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Abstract We prove the spectral invariance of the algebra of classical pseudodifferen-
tial boundary value problems onmanifolds with conical singularities in the L p-setting.
As a consequencewe also obtain the spectral invariance of the classical Boutet deMon-
vel algebra of zero order operators with parameters. In order to establish these results,
we show the equivalence of Fredholm property and ellipticity for both cases.
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1 Introduction

Elliptic boundary value problems on manifolds with conical singularities have been
studied since the 60’s, where the work of Kondratiev [15] stands out, see also Kozlov,
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Maz’ya and Rossmann [16] for a detailed presentation. The pseudodifferential anal-
ysis started with the work of Melrose and Mendoza [20,21], Plamenevsky [22], and
Schulze [33]. Algebras of pseudodifferential boundary value problems for conical
singularities were constructed in the 90’s by Derviz [7] and Schrohe and Schulze
[30,31]. The latter approach combines elements of the Boutet de Monvel calculus
[3] with the pseudodifferential analysis developed by Schulze [32,33]. While initially
only L2-based Sobolev spaces were used, Coriasco, Schrohe and Seiler established
the continuity also on Bessel potential and Besov spaces [5], see also [4], relying on
work of Grubb and Kokholm [9,13].

Our main result is the spectral invariance of the algebra developed in [31] in the
L p-setting, see Theorem 61. This algebra contains, after the composition with order
reducing operators, the classical differential boundary value problems studied byKon-
dratiev [15], hence also their inverses, whenever these exist. As a by-product we obtain
the spectral invariance of the algebra of zero order classical Boutet de Monvel opera-
tors with parameters in the L p-setting, see Theorem 29. This algebra includes, after
composition with order reducing operators, the differential boundary value problems
studied by Agranovich and Vishik in [1], which were an important ingredient for the
work of Kondratiev. Spectral invariance for the Boutet de Monvel algebra in the L2-
setting was shown by Schrohe for the larger class of SG operators [27, Theorem 3.27]
and by Grubb [10, Theorem 1.14]. For the L p-case, partial results were obtained by
Grubb [10, Theorem 1.12].

It is an immediate consequence of Theorem 61 that the invertibility of a conically
degenerate boundary value problem is to a large extent independent of the space it
is considered on: It depends neither on the Sobolev regularity parameter s nor on
1 < p <∞. This is of great practical importance as it allows to check invertibility in
the most convenient setting. A similar result holds for the Fredholm property, as we
show in Corollary 50.

In order to demonstrate the applicability of these results, we study theDirichlet real-
ization �Dir of the Laplacian on a 2-dimensional manifold with conical singularities,
e.g. the closure of a plane domain with finitely many conical points. In applications,
one is interested in the invertibility of λ − �Dir, λ /∈ ] − ∞, 0 ], as an unbounded
operator in the cone Sobolev spaceHs,γ

p (D) with domain

D(�Dir) = {u ∈ Hs+2,γ+2
p (D) : u = 0 on ∂D)}

for different values of s and p; see Definition 37 for the definition of the spaces. We
show that for s = 0 and p = 2, the invertibility can be checked by hand. The spectral
invariance allows us to deduce the invertibility for all 1 < p <∞ and s > − 2+1/p.

This article extends the results of [28] to conical manifolds with boundary. The
need to work with Besov spaces led to interesting new features. In Theorem 29, for
example, we consider a zero order parameter-dependent operator A = {A(λ); λ ∈ �}
in Boutet de Monvel’s calculus. We show that the invertibility of A(λ) for each λ

together with a norm estimate ‖A(λ)−1‖ ≤ c〈λ〉r for a constant c ≥ 0 and sufficiently
small r > 0 implies that the inverse also is parameter-dependent of order zero. In
particular, the operator norm will then be uniformly bounded. Similar effects can be
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observed when showing the equivalence of parameter-ellipticity and the Fredholm
property with parameters.

This paper is a step toward the analysis of nonlinear partial differential equations
on manifolds with boundary and conical singularities, see e.g. [24,26] by Roidos and
Schrohe, [34] by Shao and Simonett or [35] by Vertman for the case without boundary.
A next step concerns the analysis of resolvents of closed extensions in the spirit of Gil
et al. [8] or [29] in the case without boundary and Krainer [17] for conic manifolds
with boundary.

2 Parameter-Dependent Boutet de Monvel Algebra

To make this article readable for non-experts, we briefly describe the parameter-
dependent Boutet de Monvel algebra with classical symbols on compact manifolds
with boundary in the L p-setting. We first define several operator classes on the half-
space R

n+ = {x ∈ R
n; xn > 0}.

The set of parameters of the operators and symbols will always be a conical open
set � ⊂ R

l , that is, p ∈ � implies that tp ∈ � for t > 0. It can be the empty
set, in which case we recover the usual symbols and operators. We write N0 :=
{0, 1, 2, . . .} and R

2++ = R+ × R+. For a Fréchet space W , the Schwartz space

S (Rn,W ) consists of all u ∈ C∞ (Rn,W ) such that supx∈Rn p
(
xα∂

β
x u (x)

)
< ∞

for every continuous seminorm p ofW .We simplywriteS (Rn), ifW = C. If	 ⊂ R
n

is an open set, C∞c (	) denotes the space of smooth functions with compact support
in 	. The operator of restriction of distributions defined in R

n to 	 is denoted by

r	 : D′ (Rn) → D′ (	). It allows us to define the spaces S
(
R
n+
)
= rRn+ (S (Rn))

and S
(
R
n+ × R

n+
)
= rRn+×Rn+ (S (Rn × R

n)). When n = 1, we also use the notation

S+ = S
(
R+

)
and S++ = S

(
R+ × R+

)
= S

(
R
2++

)
. The extension by zero of a

function u defined in 	 to R
n will be denoted by e	:

e	 (u) (x) =
{
u (x) , x ∈ 	

0, x /∈ 	
.

If 	 = R
n+, we denote rRn+ also by r+ and eRn+ by e+. The open ball in R

n with the
Euclidean norm whose center is x and radius is r > 0 will be denoted by Br (x). Our
convention for the Fourier transform is Fu(ξ) = û (ξ) = ∫

e−i xξu(x)dx . We shall
often use the function 〈.〉 : Rn → R defined by

〈ξ 〉 :=
√
1+ |ξ |2

and sometimes we use 〈ξ, λ〉 :=
√
1+ |(ξ, λ)|2 and similar expressions, as well.

Finally, given two Banach spaces E an F , we denote by B (E, F) the bounded
operators from E to F and use the notation B (E) := B (E, E).
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Definition 1 The space Sm (Rn × R
n,�) of parameter-dependent symbols of order

m ∈ R consists of all functions p ∈ C∞ (Rn × R
n ×�) that satisfy

∣∣∣∂β
x ∂α

ξ ∂
γ
λ p (x, ξ, λ)

∣∣∣ ≤ Cαβγ 〈ξ, λ〉m−|α|−|γ | , (x, ξ, λ) ∈ R
n × R

n ×�.

A symbol p defines a parameter-dependent pseudodifferential operator op (p) (λ) :
S (Rn)→ S (Rn) by the formula:

op (p) (λ) u (x) = (2π)−n
∫

eixξ p (x, ξ, λ) û (ξ) dξ.

We say that p is classical, if there are symbols p(m− j) ∈ Sm− j (Rn × R
n,�), j ∈ N0,

such that

(1) For all t ≥ 1 and |(ξ, λ)| ≥ 1, we have p(m− j) (x, tξ, tλ) = tm− j p(m− j) (x, ξ, λ).
(2) We have the asymptotic expansion p ∼ ∑∞

j=0 p(m− j), i.e., p −∑N−1
j=0 p(m− j) ∈

Sm−N (Rn × R
n,�), for all N ∈ N0.

This subset is denoted by Smcl (Rn × R
n,�). It is a Fréchet space with the natural

seminorms.

Definition 2 Let p ∈ Smcl (Rn × R
n,�), m ∈ Z, be written as a function of(

x ′, xn, ξ ′, ξn, λ
) ∈ R

n−1×R×R
n−1×R×�.We say that it satisfies the transmission

condition, if p ∼∑∞
j=0 p(m− j) and if, for all k ∈ N0 and for all α ∈ N

n+l
0 , we have

Dk
xn D

α
(ξ,λ) p(m− j)

(
x ′, 0, 0, 1, 0

) = (− 1)m− j−|α| Dk
xn D

α
(ξ,λ) p(m− j)

(
x ′, 0, 0,− 1, 0

)
.

In this case, the operator P (λ)+ := r+op (p) (λ) e+ : S(Rn+) → S(Rn+) is well
defined.

Two more classes of functions are required. Our notation here follows Grubb [12].

Definition 3 We denote by Sm(Rn−1,S+,�), m ∈ R, the space of all functions

f̃ ∈ C∞
(
R
n−1 × R+ × R

n−1 ×�
)
that satisfy:

∥∥xkn Dk′
xn D

β ′
x ′ D

α′
ξ ′ D

γ
λ f̃

(
x ′, xn, ξ ′, λ

) ∥∥
L∞(R+xn )

≤ Ck,k′,α′,β ′,γ
〈
ξ ′, λ

〉m+1−k+k′−|α′|−|γ |
.

The subset Smcl (R
n−1,S+,�) consists of all f̃ with an asymptotic expansion f̃ ∼∑∞

j=0 f̃(m− j), i.e. there are functions f̃(m− j) ∈ Sm− j (Rn−1,S+,�), j ∈ N0, such

that f̃ −∑N−1
j=0 f̃(m− j) ∈ Sm−N (Rn−1,S+,�) for all N ∈ N0, and

f̃(m− j)

(
x ′, 1

t
xn, tξ

′, tλ
)
= tm+1− j f̃(m− j)(x

′, xn, ξ ′, λ), t ≥ 1,
∣∣(ξ ′, λ)

∣∣ ≥ 1.
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Similarly, Sm(Rn−1,S++,�) denotes all g̃ ∈ C∞
(
R
n−1 × R

2++ × R
n−1 ×�

)
with

∥∥ylnxkn Dl ′
yn D

k′
xn D

β ′
x ′ D

α′
ξ ′ D

γ
λ g̃

(
x ′, xn, yn, ξ ′, λ

) ∥∥
L∞

(
R
2++(xn ,yn )

)

≤ Ck,k′,l,l ′,α′,β ′,γ
〈
ξ ′, λ

〉m+2−k+k′−l+l ′−|α′|−|γ |
.

Write g̃ ∈ Smcl (R
n−1,S+,�), if g̃ ∼∑∞

j=0 g̃(m− j) with g̃(m− j) ∈ Sm− j (Rn−1,S++,

�) such that g̃ −∑N−1
j=0 g̃(m− j) belongs to Sm−N (Rn−1,S++,�), for all N ∈ N0,

and

g̃(m− j)

(
x ′, 1

t
xn,

1

t
yn, tξ

′, tλ
)
= tm+2− j g̃(m− j)

(
x ′, xn, yn, ξ ′, λ

)
, t ≥ 1,

∣∣(ξ ′, λ)∣∣ ≥ 1.

We may now define the operators that, together with the pseudodifferential ones,
appear in the Boutet de Monvel calculus: the Poisson, trace and singular Green oper-
ators. We will always restrict ourselves to the classical elements. The notation γ j :
S(Rn+)→ S(Rn−1), j ∈ N0, indicates the operatorγ j u

(
x ′

) = limxn→0 D
j
xnu

(
x ′, xn

)
as well as its extension to Sobolev, Bessel and Besov spaces.

Definition 4 Let λ ∈ �,m ∈ R and d ∈ N0.

(1) A classical parameter-dependent Poisson operator of orderm is an operator family
K (λ) : S(Rn−1) → S(Rn+) associated with k̃ ∈ Sm−1cl (Rn−1,S+,�) of the form

K (λ) u
(
x ′, xn

) = (2π)1−n
∫

Rn−1
eix

′ξ ′ k̃(x ′, xn, ξ ′, λ)û
(
ξ ′

)
dξ ′, (2.1)

For k̃ ∼∑∞
j=0 k̃(m−1− j), we define k̃(m−1)

(
x ′, ξ ′, Dn, λ

) : C → S
(
R+

)
by

k̃(m−1)
(
x ′, ξ ′, Dn, λ

)
(v) = vk̃(m−1)

(
x ′, xn, ξ ′, λ

)
.

(2) A classical parameter-dependent trace operator of order m and class d is an oper-
ator family T (λ) : S(Rn+)→ S(Rn−1) of the form

T (λ) =
d−1∑
j=0

S j (λ) γ j + T ′ (λ) ,

where S j (λ) is a parameter-dependent pseudodifferential operator of orderm− j
on R

n−1 and T ′ (λ) : S(Rn+) → S(Rn−1) is of the form

T ′(λ)u
(
x ′
) = (2π)1−n

∫

Rn−1
eix

′ξ ′
∫

R+
t̃
(
x ′, xn, ξ ′, λ

) (
Fx ′→ξ ′u

) (
ξ ′, xn

)
dxndξ ′

(2.2)
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with t̃ ∈ Smcl (R
n−1,S+,�). For t̃ ∼∑∞

j=0 t̃(m− j) we define t̃(m)

(
x ′, ξ ′, Dn, λ

) :
S

(
R+

)
→ C by

t̃(m)

(
x ′, ξ ′, Dn, λ

)
u =

∫

R+
t̃(m)

(
x ′, xn, ξ ′, λ

)
u (xn) dxn .

(3) A classical parameter-dependent singular Green operator of order m and class d
is an operator family G (λ) : S(Rn+)→ S(Rn+) of the form

G (λ) =
d−1∑
j=0

K ′j (λ) γ j + G ′ (λ) ,

where K ′j are Poisson operators of orderm− j and G ′ (λ) : S
(
R
n+
)
→ S

(
R
n+
)

is an operator of the form

G ′ (λ) u(x) = (2π)1−n
∫

Rn−1
eix

′ξ ′
∫

R+
g̃(x ′, xn, yn, ξ ′, λ)

× (
Fx ′→ξ ′u

) (
ξ ′, yn

)
dyndξ ′, (2.3)

where g̃ ∈ Sm−1cl (Rn−1,S++,�). We define the operator g(m−1)
(
x ′, ξ ′, Dn, λ

) :
S

(
R+

)
→ S

(
R+

)
by

g(m−1)
(
x ′, ξ ′, Dn, λ

)
u (xn)

=
d−1∑
l=0

k̃′l(m−l−1)
(
x ′, xn, ξ ′, λ

)
Dl
xnu (0)

+
∫

R+
g̃(m−1)

(
x ′, xn, yn, ξ ′, λ

)
u (yn) dyn .

Remark 5 With a symbol p ∈ Smcl (Rn × R
n,�) that satisfies the transmission condi-

tion, we associate the operator p(m)+
(
x ′, 0, ξ ′, Dn, λ

) : S
(
R+

)
→ S

(
R+

)
defined

by:

p(m)+
(
x ′, 0, ξ ′, Dn, λ

)
u (xn) = 1

2π

∫

R

eixnξn p(m)

(
x ′, 0, ξ ′, ξn, λ

)
ê+u (ξn) dξn .

Definition 6 Let n1, n2, n3 and n4 ∈ N0. The set of classical parameter-dependent
Boutet de Monvel operators on R

n+, denoted by Bm,d
n1,n2,n3,n4 (Rn,�) for m ∈ Z and

d ∈ N0, or just by Bm,d (Rn,�), consists of all operators A given by



J Fourier Anal Appl

A (λ) =
(
P+ (λ)+ G (λ) K (λ)

T (λ) S (λ)

)
:
S

(
R
n+
)n1

⊕
S

(
R
n−1)n2

→
S

(
R
n+
)n3

⊕
S

(
R
n−1)n4

, (2.4)

where P+ is a pseudodifferential operator of order m satisfying the transmission con-
dition, G is a singular Green operators of orderm and class d, K is a Poisson operator
of order m, T is a trace operator of order m and class d and S is a pseudodifferential
operator of order m. All are parameter-dependent in the respective classes.

The following algebra is also useful to prove spectral invariance:

Definition 7 Let n1, n2, n3, n4 ∈ N0 and 1 < p < ∞. We define the set
B̃ p
n1,n2,n3,n4 (Rn,�), also denoted by B̃ p (Rn,�), as the set of all operators A of

the form (2.4), where: P+ is of order 0, G is of order 0 and class 0, K is of order 1
p ,

T is of order − 1
p and class 0 and S is of order 0. All are parameter-dependent in the

respective classes.

Definition 8 With A ∈ Bm,d
n1,n2,n3,n4 (Rn,�), we associate the operator-valued princi-

pal boundary symbol σ∂ (A), defined on R
n−1 × ((

R
n−1 ×�

) \ {0}). The operator

σ∂(A)(x ′, ξ ′, λ) : S
(
R+

)n1 ⊕ C
n2 → S

(
R+

)n3 ⊕ C
n4 (2.5)

is given by

(
p(m)+

(
x ′, 0, ξ ′, Dn, λ

)+ g(m−1)
(
x ′, ξ ′, Dn, λ

)
k(m−1)

(
x ′, ξ ′, Dn, λ

)
t(m)

(
x ′, ξ ′, Dn, λ

)
s(m)

(
x ′, ξ ′, λ

)
)

where the entries are the matrix version of the operators in Definition 4 and Remark 5.
Similarly, with A ∈ B̃ p

n1,n2,n3,n4 (Rn,�), we associate an operator σ∂ (A)
(
x ′, ξ ′, λ

)
acting as in (2.5), given as

(
p(0)+

(
x ′, 0, ξ ′, Dn, λ

)+ g(−1)
(
x ′, ξ ′, Dn, λ

)
k( 1

p−1)
(
x ′, ξ ′, Dn, λ

)

t(− 1
p )

(
x ′, ξ ′, Dn, λ

)
s(0)

(
x ′, ξ ′, λ

)
)

Let now M be a manifold with boundary, E0 and E1 two complex hermitian vector
bundles over M and F0 and F1 two complex hermitian vector bundles over ∂M . Let
Uj ⊂ M , j = 1, . . . , N , be open cover of M consisting of trivializing sets for the
vector bundles, 
1, …, 
N ∈ C∞ (M) be a partition of unity subordinate to U1, …,
UN and �1, …,�N ∈ C∞ (M) be supported in Uj such that � j
 j = 
 j .

