',&", Dy, 1)
L1y (x/,gl, Dn,)\) 5(0) (x’,E’,)\)
P

Let now M be a manifold with boundary, Ey and E; two complex hermitian vector
bundles over M and Fj and F; two complex hermitian vector bundles over d M. Let
Ui CcM,j=1,...,N,be open cover of M consisting of trivializing sets for the
vector bundles, @1, ..., &y € C*° (M) be a partition of unity subordinate to Uy, ...,
Uy and ¥y, ...,Wy € C* (M) be supported in U; such that W;d; = & ;.

A linear operator A (A):C*® (M, Ey) & C*® (M, Fy) — C>®(M,E)) &
C®° (0M, Fy) can always be written as

N N
AN =) QAN W+ Y DAMN (1- ;).
j=1 j=1
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Using the above definitions, we define the Boutet de Monvel algebra on M:

Definition 9 A family A (1) :C>® (M, Ey) & C® (M, Fy) — C®(M,E)) &
C*®(0M, F1), . € A, is called a parameter-dependent Boutet de Monvel operator
of order m € Z and class d € Ny, if

(1) The operators WA (1) ®: S (M)"' oS E®R-)" 5 S (JRT)"3 ® S (R1-1)™

belong to Bmd (R™, A) after localization.
(2) The Schwartz kernels of the operators Zj.v:l D;AN) (1 - j) belong to

S (A, C® (M x M, Hom (n}Eg, 7{E1)))  S(A,C® (M x 0M, Hom (75 Fo, m{ E1)))
S(A,C*®(IM x M, Hom (75 Eo, } F1)))  S(A,C®(0M x dM, Hom (7} Fo, n{ F1))) )’

where Hom indicates the space of homomorphisms and 77; : M x M — M is given
by m; (x1,x2) = x; fori =1, 2.

If 9M = ¢, the algebra reduces to the classical parameter-dependent pseudodif-
ferential operators. The above definition is independent of the partitions of unity and
trivializing sets we choose.

A central notion is parameter-ellipticity:

Definition 10 Given a parameter-dependent Boutet de Monvel operator A €

.d )
BZO,FO,E],F] (Mv A) we deﬁne,

(1) Theinterior principalsymboloy (A) € C®(T*M xA)\ {0}, Hom(n}. ;. 5 Eo,
T s prsn E1)), Where wreprscp @ T*M x A — M is the canonical projection. It
is the principal symbol of the pseudodifferential operator part of the operator A.

(2) The boundary principal symbol o (A). For (z, A) € (T*aM x A) \ {0} we let

Eolaw ® 5 () Eilaw ® S (Ry)
0y (A) (2) (A) : T eqprna fory — T aMxA @ )
Fo F

where wrxgprxa : (T*OM x A)\ {0} — dM is the canonical projection. After local-
ization, it corresponds to the symbol in Definition 8.

We say that A (1) is parameter-elliptic if both symbols are invertible. With obvi-
ous changes, we can also define parameter-ellipticity, interior and boundary principal
symbols of operators A € Bgo,Fo,El,Fl (M, N).

The parameter-dependent pseudodifferential operators defined above are a partic-
ular version of the more general calculus introduced by Grubb in [11], and by Grubb
[10] and Grubb and Kokholm in [13], for the L, case. In these references, pseudodif-
ferential symbols p € Sffbv (R" x R"*,Ry) of order m € R and regularity v € R are

used. These are functions p € C*® (]R” x R™ x E) that satisfy the estimates:

v—|o|
oL oga] p (x. 8, /\)‘ < Capy ((ﬁ—;» + 1) (g, 2yl
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Similar estimates are used to define the boundary terms. This more general parameter-
dependent calculus, as well as its notion of parameter-ellipticity [11, Chapter 3], can
be reduced to ours by considering v = +o00. Therefore many results of our calculus
can be deduced from this more general one. Our simplified version of the parameter-
dependent calculus coincides with the one used by Schrohe and Schulze [30,31]. It is
easier to handle and very suitable for the study of conical singularities, which is our
main concern.

The above operators act continuously on Bessel and Besov spaces. First we fix a
dyadic partition of unity { @j; J € NO}.

Definition 11 Let 99 € C°(R") be supported {&; [£] <2},0 < ¢o < 1 and
@o (§) = 1in a neighborhood of the closed unit ball. Define ¢; € C°(R"), j > 1, by

0 (€) =0 (277&) — o (277 H1E).
Remark 12 We use the following notation: K := {E eR:2/-1 < €] < 2j+1}, for
j = 1,and Ko := {§ € R"; |§| < 2}. The above definition implies that supp (¢;) C

interior (K ;), for j > 0. Moreover, we see that ¢; (§) = ¢ (27/*1&), for j > 2 and
Y 0w () =18 €eR"

Definition 13 For each s € R, we define the operator (D)* : &' (R") — S’ (R")
as the pseudodifferential operator with symbol § € R" + (&)°. Moreover, we write

@j(D)u = op(p;)u.
(1) The Bessel potential space Hj (R") = {u € &' (R"); (D)*u € L, (R")}, for
1 < p < ooand s € R, is the Banach space with norm ||M||H15’(Rn) =
” (D)’ u ||L,,(R")'
(2) The Besov space Bf, R"),fors e Rand 1 < p < o0, is the Banach space of all
tempered distributions f € S’ (R") that satisfy:

o0 P

171 gy @y = Zozf”’ le; (D) f“IL)p(]R”) < oo
J=

For an open set 2 C R”, we define the Bessel potential spaces H ; (R2), as the set
of restrictions of H ;7 (R") to 2 with norm

Il 00 = finf ol s re 0) =}

Similarly, we define the Besov spaces B;, (€2). Together with partition of unity and
local charts, this leads to the spaces H[S7 (M), H; (M, E), B; (0M) and B;, (0M, E),
where E is a vector bundle over M or oM.

Remark 14 Lets € R, 1 <p<ooand%+%=1.

(1) There are continuous inclusions C° (R?) — S(R") — BZ R") — S (R").
Moreover the spaces C2° (R") and S (R") are dense in B; (R™). The same can
be said of H ;; (R™).
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(2) The dual of B; (R™) is B, ¥ (R™), where the identification is given by the L,
scalar product. Again the same holds for H IS, (R™) and H, S (R™M).

(3) A pseudodifferential operator with symbol a € S (R" x R") extends to con-
tinuous operators op(a) : HIS, R") — H[ﬂ_’" (R™) and op(a) : BIS7 R" —
B;"" (R™) forall s € R.

(4) The following interpolation holds: (L (R") , H! (R”)) — BY (R"), for all
0,p

0 <6 < 1, where (X, Y)y, , denotes the real interpolation space of the interpo-
lation couple (X, Y), as in Lunardi [19].

(5) If M is a compact manifold (with or without boundary) and E is a vector bundle
over M, then H$(M,E) < H3(M,E) and BS(M,E) — B (M, E) are
compact inclusions, whenever s > s’.

(6) The trace functional ¥y : S(R") — S(R"™') extends to a continuous and sur-

jective map yp : Hy(R") — B;_;(R”*]) whens > 1.

(7) The Besov spaces do not depend on the choice of the dyadic partition of unity;
different partitions yield equivalent norms.

Remark 15 We recall some notions from vector-valued harmonic analysis; see for
instance Denk and Kaip [6]. A Banach space G is a UMD space if, for some p €
11, oo [, the Hilbert transform H, given by

Hf (x) = + limf FO 4y Fes®.G).
r—ylze

T e—0F —y|ze X — Y

extends to a bounded operator in B (L » (R, G)). The Banach space has property (o)

if there exists a constant C > 0 such that for all n € N, for all (a,-j)l. j=1..n C C with
‘ozij| < 1, and for all (x,-j)i =1 C G, we have
/ |ri () rj @) etijxij|| ; dsdr < Cf |ri () rj (@) xij || g dsdt,
[0,1]x[0, 1] [0.1]%[0.1]

where r; () = sign (sin (2%7¢)), j € N, are the Rademacher functions. These prop-
erties allow the extension of important theorems of classical harmonic analysis to the
vector valued case.

If G is a UM D space with property (o), we can define, using Bochner integrals,
B; (R",G) and H [S) (R, G) in the same way as before, see, for instance, [2,6]. It is
worth noting that Bz (R™) and Bf, (0X, E) are UM D spaces with the property ()
foralls € Rand 1 < p < oo. Later, we also use that ny R, G) C H; R, G) =

{ueL R, G): & T el, R, G)} forall0 <s < 1.

Let us now state the following properties of composition, adjoints and continuity
of Boutet de Monvel operators [9,11,13,23].
Theorem 16 (1) (Composition) Let A € lS’E1 FLE, B, (M. A), B € BEO Fo.Ey.Fi

(M, A). Then AB € Brg;?o,(ézfz (M, A), where d" := max {m’ +d, d'}. Sim-
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ilarly, if A € By popyp, (M, A) and B € By o o o (M, A), then AB €

BE ro by, M, A). )

(2) (Adjoint) Let A € Bgo‘ Fo. £y (M, D). Then A* € B?gl) Fy Eo.Fy (M5 D), where
%+% = 1 and A* is the only operator that satisfies, for everyu € C*®° (M, Ey) @
C® (M, Fp) andv € C* (M, E) ® C>*® (0M, F)), the relation

(AW, V) Ly EpeLaonry = (A W) V) L moeraon.F) -

(3) (Continuity) An operator A € BE"{FO’ E\F (M, A) induces bounded operators

Ay : Hy (M, Eg) & B,S;% (OM, Fo) — HS™™ (M, E1) & Bf{m*% OM, Fi)
foralls > d— 1+ %. Similarly A € [;’go,Fo,El,Fl (M, A) induces bounded
operators A (A) : H; (M, Ey) & B; (oM, Fy) — H; (M, Ep)® B; (oM, Fy),
Vs > —1+ %.

(4) (Fredholm property) If A € B'ngO’E],F] (M, A), d = max {m, 0}, is parameter-

L . —m,d’ ’r_
e}lllzpnc, then there exists a B € BE],F]’EO’FO (M, A), d = max {—m, 0}, such
that

AB—1e€B %" (M/A) and BA—1eB 50 (M. A). (2.6)

As a consequence, A (A) is a Fredholm operator of index 0 for each ) € A, and
there exists a constant Ao > 0 such that A (A) is invertible, if |1| > .

Similarly, if A € BZO»FO‘E] Fi (M, A) is parameter-elliptic, then there exists a
B e gZI,FI,EO,FO (M, A) such that Eq. (2.6) holds for d = d' = 0.

2.1 The Equivalence Between Ellipticity and Fredholm Property

In this section, we prove that the Fredholm property together with some growth con-
dition on X implies parameter-dependent ellipticity. The use of Besov spaces makes
the proofs a little more elaborate than e.g. the proof in the parameter-independent
L-case studied by Rempel and Schulze [23]. To make it clearer, we first study the
pseudodifferential term on Besov spaces and then the boundary terms.

2.1.1 Pseudodifferential Operators with Parameters on a Manifold Without
Boundary Acting on Besov Spaces
In this section, we prove the following theorem:

Theorem 17 Let M be a compact manifold without boundary, E and F be vec-
tor bundles over M. Let A(L) :C®° (M, E) — C*® (M, F), A € A, be a classical
parameter-dependent pseudodifferential operator of order 0. Then the following con-
ditions are equivalent:

(1) A is parameter-elliptic.
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(ii) There exist uniformly bounded operators B (1) : Bg (M, F) — Bg (M, E), A e
A, j = 1 and?2, such that

BIOWAMW =1+K (M) andAM) B (W) =1+Kr(A).

where Ky (1) : BY(M, E) — B)(M, E) and K5 (1) : BY(M, F) — B)(M, F)
are compact operators for every . € A and lim;|o0 K;j (X) = 0.

(iii) There exist bounded operators Bj (1) : Bg(M, F)— Bg(M, E)yZ e A, j=1
and 2, such that

BIOWAM =1+K (M) andA (M) B, ) =1+Kx(M).

where K1 (A) Bg(M, E) > Bg(M, E)and K» (\): Bg(M, F) > Bg(M, F)
are compact operators for every A € A. Moreover, limj| 00 K; (A) = 0 and

there exist M € Nog and C > 0 such that || B (A) ”B(BU(M F).BO(M E)) <
pA T Bp s

C(n )M, for j =1 and 2.

The third item also holds ) < C (A)", for some suf-

if | 8; () ”B(Bg(M,F),Bg(M,E)
ficiently small r, as a careful study of our proof shows.
We note that A(L) B, () = 1 4+ Kj (A) is equivalent to By (M\)* A (AM)* =
1 + K> (A)*, where * indicates the adjoint. This is the condition that we shall need.
Obviously condition i) implies that dim (E) = dim (F).
If (i) holds, then we can find a parametrix to A (1) by Theorem 16(4) so that (ii) is
true, and (ii) trivially implies (iii). So we only need to prove that (iii) implies (i).

Definition 18 Lets > 0,0 < 7 < % and (y, n) € R" x R". We define the operator
Ry(y,n):S (R") — S (R"), also denoted just by R;, by

Rou (x) = s els¥y (sT (x — y)) )

Below we collect some well-known facts about the operators R;. The items 1, 2, 4,
5 and 6 can be found in [23,28]. As we are dealing also with Besov spaces, some
estimates must be done more carefully. The third item was not proven in the previous
references. Statement 7 is stronger than usual. Both are necessary, as R; is not an
isometry in the space Bg R™).

Lemma 19 The operator Ry = R (y, 1) has the following properties:

(D) 1Rsullp,@ny = lullp, gn) for allu € S (R").
(2) limg_, o0 Ryu = 0 weakly in L, (R") for allu € S (R").
3) Ry : Bf, R") — BIO; (R™) is continuous for all s > 0 and ||Rsu||3z(Rn) <

Co (1+s(n)? ||u||H;(Rn), forevery 6 € 10,1[,s > 1l andu € S (R"). The
constant Cg depends on 0, but not on y, n ors.
(4) The operator Ry is invertible. Its inverse is given by

R7\u(x) = s eSO, (y+s57"x).
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(5) The Fourier transform of Rgu is given by
F (Ryu) (§) = 57 " MED (57 (5 —sm))
(6) Leta € S™ (R" x R", A). Then

R; 'op(a) (s1) Ryu(x) = op(ay) (1) u(x),

where ag(x,&,1) = a (y +57Tx, s+ sTE, sk).
(7) Leta € Sgl (R" x R"*, A) be classical, u € S (R"), A € A with (n, 1) # (0,0)
and 0 <r < t. Then

Jim 5" [lop(a) (s2) Ry = a) (v, 0. 1) Ry go gy = 0. 2.7)

Proof (1), (4) and (5) are just simple computations, and (6) follows from (4), (5) and
the definition of pseudodifferential operators.

In order to prove (2), we just have to note that limy_, o, fR" Rsu (x) v (x)dx = 0for
allu € S (R") and v € S (R"). The proof follows then from the fact that L ,(R")" ~
L, (R™), for % + % = 1, and that R; is an isometry.

(3) The operator Ry : ny R") — Bf, (R™) is continuous for all s € R, as Ry is
the composition of dilatation, translation and multiplication by /. The estimate
follows by interpolation. In fact, for s > 1, it is easy to see that || Rsu/| H)(R") <

(s ) Il As (Lp R, Hy @)
Lunardi [19, Corollary 1.1.7]) that there exists a constant Cy such that

= Bf, (R™), we conclude (see

| Ryull gy =< Co | Rsttll IRsull Gy < Co (145 ()’ llull gy ey -

(7) This is the longest statement we need to prove. We divide the proof into several
steps. Our first goal is the L ,-convergence:

Jim s [lop(as) () u = aw)(v. n. Mul sy =0, where u € S (R").  (2.8)

In a first step let us show that, for every (x, ) € R" x R”,
Ja (v +57 x5+ 576 52) —ae) (. V| < Cay (0 (6)7s77. (29)
Let x : R" x A — C be a smooth function that is equal to 0 in a neighborhood of the

origin and equal to 1 outside a closed ball centered at the origin that does not contain
(n, ). For s > 1, we have

la(y+ s "x, s+ s7E, sh) — x (sn+s7&, sA) a@) (v + s x, s+ 7€, s4) |

C
< G TsE sy SO mshTHE), (2.10)

Birkhauser



J Fourier Anal Appl

where we have used Peetre’s inequality. Since a() (y, sn, sA) = aq) (v, n, 1),
|X (sn + sTE, sk) ago) (y +s Tx,sn+57E, sk) —aq) (y, 1, A)|

n 1
< Z </ sTT x| |x (sm 4157, s2) (0x,a0)) (v 4 15T x, s+ 157, s4) | di
— \Jo
1
+ st / |&50¢; (xaq) (y + 157 x, s + 15T, sA)| dt)
0

52<c1s |x,|+C2 |g,| ) @2.11)
j=1

The estimates (2.10) and (2.11) imply (2.9) for 7 < %
In a second step we are going to show the pointwise convergence of the integrand
of (2.8) for all u € S (R") and all x € R". We know that

s" (op (ag) (W) u (x) — aq) (v, 1, }) u (x))

=Qn)™" /R e85 (a (y +s7Tx, 50+ sTE, sA) — aqy (v, 0, A)) it (§) dE.

The integrand goes to zero, as we have seen in Eq. (2.9). Moreover

|s" (a (y +s7"x, s+ sTE, 5A) —aq) (v, 0, 1) @ (§)] < Cyp (x

is integrable with respect to &, so that the dominated convergence theorem applies.
In the third step we will finally prove (2.8). It is enough to show that the integrand
is dominated. Indeed, integration by parts shows that

s"x (op (as) (W) u (x) — ag)y (v, 0, A) u (x))

= (=Dl Z <y>s’(2n)"/ eistg(a(y +57'x,sn+sTE, s))
o Rn

o=y

— a@(y,n, M) DL i(§)dE. (2.12)

For o = 0, we recall (2.9); for o # 0, we use that » + 27 |o| — |o| < 0 and obtain

¢ (a(y+s""x.sn+57E, sx))( <Clp W )l

As & > (€)M (&) is integrable for all M > 0, (2.12) can be estimated by éx,n,y (x).
Hence, for arbitrary N,

s" |op (as) W u (x) — ag) (v, 1. M u (x)] < Copn (x)

The dominated convergence then shows the desired L ,-convergence.

Birkhduser



J Fourier Anal Appl

Our next goal is to show L ,-convergence of the derivative:
Sl;rglo s" |lop(as) (W) u — a@) (v, n. Mu| Hi@En = 0, ueS(R"). (2.13)
Let us first observe that
0e,0p(a5) () = 0p (a5) G) by + 5" op ((0,0), ) G
Using Eq. (2.8) and the fact that r < 7, we conclude that

Sli)ngosr ||0p (aS) ()”) aijt - a(O)()’a n, k)axju“Lp(R") =0

and
R ER ((3"1“) )(M” Lp(®")
< gl_i)rgos op ((axja) ) M) u = (9x;a) © (v. m, )‘)MHL »(R7)

+ lim 5" [ (3x,0) 0 (s 0, |, ey =0

§— 00

for all u € S (R"). Hence
Jim 5" [, 0p(as) () u = a@) (v, 0, M| gy =0, (2.14)
Equations (2.8) and (2.14) imply (2.13).
In order to finish the proof of item (7), choose 8 > 0 such that 6 +r < 7. Then

item (3) implies that

s" Jop(@) (s2) Rou = a) (v, 1, 2) Ry go

<s"

s (R;‘op(a) (s2) Rsu — ao)(y. n, “”) ‘

Bj(R")
= Co (45 )’ s" [lop(as) Gy u = a) (v, n, | 3 gy -

As the last term goes to zero, we obtain (2.7). O

Corollary 20 Let a € S TR X R", A) satisfy the transmission condition and u &
S (R ). Then

hm s” ”r op(a) (si) Ry (e u)—a(o)(y n, Mrt Ry (e u)”L - =0,

for (y,n,A) € R x (R™" x A)\{0}) and 0 < r < t, where Ry = R (y, n).
+

Proof We use that ™ : L, R") — L (R") is continuous, that Ry : L, (R") —
L, (R") is an isometry mapping COO(R ) to C°(R"), and Eq. (2.8). O
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In order to control the action of R; on Besov spaces, we recall the equivalence of
Besov norm and L, norm on certain subsets of S(R"), see e.g. [18].

Lemma 21 (Besov space property) There is a constant C > 0 such that
-1
C™ M lull gy ey < el ey < C Nl gy

forallu € 8" (R") with supp F(u) C Ukm:sz for some m > 0. Here C does not

m
depend on m. In particular, under these circumstances, u € L, (R") if and only if

u € BY) (R").

The number 2 could be replaced by a different one. We recall that the sets K; were
defined in Remark 12.

Proof As ¢;(&) = ¢ Q7 I*lg) for j > 1,and u = Z;”:,i_l @j(D)u, the estimate

lg; (DYull @y = IF " (9)) * ullz, @ < I1F orlli,@nlule,@. j = 1,

implies the result. O

The operator R has important properties when acting on functions whose Fourier
transform is supported in K := {£ e R"; 1 < [&] < 1}.

Lemma 22 There is a constant sy > 0, that depends only on 0, for which the operator
Ry = R (y, n) has the following properties:

(1) Ifu € S'(R™) and supp (Fu) C K, then, for every s > sq, there is an m € Ny
that depends on s, such that supp F (Rsu) C UZ’:ZKk.

m
(2) There exists a constant C > 0 such that c! ||M||B(p)(Rn) < IIRSMIIBQ(Rn) <

C ||M||32(R")f0r alls > soand all u € Bg (R™) with supp (Fu) C K.
(3) Foru € S(R™) with supp(Fu) C K, limy_, o0 Rsu = 0 weakly in Bg (R™).

Proof (1) By item (5) of Lemma 19, F (Rsu) (§) = 0, unless % < |s‘f (& — sn)| <
1. If n = 0, this means that %st < |&] < sT. If n # 0, choose sg > 0 such that
2sT < s|nl|, for s > sg. Then supp F (R (1)) C {S; %s Inl < |&] < 2s |17|}, for
s > so. The result now follows easily.

(2) As supp F(Rsu) C Uzgﬁl(k and supp (F (1)) C K, the result follows from
Lemma 21 and the fact that R; is an isometry in L, (R").

(3) From item (2) of Lemma 19, we know that

§—>00

lim Riu(x)v(x)dx =0,vesS (R”) .
Rl’l

However, Bg R" = Bg (R™Y, for % + % =1, and S (R") is dense in Bg (R™).
As, by item 2), || Ryu IIB]g(Rn) is uniformly bounded in s for all fixed u € S (R")

such that supp (Fu) C K, the result follows.
O
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We now prove Theorem 17. The next simple lemma will be useful:

Lemma 23 Ler E and F be Banach spaces and E' and F' be their dual spaces. If
A: E — F is abounded linear operator such that A is injective, has closed range and
its adjoint A*: F' — E' is also injective, then A is an isomorphism.

Proof Suppose that the range R (A) of A is a proper subset of F. By the Hahn-
Banach Theorem, there is an f € F*, f # 0, such that f|g4) = 0. This implies that
A*(f) = foA=0.As A*: F/ — E’is injective, we conclude that f = 0, which
is a contradiction. O

Proof (of Theorem 17)

As it suffices to prove the implication (iii) == (i), consider A (1), B (1) and
K (A) as in (iii). Our aim is to prove that the principal symbol p(y) (z, 1) of A is
invertible for every (z, 1) € (T*M x A) \ {0}. We focus on a trivializing coordinate
neighborhood U containing x = m(z). We choose smooth functions ®, ¥ and H
supported in U such that ® equals 1 near x and Y& = &, HV = W. Denote by
A1) € B(BS RN, BY(R™)™N) and B(1) € B(BY(R"N2, BY(R")M) the operators
HAA)W and ®B(M)H in local coordinates. Then our assumptions imply that there
are compact operators K (1), tending to zero in B(Bg (R™N1Y as |A| — oo such that

B(WAM) = ® + KL, (2.15)

where @ is @ in local coordinates. Here we use the fact that B(A) has logarithmic
growth and that ® B(A\)H?A (L)W differs from ®B(1)A (L)W by a compact operator
whose norm tends to zero as |A| — oo.

Denote by (y, n, A) € R” x (R" x A) \ {0} the point corresponding to (z, A) and
fix an element u = cv € SR, where ¢ € CM and 0 # v € S(R") with
supp (Fv) C {é; % < |&] < 1}. Equation (2.15) together with item (ii) of Lemma 22
implies that

”u“Bg(R”)Nl <C ("B (sA) ”B(BB(R”)NZ,B?,(R")NI) A (sA) RsM”Bg(Rn)Nz

+ 11K (52) Rl gy goys + 111 = B)Rsull gy gy ) - (2.16)

We claim that limg_; o ||I€ (sA) RS“”B‘P)(R")NI = 0:Indeed ||I€ (sA) ”B(Bg(Rn)Nl) — 0
for A # 0, and IIRSMIIB;;(W)Nl <C IIuIIBg(R,,)Nl. For A = 0, we use that K 0)
is compact and the third item of Lemma 22, which implies that limy_, o Rsu = 0
weakly in Bg (RMN1,

Since ® € CZ°(R") is equal to 1 in a neighborhood of y, limy_, (1 —

®)Ry(y, mM)u = 0 in the topology of S (R") and, therefore, also in the topology
of Bg (R™). We moreover estimate
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||A (sA) RSu“Bg(Rn)Nz = ||A (s2) Rsu — poy (¥, n, A) Rs’/‘”Bg(]Rn)Nz

+C ”p(()) (ya n, )‘-) CHB((CNI ,(CNZ) ”v”Bg(R”)'

Item 7 of Lemma 19 implies that lim_, o0 s” || A (sA) Ryu =P (v 0, &) Ryul go gy
P
= 0 for r sufficiently small. By assumption, [B(sA)llggomnV2 go@eyVi)y =
p TP

C(In(s1))M. Taking s sufficiently large, we conclude that
C(Ilé (sA) ||B(32(RH)N2’32(R,¢)N])||A (sA) Ryu — poy (v, n, A) Rsu||Bg(Rn)N2

- ~ 1
+ 1K (s2) Rsu||32(Rn)N1 + (1 = (b)Rsu”Bg(Rn)Nl) = EHMHBS(Rn)N]-

Hence, for sufficiently large s, we have

lellem vl gy ny = ”””Bg(R”)Nl

< Cn N [ poy 3o m. 2 ¢l gem ey 0l By @) -

As v # 0, this clearly implies that p() (y, 1, A) is injective.

An analogous argument applies to the adjoint operator. We conclude that
Py (v, n, A)*, that is, the adjoint of p(o) (v, 1, 1) and the principal symbol of A (1)*,
is also injective. Lemma 23 then tells us that p() (y, 1, A) is an isomorphism and, in
particular, that Np = Nj. Therefore A (1) is an elliptic operator. O

2.1.2 Boutet de Monvel Operators with Parameters Acting on L ,-Spaces

Theorem 24 Let M be a compact manifold with boundary M. Let Ey and E;
b~e vector bundles over M, Fy and F| be vector bundles over 0M and A €
BZO,FU,EI,FI (M, A). Then the following conditions are equivalent:

(1) The operator A () is an elliptic parameter-dependent operator.
(ii) We find bounded operators By (L) : L, (M, Eo) ® Bg (M, Fy) - L, (M,E)®

BY (M, Fr)and By (\): L, (M, E)®B) (M, F1) — L, (M, E))®B) (M, Fo)
such that

BIOWAM =1+K, (M) and AQ) By (W) =1+ Ksr (X)), A € A,

where the Bj (L) are uniformly bounded in A and Ki (A):L, (M, Ep) ®
B) (M, Fo) = L, (M, E0))®BY (M, Fo)and Ky (\): L, (M, E)®B)) (M, Fy)
— L,(M,E)® Bg (M, Fy) are compact and lim |00 Kj (A) =0, j =1, 2.