A linear operator A (λ) :C∞ (M, E0) ⊕ C∞ (∂M, F0) → C∞ (M, E1) ⊕
C∞ (∂M, F1) can always be written as

A (λ) =
N∑
j=1


 j A (λ)� j +
N∑
j=1


 j A (λ)
(
1−� j

)
.
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Using the above definitions, we define the Boutet de Monvel algebra on M :

Definition 9 A family A (λ) :C∞ (M, E0) ⊕ C∞ (∂M, F0) → C∞ (M, E1) ⊕
C∞ (∂M, F1), λ ∈ �, is called a parameter-dependent Boutet de Monvel operator
of order m ∈ Z and class d ∈ N0, if

(1) The operators �A (λ)
:S
(
R
n+
)n1 ⊕ S

(
R
n−1)n2 → S

(
R
n+
)n3 ⊕ S

(
R
n−1)n4

belong to Bm,d (Rn,�) after localization.
(2) The Schwartz kernels of the operators

∑N
j=1 
 j A (λ)

(
1−� j

)
belong to

( S (
�,C∞

(
M × M, Hom

(
π∗2 E0, π

∗
1 E1

))) S (
�,C∞

(
M × ∂M, Hom

(
π∗2 F0, π∗1 E1

)))
S (

�,C∞
(
∂M × M, Hom

(
π∗2 E0, π

∗
1 F1

))) S (
�,C∞

(
∂M × ∂M, Hom

(
π∗2 F0, π∗1 F1

)))
)

,

where Hom indicates the space of homomorphisms and πi : M × M → M is given
by πi (x1, x2) = xi for i = 1, 2.

If ∂M = ∅, the algebra reduces to the classical parameter-dependent pseudodif-
ferential operators. The above definition is independent of the partitions of unity and
trivializing sets we choose.

A central notion is parameter-ellipticity:

Definition 10 Given a parameter-dependent Boutet de Monvel operator A ∈
Bm,d
E0,F0,E1,F1

(M,�) we define:

(1) The interior principal symbolσψ(A) ∈ C∞((T ∗M×�)\ {0} , Hom(π∗T ∗M×�E0,

π∗T ∗M×�E1)), where πT ∗M×� : T ∗M ×� → M is the canonical projection. It
is the principal symbol of the pseudodifferential operator part of the operator A.

(2) The boundary principal symbol σ∂(A). For (z, λ) ∈ (T ∗∂M ×�) \ {0} we let

σ∂ (A) (z) (λ) : π∗T ∗∂M×�

⎛
⎜⎝
E0|∂M ⊗ S

(
R+

)

⊕
F0

⎞
⎟⎠→ π∗T ∗∂M×�

⎛
⎜⎝
E1|∂M ⊗ S

(
R+

)

⊕
F1

⎞
⎟⎠,

where πT ∗∂M×� : (T ∗∂M ×�) \ {0} → ∂M is the canonical projection. After local-
ization, it corresponds to the symbol in Definition 8.

We say that A (λ) is parameter-elliptic if both symbols are invertible. With obvi-
ous changes, we can also define parameter-ellipticity, interior and boundary principal
symbols of operators A ∈ B̃ p

E0,F0,E1,F1
(M,�).

The parameter-dependent pseudodifferential operators defined above are a partic-
ular version of the more general calculus introduced by Grubb in [11], and by Grubb
[10] and Grubb and Kokholm in [13], for the L p case. In these references, pseudodif-
ferential symbols p ∈ Sm,ν

1,0 (Rn × R
n, R+) of order m ∈ R and regularity ν ∈ R are

used. These are functions p ∈ C∞
(
R
n × R

n × R+
)
that satisfy the estimates:

∣∣∣∂β
x ∂α

ξ ∂
γ
λ p (x, ξ, λ)

∣∣∣ ≤ Cαβγ

(( 〈ξ 〉
〈ξ, λ〉

)ν−|α|
+ 1

)
〈ξ, λ〉m−|α|−γ .
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Similar estimates are used to define the boundary terms. This more general parameter-
dependent calculus, as well as its notion of parameter-ellipticity [11, Chapter 3], can
be reduced to ours by considering ν = +∞. Therefore many results of our calculus
can be deduced from this more general one. Our simplified version of the parameter-
dependent calculus coincides with the one used by Schrohe and Schulze [30,31]. It is
easier to handle and very suitable for the study of conical singularities, which is our
main concern.

The above operators act continuously on Bessel and Besov spaces. First we fix a
dyadic partition of unity

{
ϕ j ; j ∈ N0

}
.

Definition 11 Let ϕ0 ∈ C∞c (Rn) be supported {ξ ; |ξ | < 2} , 0 ≤ ϕ0 ≤ 1 and
ϕ0 (ξ) = 1 in a neighborhood of the closed unit ball. Define ϕ j ∈ C∞c (Rn), j ≥ 1, by
ϕ j (ξ) = ϕ0

(
2− jξ

)− ϕ0
(
2− j+1ξ

)
.

Remark 12 We use the following notation: K j :=
{
ξ ∈ R

n; 2 j−1 ≤ |ξ | ≤ 2 j+1}, for
j ≥ 1, and K0 := {ξ ∈ R

n; |ξ | ≤ 2} . The above definition implies that supp
(
ϕ j

) ⊂
interior

(
K j

)
, for j ≥ 0. Moreover, we see that ϕ j (ξ) = ϕ1

(
2− j+1ξ

)
, for j ≥ 2 and∑∞

j=0 ϕ j (ξ) = 1, ξ ∈ R
n .

Definition 13 For each s ∈ R, we define the operator 〈D〉s : S ′ (Rn) → S ′ (Rn)

as the pseudodifferential operator with symbol ξ ∈ R
n �→ 〈ξ 〉s . Moreover, we write

ϕ j (D)u = op(ϕ j )u.

(1) The Bessel potential space Hs
p (Rn) = {

u ∈ S ′ (Rn) ; 〈D〉s u ∈ L p (Rn)
}
, for

1 < p < ∞ and s ∈ R, is the Banach space with norm ‖u‖Hs
p(R

n) :=∥∥〈D〉s u∥∥L p(Rn)
.

(2) The Besov space Bs
p (Rn), for s ∈ R and 1 < p <∞, is the Banach space of all

tempered distributions f ∈ S ′ (Rn) that satisfy:

‖ f ‖Bs
p(R

n) :=
⎛
⎝
∞∑
j=0

2 jsp
∥∥ϕ j (D) f

∥∥p
L p(Rn)

⎞
⎠

1
p

<∞.

For an open set 	 ⊂ R
n , we define the Bessel potential spaces Hs

p (	), as the set
of restrictions of Hs

p (Rn) to 	 with norm

‖u‖Hs
p(	) :=

{
inf ‖v‖Hs

p(R
n) ; r	 (v) = u

}
.

Similarly, we define the Besov spaces Bs
p (	). Together with partition of unity and

local charts, this leads to the spaces Hs
p (M), Hs

p (M, E), Bs
p (∂M) and Bs

p (∂M, E),
where E is a vector bundle over M or ∂M .

Remark 14 Let s ∈ R, 1 < p <∞ and 1
p + 1

q = 1.

(1) There are continuous inclusions C∞c (Rn) ↪→ S(Rn) ↪→ Bs
p (Rn) ↪→ S ′ (Rn).

Moreover the spaces C∞c (Rn) and S (Rn) are dense in Bs
p (Rn). The same can

be said of Hs
p (Rn).
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(2) The dual of Bs
p (Rn) is B−sq (Rn), where the identification is given by the L2

scalar product. Again the same holds for Hs
p (Rn) and H−sq (Rn).

(3) A pseudodifferential operator with symbol a ∈ Sm (Rn × R
n) extends to con-

tinuous operators op(a) : Hs
p (Rn) → Hs−m

p (Rn) and op(a) : Bs
p (Rn) →

Bs−m
p (Rn) for all s ∈ R.

(4) The following interpolation holds:
(
L p (Rn) , H1

p (Rn)
)

θ,p
= Bθ

p (Rn), for all

0 < θ < 1, where (X,Y )θ,p denotes the real interpolation space of the interpo-
lation couple (X,Y ), as in Lunardi [19].

(5) If M is a compact manifold (with or without boundary) and E is a vector bundle
over M , then Hs

p(M, E) ↪→ Hs′
p (M, E) and Bs

p(M, E) ↪→ Bs′
p (M, E) are

compact inclusions, whenever s > s′.
(6) The trace functional γ0 : S(Rn) → S(Rn−1) extends to a continuous and sur-

jective map γ0 : Hs
p(R

n) → B
s− 1

p
p (Rn−1) when s > 1

p .
(7) The Besov spaces do not depend on the choice of the dyadic partition of unity;

different partitions yield equivalent norms.

Remark 15 We recall some notions from vector-valued harmonic analysis; see for
instance Denk and Kaip [6]. A Banach space G is a UMD space if, for some p ∈
] 1,∞ [ , the Hilbert transform H , given by

H f (x) = 1

π
lim

ε→0+

∫

|x−y|≥ε

f (y)

x − y
dy, f ∈ S (R,G) ,

extends to a bounded operator in B
(
L p (R,G)

)
. The Banach space has property (α)

if there exists a constant C > 0 such that for all n ∈ N, for all
(
αi j

)
i, j=1,...,n ⊂ C with∣∣αi j

∣∣ ≤ 1, and for all
(
xi j

)
i, j=1,...,n ⊂ G, we have

∫

[0,1]×[0,1]
∥∥ri (s) r j (t) αi j xi j

∥∥
G dsdt ≤ C

∫

[0,1]×[0,1]
∥∥ri (s) r j (t) xi j

∥∥
G dsdt,

where r j (t) = sign
(
sin

(
2kπ t

))
, j ∈ N, are the Rademacher functions. These prop-

erties allow the extension of important theorems of classical harmonic analysis to the
vector valued case.

If G is a UMD space with property (α), we can define, using Bochner integrals,
Bs
p (Rn,G) and Hs

p (Rn,G) in the same way as before, see, for instance, [2,6]. It is
worth noting that Bs

p (Rn) and Bs
p (∂X, E) are UMD spaces with the property (α)

for all s ∈ R and 1 < p < ∞. Later, we also use that Bs
p (R,G) ⊂ H1

p (R,G) :={
u ∈ L p (R,G) ; du

dt ∈ L p (R,G)
}
, for all 0 < s < 1.

Let us now state the following properties of composition, adjoints and continuity
of Boutet de Monvel operators [9,11,13,23].

Theorem 16 (1) (Composition) Let A ∈ Bm,d
E1,F1,E2,F2

(M,�), B ∈ Bm′,d ′
E0,F0,E1,F1

(M,�). Then AB ∈ Bm+m′,d ′′
E0,F0,E2,F2

(M,�), where d ′′ := max
{
m′ + d, d ′

}
. Sim-
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ilarly, if A ∈ B̃ p
E1,F1,E2,F2

(M,�) and B ∈ B̃ p
E0,F0,E1,F1

(M,�), then AB ∈
B̃ p
E0,F0,E2,F2

(M,�).

(2) (Adjoint) Let A ∈ B̃ p
E0,F0,E1,F1

(M,�). Then A∗ ∈ B̃q
E1,F1,E0,F0

(M,�), where
1
p+ 1

q = 1 and A∗ is the only operator that satisfies, for every u ∈ C∞ (M, E0)⊕
C∞ (∂M, F0) and v ∈ C∞ (M, E1)⊕ C∞ (∂M, F1), the relation

(A (λ) u, v)L2(M,E1)⊕L2(M,F1) =
(
u, A∗ (λ) v

)
L2(M,E0)⊕L2(M,F0)

.

(3) (Continuity) An operator A ∈ Bm,d
E0,F0,E1,F1

(M,�) induces bounded operators

A (λ) : Hs
p (M, E0)⊕ B

s− 1
p

p (∂M, F0)→ Hs−m
p (M, E1)⊕ B

s−m− 1
p

p (∂M, F1)

for all s > d − 1 + 1
p . Similarly A ∈ B̃ p

E0,F0,E1,F1
(M,�) induces bounded

operators A (λ) : Hs
p (M, E0)⊕ Bs

p (∂M, F0) → Hs
p (M, E1)⊕ Bs

p (∂M, F1),

∀s > −1+ 1
p .

(4) (Fredholm property) If A ∈ Bm,d
E0,F0,E1,F1

(M,�), d = max {m, 0}, is parameter-
elliptic, then there exists a B ∈ B−m,d ′

E1,F1,E0,F0
(M,�), d ′ = max {−m, 0}, such

that

AB − I ∈ B−∞,d ′
E1,F1,E1,F1

(M,�) and BA − I ∈ B−∞,d
E0,F0,E0,F0

(M,�) . (2.6)

As a consequence, A (λ) is a Fredholm operator of index 0 for each λ ∈ �, and
there exists a constant λ0 > 0 such that A (λ) is invertible, if |λ| ≥ λ0.

Similarly, if A ∈ B̃ p
E0,F0,E1,F1

(M,�) is parameter-elliptic, then there exists a

B ∈ B̃ p
E1,F1,E0,F0

(M,�) such that Eq. (2.6) holds for d = d ′ = 0.

2.1 The Equivalence Between Ellipticity and Fredholm Property

In this section, we prove that the Fredholm property together with some growth con-
dition on λ implies parameter-dependent ellipticity. The use of Besov spaces makes
the proofs a little more elaborate than e.g. the proof in the parameter-independent
L2-case studied by Rempel and Schulze [23]. To make it clearer, we first study the
pseudodifferential term on Besov spaces and then the boundary terms.

2.1.1 Pseudodifferential Operators with Parameters on a Manifold Without
Boundary Acting on Besov Spaces

In this section, we prove the following theorem:

Theorem 17 Let M be a compact manifold without boundary, E and F be vec-
tor bundles over M. Let A (λ) :C∞ (M, E) → C∞ (M, F), λ ∈ �, be a classical
parameter-dependent pseudodifferential operator of order 0. Then the following con-
ditions are equivalent:

(i) A is parameter-elliptic.
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(ii) There exist uniformly bounded operators B j (λ) : B0
p(M, F) → B0

p(M, E), λ ∈
�, j = 1 and 2, such that

B1 (λ) A (λ) = 1+ K1 (λ) and A (λ) B2 (λ) = 1+ K2 (λ) .

where K1 (λ) : B0
p(M, E) → B0

p(M, E) and K2 (λ) : B0
p(M, F)→ B0

p(M, F)

are compact operators for every λ ∈ � and lim|λ|→∞ K j (λ) = 0.
(iii) There exist bounded operators B j (λ) : B0

p(M, F) → B0
p(M, E), λ ∈ �, j = 1

and 2, such that

B1 (λ) A (λ) = 1+ K1 (λ) and A (λ) B2 (λ) = 1+ K2 (λ) .

where K1 (λ) : B0
p(M, E) → B0

p(M, E) and K2 (λ) : B0
p(M, F) → B0

p(M, F)

are compact operators for every λ ∈ �. Moreover, lim|λ|→∞ K j (λ) = 0 and
there exist M ∈ N0 and C > 0 such that

∥∥Bj (λ)
∥∥
B
(
B0
p(M,F),B0

p(M,E)
) ≤

C 〈ln (λ)〉M, for j = 1 and 2.

The third item also holds if
∥∥Bj (λ)

∥∥
B
(
B0
p(M,F),B0

p(M,E)
) ≤ C 〈λ〉r , for some suf-

ficiently small r , as a careful study of our proof shows.
We note that A (λ) B2 (λ) = 1 + K2 (λ) is equivalent to B2 (λ)∗ A (λ)∗ =

1 + K2 (λ)∗, where ∗ indicates the adjoint. This is the condition that we shall need.
Obviously condition i) implies that dim (E) = dim (F).

If (i) holds, then we can find a parametrix to A (λ) by Theorem 16(4) so that (ii) is
true, and (ii) trivially implies (iii). So we only need to prove that (iii) implies (i).

Definition 18 Let s > 0, 0 < τ < 1
3 and (y, η) ∈ R

n × R
n . We define the operator

Rs(y, η):S (Rn) → S (Rn), also denoted just by Rs , by

Rsu (x) = s
τn
p eisxηu

(
sτ (x − y)

)
.

Below we collect some well-known facts about the operators Rs . The items 1, 2, 4,
5 and 6 can be found in [23,28]. As we are dealing also with Besov spaces, some
estimates must be done more carefully. The third item was not proven in the previous
references. Statement 7 is stronger than usual. Both are necessary, as Rs is not an
isometry in the space B0

p (Rn).