(iii) Condition ii) holds with the uniform boundedness of the Bj (1) replaced by the
condition that, for j = 1,2 and some M € Ny,

IB; () HB(LP(M,El)GBB](}(M,H),Lp(M‘Eo)GBBg(M,FO)) =Cn o™
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Remark 25 Let A* (1) be the adjoint operator of A (). Theorem 16 tells us that
A (A) B> (A) = 1 4+ K3 (1) is equivalent to

B3 (M) AT (M) =14+K5 (1),
which is the condition that we will need later.

Again a standard parametrix construction shows that (i) implies (ii). As (ii) implies
(iii) trivially, we only have to prove that (iii) implies (i).

We fix a point (y, ) € R"~! x R"~! and a constant 0 < 7 < 3 For every s > 0,
we define the isometries Ry = R (y, 1) : L, (R"™') - L, (R*™!), S;: L, (R}) —
L, (Ry)and Ry ® Ss: L, (R%) — L, (R) by

T(n—1)

Rov(x)=s 7 €5y (5" (x" =),

Sew (x) = 57w (s2)

(n=1)

Ry @ Ssu(x) =5 7 s 7y (s (x" = y) . 5xn).

The following simple proposition will be useful. It is very similar to the results we
have already seen.

Proposition 26 The operator Ry ® Ss: L, (R}) — L, (R%) satisfies:

(1) IR ® Seul, ey = lull, gy, e € Ly (RY).
(2) limy_ 00 Ry ® Ssu = 0 in the weak topology of L, (R:’L)

Proof (1) Is easily verified.
(2) Due to the first item and the fact that L, (R}) = L, (R ) , it is enough to
prove that if u (x) = uy (x') uz (x,) and v (x) = vy (x') v2 (x,), where uy, v; €

cx (R"‘l) and up, vo € C° (E) then

lim Ry ® Ssu (x) v (x)dx

§—>00 R"
+

= lim (/ Ryuy (x) vy (x) dx’) (/ Ssutr (x,) V2 (x,,)dxn) =0.
§—>00 Rn—1 R,

A simple computation shows that both terms on the right hand side go to zero as
s — 00.
(]

Proposition 27 Let0 <r < tandletv € S (R”_l) be such that F (v) has compact
support. Denote by C (s) a function such that limg_, o, C (s) = 0. Then
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(1) (Pseudodifferential operator in the interior) Let p € S?l (R" x R"*, A) satisfy the
transmission condition and p ~ jeNy P(=j) be its asymptotic expansion. Then

SV

op (p) (s1) (Ryv ® S;w)

v (x A
—R;® Sv( 2(7_[) /Relxnénp(O) s Xn, 0,60, 2) Frn—t, (e+w) n) dg:n)

<COlwly,@,, weSRy).

Lp(RY)

(2) (Singular Green operators) Let SC_II(R"_I, Sy, A) g~ ZjGNO 8(-1-j) and
G (M) : SRT) — S(R™) be defined by (2.3). Then, for w € S (RT)

s"I1G (sA) (Ryv @ Syw)

—R; ® Ss(v(JC’)/R 81y (¥, Xn, Yn. 1, A) w(yn)dyn)
+

=C)llwlle,®y)-

Ly(RY)

_1
(3) (Trace operators) Let S,;” (R"1, 8., A) 5 7 ~ 2 jeNo f( . j) and T (A) :
: -1~

S (RTi) — S (R be defined by (2.2). Then for w € S (E),

Sr

T (s3) (Ryv @ Sqw) = Ry (v (x’)fR () O Byw () 3, )
+ 4

=C® lwllz,®,) -

‘Bg(R"*‘)
1_ ~ ~
(4) (Poisson operators) Let S/ (R"™1, S, A) > k ~ 2 ieNo k<l_1_j) and

K (1) : SR™™") — S(R™) be defined by (2.1). Then for w € S (E)

lim s"
§—> 00

=0.
Lp(RY)

K (sA) (Rsv) — Ry @ S </€(1_1) (¥, Xn, 7, M) v (x’))

P

Proof The items (1), (2) and (4) extend the results in [23, Section 2.3.4.2]. They can
be obtained by replacing the operators R, and S in [23] by the definitions given here
and arguing similarly as for the third item.

The third item is more delicate, as the limit is taken in the Besov space: Let g be
such that % + [ll = 1. Using item 4, 5 and 6 of Lemma 19, we find that

RI'T (s2) (Ryv ® Syw) (x')
E Y 7l~
= / eré (/ s 4t (y +577x, )ﬁ, sn+sTE, sk) D(ENW (x,) dxn)dé’.
Rn-1 ]R+ R
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Fix (y,n,A) € R*™! x R"~! x A such that (5, ) # (0, 0). We will use the simple
fact that if v € S(]R"_l) is such that supp (F(v)) is compact, then for all 6 € 10, 1[
and for all & € supp (F (v)), there is a so > 0 such that

ClsM 1o M < (s + 0578 s1)" < CsM o MM s = so.

The constant C does not depend on 6, s > sg and &’ € supp (F (v)).
We start by establishing L ,-convergence: let0 < r < tandv € § (R*~1) with

supp (F(v)) compact. Then, forall w € S (R_+), we have

Sr

R;IT(SA)(RSU(X)SSW)_V(X/)/ ~,L) O, X, 1, M) w () dxy L, (Rr-1)

7
R+ ( p
=C®lwlL,®y) -

where C (s) is a constant that depends on s, (y, 17, A) and v but not on w. Moreover,
limg_, o C (s) = 0.
We divide the proof into s, always assuming that s > sq. First we see that

S}’

R7IT (s1) (Ryv ® Syw) — v (x) [

R
P
R4

) (¥s Xn> 1, k)) 0 (&) dg’)

t<_i) ¥y Xn, m, A) w (xpn) daxp
N

V4

PP B X
(/ e E S g (t(y—i—s_fx/,i,sn—i—srg’,s)»)
Rr—1 S

Q=

P

q 7
dx,,> . 2.17)

In a first step we will prove that, for all (x', x,,£') € R"™! x Ry x R""! and
M € Ny, there is a constant that depends on 7, A and M such that

_1 /. X, 1.
s Ta <t(y+s_rx/,—n,sﬂ+57§'/,ﬂ)—S‘”‘( 1)(yaxnsn’)")>‘
s _1

P

< Cpoom () ™M™, & € supp (F (v)) (2.18)

Let us fix a function y € C*® (}R”_l X A) that is zero near the origin and equal to
1 outside a closed ball that does not contain (1, A). We note that

_1 ~ X,
’sr axM (t(y +57Tx, L sy +sTE, s)»)
s

—x (sn + 5T, sA) f(,i) (y + 57X, )%, sn+sTE s)»))‘

P

1_
pM

1 _1_ _
< CisT0 M sy 457 sA) TP < CosTIH (g W) (2.19)
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for &’ € supp (F (v)) . We now study the term

M
sr—é-&-M (xz) (X (sr;+sré/,s)»)f~( 1) (y+s—fx/’x_",sr]+sfs/’s)»>
-5 S

¥
S P

P

—s%t(il)(y, Xno 1, A)) (2.20)

1 .
Using the fact that s~ 7¢ 1 (y, )%,sn,s)») =t/ 1\ (), %, 1, ), and a Taylor

M

P P
expansion we conclude that the expression (2.20) is smaller or equal to
r—t—i4m Z | //3| /1
s q X
0

by o (xip)

x(y+6s77x, x—n, sn+0s7E, sk))d@
s

_1 Uy x, (M .
= e [ (i)

|B1=1
x(y+6s77x, x—n, sn+0s7E, sk))d@
s

Xn
N

Xn
N

<C (sr_f (") 1, )»)|_71’+1_M + 5T HE) [, A)|_%_M> . (22D

AsO<r<t<%,weconcludethat—l—i—r<r—randr+t—1 <r-—r.

Hence (2.18) follows from the estimates of (2.19) and (2.21).
In a second step we will next show that the limit of Eq. (2.17) as s — o0 is zero.

This is true, as it is smaller than or equal to

Cn,xs”/ |0(§/)|ds/(/ <xn>den)q,M>1.
R—1 Ry

Inathird step we want to prove that, forall M € Ny, the expression (2.17) is bounded

by Cy (x’ )7M, for a constant Cp; > 0. Then Lebesgue’s dominated convergence
theorem will imply that (2.17) holds. In order to do that, we note that

PP B X,
x"Y / eNE g g (t (y +57Tx, sy +sTE, sk)
s
1. N
—sqt(_l) (s Xn,s 10, A)) 0 (') dg’
P
is a linear combination of terms of the form
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PPV § ~ X,
/ e Ta Dg, (t (y 57, 2 sy 45T Sk)
Rr—1 S

) (s Xn, 15 /\)> D70 (§') d§".

Q=

If o = 0, we have already proven that the above expression is smaller than
CyaM (x,) ™M s"=7_For o # 0, we estimate

_1 ~ X,
s 'ixrlleg/ (t (y +57Tx, L sy +5TE, sk))’
s

_1 X\ M 2 X
J-dtlolm (_) (Dg,t) <y+s_fx/’_n’m+sf€/’sk)'
S S

<

1 LY P
r—q+t\a\+M< pT1=M—lo]

<Cis sn+sTE L sA)

1
< Cos" T Dlol g 3y 71l mp =M (2.22)

1 -
Hence |sr_5Dg/ (F(y+s7x, 2 sp+ 57 51)) | < Cyom (xy)™™s"77. The
result now follows easily.
We will next establish the L ,-convergence of the derivative. Let 0 < r < 1 and

vesS (R"‘l) with supp (F (v)) compact. Then, forall w € § (E), we have

sr

R7IT (s2) (Ryv ® Syw) — //
s (s2) (Rsv ® Ssw) U(x) R HL(Rr-1)

=C®lwlL,®,)- (2.23)

f ) n» 7)\' ndn
+t(_%)(yx n, M) w(xy)dx

where C (s) is a constant that depends on s, (y, n, A) and v but not on w. Moreover,
limg_ 0 C (s) = 0.
Let us first fix a notation. We denote by (dx ; T) (), j =1,...,n—1,the operator:

(0,,7) 0 @0 () = |

e”"g// O, (', 2, €, 0) (Fogrut) (8, x) docnd'.
R”_] R+ -
Now, let us first observe that, for j = 1,...,n — 1,

e, Ry'T (s2) (Ryv ® Syw) = Ry 'T (s1) (Ry (3x,v) ® Ssw)
+5TTR (35, T) (s1) (Ryv ® Syw) . (2.24)

Using Eq. (2.17) and the fact that r < 7, we conclude that

Sr

R7T (sh) (Ry (3x, V) ® Ssw) — By, v (x) /R+ 5(7%) (¥, Xn, 0, A) w (x,) dx, L @)

=C®lwlL,®, (2.25)
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and

sr

SR (04, T) (52) (Ryv ® Syw) HL,,(RH)

<s" TR (0, T) (s2) (Ryv ® Ssw)

() / (30,7) (1 O 5001 2 0 o)
R+ P

Ly(R=T)

LT ||U||Lp(]Rn—l) Xp > (axjf) (_ ) y, Xn, 1, A)

1 lwllz,®,)
, Ly®Ry)

=C®lwle,m,)- (2.26)

The expressions (2.24), (2.25) and (2.26) imply that

sr

—1 /
9, (RO1T (52) (Row ® Syw) — v (v )/]R )LP(RH)
=C®IwlL,®,)- (2.27)

?(4) . X, m, M w (xn)dxn)
N

p

Finally, (2.23) is a consequence of Eqgs. (2.27) and (2.17).
We are now in the position to prove item 3. Choose 0 < 8 < 6 +r < t. Then

Sr

T (sA) (Rsv ® Ssw) — (Ryv) (x/) /R f(_l) ¥y Xn, 1, A) w (xp) dXp
+ P

BY(Rn1)
<s"

R, (R;l T(sh) (Ryv ® Syw)

— U(X/),é f(,l) (y,xn,n,)»)w(xn)dxn)
+

p

BY (Rr—1)
<Co(l+s(n)s"

R7'T (s2) (Ryv ® Ssw)

- v(x/)/R f(_l> (v, Xp,m, A) w (x,) dxp
+

P

<C@)lw .
HiEn = () lwll, @)

O

We also need to understand the action of the singular Green and trace operators on

the operators Ry = R, (v, n) for (y,n) € @ x R™. Notice that (y, n) € @ x R"
instead of R”~! x R”~! as in the previous proposition.

Proposition 28 Let Ry = R, (y,n), where n = (', n,) € R"! x Rand y =
(y/, 0) eR*" ! xR Foru e cxr (Rﬁ) the following properties hold:

(1) (Green) For g € S;ll (R”fl, Sty A) defineG () : S (]RT_Q - S (@) by Eq.
(2.3). Then Timy o0 5" [|G (s2) Ry (e u) (myy = Oforall r > 0.

_1 S
(2) (Trace) Fori € S,;” (R""', Sy, A) define T (1) : S (m) — S (R"") by Eq.
(2.2). Then limy_ 00 8" | T (sA) Ry (¢ ) | 5o (Ri-1) = 0 forallr > 0.
)4
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Proof The proof is analogous to that of Proposition 27. Let us sketch the proof of (2)
as (1) is similar.

Let % + é = LR =RT(.7): SR > S(R"!) and Ry =

Ry (y,m) : S(R") — S (R"). Using item 6 of Lemma 19 in (x’, ') and the defi-
nition of Ry, we obtain that

RIT (s1) (Ryu) () = / SVE (/ TS T
Rn—1 Ry
- X
x{ (y + 577, —:, sn+sTE, sk) Fogu (§,x,) dxn) dg’.
s
Now, we note that

AN N R N
(G2) 7 (s Soom 4578 )| < O fom 7 s 7Y
N

o7
On the support of u, we have x, > R > 0 for a certain constant R > 0. Hence
‘f(y +577x, )SC—Z, sn+sTE sk)‘ < Cysn+s7€, SK)*%JrlfN TN RN

< CNS(%*])(T*IH»(erl)N

x (§/>N+%—l

(. 2y N
RV,

As 27 — 1 < 0, we can always choose N € Ny so large that, for all (x/, Xn, €, A) €
R-1 % R4 x R"~! x A such that x,, > R and for all » > 0, we have

lim s” (siéf(y +57x, ;C—Z, sn+sTE, s)»)) =0.

§—>00
For large N € Ny, the dominated convergence theorem implies that

: r —1
lim s (Rs T (s2) (Ryu) ()/)) =0, r>0.

Now, to finish the proof, we just study L, and H ; convergence. Using integration
by parts in the expression x'” Ry L7 (sA) (Rsu) (x/ ) we see that we can dominate
R;IT (sh) (Ru) (x/) by (x/)_N for every N. Hence

R7IT (s1) (Ryu)

lim s” =
§—>00 L,,(Rn—l)

If we take derivatives of first order in x’, we find that

lim s”
S—>00

RIIT (sh) (RSM)HHI(RH) —0

P
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The estimate of the norm of R on Besov space and the same argument with interpo-
lation of Proposition 27 lead us to the conclusion that

slggo s"IT (sA) (RSM)”Bg(Rn—I) =0.

Finally, we prove the main Theorem of this sub-section.

P, +GK

Proof (of Theorem 24) Let A = < T s

> € BY. ro.py.;y (M, A) and By, B,

Bi1 B2

K and K; be as in Theorem 24, (iii). Write B} = < B B
21 B2

) and decompose

similarly K.

Next we choose smooth functions ®, W and H, supported in a trivializing neighbor-
hood U of x = m(z), such that ® equals 1 near x and V& = &, HV = W. We denote
by Pi(h),G(1) € B(L,R)™, L,(R%)™), T() € B(L,RY)™, BYR"Hm),
B € B(L,(R%)™, L,(RM™) and Bip(A) € B(BY(R"')™ L,(R})"™) the
operators HPy (M)W, HG(L) W, ® By (M)H, HT (M)W, and ® B> (1)H in local coordi-
nates.

The identity B1A = I + K implies that

Bii(W)(Py(A\) 4+ G(L) + BT () = d + K(h), (2.28)

where  is the function ® in local coordinates and K (1) is the operator which collects
the terms arising from the localizations of ® K11 (A)H, ®B11(A)(1 — H?)(PL (M) +
G(A))¥ and DBy (M)(1 —H2%)T (M) W. As the latter two operators have smooth integral
kernels, with seminorms rapidly decreasing with respect to A, K()) is compact and
its norm tends to zero as |A| — oo.

The interior principal symbol In order to prove the invertibility of the inte-
rior principal symbol py (z,A) @ T w0 (E0) = TFapsa (E1) for (z,2) €
(T*M x A\ {0}, fixu = cv € CPR)™, where ¢ € C" and 0 # v € C°(R7}).
Denote by (v, n) € Ki x R" the point corresponding to z in local coordinates. For
Ry = Ry (y,n) we note that R(eTu) € C°(R7), since supp Rg(etu) C R% . In
particular |lull @y = lr ™ Ry (e+u)||Lp(R1)n1 . Hence we obtain from (2.28)

lllp, ey < IIBll(S)»)||B(L,,(R1)n3,L,,(R1)n1)IIf’(sA)RS(e+u)||LP<R1)n3
+ 1(B11G + BuaT)(sM)Rs(e )l ym + 1K (sA) Ry (e u) I, e ym
+ (1= ®)Rs (e )l @y - (2.29)

On the right hand side of Eq. (2.29), we estimate

IP(sMRs(ew)llL, @rym < [1P(s2)Rs(e™u) — poy(y, n, MRs (e )|z, @ ym
+Cllpo (v, n. Mcllsem cmyllvile, @) (2.30)
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and note that Corollary 20 implies that

lim s"| P(s)Re(eFu) = poy(y. n. MRy (W), ey s = 0.

We claim that also K (sA) Rs (e ) tends to zero: For A = 0 we infer this from the fact
that K (0) is compact, while Ry(e™u) weakly tends to zero. For A # 0 the norm of
K (s)) tends to zero as s — oo, whereas R;(e™u) is bounded. Finally, it is easy to
check that lim,_, o (1 — ®) Ry (eTu) = 0in S (R")"! and therefore alsoin L, (R%)"".

If we assume, for an instant, that also the second summand on the right hand side
of (2.29) tends to zero as s — 00, then, taking s sufficiently large, the bounded-
ness of R;, Inequality (2.30) and Eq. (2.29) imply together with the assumption that
IBii(SMIIBwL,®Ly3,L,®Eym) = C(In(sA))M, that

”c”(C"I ”v”LI’(Rz—) = ”u”LP(R’i)"l =< C ||p(0) (ys n, )")C”B(Cnl’CIQ) ”U”LP(RYJL) .

Hence p) (v, n, 1) is injective. The same argument, applied to the adjoint opera-
tor, shows the injectivity of p() (v, #, 2)* and thus the invertibility of p() (v, 7, A).
In particular, n; = n3. In order to establish the convergence to zero of the second
summand in (2.29), we distinguish two cases.

Case 1 x ¢ 0M. Then U can be taken as a subset of the interior of M. According to
the rules of the calculus, T (sA) and G(sk) are regularizing elements in their respective
classes; in particular, they are compact. For A # 0, their operator norms are rapidly
decreasing as s — oo. Arguing as for K above, we obtain the assertion from the
assumptions on B.

Case2 x € 0 M Here, statements (1) and (2) of Proposition 28 assert that, for every r >
0, the norms ofsré(sA)RS (eTu)ands” T(sA)RX (e™u) go to zero in the corresponding
spaces as s — o0o. The assertion then follows from the fact that the norm of B(sX)
grows at most logarithmically in s by assumption.

The boundary principal symbol We have to show that, for any given (z, 1) €
(T*oM x A)\{0}, oy(A)(z, A) is invertible in

Hom (ngM ((EolaM ®S (E)) ® Fo) Ty ((E1 lom ® S (RT)) ® Fl)) .

Let B and A be the operators HAW and ® BH in local coordinates, respectively. Write
the principal boundary symbol of A in the form

P+, 0,&", Dy, &) + g—1)(x", &', Dy, 1) k(i—1 (X', &', Dy, 1)
P

t(_l)(x” £ Dy, 1) s (' &, 2) (2.31)

and let (y, 7) € R"~! x R"~! be the point that corresponds to z in local coordinates.
Fix a function 0 # u’ € S (R”_l) with supp (fu/) C {S; % < |&] < 1}. For u =

——\n
(ur,....upn) € S(R+> "and v = (i, ..., vs;) € €™, not both zero, denote by
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u'@u and u’ ®@v the functions RY, > (x, x,) > (' (') w1 (xp) s ..., (x7) uny (x))
and R"!' 5 x" > (u' (x")v1,....u" (x") vy,), respectively. According to Lemmas
19, 21 and 22 there are constants such that

[l g1y = 1Rt ey

= [ gy vy = Co R gy oy = G [ gy s 21

Writing ||.||Lp3(p) for the norm in L,(R%)" @ Bg(R”_l)”Z, in analogy with
Eq. (2.28) conclude from the identity BjA = [ + K that

(2

VL, Ry eC

_ C”<i><Rsu’®Ssu> +CH(1 _&)) (Rsu/@)Ssu)

< L5 Rsu' ® v L,B)

Ry’ ® v
<C (“B (sA) A (sA) (Rs ?S‘g 1(?)5) <Z, g :) — B(sh) (RS ? S I(e)v)

) (p(0)+(X’, 0.8, D)+ g8 Ds2) k(3 (€' D A)) (u % u)

o]

Ly@®"1) ‘

l‘(fl)(x/,é', Dy, ) soy(x', &, ) W Qv
P L,,Bg
~ Ry, ®Ss 0
+ HB (sA) ( 0 R,
p(0)+(x’, 0, E,s Dy, 2) + g(*l)(x/, 5/7 Dy, 1) k(%_l)(x/» S,s Dy, 1) (u/ ® M)
X
t(_l)(x/,é/, Dy, X) s (x', €, ) W Qv
P LB

- R’ ® S,
e ()

Rsu' ®v

-\ (Ru' ® Sgu
+H(17q})<Ru’®U '
LB s LB

Let us first consider the case where A # 0. We infer from Proposition 27 and the
fact that the norm of f?(sk) is 0((1n(sk))M ) that the first summand on the right
hand side is o(||(#’ ® u) ® ('’ ® v)|). The same is true for the third summand,
since the norm of K (sA) tends to zero as s — oo. The fourth summand tends to
zeroin SR & S (R*12 a4 fortiori in the L ,,Bg-norm. Taking s sufficiently
large, we may achieve that the sum of the first, the third and the fourth summand
is < %(H(u’ ® u) ® (1’ ® v)|). From the boundedness of B(sA), Ry and S, for
this fixed value of s, we conclude that, with norms taken in L (R4)™ @ C™ and
Ly (Ry)"™ & C™,

u
v
PO+ (X', 0,8, Dy, ) + g—1)(x", &', D, 1) k(L])(x/, § D, M)\ 4,
<C P

- t(_l)(X’, &', Dy, 1) s (x', €', 1) (v)
4
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In case A = 0, we obtain the same conclusion using the compactness of K (0).
Hence the operator from Eq. (2.31) is injective and has closed range. As the same

can be said of the adjoint, we conclude from Lemma 23 that the principal boundary

symbol is an isomorphism. O

2.2 The Spectral Invariance of the Parameter-Dependent Boutet de Monvel
Algebra

Theorem 29 Let A € Bgo Fo.Ey.Fy (M, A) be a parameter-dependent operator. Sup-
pose that, for each A € A, the operator

AQ): Ly (M, Eo)® B) (9M, Fo) - L, (M, E1) @ B) (0M, Fy)
is invertible. If there are constants C > 0 and M € Ny such that

”A ! H CnONWM, xen,

( p(M.EN®BY(OM.F1).Lp(M,E)®BO(OM, Fo))

then A (V) ~! € BY.

E1,F1,Ey, Fy (M’ A)

Proof By Theorem 24 A is parameter-elhptlc Hence we find a parametrix B €
BY i opor (M. A) and Ky € B2 (ML A) and Ky € B o (M, A)
such that AB = I + Kiand BA = I + K>. We conclude that

AT =B - K2 WA =B~ K2 M) (BO) =AM K1 ().

As K»B € BE1 F1 Eo. Fo (M, N), A()\)_1 grows at most as (In (A))M in A and
K;(X), j = 1,2, are integral operators with smooth kernels whose derivatives
decay rapidly with respect to A, we see that Ky A~ K| € BE;”O]’;?, Eo.Fy (M D) and

.
€ Be, p gy g (M. D). O

The above theorem establishes spectral invariance for the BE), Fo.E1.Fy (M, A) cal-
culus. When A = ¢, that is, the algebra is independent of parameters, we can use
order reducing operators and argue as in the proof of Corollary 50, to prove spectral
invariance of the Boutet de Monvel calculus of integer order in the L ,-setting.

In [10, Theorem 1.12] Grubb proved that the inverse of elliptic elements of Boutet
de Monvel algebra belongs again to the algebra. This was done for a larger algebra
that allows the treatment on some non-compact manifolds. For the class of operators
defined here, our result is stronger, as it does not assume ellipticity.

3 Boundary Value Problems on Manifolds with Conical Singularities

In this section, we provide the definitions and results concerning manifolds with bound-
ary and conical singularities that we shall need. Details can be found in [30,31].
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Definition 30 A compact manifold with boundary and conical singularities of dimen-
sion n is a triple (D, X, F) formed by:

(1) A compact Hausdorff topological space D.
(2) A finite subset ¥ C D, which we call conical points, such that D\ X is an
n-dimensional smooth manifold with boundary.
(3) A set of functions Fy = {9 :Us —> X5 x[0,1[ /Xs; x {0}, 0 € X} such
that:
(i) The sets U, C D are open and disjoint sets. Moreover, each U, is a neigh-
borhood of 0 € X.
(i) X, is a compact smooth manifold with boundary for each o € X.
(iii) The function ¢, : Uy — Xs x [0, 1[ /X, x {0} is a homeomorphism,
0s(0) = Xo x {0} /Xy x {0} and ¢ : Us\{o} —> Xs x ]0,1[ is a
diffeomorphism.

Remark 31 For each 0 € X, we could use a different function ¢, : U, — X, X
[0,1[ /X, x {0} with the same properties as in item iii), as long as, for each o,

Go ol i Xe x 10, 1[ = X4 x 10,1

extends to a diffeomorphism ¢, o go;l X x ]—=1,1[ - Xy x ] —1,1][. These
are the changes of variables that we allow to do near the singularities.

For the analysis of the typical (pseudo-) differential boundary value problems on
these manifolds, we introduce the Fuchs type boundary value problems on a manifold
with corners . It is obtained by gluing the sets X, x [ 0, 1 [ in place of Uy, using
the functions ¢, . In this way, the singularities are identified with the sets X, x {0}.
The above remark ensures that the use of different functions ¢, instead of ¢, leads to
diffeomorphic manifolds with corners. In order to avoid unnecessary complications
with the notation, we shall consider manifolds with just one point singularity. A neigh-
borhood of the conical point will always be identified with X x [ 0, 1 [ /X x {0} and
a neighborhood of the corner will always be identified with X x [ 0, 1 [, where X isa
compact manifold with boundary. For a finite number of singularities the definitions
and arguments are analogous.

We will denote by int (D) the manifold with boundary D\ (X x {0}). By int (B),
we denote the boundary of int (D). In a neighborhood of the singularity, it can be
identified with d X x ] 0, 1 [. Finally B is the manifold with boundary given by int (B) U
(0X x {0}). In particular, in a neighborhood of the singularity, it can be identified with
dX x [0, 1[.We will also use 2D to denote a manifold with boundary in which D is
embedded. The boundary of 21D is 2B, a manifold without boundary.