Lemma 19 The operator Rs = Rs (y, η) has the following properties:

(1) ‖Rsu‖L p(Rn) = ‖u‖L p(Rn) for all u ∈ S (Rn).
(2) lims→∞ Rsu = 0 weakly in L p (Rn) for all u ∈ S (Rn).
(3) Rs : Bθ

p (Rn) → Bθ
p (Rn) is continuous for all s > 0 and ‖Rsu‖Bθ

p(R
n) ≤

Cθ (1+ s 〈η〉)θ ‖u‖H1
p(R

n), for every θ ∈ ] 0, 1 [ , s ≥ 1 and u ∈ S (Rn). The
constant Cθ depends on θ , but not on y, η or s.

(4) The operator Rs is invertible. Its inverse is given by

R−1s u (x) = s−
τn
p e−is(y+s−τ x)ηu

(
y + s−τ x

)
.
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(5) The Fourier transform of Rsu is given by

F (Rsu) (ξ) = s
τn
p −nτ e−iy(ξ−sη)û

(
s−τ (ξ − sη)

)
.

(6) Let a ∈ Sm (Rn × R
n,�). Then

R−1s op(a) (sλ) Rsu(x) = op(as) (λ) u(x),

where as(x, ξ, λ) = a
(
y + s−τ x, sη + sτ ξ, sλ

)
.

(7) Let a ∈ S0cl (R
n × R

n,�) be classical, u ∈ S (Rn), λ ∈ � with (η, λ) �= (0, 0)
and 0 < r < τ . Then

lim
s→∞ sr

∥∥op(a) (sλ) Rsu − a(0)(y, η, λ)Rsu
∥∥
B0
p(R

n)
= 0. (2.7)

Proof (1), (4) and (5) are just simple computations, and (6) follows from (4), (5) and
the definition of pseudodifferential operators.

In order to prove (2), we just have to note that lims→∞
∫
Rn Rsu (x) v (x) dx = 0 for

all u ∈ S (Rn) and v ∈ S (Rn). The proof follows then from the fact that L p(R
n)′ �

Lq (Rn), for 1
p + 1

q = 1, and that Rs is an isometry.

(3) The operator Rs : Bθ
p (Rn) → Bθ

p (Rn) is continuous for all s ∈ R, as Rs is
the composition of dilatation, translation and multiplication by eisηx . The estimate
follows by interpolation. In fact, for s ≥ 1, it is easy to see that ‖Rsu‖H1

p(R
n) ≤

(1+ s 〈η〉) ‖u‖H1
p(R

n). As
(
L p (Rn) , H1

p (Rn)
)

θ,p
= Bθ

p (Rn), we conclude (see

Lunardi [19, Corollary 1.1.7]) that there exists a constant Cθ such that

‖Rsu‖Bθ
p(R

n) ≤ Cθ ‖Rsu‖θH1
p(R

n)
‖Rsu‖1−θ

L p(Rn)
≤ Cθ (1+ s 〈η〉)θ ‖u‖H1

p(R
n) .

(7) This is the longest statement we need to prove. We divide the proof into several
steps. Our first goal is the L p-convergence:

lim
s→∞ sr

∥∥op(as) (λ) u − a(0)(y, η, λ)u
∥∥
L p(Rn)

= 0, where u ∈ S
(
R
n) . (2.8)

In a first step let us show that, for every (x, ξ) ∈ R
n × R

n ,

∣∣a (
y + s−τ x, sη + sτ ξ, sλ

)− a(0) (y, η, λ)
∣∣ ≤ Cλ,η 〈x〉 〈ξ 〉2 s−τ . (2.9)

Let χ : Rn ×�→ C be a smooth function that is equal to 0 in a neighborhood of the
origin and equal to 1 outside a closed ball centered at the origin that does not contain
(η, λ). For s ≥ 1, we have

∣∣a (
y + s−τ x, sη + sτ ξ, sλ

)− χ
(
sη + sτ ξ, sλ

)
a(0)

(
y + s−τ x, sη + sτ ξ, sλ

) ∣∣

≤ C

〈sη + sτ ξ, sλ〉 ≤ Csτ 〈sη, sλ〉−1 〈ξ 〉 , (2.10)
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where we have used Peetre’s inequality. Since a(0) (y, sη, sλ) = a(0) (y, η, λ),

∣∣χ (
sη + sτ ξ, sλ

)
a(0)

(
y + s−τ x, sη + sτ ξ, sλ

)− a(0) (y, η, λ)
∣∣

≤
n∑
j=1

(∫ 1

0
s−τ

∣∣x j
∣∣ ∣∣χ (

sη + tsτ ξ, sλ
) (

∂x j a(0)
) (

y + ts−τ x, sη + tsτ ξ, sλ
)∣∣ dt

+ sτ

∫ 1

0

∣∣ξ j∂ξ j

(
χa(0)

) (
y + ts−τ x, sη + tsτ ξ, sλ

)∣∣ dt
)

≤
n∑
j=1

(
C1s

−τ
∣∣x j

∣∣+ C2
s2τ

〈sη, sλ〉
∣∣ξ j

∣∣ 〈ξ 〉
)
. (2.11)

The estimates (2.10) and (2.11) imply (2.9) for τ < 1
3 .

In a second step we are going to show the pointwise convergence of the integrand
of (2.8) for all u ∈ S (Rn) and all x ∈ R

n . We know that

sr
(
op (as) (λ) u (x)− a(0) (y, η, λ) u (x)

)

= (2π)−n
∫

Rn
eixξ sr

(
a
(
y + s−τ x, sη + sτ ξ, sλ

)− a(0) (y, η, λ)
)
û (ξ) dξ.

The integrand goes to zero, as we have seen in Eq. (2.9). Moreover

∣∣sr (
a
(
y + s−τ x, sη + sτ ξ, sλ

)− a(0) (y, η, λ)
)
û (ξ)

∣∣ ≤ Cλ,η 〈x〉 〈ξ 〉2
∣∣û (ξ)

∣∣ ,

is integrable with respect to ξ , so that the dominated convergence theorem applies.
In the third step we will finally prove (2.8). It is enough to show that the integrand

is dominated. Indeed, integration by parts shows that

sr xγ
(
op (as) (λ) u (x)− a(0) (y, η, λ) u (x)

)

= (− 1)|γ |
∑
σ≤γ

(
γ

σ

)
sr (2π)−n

∫

Rn
eixξ Dσ

ξ (a(y + s−τ x, sη + sτ ξ, sλ)

− a(0)(y, η, λ))Dγ−σ
ξ û(ξ)dξ. (2.12)

For σ = 0, we recall (2.9); for σ �= 0, we use that r + 2τ |σ | − |σ | < 0 and obtain

sr
∣∣∣Dσ

ξ

(
a
(
y + s−τ x, sη + sτ ξ, sλ

))∣∣∣ ≤ C |(η, λ)|−|σ | 〈ξ 〉|σ | .

As ξ �→ 〈ξ 〉Mû (ξ) is integrable for all M > 0, (2.12) can be estimated by C̃λ,η,γ 〈x〉.
Hence, for arbitrary N ,

sr
∣∣op (as) (λ) u (x)− a(0) (y, η, λ) u (x)

∣∣ ≤ Cλ,η,N 〈x〉−N .

The dominated convergence then shows the desired L p-convergence.
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Our next goal is to show L p-convergence of the derivative:

lim
s→∞ sr

∥∥op(as) (λ) u − a(0)(y, η, λ)u
∥∥
H1

p(R
n)
= 0, u ∈ S

(
R
n) . (2.13)

Let us first observe that

∂x j op(as) (λ) = op (as) (λ) ∂x j u + s−τop
((

∂x j a
)
s

)
(λ) u.

Using Eq. (2.8) and the fact that r < τ , we conclude that

lim
s→∞ sr

∥∥op (as) (λ) ∂x j u − a(0)(y, η, λ)∂x j u
∥∥
L p(Rn)

= 0

and

lim
s→∞ sr

∥∥∥s−τop
((

∂x j a
)
s

)
(λ) u

∥∥∥
L p(Rn)

≤ lim
s→∞ sr−τ

∥∥∥op
((

∂x j a
)
s

)
(λ) u − (

∂x j a
)

(0)(y, η, λ)u
∥∥∥
L p(Rn)

+ lim
s→∞ sr−τ

∥∥(∂x j a
)

(0)(y, η, λ)u
∥∥
L p(Rn)

= 0

for all u ∈ S (Rn). Hence

lim
s→∞ sr

∥∥∂x j op(as) (λ) u − a(0)(y, η, λ)∂x j u
∥∥
L p(Rn)

= 0. (2.14)

Equations (2.8) and (2.14) imply (2.13).
In order to finish the proof of item (7), choose θ > 0 such that θ + r < τ . Then

item (3) implies that

sr
∥∥op(a) (sλ) Rsu − a(0)(y, η, λ)Rsu

∥∥
B0
p(R

n)

≤ sr
∥∥∥Rs

(
R−1s op(a) (sλ) Rsu − a(0)(y, η, λ)u

)∥∥∥
Bθ
p(R

n)

≤ Cθ (1+ s 〈η〉)θ sr ∥∥op(as) (λ) u − a(0)(y, η, λ)u
∥∥
H1

p(R
n)

.

As the last term goes to zero, we obtain (2.7). ��
Corollary 20 Let a ∈ S0cl(R

n × R
n,�) satisfy the transmission condition and u ∈

S(Rn+). Then

lim
s→∞ sr

∥∥r+op(a) (sλ) Rs
(
e+u

)− a(0)(y, η, λ)r+Rs
(
e+u

)∥∥
L p(R

n+)
= 0,

for (y, η, λ) ∈ R
n+ × ((Rn ×�) \ {0}) and 0 < r < τ , where Rs = Rs (y, η).

Proof We use that r+ : L p (Rn) → L p
(
R
n+
)
is continuous, that Rs : L p (Rn) →

L p (Rn) is an isometry mapping C∞c (Rn+) to C∞c (Rn+), and Eq. (2.8). ��
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In order to control the action of Rs on Besov spaces, we recall the equivalence of
Besov norm and L p norm on certain subsets of S(Rn), see e.g. [18].

Lemma 21 (Besov space property) There is a constant C > 0 such that

C−1 ‖u‖B0
p(R

n) ≤ ‖u‖L p(Rn) ≤ C ‖u‖B0
p(R

n) ,

for all u ∈ S ′ (Rn) with suppF(u) ⊂ ∪m+2k=mKk for some m ≥ 0. Here C does not
depend on m. In particular, under these circumstances, u ∈ L p (Rn) if and only if
u ∈ B0

p (Rn).

The number 2 could be replaced by a different one. We recall that the sets K j were
defined in Remark 12.

Proof As ϕ j (ξ) = ϕ1(2− j+1ξ) for j ≥ 1, and u =∑m+3
j=m−1 ϕ j (D)u, the estimate

‖ϕ j (D)u‖L p(Rn) = ‖F−1(ϕ j ) ∗ u‖L p(Rn) ≤ ‖F−1ϕ1‖L1(Rn)‖u‖L p(Rn), j ≥ 1,

implies the result. ��
The operator Rs has important properties when acting on functions whose Fourier

transform is supported in K̃ := {
ξ ∈ R

n; 1
2 < |ξ | < 1

}
.

Lemma 22 There is a constant s0 > 0, that depends only on η, for which the operator
Rs = Rs (y, η) has the following properties:

(1) If u ∈ S ′(Rn) and supp (Fu) ⊂ K̃ , then, for every s ≥ s0, there is an m ∈ N0
that depends on s, such that suppF (Rsu) ⊂ ∪m+2k=mKk.

(2) There exists a constant C > 0 such that C−1 ‖u‖B0
p(R

n) ≤ ‖Rsu‖B0
p(R

n) ≤
C ‖u‖B0

p(R
n) for all s > s0 and all u ∈ B0

p (Rn) with supp (Fu) ⊂ K̃ .

(3) For u ∈ S(Rn) with supp(Fu) ⊂ K̃ , lims→∞ Rsu = 0 weakly in B0
p (Rn).

Proof (1) By item (5) of Lemma 19, F (Rsu) (ξ) = 0, unless 1
2 <

∣∣s−τ (ξ − sη)
∣∣ <

1. If η = 0, this means that 1
2 s

τ < |ξ | < sτ . If η �= 0, choose s0 > 0 such that
2sτ < s |η|, for s > s0. Then suppF (Rs (u)) ⊂ {

ξ ; 12 s |η| < |ξ | < 2s |η|}, for
s > s0. The result now follows easily.

(2) As suppF(Rsu) ⊂ ∪m+2k=mKk and supp (F (u)) ⊂ K̃ , the result follows from
Lemma 21 and the fact that Rs is an isometry in L p (Rn).

(3) From item (2) of Lemma 19, we know that

lim
s→∞

∫

Rn
Rsu (x) v (x) dx = 0, v ∈ S

(
R
n) .

However, B0
q (Rn) ∼= B0

p (Rn)′, for 1
p + 1

q = 1, and S (Rn) is dense in B0
q (Rn).

As, by item 2), ‖Rsu‖B0
p(R

n) is uniformly bounded in s for all fixed u ∈ S (Rn)

such that supp (Fu) ⊂ K̃ , the result follows.
��
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We now prove Theorem 17. The next simple lemma will be useful:

Lemma 23 Let E and F be Banach spaces and E ′ and F ′ be their dual spaces. If
A: E → F is a bounded linear operator such that A is injective, has closed range and
its adjoint A∗: F ′ → E ′ is also injective, then A is an isomorphism.

Proof Suppose that the range R (A) of A is a proper subset of F . By the Hahn-
Banach Theorem, there is an f ∈ F∗, f �= 0, such that f |R(A) = 0. This implies that
A∗ ( f ) = f ◦ A = 0. As A∗ : F ′ → E ′ is injective, we conclude that f = 0, which
is a contradiction. ��

Proof (of Theorem 17)
As it suffices to prove the implication (iii) �⇒ (i), consider A (λ), B (λ) and

K (λ) as in (iii). Our aim is to prove that the principal symbol p(0) (z, λ) of A is
invertible for every (z, λ) ∈ (T ∗M ×�) \ {0}. We focus on a trivializing coordinate
neighborhood U containing x = π(z). We choose smooth functions 
,� and H
supported in U such that 
 equals 1 near x and �
 = 
, H� = �. Denote by
Ã(λ) ∈ B(B0

p(R
n)N1, B0

p(R
n)N2) and B̃(λ) ∈ B(B0

p(R
n)N2 , B0

p(R
n)N1) the operators

HA(λ)� and 
B(λ)H in local coordinates. Then our assumptions imply that there
are compact operators K̃ (λ), tending to zero in B(B0

p(R
n)N1) as |λ| → ∞ such that

B̃(λ) Ã(λ) = 
̃+ K̃ (λ), (2.15)

where 
̃ is 
 in local coordinates. Here we use the fact that B̃(λ) has logarithmic
growth and that 
B(λ)H2A(λ)� differs from 
B(λ)A(λ)� by a compact operator
whose norm tends to zero as |λ| → ∞.

Denote by (y, η, λ) ∈ R
n × (Rn ×�) \ {0} the point corresponding to (z, λ) and

fix an element u = cv ∈ S (Rn)N1 , where c ∈ C
N1 and 0 �= v ∈ S (Rn) with

supp (Fv) ⊂ {
ξ ; 1

2 < |ξ | < 1
}
. Equation (2.15) together with item (ii) of Lemma 22

implies that

‖u‖B0
p(R

n)N1 ≤ C

(
‖B̃ (sλ) ‖B(

B0
p(R

n)N2 ,B0
p(R

n)N1
)‖ Ã (sλ) Rsu‖B0

p(R
n)N2

+ ‖K̃ (sλ) Rsu‖B0
p(R

n)N1 + ‖(1− 
̃)Rsu‖B0
p(R

n)N1

)
. (2.16)

We claim that lims→∞ ‖K̃ (sλ) Rsu‖B0
p(R

n)N1 = 0: Indeed ‖K̃ (sλ) ‖B(B0
p(Rn)N1) → 0

for λ �= 0, and ‖Rsu‖B0
p(R

n)N1 ≤ C ‖u‖B0
p(R

n)N1 . For λ = 0, we use that K̃ (0)

is compact and the third item of Lemma 22, which implies that lims→∞ Rsu = 0
weakly in B0

p (Rn)N1 .

Since 
̃ ∈ C∞c (Rn) is equal to 1 in a neighborhood of y, lims→∞(1 −

̃)Rs(y, η)u = 0 in the topology of S (Rn) and, therefore, also in the topology
of B0

p (Rn). We moreover estimate
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‖ Ã (sλ) Rsu‖B0
p(R

n)N2 ≤ ‖ Ã (sλ) Rsu − p(0) (y, η, λ) Rsu‖B0
p(R

n)N2

+C ∥∥p(0) (y, η, λ) c
∥∥B(CN1 ,CN2)

‖v‖B0
p(R

n).

Item 7 of Lemma 19 implies that lims→∞ sr‖ Ã (sλ) Rsu− p(0) (y, η, λ) Rsu‖B0
p(R

n)N2

= 0 for r sufficiently small. By assumption, ‖B̃(sλ)‖B(B0
p(R

n)N2 ,B0
p(R

n)N1 ) ≤
C̃〈ln(sλ)〉M . Taking s sufficiently large, we conclude that

C
(
‖B̃ (sλ) ‖B(

B0
p(R

n)N2 ,B0
p(R

n)N1
)‖ Ã (sλ) Rsu − p(0) (y, η, λ) Rsu‖B0

p(R
n)N2

+ ‖K̃ (sλ) Rsu‖B0
p(R

n)N1 + ‖(1− 
̃)Rsu‖B0
p(R

n)N1

)
≤ 1

2
‖u‖B0

p(R
n)N1 .