We divide our presentation into two parts. First we define the classes of functions
and distributions and then the operators. The operators acting on a neighborhood of
the singularity will be defined as operators on X x ]0, 1[. We denote by Ey and
E1 two vector bundles over D and by Fjy and F; two vector bundles over B. Let
wx : X x [0,1[ — X be the projection operator, then there are vector bundles Ej
and E over X such that Eq and E; can be identified with 7} (E(’)) and 7% (E;),
respectively. Similarly, if 73x : X x [0, 1[ — 90X is the projection operator, then
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there are vector bundles Fj and F| over X such that Fy and F can be identified with
iy (F}) and 7}y (FY), respectively. Eg will denote Eg and E{) and the same will be
done for Eq, Fy and Fj. We also denote by 2E, 2Fy, ...the vector bundles over 2D
and 2B, whose restriction to D and B are E( and Fy.

Finally, a cut-off function w € C2° (E) is a smooth nonnegative function that is
equal to 1 in a neighborhood of 0 and equal to 0, outside [0, 1].

3.1 Classes of Functions and Distributions

In the following sections, X is a manifold endowed with a Riemannian metric and with
boundary 9 X. All vector bundles are assumed to be hermitian. We use the notation
X" :=RyxXand9X" := Ry x 90X and we will denote by E, E¢ and E vector bun-
dles over X or D and by F, Fj and F vector bundles over d X or B. The vector bundles
E, Eo, E1, F, Fy and F} will also refer to the pullback bundlesin X x R, X, X xR
and dX". Finally we denote by C*®°(X, E, F) the set C*® (X, E) & C* (3X, F).

Definition 32 Let W be a Fréchet space and y € R. We define the Fréchet space
T, (Ry, W) as the space of all functions ¢ € C* (R, W) that satisfy

sup {(in ) p (1377 (10 9 1) 1 € Ry} < o0,

for all k.I € Ny and for all continuous seminorms p of W. We write 7, (R;) when
w=_C.

Definition 33 Let w € C®([0,1[) be a cut-off function. The space of func-
tions C;’O (D), y € R, consists of all functions u € C* (int(ID)) such that

wu € ’];,_% (X A). Similarly, C;jo (B) are all the functions u € C® (int (B)) such

that wu € 7},7% (0X7).
Definition 34 Let X = Uyz 1U; be a cover of X consisting of trivializing sets and

¢;:Uj C X — V; C R be coordinate charts and (/ J')?/[:l be a partition of unity
subordinate to U, j = 1, ..., M. The space H; (X x R, E) is defined as the set of

distributions D" (R x X, E) such that (7, x) € Rx R’ (1//ju) (t, (pj_l (x)) belong
to H ;, (R x R, cN ), where N is the dimension of E, with norm given by:

M
— X —1
el iy xxey = Zl [(wiw) (107 @) HH; )’
j:

The space H,” (X", E) is the space of all distributions u € D’ (X", E) such that
u(,x) = t*nzj“’v (In(?), x), where v € H;, (X xR, E). Its norm is given by
||”||H'§;V(XA,E) = ”U”H;(XXR,E)'
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Similarly, using the space B3 (R”, CV) instead of Hj (R x R’, CV), we define
the space B‘; (0X xR, F), where N is the dimension of F. Associated to it
is the space B;,’y (BXA, F) of all distributions u € D’ (BXA, F) such that
u(t,x) = t_%ﬂ’v(ln (t),x), where v € B;‘, (0X x R, F). Its norm is given by
”M”B;’V(BX/\,F) = ”U”B;(E)XXR,F)'

Remark 35 The above definition implies u +— IIIB,MIILP(XA’E,dX%) +

n+l
2

lu| ) is an equivalent norm for Hll,' (X A, E)

Lp(Re HY(X.E), 4

Finally, we need Bessel and Besov spaces with asymptotics. First let us define
asymptotic types.

Definition 36 We say that P = {(p;,m;, L;); j € {1,..., M}} is an asymptotic

type for C*° (X, E) with weight (y,k) € R x Ny if p; € C, % -y —k <

Re(pj) < % — y, are distinct numbers, m; € Ng and L; C C* (X, E) are finite

dimensional spaces. The set of all asymptotic types is denoted by As (X, E, y, k).
Similarly, we say that Q = {(pj.mj. L;); j €{l,..., M}} is an asymptotic type
for C* (39X, F) with weight (y,k) € R x Ny and write Q € As (3X, F,y, k), if
pj € C, 53—y —k <Re (pj) < 5 — v, are distinct numbers, m; € No and
L; C C*® (90X, F) are finite dimensional spaces.

Definition 37 The Bessel potential and Besov space with asymptotics, respectively,
are defined as follows:

(1) Let P={(pj,mj,Lj); jel{l,...,M}} € As (X, E, y, k). We define
J J J
HT, (D, E) = NesoMy” ™7 (D, E) & Ep (X)),

where Ep = [XA 5 (1x) > 0 () M, S0 P I () e (), vy € Lj}.
(2) Let P ={(pj,m;,L); jell,...,M}} € As (3X, F, y, k). We define

B;)}’ B, F)= me>OBSp)y+k7€ B, F)e 5[; (3X),

where 5 = {8XA 3, x)— w@) Z]/W:l Zkrzot—ﬁf In¥ (1) vik (x), vjg €

L j} and @ is a cut-off function.

Remark 38 (1) The scalar product of L» (BX NF,dx ‘%) allows the identification
B, (0X" F) = B, (0XN,F), 4+ 1 = 1. As ByY (9", F) =
7758, 7 (X7, F) and B;" 7 (0X", F) = t7772B,"? (X", F), we con-
clude that B,” (X", F)/ = B,V (X", F), if we use the scalar product of
Ly (9X", F, 1" dtdx).
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n+l

ntl g ntl
(2) In the same way, H;,’ > (XME) 2 Hy b2 (X", E), if we use the scalar
product of Ly (X", E, dx%), and H),” (X7, E)/ =N, 7" (X", E), if we use
that of Ly (X, E, "dtdx).

/

Definition 39 Lets,y e Rand 1 < p < oo.

(1) We define ’Hi,’y (D, E) as the space of all distributions u € H;’loc (int(D), E)
such that, for any cut-off function w, here considered as a function on D, we have
wu € H," (X", E). Its norm is given by

”””HSP*V(D,E) = ||0)”||H;;V(XA’E) + (1 — w) ’/‘”H;‘]oc(int(]D)),E) .

(int (B) , F).

,loc

(2) Similarly, we obtain B,” (B, F) from B,” (X", F) and B,

3.2 Classes of Operators
We are going to use the natural identification
T, (R4, C¥ (X, E, F)) =T, (R4, C* (X, E)) & T, (R4, C* (3X, F))

and write ', := {z € C; Re (z) = o}. The latter set will be obviously identified with
R, when it is convenient to do so.

Definition 40 The weighted Mellin transform is the continuous linear operator M,, :
T, (R, C*¥(X,E,F)—> S (F%_y, C* (X, E, F)) defined by

<. dt
My (z) = tfot)—, zeli_.
0 t 2

It is an invertible operator, whose inverse is given by
1 1 —(Loy+i 1
M_1¢(f)=—./ f_zfﬂ(Z)dz=—/t <2 V+”)<p ——y+it)dr.
Y 2mi Jr, 2 2
7Y

.. ,d . :
Definition 41 Form € Z and d € Ny, MB’I?Q,FQ,El,Fl (X, Ry; T ) is the space of all
functions h € C*® (R+, B’g(;fiFO’ElyFl (X Fy)> that satisfy

sup {p ((tat)kh (t)), t e R+} < oo,

for all continuous seminorms p of B’ngo’ E\.Fy (X , Fy). In a similar way we define
214 .
MBE(),F(),E|,F| (X’ R+’ FV)
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: : m,d . 2D .
To.a function 1.n MBEO,FO,El,Fl (X, Ry; Fy) or MBEO,FO,El,Fl (X, Ry; Fy) we
associate the Mellin operator

opy; (h) : T, (Ry, C® (X, Eo, Fo)) = T, (R, C™° (X, E1, FY))

by

[op}, (W) @] (1) = L/l;{t_(é_y“t)h (t, I Y+ ir) (My0) (l —y+ ir) dr.

2 2 2

We also need to define the discrete Mellin asymptotic types:

Definition 42 A discrete Mellin asymptotic type of order d € Ny is a set
P={(pj.mj L)} ez

where p; € C satisfy Re (pj) — *ooas j — Foo,m; € Ngand L; are finite-
dimensional subspaces of operators of finite rank in Bgﬁig’ £,.F, (X). The collection
of all these asymptotic types is denoted by As (BE;OF’i £ X )). Moreover, we let
ncP:={pj: jeZ}cC.

The asymptotic types are used to define the following meromorphic functions.

Definition 43 The space Mggo,Fo,El,Fl (X),P € As (BE(()J,OI:—'?,El,Fl (X)),is the space

of all meromorphic functions a : C\n¢c P — B'g(;fiFo’ ErFy (X) such that:
(i) Forevery p; € mc P, there is a neighborhood of p; where a can be written as

mj

a@=Y vik(e—p;) " +ao .

k=0

. . . . . d
Above, ag is a holomorphic function near p;, with values in BZ-’O’ Fo.E1.F) (X) and
vik € Lj,fork =0,...,m;.

(ii) For every N € Ny, the function y € [-N,N] +— ay(y +i-) € B
(X, R) is continuous, where

m,d
Eo, Fo,E1, F)

an (z) '=a(z) — Z Zvjk (z— P,/)iki1 .

|Re(py) <N k=0

For P € As (BE(?OI}(? EF (X)), we can also define M£ Eo.Fo.E1.Fi (X) replac-

ing B’ngO’El’F] (X) by Bgo,Fo,El,Fl (X). When P = ¢, we also use the notations

M (X) and M},

O Ey,Fy.E1.Fi Ey,Fo,E1.F (X).

The last operator that we need are the Green ones.
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Definition 44 We define C, Eo.Fo.Er.F, (D3 v, v/, k) as the space of operators of the
form

G= Z@( >+go,

where, for each G;, there exist asymptotic types P € As (X JEL Y, k) and P’ €
As (X, Eo, —y. k), Q € As (30X, Fi,y' — . k) and Q" € As (3X, Fo, —y — 1. k),

_1_1
such that G; and its formal adjoint with respect to ’Hg’o (]D), E j) ®B,° ° (IB%, F j),
Jj =0, 1, define continuous operators:

Hy (D.Eo)  HYE D.E) MV E) How (D Eo)
g;: ry—l@ — , g7 / 69 — @
By P®B.F) By, @B F) By @B, Fy) Bro' : B, Fy)

-®

forallr e R, s > —1 + % on the left hand side and s > —1 + é on the right hand
side. Near the boundary B of ID, the operators D/ coincide with (—id,)/ where 9, is
the normal derivative.

Similarly, C’g Eo.Fo.Ey.Fy (D; k) denotes the space of all operators G for which
there exist asymptotic types P € As (X, Ey, 4. k), P’ € As (X, Eo, k),
0 € As (8X Fl, ) and Q' € As (8X, Fo, 5 ,k) such that G and its formal adjomt

+ 0 n
G* with respect to H2 (D, Ej)® By ? (B, Fj), j =0, 1, define continuous oper-
ators:

nfl ntl ntl ol

Hy © D, E) Hpp® MED  Hy * OE) Hyp' (D E)
gj: ® - ® .G ® - ®

B,? (B, Fy) By 5 B, F) By (B, Fi) B 5 (B, Fo)

forallr e R, s > —1 + % on the left hand side and s > —1 + % on the right hand
side.

It is an immediate consequence of the embedding properties for cone Sobolev
spaces that, forr € R, s > d + 1/p — 1 and arbitrary r’, s’ € R, an operator

Hy' (D Ey) MY (D, Ey)
d . .
Co Eo,Fo,E1,Fy (D’ vy k) >G: ry—iEB - / /_EB
B," > (B, Fo) B, B, F)

is compact. An analogous statement applies to operators in C g Eo.Fo.E). F) D; k).
Finally, we can define the cone algebra for boundary value problems.
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Definition 45 For y € R, m € Z,d € Ny and k € Ny we define the space

d
Cgo,Fo,El,Fl (D, (v, y —m, k)) of all operators A : C5° (D, Eo) ® C;’O_% B, Fy) —

2, (D, EN@® C;'im_% (B, Fy) of the form

A=woAywr + (1 —w2) Ay (1 —w3) + M + G, (3.1

where wy, ..., wg € C*[ 0, 1[ are cut-off functions. The operator Ay, is a Mellin
operator: Ay = t‘mop;[_% (h),withh € COO(E, Mg’go,Fo,El,Fl (X)). The operator
Ay is a Boutet de Monvel operator Ay € B, EZ’Z Fo.2E, 2F, (2D). The operator M
is a smoothing Mellin operator: M = wy (Z;:ol t"”“opx,/]_% (hl)> w; with h; €

—c0,d .
1‘4P101§0,F0,E.,Fl (X), mc P N F"T“—Vl =f,and y — | < y; < y. The operator G is a

Green operator: G € Cé Eo. Fo.Ey.Fy D; y,y —m, k).
Similarly, the algebra C’go, Fo.E1.F) (D, k) is defined as the space of all continu-
ous operators A : C, (D, Eg) & C° (B, Fo) — C33, (D, Ey) & C° (B, Fy) of
> 2 5 2

1 -
the form (3.1), where Ay = op}, (h), with h € C* (R+, - (X)),

5 k—1 V=3 .
Ay € B§E0,2Fo,2E1,2F1 D), M = a)o( =0 tlopM 2 (h[)) wp with h; €
—00,0 _ n+l n+l
MPI Eo.Fo,E1, Fi (X), JT(CP[ N Fn;—l_y[ = @, and 2 —1 <y = > and G €

14
CG Eo,Fo.E1,Fy (D’ k)

Definition 46 (Ellipticity) Using the notation of Definition 45, we say that A €
Crt g D, (y.y —m. k). d < max{0, m}, is elliptic if:
(1) Outside the singularity X x {0}, A is an elliptic Boutet de Monvel operator in

’g(;dFo E\F (int (D)): Its interior symbol and boundary symbol are invertible at

each point.
1

(2) Itsconormal symboloy (A) (2) := h (0, 2)+ho (2) : Hj) (X, Eo)@B;:; (X, Fp)
_1_
— Hy" (X, E)®B, " (X.F).s>d—1+ L. is invertible for each z €
. —m.d’ _
F%_y and its inverse belongs to BElrlel,Eo,Fo (X, F%_y), d’ = max{—m, 0}.