Hence, for sufficiently large s, we have

‖c‖
C
N1 ‖v‖B0

p(R
n) = ‖u‖B0

p(R
n)N1

≤ C̃ 〈ln (sλ)〉M ∥∥p(0) (y, η, λ) c
∥∥B(CN1 ,CN2 )

‖v‖B0
p(R

n) .

As v �= 0, this clearly implies that p(0) (y, η, λ) is injective.
An analogous argument applies to the adjoint operator. We conclude that

p(0) (y, η, λ)∗, that is, the adjoint of p(0) (y, η, λ) and the principal symbol of A (λ)∗,
is also injective. Lemma 23 then tells us that p(0) (y, η, λ) is an isomorphism and, in
particular, that N2 = N1. Therefore A (λ) is an elliptic operator. ��

2.1.2 Boutet de Monvel Operators with Parameters Acting on L p-Spaces

Theorem 24 Let M be a compact manifold with boundary ∂M. Let E0 and E1
be vector bundles over M, F0 and F1 be vector bundles over ∂M and A ∈
B̃ p
E0,F0,E1,F1

(M,�). Then the following conditions are equivalent:

(i) The operator A (λ) is an elliptic parameter-dependent operator.
(ii) We find bounded operators B1 (λ) : L p (M, E0)⊕ B0

p (M, F0) → L p (M, E1)⊕
B0
p (M, F1)and B2 (λ) : L p (M, E1)⊕B0

p (M, F1) → L p (M, E0)⊕B0
p (M, F0)

such that

B1 (λ) A (λ) = 1+ K1 (λ) and A (λ) B2 (λ) = 1+ K2 (λ) , λ ∈ �,

where the B j (λ) are uniformly bounded in λ and K1 (λ) : L p (M, E0) ⊕
B0
p (M, F0)→ L p (M, E0)⊕B0

p (M, F0)and K2 (λ) : L p (M, E1)⊕B0
p (M, F1)

→ L p (M, E1)⊕ B0
p (M, F1) are compact and lim|λ|→∞ K j (λ) = 0, j = 1, 2.

(iii) Condition ii) holds with the uniform boundedness of the B j (λ) replaced by the
condition that, for j = 1, 2 and some M ∈ N0,

∥∥Bj (λ)
∥∥
B
(
L p(M,E1)⊕B0

p(M,F1),L p(M,E0)⊕B0
p(M,F0)

) ≤ C 〈ln (λ)〉M .
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Remark 25 Let A∗ (λ) be the adjoint operator of A (λ). Theorem 16 tells us that
A (λ) B2 (λ) = 1+ K2 (λ) is equivalent to

B∗2 (λ) A∗ (λ) = 1+ K ∗2 (λ) ,

which is the condition that we will need later.

Again a standard parametrix construction shows that (i) implies (ii). As (ii) implies
(iii) trivially, we only have to prove that (iii) implies (i).

We fix a point (y, η) ∈ R
n−1 × R

n−1 and a constant 0 < τ < 1
3 . For every s > 0,

we define the isometries Rs = Rs (y, η) : L p
(
R
n−1) → L p

(
R
n−1), Ss : L p (R+) →

L p (R+) and Rs ⊗ Ss : L p
(
R
n+
)→ L p

(
R
n+
)
by

Rsv
(
x ′
) = s

τ (n−1)
p eisx

′ηv
(
sτ

(
x ′ − y

))
,

Ssw (xn) = s
1
p w (sxn) ,

Rs ⊗ Ssu (x) = s
τ (n−1)

p s
1
p eisx

′ηv
(
sτ

(
x ′ − y

)
, sxn

)
.

The following simple proposition will be useful. It is very similar to the results we
have already seen.

Proposition 26 The operator Rs ⊗ Ss : L p
(
R
n+
)→ L p

(
R
n+
)
satisfies:

(1) ‖Rs ⊗ Ssu‖L p(Rn+) = ‖u‖L p(Rn+), u ∈ L p
(
R
n+
)
.

(2) lims→∞ Rs ⊗ Ssu = 0 in the weak topology of L p
(
R
n+
)
.

Proof (1) Is easily verified.
(2) Due to the first item and the fact that Lq

(
R
n+
) ∼= L p

(
R
n+
)′, it is enough to

prove that if u (x) = u1
(
x ′
)
u2 (xn) and v (x) = v1

(
x ′

)
v2 (xn), where u1, v1 ∈

C∞c
(
R
n−1) and u2, v2 ∈ C∞c

(
R+

)
, then

lim
s→∞

∫

R
n+
Rs ⊗ Ssu (x) v (x) dx

= lim
s→∞

(∫

Rn−1
Rsu1

(
x ′

)
v1

(
x ′
)
dx ′

)(∫

R+
Ssu2 (xn) v2 (xn) dxn

)
= 0.

A simple computation shows that both terms on the right hand side go to zero as
s →∞.

��

Proposition 27 Let 0 < r < τ and let v ∈ S
(
R
n−1) be such that F (v) has compact

support. Denote by C (s) a function such that lims→∞ C (s) = 0. Then
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(1) (Pseudodifferential operator in the interior) Let p ∈ S0cl (R
n × R

n,�) satisfy the
transmission condition and p ∼∑

j∈N0
p(− j) be its asymptotic expansion. Then

sr
∥∥∥op (p) (sλ) (Rsv ⊗ Ssw)

−Rs ⊗ Ss
(v

(
x ′

)

2π

∫

R

eixnξn p(0) (y, xn, η, ξn, λ)Fxn→ξn

(
e+w

)
(ξn) dξn

)∥∥∥
L p(Rn+)

≤ C (s) ‖w‖L p(R+) , w ∈ S(R+).

(2) (Singular Green operators) Let S− 1
cl (Rn−1,S++,�) � g̃ ∼ ∑

j∈N0
g̃(−1− j) and

G (λ) : S(Rn+)→ S(Rn+) be defined by (2.3). Then, for w ∈ S
(
R+

)
,

sr
∥∥∥G (sλ) (Rsv ⊗ Ssw)

−Rs ⊗ Ss
(
v(x ′)

∫

R+
g̃(−1) (y, xn, yn, η, λ) w(yn)dyn

)∥∥∥
L p(Rn+)

≤ C (s) ‖w‖L p(R+).

(3) (Trace operators) Let S
− 1

p
cl (Rn−1,S+,�) � t̃ ∼ ∑

j∈N0
t̃(− 1

p− j
) and T (λ) :

S
(
R
n+
)
→ S

(
R
n−1) be defined by (2.2). Then for w ∈ S

(
R+

)
,

sr
∥∥∥T (sλ) (Rsv ⊗ Ssw)− Rs

(
v
(
x ′

) ∫

R+
t̃(− 1

p

) (y, xn, η, λ) w (xn) dxn
)∥∥∥

B0
p(R

n−1)

≤ C (s) ‖w‖L p(R+) .

(4) (Poisson operators) Let S
1
p−1
cl (Rn−1,S+,�) � k̃ ∼ ∑

j∈N0
k̃( 1

p−1− j
) and

K (λ) : S(Rn−1) → S(Rn+) be defined by (2.1). Then for w ∈ S
(
R+

)
,

lim
s→∞ sr

∥∥∥∥K (sλ) (Rsv)− Rs ⊗ Ss

(
k̃( 1

p−1
) (y, xn, η, λ) v

(
x ′

))∥∥∥∥
L p(Rn+)

= 0.

Proof The items (1), (2) and (4) extend the results in [23, Section 2.3.4.2]. They can
be obtained by replacing the operators Rs and Ss in [23] by the definitions given here
and arguing similarly as for the third item.

The third item is more delicate, as the limit is taken in the Besov space: Let q be
such that 1

p + 1
q = 1. Using item 4, 5 and 6 of Lemma 19, we find that

R−1s T (sλ) (Rsv ⊗ Ssw)
(
x ′
)

=
∫

Rn−1
eix

′ξ ′
( ∫

R+
s−

1
q t̃

(
y + s−τ x ′, xn

s
, sη + sτ ξ ′, sλ

)
v̂(ξ ′)w (xn) dxn

)
dξ ′.
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Fix (y, η, λ) ∈ R
n−1 × R

n−1 × � such that (η, λ) �= (0, 0). We will use the simple
fact that if v ∈ S(Rn−1) is such that supp (F(v)) is compact, then for all θ ∈ ] 0, 1 [
and for all ξ ′ ∈ supp (F (v)), there is a s0 > 0 such that

C−1sM |(η, λ)|M ≤ 〈
sη + θsτ ξ ′, sλ

〉M ≤ CsM |(η, λ)|M , s ≥ s0.

The constant C does not depend on θ , s ≥ s0 and ξ ′ ∈ supp (F (v)).
We start by establishing L p-convergence: let 0 < r < τ and v ∈ S(Rn−1) with

supp (F(v)) compact. Then, for all w ∈ S
(
R+

)
, we have

sr
∥∥∥R−1s T (sλ) (Rsv ⊗ Ssw)− v

(
x ′
) ∫

R+
t̃(− 1

p

) (y, xn, η, λ) w (xn) dxn
∥∥∥
L p(Rn−1)

≤ C (s) ‖w‖L p(R+) ,

where C (s) is a constant that depends on s, (y, η, λ) and v but not on w. Moreover,
lims→∞ C (s) = 0.

We divide the proof into s, always assuming that s ≥ s0. First we see that

sr
∣∣∣R−1s T (sλ) (Rsv ⊗ Ssw)− v

(
x ′
) ∫

R+
t̃(− 1

p

) (y, xn, η, λ) w (xn) dxn
∣∣∣

≤ ‖w‖L p(R+)

(∫

R+

∣∣∣∣
(∫

Rn−1
eix

′ξ ′sr−
1
q

(
t̃(y + s−τ x ′, xn

s
, sη + sτ ξ ′, sλ)

−s 1
q t̃(− 1

p

) (y, xn, η, λ)

)
v̂
(
ξ ′

)
dξ ′

)∣∣∣∣
q

dxn

) 1
q

. (2.17)

In a first step we will prove that, for all
(
x ′, xn, ξ ′

) ∈ R
n−1 × R+ × R

n−1 and
M ∈ N0, there is a constant that depends on η, λ and M such that

∣∣∣∣sr−
1
q

(
t̃
(
y + s−τ x ′, xn

s
, sη + sτ ξ ′, sλ

)
− s

1
q t̃(− 1

p

) (y, xn, η, λ)

)∣∣∣∣
≤ Cη,λ,M 〈xn〉−M sr−τ , ξ ′ ∈ supp (F (v)) (2.18)

Let us fix a function χ ∈ C∞
(
R
n−1 ×�

)
that is zero near the origin and equal to

1 outside a closed ball that does not contain (η, λ). We note that

∣∣∣sr− 1
q xMn

(
t̃
(
y + s−τ x ′, xn

s
, sη + sτ ξ ′, sλ

)

−χ
(
sη + sτ ξ ′, sλ

)
t̃(− 1

p

)
(
y + s−τ x ′, xn

s
, sη + sτ ξ ′, sλ

))∣∣∣

≤ C1s
− 1

q+r+M 〈
sη + sτ ξ ′, sλ

〉− 1
p−M ≤ C2s

−1+r |(η, λ)|− 1
p−M (2.19)
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for ξ ′ ∈ supp (F (v)) . We now study the term

sr−
1
q+M

( xn
s

)M (
χ

(
sη + sτ ξ ′, sλ

)
t̃(− 1

p

)
(
y + s−τ x ′, xn

s
, sη + sτ ξ ′, sλ

)

−s 1
q t̃(− 1

p

)(y, xn, η, λ
))

(2.20)

Using the fact that s−
1
q t̃(− 1

p

) (
y, xn

s , sη, sλ
) = t̃(− 1

p

) (y, xn, η, λ), and a Taylor

expansion we conclude that the expression (2.20) is smaller or equal to

sr−τ− 1
q+M

∑
|β|=1

∣∣x ′β ∣∣
∫ 1

0

∣∣∣ xn
s

∣∣∣
M ∣∣∣∂β

x ′

(
χ t̃(− 1

p

)
)

×(
y + θs−τ x ′, xn

s
, sη + θsτ ξ ′, sλ

)∣∣∣dθ

+ sr+τ− 1
q+M

∑
|β|=1

∣∣ξ ′β ∣∣
∫ 1

0

∣∣∣ xn
s

∣∣∣
M ∣∣∣∂β

ξ ′

(
χ t̃(− 1

p

)
)

×(
y + θs−τ x ′, xn

s
, sη + θsτ ξ ′, sλ

)∣∣∣dθ

≤ C
(
sr−τ

〈
x ′
〉 |(η, λ)|− 1

p+1−M + sr+τ−1 〈
ξ ′

〉 |(η, λ)|− 1
p−M

)
. (2.21)

As 0 < r < τ < 1
3 , we conclude that −1 + r < r − τ and r + τ − 1 < r − τ .

Hence (2.18) follows from the estimates of (2.19) and (2.21).
In a second step we will next show that the limit of Eq. (2.17) as s →∞ is zero.

This is true, as it is smaller than or equal to

Cη,λs
r−τ

∫

Rn−1

∣∣v̂ (
ξ ′

)∣∣ dξ ′
(∫

R+
〈xn〉−M dxn

) 1
q

, M > 1.

In a third stepwewant to prove that, for allM ∈ N0, the expression (2.17) is bounded
by CM

〈
x ′

〉−M , for a constant CM > 0. Then Lebesgue’s dominated convergence
theorem will imply that (2.17) holds. In order to do that, we note that

x ′γ
∫

eix
′ξ ′sr−

1
q

(
t̃
(
y + s−τ x ′, xn

s
, sη + sτ ξ ′, sλ

)

−s 1
q t̃(− 1

p

) (y, xn, η, λ)

)
v̂
(
ξ ′

)
dξ ′

is a linear combination of terms of the form
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∫

Rn−1
eix

′ξ ′sr−
1
q Dσ

ξ ′
(
t̃
(
y + s−τ x ′, xn

s
, sη + sτ ξ ′, sλ

)

−s 1
q t̃(− 1

p

) (y, xn, η, λ)

)
Dγ−σ

ξ ′ v̂
(
ξ ′

)
dξ ′.

If σ = 0, we have already proven that the above expression is smaller than
Cη,λ,M 〈xn〉−M sr−τ . For σ �= 0, we estimate

∣∣∣sr− 1
q xMn Dσ

ξ ′
(
t̃
(
y + s−τ x ′, xn

s
, sη + sτ ξ ′, sλ

))∣∣∣

≤
∣∣∣∣sr−

1
q+τ |σ |+M

( xn
s

)M (
Dσ

ξ ′ t̃
) (

y + s−τ x ′, xn
s

, sη + sτ ξ ′, sλ
)∣∣∣∣

≤ C1s
r− 1

q+τ |σ |+M 〈
sη + sτ ξ ′, sλ

〉− 1
p+1−M−|σ |

≤ C2s
r+(τ−1)|σ | |(η, λ)|−|σ |− 1

p+1−M
. (2.22)

Hence
∣∣sr− 1

q Dσ
ξ ′

(
t̃
(
y + s−τ x ′, xn

s , sη + sτ ξ ′, sλ
)) ∣∣ ≤ Cη,λ,M 〈xn〉−M sr−τ . The

result now follows easily.
We will next establish the L p-convergence of the derivative. Let 0 < r < τ and

v ∈ S
(
R
n−1) with supp (F (v)) compact. Then, for all w ∈ S

(
R+

)
, we have

sr
∥∥∥R−1s T (sλ) (Rsv ⊗ Ssw)− v

(
x ′

) ∫

R+
t̃(− 1

p

) (y, xn, η, λ) w (xn) dxn
∥∥∥
H1

p(Rn−1)
≤ C (s) ‖w‖L p(R+) , (2.23)

where C (s) is a constant that depends on s, (y, η, λ) and v but not on w. Moreover,
lims→∞ C (s) = 0.

Let us first fix a notation. We denote by
(
∂x j T

)
(λ), j = 1, . . . , n−1, the operator:

(
∂x j T

)
(λ) (u)

(
x ′
) =

∫

Rn−1
eix

′ξ ′
∫

R+
∂x j t̃

(
x ′, xn, ξ ′, λ

) (
Fx ′→ξ ′u

) (
ξ ′, xn

)
dxndξ ′.

Now, let us first observe that, for j = 1, . . . , n − 1,

∂x j R
−1
s T (sλ) (Rsv ⊗ Ssw) = R−1s T (sλ)

(
Rs

(
∂x j v

)⊗ Ssw
)

+s−τ R−1s

(
∂x j T

)
(sλ) (Rsv ⊗ Ssw) . (2.24)

Using Eq. (2.17) and the fact that r < τ , we conclude that

sr
∥∥∥R−1s T (sλ)

(
Rs

(
∂x j v

)⊗ Ssw
)− ∂x j v

(
x ′

) ∫

R+
t̃(− 1

p

) (y, xn, η, λ)w (xn) dxn
∥∥∥
L p(Rn−1)

≤ C (s) ‖w‖L p(R+) (2.25)
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and

sr
∥∥∥s−τ R−1s

(
∂x j T

)
(sλ) (Rsv ⊗ Ssw)

∥∥∥
L p(Rn−1)

≤ sr−τ
∥∥∥R−1s

(
∂x j T

)
(sλ) (Rsv ⊗ Ssw)

− v
(
x ′
) ∫

R+

(
∂x j t̃

) (
− 1

p

) (y, xn, η, λ) w (xn) dxn
∥∥∥
L p(Rn−1)

+ sr−τ ‖v‖L p(Rn−1)

∥∥∥∥xn �→
(
∂x j t̃

) (
− 1

p

) (y, xn, η, λ)

∥∥∥∥
Lq (R+)

‖w‖L p(R+)

≤ C (s) ‖w‖L p(R+) . (2.26)

The expressions (2.24), (2.25) and (2.26) imply that

sr
∥∥∥∂x j

(
R−1s T (sλ) (Rsv ⊗ Ssw)− v

(
x ′

) ∫

R+
t̃(− 1

p

) (y, xn, η, λ) w (xn) dxn
)∥∥∥

L p(Rn−1)

≤ C (s) ‖w‖L p(R+) . (2.27)

Finally, (2.23) is a consequence of Eqs. (2.27) and (2.17).
We are now in the position to prove item 3. Choose 0 < θ < θ + r < τ . Then

sr
∥∥∥T (sλ) (Rsv ⊗ Ssw)− (Rsv)

(
x ′

) ∫

R+
t̃(− 1

p

) (y, xn, η, λ) w (xn) dxn
∥∥∥
B0
p(Rn−1)

≤ sr
∥∥∥Rs

(
R−1s T (sλ) (Rsv ⊗ Ssw)

− v
(
x ′
) ∫

R+
t̃(− 1

p

) (y, xn, η, λ) w (xn) dxn
)∥∥∥

Bθ
p(Rn−1)

≤ Cθ (1+ s 〈η〉)θ sr
∥∥∥R−1s T (sλ) (Rsv ⊗ Ssw)

− v
(
x ′
) ∫

R+
t̃(− 1

p

) (y, xn, η, λ) w (xn) dxn
∥∥∥
H1

p(R
n)
≤ C (s) ‖w‖L p(R+) .

��
We also need to understand the action of the singular Green and trace operators on

the operators Rs = Rs (y, η) for (y, η) ∈ R
n+ × R

n . Notice that (y, η) ∈ R
n+ × R

n

instead of R
n−1 × R

n−1 as in the previous proposition.
Proposition 28 Let Rs = Rs (y, η), where η = (

η′, ηn
) ∈ R

n−1 × R and y =(
y′, 0

) ∈ R
n−1 × R. For u ∈ C∞c

(
R
n+
)
the following properties hold:

(1) (Green) For g̃ ∈ S−1cl

(
R
n−1,S++,�

)
define G (λ) : S

(
R
n+
)
→ S

(
R
n+
)
by Eq.

(2.3). Then lims→∞ sr
∥∥G (sλ) Rs

(
e+u

)∥∥
L p(Rn+)

= 0 for all r > 0.

(2) (Trace) For t̃ ∈ S
− 1

p
cl

(
R
n−1,S+,�

)
define T (λ) : S

(
R
n+
)
→ S

(
R
n−1) by Eq.

(2.2). Then lims→∞ sr
∥∥T (sλ) Rs

(
e+u

)∥∥
B0
p(Rn−1) = 0 for all r > 0.
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Proof The proof is analogous to that of Proposition 27. Let us sketch the proof of (2)
as (1) is similar.

Let 1
p + 1

q = 1, R−1s := R−1s

(
y′, η′

) : S
(
R
n−1) → S

(
R
n−1) and Rs :=

Rs (y, η) : S (Rn) → S (Rn). Using item 6 of Lemma 19 in
(
x ′, ξ ′

)
and the defi-

nition of Rs , we obtain that

R−1s T (sλ) (Rsu)
(
x ′
) =

∫

Rn−1
eix

′ξ ′
(∫

R+
eiτ s

1−τ xnηn s−
τ
q

×t̃
(
y + s−τ x ′, xn

sτ
, sη + sτ ξ ′, sλ

)
Fx ′→ξ ′u

(
ξ ′, xn

)
dxn

)
dξ ′.

Now, we note that

( xn
sτ

)N ∣∣∣t̃
(
y + s−τ x ′, xn

sτ
, sη + sτ ξ ′, sλ

)∣∣∣ ≤ CN
〈
sη + sτ ξ ′, sλ

〉− 1
p+1−N

,

On the support of u, we have xn ≥ R > 0 for a certain constant R > 0. Hence

∣∣∣t̃
(
y + s−τ x ′, xn

sτ
, sη + sτ ξ ′, sλ

)∣∣∣ ≤ CN
〈
sη + sτ ξ ′, sλ

〉− 1
p+1−N

sτN R−N

≤ CNs

(
1
p−1

)
(τ−1)+(2τ−1)N 〈η, λ〉− 1

p+1−N

× 〈
ξ ′

〉N+ 1
p−1 R−N .

As 2τ −1 < 0, we can always choose N ∈ N0 so large that, for all
(
x ′, xn, ξ ′, λ

) ∈
R
n−1 × R+ × R

n−1 ×� such that xn ≥ R and for all r > 0, we have

lim
s→∞ sr

(
s−

τ
q t̃

(
y + s−τ x ′, xn

sτ
, sη + sτ ξ ′, sλ

))
= 0.

For large N ∈ N0, the dominated convergence theorem implies that

lim
s→∞ sr

(
R−1s T (sλ) (Rsu)

(
x ′

)) = 0, r > 0.

Now, to finish the proof, we just study L p and H1
p convergence. Using integration

by parts in the expression x ′γ R−1s T (sλ) (Rsu)
(
x ′
)
, we see that we can dominate

R−1s T (sλ) (Rsu)
(
x ′

)
by

〈
x ′

〉−N for every N . Hence

lim
s→∞ sr

∥∥∥R−1s T (sλ) (Rsu)

∥∥∥
L p(Rn−1)

= 0.

If we take derivatives of first order in x ′, we find that

lim
s→∞ sr

∥∥∥R−1s T (sλ) (Rsu)

∥∥∥
H1

p(Rn−1)
= 0.
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The estimate of the norm of Rs on Besov space and the same argument with interpo-
lation of Proposition 27 lead us to the conclusion that

lim
s→∞ sr ‖T (sλ) (Rsu)‖B0

p(Rn−1) = 0.

��
Finally, we prove the main Theorem of this sub-section.

Proof (of Theorem 24) Let A =
(
P+ + G K

T S

)
∈ B̃ p

E0,F0,E1,F1
(M,�) and B1, B2,

K1 and K2 be as in Theorem 24, (iii). Write B1 =
(
B11 B12
B21 B22

)
and decompose

similarly K1.
Next we choose smooth functions
,� and H, supported in a trivializing neighbor-

hoodU of x = π(z), such that 
 equals 1 near x and �
 = 
, H� = �. We denote
by P̃+(λ), G̃(λ) ∈ B(L p(R

n+)n1 , L p(R
n+)n3), T̃ (λ) ∈ B(L p(R

n+)n1, B0
p(R

n−1)n4),
B̃11(λ) ∈ B(L p(R

n+)n3, L p(R
n)n1) and B̃12(λ) ∈ B(B0

p(R
n−1)n4 , L p(R

n+)n1) the
operators HP+(λ)�, HG(λ)�, 
B11(λ)H, HT (λ)�, and 
B12(λ)H in local coordi-
nates.

The identity B1A = I + K1 implies that

B̃11(λ)(P̃+(λ)+ G̃(λ))+ B̃12(λ)T̃ (λ) = 
̃+ K̃ (λ), (2.28)

where 
̃ is the function
 in local coordinates and K̃ (λ) is the operator which collects
the terms arising from the localizations of 
K11(λ)H, 
B11(λ)(1 − H2)(P+(λ) +
G(λ))� and
B12(λ)(1−H2)T (λ)�. As the latter two operators have smooth integral
kernels, with seminorms rapidly decreasing with respect to λ, K̃ (λ) is compact and
its norm tends to zero as |λ| → ∞.

The interior principal symbol In order to prove the invertibility of the inte-
rior principal symbol p(0) (z, λ) : π∗T ∗M×� (E0) → π∗T ∗M×� (E1) for (z, λ) ∈
(T ∗M ×�) \ {0}, fix u = cv ∈ C∞c (Rn+)n1 , where c ∈ C

n1 and 0 �= v ∈ C∞c (Rn+).
Denote by (y, η) ∈ R

n
+ × R

n the point corresponding to z in local coordinates. For
Rs = Rs (y, η) we note that Rs(e+u) ∈ C∞c (Rn+), since supp Rs(e+u) ⊂ R

n+. In
particular ‖u‖L p(R

n+)n1 = ‖r+Rs(e+u)‖L p(R
n+)n1 . Hence we obtain from (2.28)

‖u‖L p(R
n+)n1 ≤ ‖B11(sλ)‖B(L p(R

n+)n3 ,L p(R
n+)n1 )‖P̃(sλ)Rs(e

+u)‖L p(R
n+)n3

+ ‖(B̃11G̃ + B̃12T̃ )(sλ)Rs(e
+u)‖L p(R

n+)n1 + ‖K̃ (sλ)Rs(e
+u)‖L p(R

n+)n1

+ ‖(1− 
̃)Rs(e
+u)‖L p(R

n+)n1 . (2.29)

On the right hand side of Eq. (2.29), we estimate

‖P̃(sλ)Rs(e
+u)‖L p(R

n+)n3 ≤ ‖P̃(sλ)Rs(e
+u)− p(0)(y, η, λ)Rs(e

+u)‖L p(R
n+)n3

+C‖p(0)(y, η, λ)c‖B(Cn1 ,Cn3 )‖v‖L p(R
n+) (2.30)
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and note that Corollary 20 implies that

lim
s→∞ sr‖P̃(sλ)Rs(e

+u)− p(0)(y, η, λ)Rs(e
+u)‖L p(R

n+)n3 = 0.

We claim that also K̃ (sλ)Rs(e+u) tends to zero: For λ = 0 we infer this from the fact
that K̃ (0) is compact, while Rs(e+u) weakly tends to zero. For λ �= 0 the norm of
K̃ (sλ) tends to zero as s → ∞, whereas Rs(e+u) is bounded. Finally, it is easy to
check that lims→∞(1− 
̃)Rs(e+u) = 0 in S (Rn)n1 and therefore also in L p

(
R
n+
)n1 .

If we assume, for an instant, that also the second summand on the right hand side
of (2.29) tends to zero as s → ∞, then, taking s sufficiently large, the bounded-
ness of Rs , Inequality (2.30) and Eq. (2.29) imply together with the assumption that
‖B̃11(sλ)‖B(L p(R

n+)n3 ,L p(R
n+)n1 ) ≤ C〈ln(sλ)〉M , that

‖c‖Cn1 ‖v‖L p(R
n+) = ‖u‖L p(Rn+)

n1 ≤ C̃
∥∥p(0) (y, η, λ) c

∥∥B(Cn1 ,Cn3 )
‖v‖L p(Rn+) .

Hence p(0) (y, η, λ) is injective. The same argument, applied to the adjoint opera-
tor, shows the injectivity of p(0) (y, η, λ)∗ and thus the invertibility of p(0) (y, η, λ).
In particular, n1 = n3. In order to establish the convergence to zero of the second
summand in (2.29), we distinguish two cases.

Case 1 x /∈ ∂M . Then U can be taken as a subset of the interior of M . According to
the rules of the calculus, T̃ (sλ) and G̃(sλ) are regularizing elements in their respective
classes; in particular, they are compact. For λ �= 0, their operator norms are rapidly
decreasing as s → ∞. Arguing as for K̃ above, we obtain the assertion from the
assumptions on B.

Case 2 x ∈ ∂M Here, statements (1) and (2) of Proposition 28 assert that, for every r >

0, the norms of sr G̃(sλ)Rs(e+u) and sr T̃ (sλ)Rs(e+u) go to zero in the corresponding
spaces as s → ∞. The assertion then follows from the fact that the norm of B(sλ)

grows at most logarithmically in s by assumption.
The boundary principal symbol We have to show that, for any given (z, λ) ∈

(T ∗∂M ×�) \{0}, σ∂(A)(z, λ) is invertible in

Hom
(
π∗∂M

((
E0|∂M ⊗ S

(
R+

))
⊕ F0

)
, π∗∂M

((
E1|∂M ⊗ S

(
R+

))
⊕ F1

))
.

Let B̃ and Ã be the operators HA� and
BH in local coordinates, respectively. Write
the principal boundary symbol of Ã in the form

⎛
⎝

p(0)+(x ′, 0, ξ ′, Dn, λ)+ g(−1)(x ′, ξ ′, Dn, λ) k( 1
p−1

)(x ′, ξ ′, Dn, λ)

t(− 1
p

)(x ′, ξ ′, Dn, λ) s(0)(x ′, ξ ′, λ)

⎞
⎠ (2.31)

and let (y, η) ∈ R
n−1 × R

n−1 be the point that corresponds to z in local coordinates.
Fix a function 0 �= u′ ∈ S

(
R
n−1) with supp

(
Fu′

) ⊂ {
ξ ; 1

2 < |ξ | < 1
}
. For u =(

u1, . . . , un1
) ∈ S

(
R+

)n1
and v = (

v1, . . . , vn3
) ∈ C

n2 , not both zero, denote by
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u′⊗u and u′⊗v the functionsR
n+ �

(
x ′, xn

) �→ (
u′

(
x ′
)
u1 (xn) , . . . , u′

(
x ′
)
un1 (xn)

)
and R

n−1 � x ′ �→ (
u′

(
x ′
)
v1, . . . , u′

(
x ′
)
vn2

)
, respectively. According to Lemmas

19, 21 and 22 there are constants such that

∥∥u′∥∥L p(Rn−1) =
∥∥Rsu

′∥∥
L p(Rn−1)

≤ C1
∥∥u′∥∥B0

p(Rn−1) ≤ C2
∥∥Rsu

′∥∥
B0
p(Rn−1) ≤ C3

∥∥u′∥∥L p(Rn−1) , s ≥ 1.

Writing ‖.‖L p B0
p
for the norm in L p(R

n+)n1 ⊕ B0
p(R

n−1)n2 , in analogy with
Eq. (2.28) conclude from the identity B1A = I + K1 that

∥∥u′∥∥L p(Rn−1)

∥∥∥∥
(
u

v

)∥∥∥∥
L p(R+)n1⊕Cn2

≤ C

∥∥∥∥
̃

(
Rsu′ ⊗ Ssu

Rsu′ ⊗ v

)∥∥∥∥
L p B0

p

+ C

∥∥∥∥
(
1− 
̃

)(
Rsu′ ⊗ Ssu

Rsu′ ⊗ v

)∥∥∥∥
L p B0

p

≤ C

(∥∥∥∥B̃ (sλ) Ã (sλ)

(
Rs ⊗ Ss 0

0 Rs

)(
u′ ⊗ u

u′ ⊗ v

)
− B̃ (sλ)

(
Rs ⊗ Ss 0

0 Rs

)

×
⎛
⎝
p(0)+(x ′, 0, ξ ′, Dn, λ)+ g(−1)(x ′, ξ ′, Dn, λ) k( 1

p−1
)(x ′, ξ ′, Dn, λ)

t(− 1
p

)(x ′, ξ ′, Dn, λ) s(0)(x ′, ξ ′, λ)

⎞
⎠

(
u′ ⊗ u

u′ ⊗ v

)∥∥∥∥∥∥
L p B0

p

+
∥∥∥∥B̃ (sλ)

(
Rs ⊗ Ss 0

0 Rs

)

×
⎛
⎝
p(0)+(x ′, 0, ξ ′, Dn, λ)+ g(−1)(x ′, ξ ′, Dn, λ) k( 1

p−1
)(x ′, ξ ′, Dn, λ)

t(− 1
p

)(x ′, ξ ′, Dn, λ) s(0)(x ′, ξ ′, λ)

⎞
⎠

(
u′ ⊗ u

u′ ⊗ v

)∥∥∥∥∥∥
L p B0

p

+
∥∥∥∥K̃ (sλ)

(
Rsu′ ⊗ Ssu

Rsu′ ⊗ v

)∥∥∥∥
L p B0

p

+
∥∥∥∥
(
1− 
̃

)(
Rsu′ ⊗ Ssu

Rsu′ ⊗ v

)∥∥∥∥
L p B0

p

)
.

Let us first consider the case where λ �= 0. We infer from Proposition 27 and the
fact that the norm of B̃(sλ) is O(〈ln(sλ)〉M ) that the first summand on the right
hand side is o(‖(u′ ⊗ u) ⊕ (u′ ⊗ v)‖). The same is true for the third summand,
since the norm of K̃ (sλ) tends to zero as s → ∞. The fourth summand tends to
zero in S(Rn+)n1 ⊕ S(Rn−1)n2 , a fortiori in the L pB0

p-norm. Taking s sufficiently
large, we may achieve that the sum of the first, the third and the fourth summand
is ≤ 1

2 (‖(u′ ⊗ u) ⊕ (u′ ⊗ v)‖). From the boundedness of B̃(sλ), Rs and Ss for
this fixed value of s, we conclude that, with norms taken in L p (R+)n1 ⊕ C

n2 and
L p (R+)n3 ⊕ C

n4 ,

∥∥∥∥
(
u

v

)∥∥∥∥

≤ C

∥∥∥∥∥∥

⎛
⎝
p(0)+(x ′, 0, ξ ′, Dn, λ)+ g(−1)(x ′, ξ ′, Dn, λ) k( 1

p−1
)(x ′, ξ ′, Dn, λ)

t(− 1
p

)(x ′, ξ ′, Dn, λ) s(0)(x ′, ξ ′, λ)

⎞
⎠

(
u

v

)∥∥∥∥∥∥
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In case λ = 0, we obtain the same conclusion using the compactness of K̃ (0).
Hence the operator from Eq. (2.31) is injective and has closed range. As the same

can be said of the adjoint, we conclude from Lemma 23 that the principal boundary
symbol is an isomorphism. ��

2.2 The Spectral Invariance of the Parameter-Dependent Boutet de Monvel
Algebra

Theorem 29 Let A ∈ B̃ p
E0,F0,E1,F1

(M,�) be a parameter-dependent operator. Sup-
pose that, for each λ ∈ �, the operator

A (λ) : L p (M, E0)⊕ B0
p (∂M, F0)→ L p (M, E1)⊕ B0

p (∂M, F1)

is invertible. If there are constants C > 0 and M ∈ N0 such that

∥∥∥A (λ)−1
∥∥∥B(

L p(M,E1)⊕B0
p(∂M,F1),L p(M,E0)⊕B0

p(∂M,F0)
) ≤ C 〈ln (λ)〉M , λ ∈ �,

then A (λ)−1 ∈ B̃ p
E1,F1,E0,F0

(M,�).