Similarly, we say that A € C‘go’ Fo.E.Fy (D, k) is an elliptic operator if, outside
the singularity X x {0}, A is an elliptic operator in l’;’go_ Fo.E.Fy (int (D)) and its
conormal symbol oy (A) (z) := h(0,2) + ho (z) : H), (X, Eo) @ By, (X, Fy) —
H; (X, E)) & Bls7 (X, Fp) is invertible for each z € F%, s >d—1+ %, and its

. BP
inverse belongs to BEl,Fl,Eo,Fo(X’ Fnzil).

Remark 47 Definition 46 follows [31]. Instead one might ask that

(1) Theprincipal pseudodifferential symbol o, (A) is invertible on 7*(int D)\ {0} and,
in local coordinates (, x, t, &) for the cotangent space in a collar neighborhood
of the conical point, "oy (A)(¢, x, T/t, §) is smoothly invertible up to t = 0.
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(2) The boundary principal symbol o3(A) is invertible on 7*(int B) \ {0} and, in
local coordinates (¢, y, t, n) for the cotangent space in a collar neighborhood of
the conical point, "oy (A)(¢, y, T/t, n) is smoothly invertible up to r = 0.

(3) The conormal symbol is pointwise invertible.

See [14, Section 6.2.1] for details.

Proposition 48 The operators in Cgéleo,El,Fl D, (y,y —m,k)) and éll:zo,Fo,El,Fl
(D, k) have the following properties:

,d d
() IfB e Cplr g,y (D, (v, Vd— mo, k) and A € Ci"p g (D, (y —mo, y—
my, k)) then AB ¢ Cgoz,’F(z),Ez,Fz (D, (y,y —ma,k)), where my = mg +

my and dy = max{mo+di,do}. If B € 6£O,F0,E1,F1 D, k) and A €
Cgl,Fl,Ez,Fz (D, k), then AB € CIPEO,FO,EZ,FZ (D, k).

2) IfA € Cg(;,dF(),E],F] D, (y, y —m, k)), then A extends to a continuous operator:

Hy" (D, Eo) Hy " (D, E) |

. D _ _
A ol — el y_efn_l ,s>d—1+ >
By """ "B F) B, ' (B F)

IfA e c Zoy Fo.Ey.Fy (D, k), then A extends to a continuous operator:

rEs) Es)
H, 2 (D, Ey) Hp 2 (D, Ey) 1
A D — fas) 8> —14 —.
5,5 .5 p

Bp (IB, FO) Bp (B’ Fl)

3) IfA e C~’§0’ Fo.E.Fy (D, k), then its formal adjoint with respect to the inner product

0. 0.5 ~q 1,1
in 7—[2 p) (]D, Ej).@.Bz 2 (]Bg, Fj) belongs to Cg. . . r, (D, k), for ytg = 1
If A is elliptic, so is its adjoint.

@ IfA € C%"(;leOyE] Fi D, (y, y — m, k)) is elliptic, d == max {m, 0}, then there is

an operator B € CET;{EO,FO (D, (y —m, y,k)), d := max {—m, 0}, such that

BA -1 ¢ Cé Eo,Fo,Eo, Fo (D’ (Va 2 k)),
AB—1€Chp g pm D (v —my —mk).

leimilaﬂy A e C‘II:ZQ,FO,Ely F (D, k) is elliptic, then there is an operator B €
Cgl . Eo.Fo D> k), such that

DA ~P AR ~P
BA—1€Cly ppop k) and AB—1€Clp 1 p o (DK).

In particular, A and A are then Fredholm operators.
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(5) (Existence of order reducing operators) For m € 7Z, m' € R and y €

R, there are elliptic operators A € C%"(;?EO D, (y,y —m,k)) and B €
C;”(;:OFO (IB%, (y - %, y —m — Ly k)) such that A : H‘;,’y D, Ey) — H‘;,im'yfm
1 r_ 1

L ym' =}

* (B, Fy) are invertible

1 /
SV

1 —
(D, Eo) and B : B, 2B, Fo) > B,
foralls > —1 + % see [14, Section 6.4].

3.3 The Equivalence Between the Fredholm Property and the Ellipticity

Theorem 49 Let A € C go, Fo.E1.Fy (D, k). Then the following conditions are equiva-
lent:
(1) A is elliptic.
0,241 0,2t1
Hp : (D, Eo) Hp : (D, E1)
(i) A: o) — P is Fredholm.

BY% B, Fo) B @, F)

That (i) implies (ii) follows from the existence of a parametrix of an elliptic operator,
as it is stated in item (4) of Proposition 48. It remains to prove that (ii) implies (i). If
A is Fredholm, then condition (1) of Definition 46 holds by Theorem 24. In fact, the
proof of Theorem 24 is local, so it applies in this context. In the next two subsections,
we will show that condition (2) of Definition 46 holds. We rely on the arguments in
[28, Section 3.1]; however, the Besov space estimates need more attention. Before,
however, we note the following consequence.

Corollary 50 For A € Cpp 1 (D, y.y —m.k), m € Z, d < max{m,0}, p €

11, 00[, s € Z, s > d, the following are equivalent:

(1) A is elliptic.

(ii)
Hy" (D, Eo) Hy, T (D, En)
A 1 G? — . @ ! is Fredholm.  (3.2)
B, " ®, Ry B, "B R

In particular, the Fredholm property is independent of p and s, subject to the
condition s € 7, s > d. The same is then true for the kernel and the index.

Proof According to item (4) of Proposition 48, ellipticity implies the Fredholm prop-
erty. In order to see the converse, we note that, by item 5 of Proposition 48, we find oper-

—s -5 5,0 n+l n+l s—m s—m ~s—m,0 n+l n+l
ators P et CEO’EO(D,T,T—{—S,k)andQ (S CE],E| (D,T,T—

s+ m, k) defined on D, PP e (=sHPC PB4 8 + 5 — L k) and
Qs—mtl/p ¢ ts_’"H/pC;]_f;Tl/p(B, L _s+m— %,k), defined on B, such
0 n+l1 n+l1

n+l . ~ 1 n
that P~* : Hy ® (D.Eo)) — Hy @ (D.Eo), P*%7 : BY:(B.F) —
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Y m, n+1

%(IB% Fo), Q5™ D, E;) — H (D Ey), and O°~ m+

s—m—l 5

B, (B, F) — B z (IB F1) are invertible. Here we use that s € Z. Since
A is a Fredholm operator, the operator AecC? Eo.Fo.Ey. Fy (D, k), defined by

S—m 0 n " P—S O
A= <Qo Qs—m+;) (5 m gty ( . ﬁ-”ﬁ) (3.3)

n

ntl
is a Fredholm operator in B(Hp (D, Ep) & B 2 B, Fy), Hp 52 D, Ey) @ B
(B, F1)). By Theorem 49, Ais elliptic, hence so is A. As a consequence, the Fredholm
property is independent of p and s.

S

w\—-

t

1

Suppose A is elliptic and u € HS (D, Ey) @ B P2 (B, Fp) belongs to the
kernel of A. Then the existence of a parametrix and the mapping properties of the
Green operators imply that, for some € > Oand all r € R, u € Ht’y+€ D, Eg) &

1., 1
Bp V+ (B Fy). Thus u also is an element of H (D, Ep) ® B A (B, Fy)

for1 < g < ooandt € R and belongs to the kernel of A on that space. This shows
the independence of the kernel on s and p.

We next consider the formal adjoint A’ of A in the sense of item 3) of Proposition 48,
which is an elliptic element of C% Fy.E.Fo(Ds k), where 1 / p+1/qg = 1. Its extension

n +1 n
to an operator in B(HY D, E) @ BB, F). HY T (D, Eo) @ B (B, Fy))

furnishes the adjoint to the operator A acting as in (3.3). The index of A then is the
difference of the kernel dimensions of A and A’ By the same argument as above, these
are independent of p and ¢. Hence the index of A is independent of p and the index
of A is independent of s and p. O

3.4 Besov-Space Preliminaries

C C®R™1) of
C CZ(R™)

Given dyadic partitions of unity {¢; }j an, € C&(R) and {@; }jGNU
R and R"~!, respectively, we define a dyadic partition of unity {1/; j}

of R" by

Jj€Ng

Yo (2, x) := o (1) g0 (x) ,
J J—1
i =00 (X )+ (e )g
k=0 k=0
= o (2—1';, 2—fx) - (2—f+1z,2—j+1x>, i1

Then supp (Yo) C {(r,x) € R"; [|(t, x)|y <2} and supp (¥;) C {(t,x) € R";
2771 < ||(¢, x)|ly < 27T}, for j > 1. Here ||(z, x)|| y denotes the norm

I(#, X)lly = max {|x], |7[},
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where |x| denotes the Euclidean norm of x € R”~! and |7| denotes the modulus of
t e
Item 8 of Remark 14 implies that we can choose the following norm for B), (R"):

IF 1 gy ey = Zzﬂp lv; ) £l »(RY)

j=0

The next spaces are very useful for computations.
Definition 51 Let G be a Banach space that is a UM D Banach space with the
property («). We define Bj,% (R, G) as the space of all u € D' (R, G) such
that (R> 7+ u(e™)) € B} (R,G) and H;,% (R4, G) as the set of all u €
D’ (R4, G) such that (R St u (e_’)) € Hj (R, G). Inparticular, H%% Ry, G) =
L, (R, G, 4)andH, : R, G ={uel, Ry, G %) tduelL, Ry, G 4

ot ’ ot

Proposition 52 There is a constant C > 0 such that

flull on <Cllull i ,
B, 2 @X",F) HL‘Z(&,Bg(ax,F))

forallu € ’T% R4, C*® (90X, F)).

Proof In order to prove the proposition, we fix a constant 6 € ]0, 1[ and a constant
Cp > lsuchthat j +1 < Cy2% , for all J € Np. The Holder inequality implies that,

for every non-negative real numbers ao, ..., a;, we have
i\’ j o
Zak S(j-l—l)p_lZa,fngZ-/nga,f.
k=0 k=0 k=0

n < .
Now, let us first prove that ||u||Bg(R y=C ”M”H}}(R,Bg(R"*l))

=0 k=0 k=0

1
p P

> Z||<p, (D) @i (D) u, ey

]:O k=0

IA

00 J j—1 P
el g ey = (Z llpj (D) ZQOk (D) u+ Y ¢k (D) §; D) ull] )

1
_ P\ b

+1> ZH%(Dz)% (Do ufy

=0 \ k=0
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o0 o0
<20, ;)];2"9” le; (Do) @1 (Dx)””i,,(ﬂen)
S0k=

o0 o0
=2C, Zziep/Z”(pj (D) gx (D) ul (Rg-‘)dt
=0 R =0 r

1

— 0 p —
=2Cy 2_;)2/ p ”‘/’ (Dy) ” ( ,Bg(R”*I)) =2Cy ”u”Bg(R,Bg(R"*'))'

Choosing 6 < 1, we conclude that
”M ||B2(R") =< C@ ”M ”Bg(R,Bg(R”’I)) =< C9 ”M ||Hp1 (R,Bg(R’“l)) .
Using a change of variable t — ¢~’, we obtain that

llull o2 = Collull 1
By *(RL) H, 2 (R+ BY (R~ 1))

where B 7 RY) = {v (In(t),x); ve B (R")} Finally, using partition of unity and
localization, we obtain the assertion. O

0 n+1

For the following proposition we write HBPE].,FJ. (X’\) = H, ’ (XA, Ej) @
for

BY} (X", F)) and HB e, p, (D) :=Hy > (D, E;) ® By ® (B, Fj),
We denote by K, j € Ny, the sets mtroduced in Remark 12 forn = 1.

j=0,1

Proposition 53 There exists a constant C, independent of m, such that for all u €
’T% Ry)andallv e C® (X, E, F) with supp(t +— (M%u)(it)) C Kp

1
v
CmtD lluell L (k. )ll I, x.yoBY0x, F)

< Nu®vllys,p poxny = €+ 1) flull, ( ) I, x.eyeBY@x.F) -

In order to make the proof more transparent, we first prove the following lemma.

Lemma 54 There exists a constant C > 0, independent of m, such that foru € S (R)
and v € SR with supp (Fu) C K.

1
Cm+1)

lullL,®) ||U||32(Rn—1) <lu® U||32(Rn)

= Clm+ D llullL,@ vlgy -1y -
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Proof Let(t,x) € RxR*land C > Osuchthat llor (Dy) M||L,,(R) <C IIuIILP(R) and
l@r (Dy) u”LP(Rn—I) <C ”MHLP(Rn—I) for all £ € Ny and for all Schwartz functions
u. This constant exists, as we have seen in the proof of Lemma 21. In particular,
loe (D)6 (D) @), a1y = CFMullp, (mxzor), for all k, j € No and u €
SR x R*—1),

Using the conventions ¢ = 0, ¢y = 0, Y = 0 and K; = @, whenever k < —1,

we see that
1

P

llu @ vll gy gny = Z |v; (D)@ v (R

j=0
1
j—1 P
= Z llg; (Do )u Zwk (D) v+ Y ee(Dud; (Do) v}
j=0 k=0 k=0
m+1 :
< j; i oul? g, HZ‘”k<Dx)”HL o
0 m+1 P »
~ p
X H P A2NT N T R
m+1 J %
<| 2 les@oul] g G+D"" Y Id DI gy
j=m—1 k=0
oo m+l »
22 D 3 e Do ull] @) 18 DD V] g
j=0k=m—1

11 N B
< (m+ 2)1 r3rC ||“||LP(R) (Z |k (Dx) v”ip(Rll—l))
k=0
1

P

oo
+3C lullz, @ | D 195 P[] o
j=0

< Com+ 1)l y 1015 gty -

On the other hand, with || - || denoting the norm in L ,(R"),

el ey 10050 ety = D 10 ® G (D I7 e

k=0
00 m+1 p
=31 Y. DDy
j=0 llk=m—1
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m+1 m+1 p 00 m+1 p
<Y1 Y0 a@ougiDov| + Y | D e(DIui(Dov
Jj=0 llk=m—1 j=m+2 llk=m—1
(1) m+1 m+1
=2 2 3 e @ougi(Dov]” + llu @ vy )
j=0 k=m—1
) m+1 m+1 m+2 P
=2 2.3 2 (D)@ (D0) YD) @ )|+ llu @ vl
j=0 k=m—1 I=m-2
m+1 m+1 m+2
=

D 217 e (D) @65 (D) vi (D) @ v)|” + 1w @ vl

j=0 k=m—1 I=m-2

<375771C2 m +2) Z 191 (D) (@ @ VL, gy + 1 ® vl o
=0

SC( 1) ”u®v“BO(Rn .