Proof By Theorem 24 A is parameter-elliptic. Hence we find a parametrix B ∈
B̃ p
E1,F1,E0,F0

(M,�) and K1 ∈ B−∞,0
E1,F1,E1,F1

(M,�) and K2 ∈ B−∞,0
E0,F0,E0,F0

(M,�)

such that AB = I + K1 and BA = I + K2. We conclude that

A (λ)−1 = B (λ)− K2 (λ) A (λ)−1 = B (λ)− K2 (λ)
(
B (λ)− A (λ)−1 K1 (λ)

)
.

As K2B ∈ B−∞,0
E1,F1,E0,F0

(M,�), A (λ)−1 grows at most as 〈ln (λ)〉M in λ and
K j (λ), j = 1, 2, are integral operators with smooth kernels whose derivatives
decay rapidly with respect to λ, we see that K2A−1K1 ∈ B−∞,0

E1,F1,E0,F0
(M,�) and

A−1 ∈ B̃ p
E1,F1,E0,F0

(M,�). ��

The above theorem establishes spectral invariance for the B̃ p
E0,F0,E1,F1

(M,�) cal-
culus. When � = ∅, that is, the algebra is independent of parameters, we can use
order reducing operators and argue as in the proof of Corollary 50, to prove spectral
invariance of the Boutet de Monvel calculus of integer order in the L p-setting.

In [10, Theorem 1.12] Grubb proved that the inverse of elliptic elements of Boutet
de Monvel algebra belongs again to the algebra. This was done for a larger algebra
that allows the treatment on some non-compact manifolds. For the class of operators
defined here, our result is stronger, as it does not assume ellipticity.

3 Boundary Value Problems on Manifolds with Conical Singularities

In this section,weprovide the definitions and results concerningmanifoldswith bound-
ary and conical singularities that we shall need. Details can be found in [30,31].
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Definition 30 A compact manifold with boundary and conical singularities of dimen-
sion n is a triple (D, �,F) formed by:

(1) A compact Hausdorff topological space D.
(2) A finite subset � ⊂ D, which we call conical points, such that D\� is an

n-dimensional smooth manifold with boundary.
(3) A set of functions Fσ = {ϕ : Uσ → Xσ × [ 0, 1 [ /Xσ × {0} , σ ∈ �} such

that:
(i) The sets Uσ ⊂ D are open and disjoint sets. Moreover, each Uσ is a neigh-

borhood of σ ∈ �.
(ii) Xσ is a compact smooth manifold with boundary for each σ ∈ �.
(iii) The function ϕσ : Uσ → Xσ × [ 0, 1 [ /Xσ × {0} is a homeomorphism,

ϕσ (σ ) = Xσ × {0} /Xσ × {0} and ϕσ : Uσ \ {σ } → Xσ × ] 0, 1 [ is a
diffeomorphism.

Remark 31 For each σ ∈ �, we could use a different function ϕ̃σ : Uσ → Xσ ×
[ 0, 1 [ /Xσ × {0} with the same properties as in item iii), as long as, for each σ ,

ϕ̃σ ◦ ϕ−1σ : Xσ × ] 0, 1 [ → Xσ × ] 0, 1 [

extends to a diffeomorphism ϕ̃σ ◦ ϕ−1σ : Xσ × ] − 1, 1 [ → Xσ × ] − 1, 1 [ . These
are the changes of variables that we allow to do near the singularities.

For the analysis of the typical (pseudo-) differential boundary value problems on
these manifolds, we introduce the Fuchs type boundary value problems on a manifold
with corners D. It is obtained by gluing the sets Xσ × [ 0, 1 [ in place of Uσ , using
the functions ϕσ . In this way, the singularities are identified with the sets Xσ × {0}.
The above remark ensures that the use of different functions ϕ̃σ instead of ϕσ leads to
diffeomorphic manifolds with corners. In order to avoid unnecessary complications
with the notation, we shall consider manifolds with just one point singularity. A neigh-
borhood of the conical point will always be identified with X × [ 0, 1 [ /X × {0} and
a neighborhood of the corner will always be identified with X × [ 0, 1 [ , where X is a
compact manifold with boundary. For a finite number of singularities the definitions
and arguments are analogous.

We will denote by int (D) the manifold with boundary D\ (X × {0}). By int (B),
we denote the boundary of int (D). In a neighborhood of the singularity, it can be
identifiedwith ∂X× ] 0, 1 [ . FinallyB is themanifoldwith boundary given by int (B)∪
(∂X × {0}). In particular, in a neighborhood of the singularity, it can be identified with
∂X × [ 0, 1 [ . We will also use 2D to denote a manifold with boundary in which D is
embedded. The boundary of 2D is 2B, a manifold without boundary.

We divide our presentation into two parts. First we define the classes of functions
and distributions and then the operators. The operators acting on a neighborhood of
the singularity will be defined as operators on X × ] 0, 1 [ . We denote by E0 and
E1 two vector bundles over D and by F0 and F1 two vector bundles over B. Let
πX : X × [ 0, 1 [ → X be the projection operator, then there are vector bundles E ′0
and E ′1 over X such that E0 and E1 can be identified with π∗X

(
E ′0

)
and π∗X

(
E ′1

)
,

respectively. Similarly, if π∂X : ∂X × [ 0, 1 [ → ∂X is the projection operator, then
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there are vector bundles F ′0 and F ′1 over ∂X such that F0 and F1 can be identified with
π∗∂X

(
F ′0

)
and π∗∂X

(
F ′1

)
, respectively. E0 will denote E0 and E ′0 and the same will be

done for E1, F0 and F1. We also denote by 2E0, 2F0, …the vector bundles over 2D

and 2B, whose restriction to D and B are E0 and F0.

Finally, a cut-off function ω ∈ C∞c
(
R+

)
is a smooth nonnegative function that is

equal to 1 in a neighborhood of 0 and equal to 0, outside [0, 1].

3.1 Classes of Functions and Distributions

In the following sections, X is a manifold endowedwith a Riemannianmetric and with
boundary ∂X . All vector bundles are assumed to be hermitian. We use the notation
X∧ := R+×X and ∂X∧ := R+×∂X andwewill denote by E, E0 and E1 vector bun-
dles over X orD and by F, F0 and F1 vector bundles over ∂X orB. The vector bundles
E, E0, E1, F, F0 and F1 will also refer to the pullback bundles in X×R, X∧, ∂X×R

and ∂X∧. Finally we denote by C∞(X, E, F) the set C∞ (X, E)⊕ C∞ (∂X, F).

Definition 32 Let W be a Fréchet space and γ ∈ R. We define the Fréchet space
Tγ (R+,W ) as the space of all functions ϕ ∈ C∞ (R+,W ) that satisfy

sup
{
〈ln (t)〉l p

(
t
1
2−γ (t∂t )

k ϕ (t)
)

, t ∈ R+
}

<∞,

for all k. l ∈ N0 and for all continuous seminorms p of W . We write Tγ (R+) when
W = C.

Definition 33 Let ω ∈ C∞ ([ 0, 1 [ ) be a cut-off function. The space of func-
tions C∞γ (D), γ ∈ R, consists of all functions u ∈ C∞ (int (D)) such that
ωu ∈ Tγ− n

2

(
X∧

)
. Similarly, C∞γ (B) are all the functions u ∈ C∞ (int (B)) such

that ωu ∈ Tγ− n−1
2

(
∂X∧

)
.

Definition 34 Let X = ∪M
j=1Uj be a cover of X consisting of trivializing sets and

ϕ j : Uj ⊂ X → Vj ⊂ R
n+ be coordinate charts and

(
ψ j

)M
j=1 be a partition of unity

subordinate to Uj , j = 1, . . . , M . The space Hs
p (X × R, E) is defined as the set of

distributionsD′ (R× X, E) such that (t, x) ∈ R×R
n+ �→

(
ψ j u

) (
t, ϕ−1j (x)

)
belong

to Hs
p

(
R× R

n+, C
N
)
, where N is the dimension of E , with norm given by:

‖u‖Hs
p(X×R,E) =

M∑
j=1

∥∥∥(ψ j u
) (

t, ϕ−1j (x)
)∥∥∥

Hs
p(R×Rn+,CN )

.

The space Hs,γ
p

(
X∧, E

)
is the space of all distributions u ∈ D′

(
X∧, E

)
such that

u (t, x) = t− n+1
2 +γ v (ln (t) , x), where v ∈ Hs

p (X × R, E). Its norm is given by
‖u‖Hs,γ

p (X∧,E) := ‖v‖Hs
p(X×R,E).
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Similarly, using the space Bs
p

(
R
n, C

N
)
instead of Hs

p

(
R× R

n+, C
N
)
, we define

the space Bs
p (∂X × R, F), where N is the dimension of F . Associated to it

is the space Bs,γ
p

(
∂X∧, F

)
of all distributions u ∈ D′

(
∂X∧, F

)
such that

u (t, x) = t− n
2+γ v (ln (t) , x) , where v ∈ Bs

p (∂X × R, F). Its norm is given by
‖u‖Bs,γ

p (∂X∧,F) := ‖v‖Bs
p(∂X×R,F).

Remark 35 The above definition implies u �→ ‖t∂t u‖L p

(
X∧,E,dx dt

t

) +

‖u‖
L p

(
R+,H1

p(X,E), dtt

) is an equivalent norm forH1, n+12
p

(
X∧, E

)
.

Finally, we need Bessel and Besov spaces with asymptotics. First let us define
asymptotic types.

Definition 36 We say that P = {(
p j ,m j , L j

) ; j ∈ {1, . . . , M}} is an asymptotic
type for C∞ (X, E) with weight (γ, k) ∈ R × N0 if p j ∈ C, n+1

2 − γ − k <

Re
(
p j

)
< n+1

2 − γ , are distinct numbers, m j ∈ N0 and L j ⊂ C∞ (X, E) are finite
dimensional spaces. The set of all asymptotic types is denoted by As (X, E, γ, k).
Similarly, we say that Q = {(

p j ,m j , L j
) ; j ∈ {1, . . . , M}} is an asymptotic type

for C∞ (∂X, F) with weight (γ, k) ∈ R × N0 and write Q ∈ As (∂X, F, γ, k), if
p j ∈ C, n

2 − γ − k < Re
(
p j

)
< n

2 − γ , are distinct numbers, m j ∈ N0 and
L j ⊂ C∞ (∂X, F) are finite dimensional spaces.

Definition 37 The Bessel potential and Besov space with asymptotics, respectively,
are defined as follows:

(1) Let P = {(
p j ,m j , L j

) ; j ∈ {1, . . . , M}} ∈ As (X, E, γ, k). We define

Hs,γ
p,P (D, E) = ∩ε>0Hs,γ+k−ε

p (D, E)⊕ EP (X) ,

whereEP :=
{
X∧ � (t, x) �→ ω (t)

∑M
j=1

∑m j
k=0 t−p j lnk (t) v jk (x) , v jk ∈ L j

}
.

(2) Let P̃ = {( p̃ j , m̃ j , L̃ j ); j ∈ {1, . . . , M}} ∈ As (∂X, F, γ, k). We define

Bs,γ

p,P̃
(B, F) = ∩ε>0Bs,γ+k−ε

p (B, F)⊕ EP̃ (∂X) ,

where EP̃ :=
{
∂X∧ � (t, x) �→ ω (t)

∑M
j=1

∑m̃ j
k=0 t− p̃ j lnk (t) v jk (x) , v jk ∈

L̃ j
}
and ω is a cut-off function.

Remark 38 (1) The scalar product of L2
(
∂X∧, F, dx dt

t

)
allows the identification

Bs, n2
p

(
∂X∧, F

)′ ∼= B−s,
n
2

q
(
∂X∧, F

)
, 1

p + 1
q = 1. As Bs,γ

p
(
∂X∧, F

) =
tγ− n

2Bs, n2
p

(
∂X∧, F

)
and B−s,−γ

q
(
∂X∧, F

) = t−γ− n
2B−s,

n
2

q
(
∂X∧, F

)
, we con-

clude that Bs,γ
p

(
∂X∧, F

)′ ∼= B−s,−γ
q

(
∂X∧, F

)
, if we use the scalar product of

L2
(
∂X∧, F, tn−1dtdx

)
.
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(2) In the same way, Hs, n+12
p

(
X∧, E

)′ ∼= H−s,
n+1
2

q
(
X∧, E

)
, if we use the scalar

product of L2
(
X∧, E, dx dt

t

)
, and Hs,γ

p
(
X∧, E

)′ ∼= H−s,−γ
q

(
X∧, E

)
, if we use

that of L2
(
X∧, E, tndtdx

)
.

Definition 39 Let s, γ ∈ R and 1 < p <∞.

(1) We define Hs,γ
p (D, E) as the space of all distributions u ∈ Hs

p,loc (int (D) , E)

such that, for any cut-off function ω, here considered as a function on D, we have
ωu ∈ Hs,γ

p
(
X∧, E

)
. Its norm is given by

‖u‖Hs,γ
p (D,E) := ‖ωu‖Hs,γ

p (X∧,E) + ‖(1− ω) u‖Hs
p,loc(int(D),E) .

(2) Similarly, we obtain Bs,γ
p (B, F) from Bs,γ

p
(
∂X∧, F

)
and Bs

p,loc (int (B) , F).

3.2 Classes of Operators

We are going to use the natural identification

Tγ

(
R+,C∞ (X, E, F)

) ∼= Tγ

(
R+,C∞ (X, E)

)⊕ Tγ

(
R+,C∞ (∂X, F)

)

and write �σ := {z ∈ C; Re (z) = σ }. The latter set will be obviously identified with
R, when it is convenient to do so.

Definition 40 The weighted Mellin transform is the continuous linear operatorMγ :
Tγ (R+,C∞ (X, E, F))→ S

(
� 1

2−γ ,C∞ (X, E, F)
)
defined by

Mγ ϕ (z) =
∫ ∞

0
t zϕ (t)

dt

t
, z ∈ � 1

2−γ .

It is an invertible operator, whose inverse is given by

M−1
γ ϕ (t) = 1

2π i

∫

� 1
2−γ

t−zϕ (z) dz = 1

2π

∫
t
−
(
1
2−γ+iτ

)
ϕ

(
1

2
− γ + iτ

)
dτ.

Definition 41 For m ∈ Z and d ∈ N0, MBm,d
E0,F0,E1,F1

(
X, R+;�γ

)
is the space of all

functions h ∈ C∞
(
R+,Bm,d

E0,F0,E1,F1

(
X, �γ

))
that satisfy

sup
{
p
(
(t∂t )

k h (t)
)

, t ∈ R+
}

<∞,

for all continuous seminorms p of Bm,d
E0,F0,E1,F1

(
X, �γ

)
. In a similar way we define

MB̃ p
E0,F0,E1,F1

(
X, R+;�γ

)
.
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To a function in MBm,d
E0,F0,E1,F1

(
X, R+;�γ

)
or MB̃ p

E0,F0,E1,F1

(
X, R+;�γ

)
we

associate the Mellin operator

opγ

M (h) : Tγ

(
R+,C∞ (X, E0, F0)

)→ Tγ

(
R+,C∞ (X, E1, F1)

)

by

[
opγ

M (h) ϕ
]
(t) = 1

2π

∫

R

t
−
(
1
2−γ+iτ

)
h

(
t,
1

2
− γ + iτ

) (
Mγ ϕ

) (1

2
− γ + iτ

)
dτ.

We also need to define the discrete Mellin asymptotic types:

Definition 42 A discrete Mellin asymptotic type of order d ∈ N0 is a set

P = {(
p j ,m j , L j

)}
j∈Z ,

where p j ∈ C satisfy Re
(
p j

) → ±∞ as j → ∓∞, m j ∈ N0 and L j are finite-

dimensional subspaces of operators of finite rank in B−∞,d
E0,F0,E1,F1

(X). The collection

of all these asymptotic types is denoted by As
(
B−∞,d
E0,F0,E1,F1

(X)
)
. Moreover, we let

πCP :=
{
p j : j ∈ Z

} ⊂ C.

The asymptotic types are used to define the following meromorphic functions.

Definition 43 The spaceMm,d
P E0,F0,E1,F1

(X), P ∈ As
(
B−∞,d
E0,F0,E1,F1

(X)
)
, is the space

of all meromorphic functions a : C\πCP → Bm,d
E0,F0,E1,F1

(X) such that:

(i) For every p j ∈ πCP , there is a neighborhood of p j where a can be written as

a (z) =
m j∑
k=0

ν jk
(
z − p j

)−k−1 + a0 (z) .

Above, a0 is a holomorphic function near p j , with values in Bm,d
E0,F0,E1,F1

(X) and
ν jk ∈ L j , for k = 0, . . . ,m j .

(ii) For every N ∈ N0, the function γ ∈ [−N , N ] �→ aN (γ + i ·) ∈ Bm,d
E0,F0,E1,F1

(X, R) is continuous, where

aN (z) := a (z)−
∑

|Re(p j)|≤N

m j∑
k=0

ν jk
(
z − p j

)−k−1
.

For P ∈ As
(
B−∞,0
E0,F0,E1,F1

(X)
)
, we can also define M̃ p

P E0,F0,E1,F1
(X) replac-

ing Bm,d
E0,F0,E1,F1

(X) by B̃ p
E0,F0,E1,F1

(X). When P = ∅, we also use the notations

Mm,d
O E0,F0,E1,F1

(X) and M̃ p
O E0,F0,E1,F1

(X).

The last operator that we need are the Green ones.
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Definition 44 We define Cd
G E0,F0,E1,F1

(
D; γ, γ ′, k

)
as the space of operators of the

form

G =
d∑
j=0

G j

(
D j 0
0 1

)
+ G0,

where, for each G j , there exist asymptotic types P ∈ As
(
X, E1, γ

′, k
)
and P ′ ∈

As (X, E0,−γ, k), Q ∈ As
(
∂X, F1, γ ′ − 1

2 , k
)
and Q′ ∈ As

(
∂X, F0,−γ − 1

2 , k
)
,

such that G j and its formal adjoint with respect to H0,0
2

(
D, E j

) ⊕ B−
1
2 ,− 1

2
2

(
B, Fj

)
,

j = 0, 1, define continuous operators:

G j :
Hs,γ

p (D, E0)

⊕
Br,γ− 1

2
p (B, F0)

→
H∞,γ ′

p,P (D, E1)

⊕
B∞,γ ′− 1

2
p,Q (B, F1)

, G∗j :
Hs,−γ ′

q (D, E1)

⊕
Br,−γ ′− 1

2
q (B, F1)

→
H∞,−γ

q,P ′ (D, E0)

⊕
B∞,−γ− 1

2
q,Q′ (B, F0)

for all r ∈ R, s > −1 + 1
p on the left hand side and s > −1 + 1

q on the right hand

side. Near the boundary B of D, the operators D j coincide with (−i∂ν)
j where ∂ν is

the normal derivative.
Similarly, C̃ p

G E0,F0,E1,F1
(D; k) denotes the space of all operators G for which

there exist asymptotic types P ∈ As
(
X, E1,

n+1
2 , k

)
, P ′ ∈ As

(
X, E0,

n+1
2 , k

)
,

Q ∈ As
(
∂X, F1,

n
2 , k

)
and Q′ ∈ As

(
∂X, F0,

n
2 , k

)
, such that G and its formal adjoint

G∗ with respect toH0, n+12
2

(
D, E j

)⊕ B0, n2
2

(
B, Fj

)
, j = 0, 1, define continuous oper-

ators:

G j :
Hs, n+12

p (D, E0)

⊕
Br, n2
p (B, F0)

→
H∞, n+12

p,P (D, E1)

⊕
B∞, n2
p,Q (B, F1)

, G∗j :
Hs, n+12

q (D, E1)

⊕
Br, n2
q (B, F1)

→
H∞, n+12

q,P ′ (D, E0)

⊕
B∞, n2
q,Q′ (B, F0)

for all r ∈ R, s > −1 + 1
p on the left hand side and s > −1 + 1

q on the right hand
side.

It is an immediate consequence of the embedding properties for cone Sobolev
spaces that, for r ∈ R, s > d + 1/p − 1 and arbitrary r ′, s′ ∈ R, an operator

Cd
G E0,F0,E1,F1

(
D; γ, γ ′, k

) � G :
Hs,γ

p (D, E0)

⊕
Br,γ− 1

2
p (B, F0)

→
Hs′,γ ′

p (D, E1)

⊕
Br ′,γ ′− 1

2
p (B, F1)

is compact. An analogous statement applies to operators in C̃ p
G E0,F0,E1,F1

(D; k).
Finally, we can define the cone algebra for boundary value problems.
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Definition 45 For γ ∈ R, m ∈ Z, d ∈ N0 and k ∈ N0 we define the space
Cm,d
E0,F0,E1,F1

(D, (γ, γ − m, k)) of all operators A : C∞γ (D, E0)⊕ C∞
γ− 1

2
(B, F0) →

C∞γ−m (D, E1)⊕ C∞
γ−m− 1

2
(B, F1) of the form

A = ω0AMω1 + (1− ω2) Aψ (1− ω3)+ M + G, (3.1)

where ω1, . . . , ω4 ∈ C∞ [ 0, 1 [ are cut-off functions. The operator AM is a Mellin

operator: AM = t−mopγ− n
2

M (h), with h ∈ C∞(R+, Mm,d
O E0,F0,E1,F1

(X)). The operator

Aψ is a Boutet de Monvel operator Aψ ∈ Bm,d
2E0,2F0,2E1,2F1

(2D). The operator M

is a smoothing Mellin operator: M = ω0

(∑k−1
l=0 t−m+lopγl− n

2
M (hl)

)
ω1 with hl ∈

M−∞,d
Pl E0,F0,E1,F1

(X), πCPl ∩ � n+1
2 −γl

= ∅, and γ − l ≤ γl ≤ γ . The operator G is a

Green operator: G ∈ Cd
G E0,F0,E1,F1

(D; γ, γ − m, k).

Similarly, the algebra C̃ p
E0,F0,E1,F1

(D, k) is defined as the space of all continu-
ous operators A : C∞n+1

2
(D, E0) ⊕ C∞n

2
(B, F0) → C∞n+1

2
(D, E1) ⊕ C∞n

2
(B, F1) of

the form (3.1), where AM = op
1
2
M (h), with h ∈ C∞

(
R+, M̃ p

O E0,F0,E1,F1
(X)

)
,

Aψ ∈ B̃ p
2E0,2F0,2E1,2F1

(2D), M = ω0

(∑k−1
l=0 t lop

γl− n
2

M (hl)
)

ω1 with hl ∈
M−∞,0

Pl E0,F0,E1,F1
(X), πCPl ∩ � n+1

2 −γl
= ∅, and n+1

2 − l ≤ γl ≤ n+1
2 , and G ∈

C̃ p
G E0,F0,E1,F1

(D, k).

Definition 46 (Ellipticity) Using the notation of Definition 45, we say that A ∈
Cm,d
E0,F0,E1,F1

(D, (γ, γ − m, k)), d ≤ max{0,m}, is elliptic if:
(1) Outside the singularity X × {0}, A is an elliptic Boutet de Monvel operator in

Bm,d
E0,F0,E1,F1

(int (D)): Its interior symbol and boundary symbol are invertible at
each point.

(2) Its conormal symbolσM (A) (z) := h (0, z)+h0 (z) : Hs
p (X, E0)⊕B

s− 1
p

p (X, F0)

→ Hs−m
p (X, E1)⊕ B

s− 1
p−m

p (X, F1), s > d − 1+ 1
p , is invertible for each z ∈

� n+1
2 −γ and its inverse belongs to B−m,d ′

E1,F1,E0,F0
(X, � n+1

2 −γ ), d ′ = max{−m, 0}.
Similarly, we say that A ∈ C̃ p

E0,F0,E1,F1
(D, k) is an elliptic operator if, outside

the singularity X × {0}, A is an elliptic operator in B̃ p
E0,F0,E1,F1

(int (D)) and its
conormal symbol σM (A) (z) := h (0, z) + h0 (z) : Hs

p (X, E0) ⊕ Bs
p (X, F0) →

Hs
p (X, E1) ⊕ Bs

p (X, F1) is invertible for each z ∈ � n+1
2
, s > d − 1 + 1

p , and its

inverse belongs to B̃ p
E1,F1,E0,F0

(X, � n+1
2

).

Remark 47 Definition 46 follows [31]. Instead one might ask that

(1) The principal pseudodifferential symbolσψ(A) is invertible on T ∗(intD)\{0} and,
in local coordinates (t, x, τ, ξ) for the cotangent space in a collar neighborhood
of the conical point, tmσψ(A)(t, x, τ/t, ξ) is smoothly invertible up to t = 0.
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(2) The boundary principal symbol σ∂(A) is invertible on T ∗(intB) \ {0} and, in
local coordinates (t, y, τ, η) for the cotangent space in a collar neighborhood of
the conical point, tmσ∂(A)(t, y, τ/t, η) is smoothly invertible up to t = 0.

(3) The conormal symbol is pointwise invertible.

See [14, Section 6.2.1] for details.

Proposition 48 The operators in Cm,d
E0,F0,E1,F1

(D, (γ, γ − m, k)) and C̃ p
E0,F0,E1,F1

(D, k) have the following properties:

(1) If B ∈ Cm0,d0
E0,F0,E1,F1

(D, (γ, γ − m0, k)) and A ∈ Cm1,d1
E1,F1,E2,F2

(D, (γ − m0, γ−
m2, k)) then AB ∈ Cm2,d2

E0,F0,E2,F2
(D, (γ, γ − m2, k)), where m2 := m0 +

m1 and d2 := max {m0 + d1, d0}. If B ∈ C̃ p
E0,F0,E1,F1

(D, k) and A ∈
C̃ p
E1,F1,E2,F2

(D, k), then AB ∈ C̃ p
E0,F0,E2,F2

(D, k).

(2) If A ∈ Cm,d
E0,F0,E1,F1

(D, (γ, γ − m, k)), then A extends to a continuous operator:

A :
Hs,γ

p (D, E0)

⊕
B
s− 1

p ,γ− 1
2

p (B, F0)

→
Hs−m,γ−m

p (D, E1)

⊕
B
s−m− 1

p ,γ−m− 1
2

p (B, F1)

, s > d − 1+ 1

p
.

If A ∈ C̃ p
E0,F0,E1,F1

(D, k), then A extends to a continuous operator:

A :
Hs, n+12

p (D, E0)

⊕
Bs, n2
p (B, F0)

→
Hs, n+12

p (D, E1)

⊕
Bs, n2
p (B, F1)

, s > −1+ 1

p
.

(3) If A ∈ C̃ p
E0,F0,E1,F1

(D, k), then its formal adjoint with respect to the inner product

inH0, n+12
2

(
D, E j

)⊕B0, n2
2

(
B, Fj

)
belongs to C̃q

E1,F1,E0,F0
(D, k), for 1

p + 1
q = 1.

If A is elliptic, so is its adjoint.
(4) If A ∈ Cm,d

E0,F0,E1,F1
(D, (γ, γ − m, k)) is elliptic, d := max {m, 0}, then there is

an operator B ∈ C−m,d ′
E1,F1,E0,F0

(D, (γ − m, γ, k)), d ′ := max {−m, 0}, such that

BA − I ∈ Cd
G E0,F0,E0,F0 (D, (γ, γ, k)) ;

AB − I ∈ Cd ′
G E1,F1,E1,F1 (D, (γ − m, γ − m, k)) .

Similarly, if Ã ∈ C̃ p
E0,F0,E1,F1

(D, k) is elliptic, then there is an operator B̃ ∈
C̃ p
E1,F1,E0,F0

(D, k), such that

B̃ Ã − I ∈ C̃ p
G E0,F0,E0,F0

(D, k) and ÃB̃ − I ∈ C̃ p
G E1,F1,E1,F1

(D, k) .

In particular, A and Ã are then Fredholm operators.
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(5) (Existence of order reducing operators) For m ∈ Z, m′ ∈ R and γ ∈
R, there are elliptic operators A ∈ Cm,0

E0,E0
(D, (γ, γ − m, k)) and B ∈

Cm′,0
F0,F0

(
B,

(
γ − 1

2 , γ − m′ − 1
2 , k

))
, such that A : Hs,γ

p (D, E0) → Hs−m,γ−m
p

(D, E0) and B : Bs− 1
p ,γ− 1

2
p (B, F0) → B

s−m′− 1
p ,γ−m′− 1

2
p (B, F0) are invertible

for all s > −1+ 1
p , see [14, Section 6.4].

3.3 The Equivalence Between the Fredholm Property and the Ellipticity

Theorem 49 Let A ∈ C̃ p
E0,F0,E1,F1

(D, k). Then the following conditions are equiva-
lent:

(i) A is elliptic.

(ii) A :
H0, n+12

p (D, E0)

⊕
B0, n2
p (B, F0)

→
H0, n+12

p (D, E1)

⊕
B0, n2
p (B, F1)

is Fredholm.

That (i) implies (ii) follows from the existence of a parametrix of an elliptic operator,
as it is stated in item (4) of Proposition 48. It remains to prove that (ii) implies (i). If
A is Fredholm, then condition (1) of Definition 46 holds by Theorem 24. In fact, the
proof of Theorem 24 is local, so it applies in this context. In the next two subsections,
we will show that condition (2) of Definition 46 holds. We rely on the arguments in
[28, Section 3.1]; however, the Besov space estimates need more attention. Before,
however, we note the following consequence.

Corollary 50 For A ∈ Cm,d
E0,F0,E1,F1

(D, γ, γ − m, k), m ∈ Z, d ≤ max{m, 0}, p ∈
]1,∞[, s ∈ Z, s ≥ d, the following are equivalent:

(i) A is elliptic.
(ii)

A :
Hs,γ

p (D, E0)

⊕
B
s− 1

p ,γ− 1
2

p (B, F0)

→
Hs−m,γ−m

p (D, E1)

⊕
B
s−m− 1

p ,γ−m− 1
2

p (B, F1)

is Fredholm. (3.2)

In particular, the Fredholm property is independent of p and s, subject to the
condition s ∈ Z, s ≥ d. The same is then true for the kernel and the index.

Proof According to item (4) of Proposition 48, ellipticity implies the Fredholm prop-
erty. In order to see the converse,we note that, by item5of Proposition 48,wefind oper-
ators P−s ∈ t−sC−s,0E0,E0

(D, n+1
2 , n+1

2 +s, k) and Qs−m ∈ t s−mCs−m,0
E1,E1

(D, n+1
2 , n+1

2 −
s + m, k) defined on D, P̃−s+1/p ∈ t−s+1/pC−s+1/pF0,F0

(B, n
2 , n

2 + s − 1
p , k) and

Q̃s−m+1/p ∈ t s−m+1/pCs−m+1/p
F1,F1

(B, n
2 , n

2 − s + m − 1
p , k), defined on B, such

that P−s : H0, n+12
p (D, E0) → Hs, n+12

p (D, E0), P̃−s+
1
p : B0, n2

p (B, F0) →



J Fourier Anal Appl

B
s− 1

p , n2
p (B, F0), Qs−m : Hs−m, n+12

p (D, E1) → H0, n+12
p (D, E1), and Q̃s−m+ 1

p :
B
s−m− 1

p , n2
p (B, F1) → B0, n2

p (B, F1) are invertible. Here we use that s ∈ Z. Since
A is a Fredholm operator, the operator Ã ∈ C̃ p

E0,F0,E1,F1
(D, k), defined by

Ã =
(
Qs−m 0

0 Q̃s−m+ 1
p

)
t
n+1
2 −γ+m At−

n+1
2 +γ

(
P−s 0

0 P̃−s+
1
p

)
(3.3)

is a Fredholm operator in B(H0, n+12
p (D, E0) ⊕ B0, n2

p (B, F0),H
0, n+12
p (D, E1) ⊕ B0, n2

p

(B, F1)). By Theorem 49, Ã is elliptic, hence so is A. As a consequence, the Fredholm
property is independent of p and s.

Suppose A is elliptic and u ∈ Hs,γ
p (D, E0) ⊕ B

s− 1
p ,γ− 1

2
p (B, F0) belongs to the

kernel of A. Then the existence of a parametrix and the mapping properties of the
Green operators imply that, for some ε > 0 and all t ∈ R, u ∈ Ht,γ+ε

p (D, E0) ⊕
B
t− 1

p ,γ+ε− 1
2

p (B, F0). Thus u also is an element of Ht,γ
q (D, E0) ⊕ B

t− 1
p ,γ− 1

2
q (B, F0)

for 1 < q < ∞ and t ∈ R and belongs to the kernel of A on that space. This shows
the independence of the kernel on s and p.

We next consider the formal adjoint Ã′ of Ã in the sense of item 3) of Proposition 48,
which is an elliptic element of C̃q

E1,F1,E0,F0
(D, k), where 1/p+1/q = 1. Its extension

to an operator in B(H0, n+12
q (D, E1) ⊕ B0, n2

q (B, F1),H
0, n+12
q (D, E0) ⊕ B0, n2

q (B, F0))
furnishes the adjoint to the operator Ã acting as in (3.3). The index of Ã then is the
difference of the kernel dimensions of Ã and Ã′. By the same argument as above, these
are independent of p and q. Hence the index of Ã is independent of p and the index
of A is independent of s and p. ��

3.4 Besov-Space Preliminaries

Given dyadic partitions of unity
{
ϕ j

}
j∈N0

⊂ C∞c (R) and
{
ϕ̃ j

}
j∈N0

⊂ C∞c (Rn−1) of
R and R

n−1, respectively, we define a dyadic partition of unity
{
ψ j

}
j∈N0

⊂ C∞c (Rn)

of R
n by

ψ0 (t, x) := ϕ0 (t) ϕ̃0 (x) ,

ψ j (t, x) := ϕ j (t)
( j∑
k=0

ϕ̃k (x)
)
+

( j−1∑
k=0

ϕk (t)
)
ϕ̃ j (x)

= ψ0

(
2− j t, 2− j x

)
− ψ0

(
2− j+1t, 2− j+1x

)
, j ≥ 1.