We have used in (1) that supp (Fu) C K,, and, therefore, we have

i H( mZH ok (Dt)ll)¢j (Dx)vas EOO H m§+l o (D) U@ (D")UHP

j=m+2  k=m—1 jmmt2 | k=m

+n§ o (Dz)u(zjzﬁbk (Dx)u)Jr(f—l(pk D) u)g; (D] = = 108 vl -
Jj=0 k=0 k=0

We have used in (2) thatfor j € {0,...,m+ 1}andk e {m —1,...,m+ 1}

m+2

Y (D) (9x (D) ® G (D)) = ¢k (D) ® §j (D)
I=m—2

m}

Proof (of Proposition 53) Let u € T, (Ry), v € S (R"~1) and suppose that
supp(r — M%u(it)) C Kpy,m € Ny. Definez € S(R) by u (t) = u(e_’).

Hence Fizii (§) = Fimg (u(e7")) (§) = /\/l%u (i&). Therefore, there is a constant
m € Ny such that supp (Fu) C K,,. Hence, Lemma 54 implies that

1
m ||u”L,,(R+,%) ||U||Bg(Rn—1)

l ~
= ContD lall L, ) ||v||Bg(Rn_l)
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<lla® U”B?,(R") <C@m+1) ||’2||LP(R) ||U||33(Rn71)
=Cim+1) ”“”Ll,(m,#) Vil 5y (re-1y -

As i ® UIIBg(Rn) = |lu @ v 5 3( y’ , we conclude that
RY

oD +1) Il (g, ) I0mpnr
<@ ollog < COntDlul o g ol

+

The general result follows using a partition of unity. O

3.5 Proof of the Invertibility of the Conormal Symbol

We notice that ’T% (R+, C>® (X Ej, FJ)) is a dense space of ’HB,,E_,.,F_/. (XA)

Definition 55 Let W be a Fréchet space, ¢ > 0, 7p € R. We define T¢
T% Ry, W) — T% (Ry, W) and R 4 : ’T% Ry, W) — T% R4, W) by Teu(t) =

1 .
u (L) and Re ryu (1) = €7t~ 0u (1€).

The above operators are invertible: TE_l = T1 and R7! =R

€10 _ 1. The next propo-

1
€2 €

sition is analogous to Lemma 19.

Proposition 56 For an UMD Banach space W with the property («), the operators
Te, Reqy T% R4, W) — T% (R4, W) have the following properties:

(1) T¢ extends to an isometry

1 1
Te:Hp? Ry, W) — Hp? Ry, W).

IfW =C>® (X, E;, Fj), Jj = 0, 1, then the operator T extends to an isometry
Te : HBpEj,Fj (XA) — HBpEj,Fj (X/\).
(2) Forall e > 0, R¢ y, extends to a bijective continuous map

1,1 1,1
Rery :Hp” Ry, W) = H,» (Ry, W).
There exists a C > 0 with || Re 1, || <C((l+|wl) €<l
B(H, 2(R+ w))
3) () Let h € MB,’;O‘FOYEI)FI (X,Ry:To) N c(JR+,zs’go’FO!El,Fl (X, F0)> and
ho(z) := h(0, z). For any u € T% (R4, C*® (X, Ey, Fy)) we then have

=0.

1 1
li 2 (h) T.u — T.op, (h
el_rflo opy (h) Teu copyy (ho)u

HBpE, F (X™)
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(i1) Leth € BEO Fo.E1.F (X, Tp)and u € T% (R4, C*® (X, Ey, Fy)). Then

=0.
HBpE,, F (X™)

1
lim |op;, (h) Re zyt — Re zyh (iTo) u
e—0

Proof (1)Since Tl 5y ary =Wl (5, ) 8010 Tl gy
= ||t0;u| a\»> we conclude that || Teu|l | 1 = |lu]l 1
Lp(Re. W) Hy? Ry W) Hy? Ry W)

In order to show that Te : HBjE; F; (XA) — HBpE; . F; (X ) is an isometry, it
. 0,% 0,2
remains to prove that 7, : B, 2 (X", Fj) — B,? (X", F ) is an 1sometry This
follows with a partition of unity and the fact that 7, : BY » (R’i) — Bp 2 (RY)
given by Teu (1, x) = u (%, x) is an isometry. In fact, if v (s, x) = u (e™*, x), then
(Teu) (e_s, x) =v (s +1n(e), x). Hence
| Teul

G5,2) = v (s +1n (), )l gy = 101 pg

8 ) = )= Ml o

(2) Itis easy to see that HR“’OMHLP(&,W,#) = ”u”LF<]R+,W,dtt) As10; (Re,rgu) =

(—=i70) Re,ryit + € Re 7, (t0;u), we conclude that

R <1+ .
H e‘mu”H;%(R+,LP(X,E,-)@B§(X,F,-)) < 1+ |wh) ”u”7—(;‘%<R+,LP(X,E_,-)®BI‘3(X,FI-))

(3.1) We first show L ,-convergence: For u € T% (R4, C*®° (X, Ey, Fy)),

1 1
TE_lop,@ (h) Teuw — op; (ho) u

=0. (3.4
Ly (R Ly (X ED@BY@X. F1); 2 )

lim
e—0

The proof here is exactly the same as the proof of [28, Lemma 3.9]. It relies on the
1 1

fact that T Yop}, (h) T. = op}, (he) , where he (t,z) = h (et, z), and on Lebesgue’s
dominated convergence theorem.
Next we establish the Ly-convergence of the derivative:

1 1
T opjy () Teu — opjy (ho) u

slgr})‘ ! =0. (3.5)

H,? (R+ Lp(X.EN®BY(3X, Fl))

This follows almost immediately from the fact that

1 1
(190 0p3y (heu = op3y ((—18) ) e + 0p3y (he) (—td) )
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Using (3.5), the fact that T, are isometries and Proposition 52, we conclude that, as
e — 0,

ntl

0. %5 0,% .
Hp (XA>E|)€BB[) (6X/\,F1)

1 1
opi; (h) Teu — Teopy (ho) u

1 1
<C Te_lop/f,, (h) Tew — op; (ho) u

| — 0.

2 (R Ly (XL ED®BYOX.ED)

1,
HF

1 1
(3.i) It is straightforward to check that R;loop,f,l (M) Re.zy = opy; (he), where
he () = h (ez 4+ itp). Repeating the previous arguments, we conclude that

=0.
Lp (R Lp (X EN®BY (X, F); 4 )

1
. —1 5 .
éhn}) H RZ,0piy () Re qgu — h (ito) u

1 1
Moreover, (—13;) opy, (h (ez 4+ it0)) u = op}, (h (€z + itg)) (—1d;u). Hence

=0.

1
lim H R} opiy () Requ — h (i) u
e—0 H"2 (Ra oLy (X EN®BY(OX.F1))

Finally, using Proposition 52 and item 2, we conclude that, as € — 0,

1
opf,, (h) Re rou — Re,roh (ito)u

HB])E] Na (XA)

1
<C ‘Rm (R;ioop;w (h) Re.yu — h (ito) u)

1
‘H,;7 (R+,Lp(x,El)@Bg(ax,E))

1

- 1
< C(1+|nl H R0 (W) Reu —h (ito)u|
Hp 2 ReLp(X.EN®BY(OX.E))

— 0.

The next lemma is analogous to Lemma 22.

Lemma 57 The operators Te and Re v, satisfy the following properties:

(D) ffu € Ty (Ry) with supp(Mu) C {6 elo; £l <3} veC®(X EjF))
and € < 1, then supp(/\/l% (Re,p)) C Ky, where Ko := {§ € T'o; €] <2},
K;:= {S el 2/~ <gl < 2j+1},j € No\ {0}. The number m € Ny is equal
to 0 if |to| + % < 2 and, for |to| + % > 2, m is the smallest number such that
2=l < g9l — 4 < |wol + § < 2™ Hence m < C (In(19)).
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(2) There is a constant C > 0 such that for alle < 1, v € C* (X, Ej, Fj) and
u € Ty (Ry) with supp(Myu) C (€ € R: [£] < 3}

1
Clinagy " ® UMty 000

< [Rex @@ s, xny = C070) lt @ Vs, x) -

3) Forallu € T% (R.,., Cc>® (X, E;, Fj)), we have lime_.o Te (1) = 0 weakly in
HBpEj,Fj (XA)

1 .
Proof (1) Aneasy computation showsthat/\/l% (Re,mu) (z) = eF_IM%u (é - ﬂ)

€

When € < 1, this means that, if x € R is such that ./\/l% (Re, o) (ix) # 0, then

To— 3 < X < To+ 5, which implies that supp(M 1 (Re,zou)) is contained in some

ball of radius %
(2) As supp(M 1 u) C Ko, Proposition 53 implies that

< v
lu @ vllpes,,, r o0 = Crllu® ”Lp(R+,Lp(x,Ej)eaBg(ax,E;);#)

=ClRe) @, 01,k omyox 5y ) )

S C2 (hl TO> H (Ré,‘[()u) ® v”HBpEj,Fj(X/\)
and

” (Re,‘[()u) Qv ||HBPEJ'»FJ' (XM) <C3 (ln t()) ” (Re,r()u)
®v”L,,(R+,LP(X,E_,)@Bg(ax,E,);#)
=G @l g 1, xe)espox.r:s)

< C4 (ln T()) ”M ® U”HBpE,',Fj (XN -

(3) We identify the dual of HB,; F; (X/\) with HByE; F; (XA), where % —|—$ =1,

using the scalar product Ly (R4, Lz (X, Ej) @ L2 (30X, Fj), %) As T, is an
isometry in KBk, (X"), it is enough to prove that

. dt
lim . (u(t/€). vO) Ly (x.EpyeLa(ax.F7) 7 =0

forallu, v € C° (R4, C* (X, Ej, F})). But this is true. In fact, leta, b, R > 0
be such that supp (#) C [0, R] and supp (v) C [a, b], then, for € < %, we have
supp (Teu) N supp (v) = @. Hence we obtain the result.

O
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Lemma 58 Let h € Bzo,Fo,Euﬂ (X, To) and suppose that there is a constant ¢ > 0
such that, for each u € T% R4, C* (X, Ey, Fy)), we have

1
opjy (h) (u)

”””HB,;EO,FO(XA) =c .
HBpE, Fy (X7)

Then, for every v € C*® (X, Eq, Fy) and t € R, we have
||U||H3(X,Eo)®32(3X,Fo) <C{n (T)>2 A (it) UHH},)(X,E1)GBBQ(8X‘F1) )

for some constant C independent of v.

Proof Let0 #u € T% (R4), be a function with supp(/\/l% (w)) C {z elo; Izl < %}
and v € C* (X). Then item 2 of Lemma 57 implies that

lu @ vll9e5, 5, 7 x)
1
< € ) [opy () Rey (0 ® 1) = Resgh (70) @ @ 0) 5, o)

+ C2(In70) [ Re.egh (i70) 0 @) 355 (3 -

1
Aslime—o [lopj; (h) Rezy (4 @ v) = (i70) (u @ ) || 555
from Lemma 57 that

by #y (X) = 0, we see again
||M & v”HBI’EO,F(J(XA) =< C] (ln TO) ” (Re,r()u) ®h (if()) v||HBpE|.F1 (X7

< G (In)? lu @ h (i70) vlins,p, 5, (x) »

where (u @ h (itg) v) (t, x) :=u(t) (h (itg) v) (x). Now, it is easy to conclude that

||U||H}3(X,EO)@B;§(3X,F0) = llu ® v”HBpEO_FO(XA)

||u||LP(R+,%)
<C—o—-
- IIMIILP(R%%)

< C (Into)? |k (i) ll9x. neBY X, F) -

(In7)> lu ® h (ito) U”HBpELFl (X7

]

We finish with the following proposition that proves the invertibility of the conormal
symbol.

Proposition 59 Ler A € CP (D; k) be a Fredholm operator in the space
B (HBPEO,FO (XA) HBpE Ry (XA)) :
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Then the conormal symbol is invertible on T'g, and its inverse is an element of
3D
BE],FI;EOsFO (X, To).

Proof We are going to consider operators given as

A :wop/%, W wo+ (1 —w) P(l—a)+G, (3.6)

where P € BYy 5 2pom @D G € Chp gy (D, 0),and b (1,2) = a (¢, 2) +
a (z) with functions a € C*® <R+, M(’i) Eo. Fo.E1.Fy (X)) anda € M;OE%VFO_’ELFl (X)

for some asymptotic type P with wc P N g = @. In particular, hg (z) := h (0,z) =
o (A) (2).
Let us first prove that for all u € HB gy, r, (X")

1
23,5, 1y x) < €0Phy h0) () [, (o 37

It suffices to show this for u € C2° (R4, C™ (X, Ey, Fp)). We find operators
Bl eB (HBpEl,Fl (D), HB[JE(),F() (]D))) and Kl eB (HBpEo,FO (]D))v HB[)EQ,FO (]D)))’
where K is compact, such that BjA—1 = K. Letuschoose o and o in C2° ([ 0, 1)
such that 0o = 0, 0jw; = 01 and 01w = o1. Then

Kio0 = BjAo — o0 = Bio1Ao + B1 (1 —01) Ao — 0.

As the supports of o and 1 — o are disjoint, the operator (1 — o1) Ao is a Green
operator and therefore compact. Hence

o1Bio1Ac —o0 = 01K10 —01B1 (1 —01) Ac = 01K30,

1
where K> is acompact. Using Eq. (3.6) for Ao, we conclude thato = Bopf,, (h)yo—K,
where B = 01Bjo; and K = o1 (K> — B1o1G) o is compact.
Now letu € C2° (R4, C*° (X, Eo, Fp)). We know that T, (1) = o Tc (1), when €
1

is small. As o = Bopz,l (h) o — K, we have that, for € sufficiently small,
”M”HBpEO,FO(XA) = |loTe (u)”HBpEo,Fo(XA)
1 1
< Bl BHB, e, £, (X HBpy ryx) |0Pig (1) Te @) = Teopiy (ho) ] 45

1
2
FNBUBHB, £, r, (XM HB £y 7y (X)) | Teopy (ho) u HHBpEl,Fl (X7
+ KT (u)”HBpEo,Fo(XA) .
As T.u weakly tends to zero and K is compact, lim¢_,q || K T¢ (1) ”HBpEo,Fo (xXry =

0. Using that T is an isometry and item 3.(ii) of Proposition 56, we conclude that
Inequality (3.7) holds. This result together with Lemma 58 implies that
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2 .
”U”H;)(X,EO)@B]Q(BX,FO) < C{ln(0))" |h(T) U”H;,)(X,EI)@B}}(BX,FQ , (3.8)

for some constant C independent of v. ~
AsA e CZO,FO,EI»Fl (D; k) is Fredholm, sois A* € Cj[:"l,Fl,Eo,Fo (D; k). The above

argument implies that 01?,1 (A*) (z) = h (it)* also satisfies an estimate as (3.8), for g

instead of p, where Lyl Hence, for all T € R, & (i7) is injective, has closed

range and the same 1s true for its adjoint. Lemma 23 implies that & (i7) is bijective

and

HY(X,E)@BY (X, F1),H)(X,E0)®BY (X, Fo)

| i)™ ||B( ) < C(In(v))>.

Theorem 29 implies that hy' € By . ;o (X, Tp). O

3.6 Spectral Invariance of Boundary Value Problems with Conical Singularities

Once we know the equivalence of Fredholm property and ellipticity, we can establish
the spectral invariance.

Theorem 60 Let A € C 50, Fo.E1.F (D, k). Suppose that, for each ). € A, the operator

n+l n+l
0, 0,4

0.4 , 0.4
A:H, 2 (D, Ep) @B,” (B, Fo) > H, * (D,E))®B,* (B, F).

is invertible. Then A~! églvFl»E();FO (D, k).

Proof The operator A is invertible, hence it is Fredholm and there are operators B €
Cr, py g5y D k) Ki € CG gy gy gy gy (D k) and Ko € CG gy g o gy (D5 K) such
that AB = I + K and BA = I 4+ K». These identities imply that

A™'=B - K2B+ K> AT'K].

As B € égl,Fl,Eo,Fo (D, k), K»B € CL, £y Eo.Fo (D k) and K>A~'K| belongs to
ck Ey.Fy.Eo.Fo (D> k), we obtain the result. o

Theorem 61 Let A € Cp’ o o (D, (y.y —m.k)), where m € Z.d =
max {m, 0}. Suppose that there is an s € Z, s > d such that

1 1
S=p ¥V

A:HyY (D, Eo) @ B, > (B, Fo) — Hy " (D, Ev)

1
S—m——,y—m—5
Y

1
o8B, * (B, F1)

—m.,d’

isinvertible. Then, A~! € CEl,Fl.Eo,Fo D, (y —m, y, k)), whered' := max {—m, O}.
In particular, forall s > d — 1 + é and 1 < g < oo the operator A is invertible in

1,1 B S |
B(H)” (D, Epy@B, " > ®, Fo), Hy ™ " (@, EneB, = ' (B, F)).
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Proof Asinthe proof of Corollary 50 we consider the operatorﬁ € 611;0, Fo.Ey.Fy D, k)
defined by (3.3). As A is invertible, so is A. We infer from Theorem 60 that (A)~!

belongs to égl,Fl,Eo,Fo (D, k) and hence A~! € CETI’V{,EO,FO D, (y —m,y, k). O

4 Application: The Dirichlet Laplacian

In order to illustrate the applicability of Theorem 61, we show how it can be used to
study the spectrum of the Dirichlet Laplacian.

We consider a two-dimensional manifold with conical singularities D, for example
the closure of a domain in R?, which has a smooth boundary apart from a finite
set of conical points. Let D be the associated manifold with corners introduced in
Definition 30, B its boundary and X be the union of the connected components of the
cross-sections of each conical point. Working on D is analytically simpler; it amounts
to introducing polar coordinates near the conical singularities. As before, we write
t € [0, 1] for the variable that represents the distance to the conical points.

We will consider a particular instance of the Dirichlet problem on D; see also [5,
Section 6] for more background on the Dirichlet problem on manifolds with boundary
and conical singularities. Since dimID = 2, we have n = 1 in the notation of the
previous section.

Denote by A the Laplace-Beltrami operator on D with respect to a straight conically
degenerate metric on D, i.e. a Riemannian metric on D, which near ¢ = 0 takes the
form

g =dt* +t*h

for a (non-degenerate) Riemannian metric 2 on X that does not depend on t. By
denote the trace on B of a function defined in ID. We consider the operator

A H;” (D)
o = ( ) HPT (D) ® .1
Yo B;+2_l/p»y+3/2(E)

for suitable parameters s, ¥ and p. Let Q € Cé’% (B, (y + %, — %, k)) be an invert-
ible operator as in Proposition 48, (5). Then ( QAVO) is an operator in Cé% cc@, (v +
2, y, k)) for arbitrary k.

For the above metric, the Laplace—Beltrami operator near r = 0 is of the form

A =172((18)* + Ax)

where Ay is the Laplacian on the 1-dimensional manifold X.

We will next check the ellipticity conditions for <. The analysis can be found
in [5, Section 6.1]. It is easy to see that the principal pseudodifferential symbol and
the principal boundary symbol are elliptic in the sense of Remark 47. The conormal
symbol of &7 is
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) Ly(X)
o () (2) = (Z +AX>:H2(X)—> e
Y0,X H3/2(ax)

where yp x is the trace operator for functions defined on X to functions on 9 X. Note
that here 3 X consists of finitely many points, so that H3/2(3X) is just C*, where
N is the number of components of cross sections of all conical points. We denote
by 0 > A1 > Ay > ... the different eigenvalues of the Dirichlet problem for the
Laplacian on X. Let qjj.E = =£,/—A;. Then the conormal symbol will be invertible for

allz € C\ {q]j.t; Jj =1,2,...}. Inthis case, the operator .2 in (4.1) will be a Fredholm
operator whenever 1 < p < coands > —2 + 1/p, due to Proposition 48. 4).

We will now consider the realizations of the Laplace operator with Dirichlet con-
ditions on Hj;y (D). Let C2° (D) be the set of smooth functions on ID supported in
int(D) and C®° (D),, = {u € CX M), v (u) = 0}. To the Laplace operator
with Dirichlet conditions A : C° (ID))VO — C2° (D), we can associate two important
closed extensions: the minimal and maximal realization. The maximal realization is
the Laplace operator Apirmax : @;’V (ADir,max) - H;’y D) — Hi,’y (D) with the
domain 77 (Apima) = {u € Hy™7 (D): 70 () =0 and Au e ;7 D).

The minimal realization Apjrmin is the closure of the operator A : C° (]D))yo C
H‘;jy D) — H‘;V (D). Its domain is denoted by @;’y (ADir,min). It is clear that
Apirmin C Apirmax- The closed extensions of the Dirichlet Laplacian are therefore
precisely those with a domain between that of the minimal and that of the maximal
realization.

Instead of .7, we will study the realization Ap;;, acting like A on the domain

D (Apir) = Hy 2 P2 D)pir = (u € H>7 (D) you = 0). 4.2)

Itis well-known that the Fredholm property and the invertibility of the realization Ap;;
are equivalent to that of the operator .o in (4.1); a proof can be found in [5, Section 8].

In applications to nonlinear partial differential equations like the Cahn-Hilliard
equation or the porous medium equation one is often interested in realizations with
particular weights y, for example, because the functions in the domain should be
bounded near the singular set.

We shall explain this briefly. Forg € {qji; Jj=12,..}1eté, ={wt ™ le;e € E,},
where o is an arbitrary cut-off function near 01D and E, is the eigenspace of the Laplace
operator with Dirichlet conditions acting on X, Ax pir, with respect to the eigenvalue
Aj.

Forv e éaq;:, the function Av is smooth and vanishes near t = 0, so it is an element

J
of H;o "°°(ID). Moreover v satisfies the Dirichlet boundary condition.
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It was shown in [5, Proposition 6.1]! that the domain of the maximal extension of
the Laplacian with Dirichlet boundary condition in the space Hi,’y D),s > =2+1/p,
is

-@;yV(ADir,max) = -@ISJ)V(ADir,min) @ @ gq- 4.3)
q€l,

Here I, =] -1—-y,1—-y[ ﬂ{qf; j = 0,1,...}. Moreover, it can be shown that
Apir = Apir,min, Whenever —1 — y is not one of the qf. In particular, in this case,

2" (Air,min) = H;+2’V+Z(D)Dir~
In general, we know from [5, Theorem 4.13] that

75" Apirmin) = [u e (VHZ7 2 Opis Au e 1" @) (@4

e>0

As in [24,26] we choose the weight y of the form
y =—1+46, where 0 < § < min{—q,, 2}

(note that g, is negative). Then —1 — y = —§ € ]q;, 0[ equals none of the q]jF.
We will now study the spectrum of Apj;.

Proposition 62 For s = 0 and p = 2 the unbounded operator A — Apj; in Hg’y(D)
with domain (4.2) is invertible provided ). ¢ |1 — 00,0 ].

Proof We firstnote that A : C2° (D) — C2° (D) is a non-positive symmetric operator
when we consider the scalar product given by Hg’o (D). Therefore we can define its
Friedrichs extension Ap;.r. Similarly as in the proof of [25, Theorem 4.1] we relate
our operator to the Friedrichs extension, whose domain has been determined in [5,
Theorem 6.4]:

-@(ADir,F) = gg’o(ADir,min) @ @ (fq;,
—1<q/7<0

Step 1. We first check injectivity: Suppose u € Hg’yﬂ (D)pir and (X — A)u = 0.
The fact that Au = Au € H;’Hz (D) implies that u is in the maximal domain of Apj;
in 157 7% (D), which, according to (4.3)/(4.4) is given by

23" (Bpiemin) ® P & cH" T O @ &. &> 0.

q€ly+2 qely 2

I The result is stated for s = 0 but extends to other values of .
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We observe that I),;, =] —2 -, —8[ﬁ{q;;j =1,2,..},andy +4=34+6 >
3. Hence u actually is in the domain of the Friedrichs extension. As the Friedrichs
extension has no spectrum outside ] — oo, 0 ], we conclude that u = 0.

Step 2. Since Apj; is a Fredholm operator, it has closed range. Therefore to prove
that A — Apj; is surjective, it is enough to prove that its adjoint is injective, see Lemma
23. This is the content of the next step.

Step 3. As the scalar product of Hg’o (D) can be used to identify the dual of Hg’y (D)
with Hg’ v (D), we can consider the adjoint A]’Sir of Apjr as an unbounded operator on

Hg’ (D). Noting that the domain (4.2) is actually the minimal domain, that the adjoint
boundary condition to the Dirichlet boundary condition is again the Dirichlet boundary
condition and that A is symmetric, the domain of the adjoint can be determined from
[5, Theorem 4.6] (or [5, Theorem 6.3]):

27 (i) = 7 (Apirmar)
= P (B © @) 6 <Y Do ® @) 6. &> 0. (45)

qel—y qel_y,

The last inclusion follows from (4.4). Since I_, =] —2+4,8[N {q]“.—L; j=12,...}
and § < q1+, we see that /_,, contains only the qj_ with =2 4+ 6 < qj_ < 0.

Suppose u € 93’_V(A1*)ir) with (A — A)u = 0. Write u = v + w with v €
Hy 27 D)pirand w € @, & Since (h— A)v = —Aw — Aw, Aw € H5>™(D)

and Aw € H5> (D) (this follows from the fact that 1= € H* (D) if and only if
NR(g) < 1 — ), we see that

2,146
S @2 (ADir,max)~

This implies that v is in the domain of the Friedrichs extension, and so is w, as
Hy' (D) N 25° (Apimax) C 2 (Apicr), where 2 (Apigr) is the domain of the
Friedrichs extension. This was shown in the proof of Theorem 6.4 of [5]. Since the
Friedrichs extension has no spectrum outside ] — 0o, 0 ], we conclude that u = 0.
Therefore A — Af;. is injective. O

Theorem 63 For 1 < p < ocoands > —2 + 1/p the unbounded operator A — Apj;
in H;’V(]D) with domain (4.2) is invertible whenever A ¢ 1 — 00,0 ].

Proof According to [5, Section 8], the invertibility of
= Apir : HyP Y P D)pi — HyY (D) (4.6)

is equivalent to that of

A _ _
(Qm) HSD) S 1 ) @ By ). @)
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In Proposition 62 we have shown invertibility of (4.6) for s = 0 and p = 2. Hence
we obtain invertibility of (4.7) for this case. According to Theorem 61 the inverse is
an element in C«;_z(é(’)c’o(]]), (y, v + 2,k)) for arbitrary k. It therefore also furnishes
the inverse for arbitrary p and s > —2 4 1/p. As a consequence we also obtain the
invertibility of Apj; in (4.6) for these values of s and p. O
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