Then supp (ψ0) ⊂
{
(t, x) ∈ R

n; ‖(t, x)‖N < 2
}
and supp

(
ψ j

) ⊂ {(t, x) ∈ R
n;

2 j−1 < ‖(t, x)‖N < 2 j+1}, for j ≥ 1. Here ‖(t, x)‖N denotes the norm

‖(t, x)‖N = max {|x | , |t |} ,
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where |x | denotes the Euclidean norm of x ∈ R
n−1 and |t | denotes the modulus of

t ∈ R.
Item 8 of Remark 14 implies that we can choose the following norm for Bs

p (Rn):

‖ f ‖Bs
p(R

n) :=
⎛
⎝
∞∑
j=0

2 jsp
∥∥ψ j (D) f

∥∥p
L p(Rn)

⎞
⎠

1
p

.

The next spaces are very useful for computations.

Definition 51 Let G be a Banach space that is a UMD Banach space with the

property (α). We define Bs, 12
p (R+,G) as the space of all u ∈ D′ (R+,G) such

that
(
R � t �→ u

(
e−t

)) ∈ Bs
p (R,G) and Hs, 12

p (R+,G) as the set of all u ∈
D′ (R+,G) such that

(
R � t �→ u

(
e−t

)) ∈ Hs
p (R,G). In particular,H0, 12

p (R+,G) =
L p

(
R+,G, dt

t

)
andH1, 12

p (R+,G) = {
u ∈ L p

(
R+,G, dt

t

) ; t∂t u ∈ L p
(
R+,G, dt

t

)}
.

Proposition 52 There is a constant C > 0 such that

‖u‖
B0, n2

p (∂X∧,F)
≤ C ‖u‖

H1, 12
p

(
R+,B0

p(∂X,F)
) ,

for all u ∈ T 1
2
(R+,C∞ (∂X, F)).

Proof In order to prove the proposition, we fix a constant θ ∈ ] 0, 1 [ and a constant
Cθ > 1 such that j + 1 ≤ Cθ2θ j , for all j ∈ N0. The Hölder inequality implies that,
for every non-negative real numbers a0, . . . , a j , we have

⎛
⎝

j∑
k=0

ak

⎞
⎠

p

≤ ( j + 1)p−1
j∑

k=0
a p
k ≤ C p

θ 2
jθp

j∑
k=0

a p
k .

Now, let us first prove that ‖u‖B0
p(R

n) ≤ C ‖u‖
H1

p

(
R,B0

p(Rn−1)
):

‖u‖B0
p(R

n) =
⎛
⎝
∞∑
j=0
‖ϕ j (Dt )

j∑
k=0

ϕ̃k (Dx ) u +
j−1∑
k=0

ϕk (Dt ) ϕ̃ j (Dx ) u‖pL p(Rn)

⎞
⎠

1
p

≤
⎛
⎝
∞∑
j=0

⎛
⎝

j∑
k=0

∥∥ϕ j (Dt ) ϕ̃k (Dx ) u
∥∥
L p(Rn)

⎞
⎠

p⎞
⎠

1
p

+
⎛
⎝
∞∑
j=0

⎛
⎝

j−1∑
k=0

∥∥ϕk (Dt ) ϕ̃ j (Dx ) u
∥∥
L p(Rn)

⎞
⎠

p⎞
⎠

1
p
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≤ 2Cθ

⎛
⎝
∞∑
j=0

∞∑
k=0

2 jθp
∥∥ϕ j (Dt ) ϕ̃k (Dx ) u

∥∥p
L p(Rn)

⎞
⎠

1
p

= 2Cθ

⎛
⎝
∞∑
j=0

2 jθp
∫

R

∞∑
k=0

∥∥ϕ j (Dt ) ϕ̃k (Dx ) u
∥∥p

L p

(
R
n−1
x

) dt

⎞
⎠

1
p

= 2Cθ

⎛
⎝
∞∑
j=0

2 jθp
∥∥ϕ j (Dt ) u

∥∥p

L p

(
R,B0

p(Rn−1)
)

⎞
⎠

1
p

= 2Cθ ‖u‖Bθ
p

(
R,B0

p(Rn−1)
) .

Choosing θ < 1, we conclude that

‖u‖B0
p(R

n) ≤ Cθ ‖u‖Bθ
p

(
R,B0

p(Rn−1)
) ≤ Cθ ‖u‖H1

p

(
R,B0

p(Rn−1)
) .

Using a change of variable t �→ e−t , we obtain that

‖u‖
B0, n2

p (Rn+)
≤ Cθ ‖u‖H1, 12

p

(
R+,B0

p(Rn−1)
) ,

whereB0,γ
p (Rn+) =

{
v (ln (t) , x) ; v ∈ B0

p (Rn)
}
. Finally, using partition of unity and

localization, we obtain the assertion. ��

For the following proposition we write HB pE j ,Fj

(
X∧

) := H0, n+12
p

(
X∧, E j

) ⊕
B0, n2
p

(
∂X∧, Fj

)
andHB pE j ,Fj (D) := H0, n+12

p
(
D, E j

)⊕ B0, n2
p

(
B, Fj

)
, for j = 0, 1.

We denote by K j , j ∈ N0, the sets introduced in Remark 12 for n = 1.

Proposition 53 There exists a constant C, independent of m, such that for all u ∈
T 1

2
(R+) and all v ∈ C∞ (X, E, F) with supp(τ �→ (M 1

2
u)(iτ)) ⊂ Km

1

C

1

(m + 1)
‖u‖

L p

(
R+, dtt

) ‖v‖L p(X,E)⊕B0
p(∂X,F)

≤ ‖u ⊗ v‖HB pE,F (X∧) ≤ C (m + 1) ‖u‖
L p

(
R+, dtt

) ‖v‖L p(X,E)⊕B0
p(∂X,F) .

In order to make the proof more transparent, we first prove the following lemma.

Lemma 54 There exists a constant C > 0, independent of m, such that for u ∈ S (R)

and v ∈ S(Rn−1) with supp (Fu) ⊂ Km.

1

C

1

(m + 1)
‖u‖L p(R) ‖v‖B0

p(Rn−1) ≤ ‖u ⊗ v‖B0
p(R

n)

≤ C (m + 1) ‖u‖L p(R) ‖v‖B0
p(Rn−1) .
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Proof Let (t, x) ∈ R×R
n−1 andC > 0 such that ‖ϕk (Dt ) u‖L p(R) ≤ C ‖u‖L p(R) and

‖ϕ̃k (Dx ) u‖L p(Rn−1) ≤ C ‖u‖L p(Rn−1) for all k ∈ N0 and for all Schwartz functions
u. This constant exists, as we have seen in the proof of Lemma 21. In particular,∥∥ϕk (Dt ) ϕ̃ j (Dx ) (u)

∥∥
L p(R×Rn−1) ≤ C2 ‖u‖L p(R×Rn−1), for all k, j ∈ N0 and u ∈

S(R× R
n−1).

Using the conventions ϕk = 0, ϕ̃k = 0, ψk = 0 and Kk = ∅, whenever k ≤ −1,
we see that

‖u ⊗ v‖B0
p(R

n) =
⎛
⎝
∞∑
j=0

∥∥ψ j (D) (u ⊗ v)
∥∥p
L p(Rn)

⎞
⎠

1
p

=
⎛
⎝
∞∑
j=0
‖ϕ j (Dt )u

j∑
k=0

ϕ̃k (Dx ) v +
j−1∑
k=0

ϕk(Dt )uϕ̃ j (Dx ) v‖pL p(Rn)

⎞
⎠

1
p

≤
⎛
⎝

m+1∑
j=m−1

∥∥ϕ j (Dt )u
∥∥p
L p(R)

∥∥∥
j∑

k=0
ϕ̃k(Dx )v

∥∥∥
p

L p(Rn−1)

⎞
⎠

1
p

+
⎛
⎝
∞∑
j=0

∥∥∥
m+1∑

k=m−1
ϕk(Dt )u

∥∥∥
p

L p(R)

∥∥ϕ̃ j (Dx )v
∥∥p
L p(Rn−1)

⎞
⎠

1
p

≤
⎛
⎝

m+1∑
j=m−1

∥∥ϕ j (Dt )u
∥∥p
L p(R)

( j + 1)p−1
j∑

k=0
‖ϕ̃k (Dx ) v‖p

L p(Rn−1)

⎞
⎠

1
p

+
⎛
⎝
∞∑
j=0

m+1∑
k=m−1

3p−1 ‖ϕk (Dt ) u‖pL p(R)

∥∥ϕ̃ j (Dx ) v
∥∥p
L p(Rn−1)

⎞
⎠

1
p

≤ (m + 2)1−
1
p 3

1
p C ‖u‖L p(R)

( ∞∑
k=0
‖ϕ̃k (Dx ) v‖p

L p(Rn−1)

) 1
p

+3C ‖u‖L p(R)

⎛
⎝
∞∑
j=0

∥∥ϕ̃ j (Dx ) v
∥∥p
L p(Rn−1)

⎞
⎠

1
p

≤ C̃ (m + 1) ‖u‖L p(R) ‖v‖B0
p(Rn−1) .

On the other hand, with ‖ · ‖ denoting the norm in L p(R
n),

‖u‖pL p(R)
‖v‖p

B0
p(Rn−1) =

∞∑
k=0
‖u ⊗ ϕ̃k (Dx ) v‖pL p(Rn)

=
∞∑
j=0

∥∥∥∥∥
m+1∑

k=m−1
ϕk(Dt )u ϕ̃ j (Dx )v

∥∥∥∥∥
p
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≤
m+1∑
j=0

∥∥∥∥∥
m+1∑

k=m−1
ϕk(Dt )u ϕ̃ j (Dx )v

∥∥∥∥∥
p

+
∞∑

j=m+2

∥∥∥∥∥
m+1∑

k=m−1
ϕk(Dt )u ϕ̃ j (Dx )v

∥∥∥∥∥
p

(1)≤
m+1∑
j=0

m+1∑
k=m−1

3p−1
∥∥ϕk(Dt )u ϕ̃ j (Dx )v

∥∥p + ‖u ⊗ v‖p
B0
p(R

n)

(2)=
m+1∑
j=0

m+1∑
k=m−1

3p−1
∥∥∥∥∥

m+2∑
l=m−2

(
ϕk(Dt )⊗ ϕ̃ j (Dx )

)
ψl(D) (u ⊗ v)

∥∥∥∥∥
p

+ ‖u ⊗ v‖p
B0
p(R

n)

≤
m+1∑
j=0

m+1∑
k=m−1

15p−1
m+2∑

l=m−2

∥∥(ϕk (Dt )⊗ ϕ̃ j (Dx )
)
ψl (D) (u ⊗ v)

∥∥p + ‖u ⊗ v‖p
B0
p(R

n)

≤ 3p5p−1C2 (m + 2)
∞∑
l=0
‖ψl (D) (u ⊗ v)‖pL p(Rn)

+ ‖u ⊗ v‖p
B0
p(R

n)

≤ C̃ (m + 1) ‖u ⊗ v‖p
B0
p(R

n)
.

We have used in (1) that supp (Fu) ⊂ Km and, therefore, we have

∞∑
j=m+2

∥∥∥
( m+1∑
k=m−1

ϕk (Dt ) u
)
ϕ̃ j (Dx ) v

∥∥∥
p ≤

∞∑
j=m+2

∥∥∥
m+1∑

k=m−1
ϕk (Dt ) uϕ̃ j (Dx ) v

∥∥∥
p

+
m+1∑
j=0

∥∥∥ϕ j (Dt ) u
( j∑
k=0

ϕ̃k (Dx ) v
)
+
( j−1∑
k=0

ϕk (Dt ) u
)
ϕ̃ j (Dx ) v

∥∥∥
p = ‖u ⊗ v‖p

B0
p(R

n)
.

We have used in (2) that for j ∈ {0, . . . ,m + 1} and k ∈ {m − 1, . . . ,m + 1}

m+2∑
l=m−2

ψl (D)
(
ϕk (Dt )⊗ ϕ̃ j (Dx )

) = ϕk (Dt )⊗ ϕ̃ j (Dx ) .

��

Proof (of Proposition 53) Let u ∈ T 1
2
(R+), v ∈ S

(
R
n−1) and suppose that

supp
(
τ �→ M 1

2
u (iτ)

) ⊂ Km,m ∈ N0. Define ũ ∈ S (R) by ũ (t) = u
(
e−t

)
.

Hence Ft→ξ ũ (ξ) = Ft→ξ

(
u
(
e−t

))
(ξ) =M 1

2
u (iξ). Therefore, there is a constant

m ∈ N0 such that supp (F ũ) ⊂ Km . Hence, Lemma 54 implies that

1

C(m + 1)
‖u‖

L p

(
R+, dtt

) ‖v‖B0
p(Rn−1)

= 1

C(m + 1)
‖ũ‖L p(R) ‖v‖B0

p(Rn−1)
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≤ ‖ũ ⊗ v‖B0
p(R

n) ≤ C (m + 1) ‖ũ‖L p(R) ‖v‖B0
p(Rn−1)

≤ C (m + 1) ‖u‖
L p

(
R+, dtt

) ‖v‖B0
p(Rn−1) .

As ‖ũ ⊗ v‖B0
p(R

n) = ‖u ⊗ v‖
B0, n2

p (Rn+)
, we conclude that

1

C(m + 1)
‖u‖

L p

(
R+, dtt

) ‖v‖B0
p(Rn−1)

≤ ‖u ⊗ v‖
B0, n2

p (Rn+)
≤ C (m + 1) ‖u‖

L p

(
R+, dtt

) ‖v‖B0
p(Rn−1) .

The general result follows using a partition of unity. ��

3.5 Proof of the Invertibility of the Conormal Symbol

We notice that T 1
2

(
R+,C∞

(
X, E j , Fj

))
is a dense space ofHB pE j ,Fj

(
X∧

)
.

Definition 55 Let W be a Fréchet space, ε > 0, τ0 ∈ R. We define Tε :
T 1

2
(R+,W ) → T 1

2
(R+,W ) and Rε,τ0 : T 1

2
(R+,W ) → T 1

2
(R+,W ) by Tεu(t) =

u
( t

ε

)
and Rε,τ0u(t) = ε

1
p t−iτ0u (tε).

The above operators are invertible: T−1ε = T1
ε
and R−1ε,τ0

= R 1
ε
,− τ0

ε
. The next propo-

sition is analogous to Lemma 19.

Proposition 56 For an UMD Banach space W with the property (α), the operators
Tε, Rε,τ0 : T 1

2
(R+,W ) → T 1

2
(R+,W ) have the following properties:

(1) Tε extends to an isometry

Tε : H1, 12
p (R+,W ) → H1, 12

p (R+,W ) .

If W = C∞
(
X, E j , Fj

)
, j = 0, 1, then the operator Tε extends to an isometry

Tε : HB pE j ,Fj

(
X∧

)→ HB pE j ,Fj

(
X∧

)
.

(2) For all ε > 0, Rε,τ0 extends to a bijective continuous map

Rε,τ0 : H1, 12
p (R+,W ) → H1, 12

p (R+,W ) .

There exists a C ≥ 0 with
∥∥Rε,τ0

∥∥
B(H1, 12

p (R+,W ))
≤ C (1+ |τ0|), ε < 1.

(3) (i) Let h ∈ MB̃ p
E0,F0,E1,F1

(X, R+;�0) ∩ C
(
R+, B̃ p

E0,F0,E1,F1
(X, �0)

)
and

h0(z) := h(0, z). For any u ∈ T 1
2
(R+,C∞ (X, E0, F0)) we then have

lim
ε→0

∥∥∥∥op
1
2
M (h) Tεu − Tεop

1
2
M (h0) u

∥∥∥∥HB pE1,F1 (X∧)

= 0.
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(ii) Let h ∈ B̃ p
E0,F0,E1,F1

(X, �0) and u ∈ T 1
2
(R+,C∞ (X, E0, F0)). Then

lim
ε→0

∥∥∥∥op
1
2
M (h) Rε,τ0u − Rε,τ0h (iτ0) u

∥∥∥∥HB pE1,F1 (X∧)

= 0.

Proof (1) Since ‖Tεu‖L p

(
R+,W, dtt

) = ‖u‖
L p

(
R+,W, dtt

) and ‖(t∂t ) (Tεu)‖
L p

(
R+,W, dtt

)

= ‖t∂t u‖L p

(
R+,W, dtt

), we conclude that ‖Tεu‖H1, 12
p (R+,W )

= ‖u‖
H1, 12

p (R+,W )
.

In order to show that Tε : HB pE j ,Fj

(
X∧

) → HB pE j ,Fj

(
X∧

)
is an isometry, it

remains to prove that Tε : B0, n2
p

(
∂X∧, Fj

) → B0, n2
p

(
∂X∧, Fj

)
is an isometry. This

follows with a partition of unity and the fact that Tε : B0, n2
p

(
R
n+
) → B0, n2

p
(
R
n+
)

given by Tεu (t, x) = u
( t

ε
, x

)
is an isometry. In fact, if v (s, x) = u

(
e−s, x

)
, then

(Tεu)
(
e−s, x

) = v (s + ln (ε) , x). Hence

‖Tεu‖B0, n2
p (Rn+)

= ‖(s, x) �→ v (s + ln (ε) , x)‖B0
p(R

n) = ‖v‖B0
p(R

n) = ‖u‖B0, n2
p (Rn+)

.

(2) It is easy to see that
∥∥Rε,τ0u

∥∥
L p

(
R+,W, dtt

) = ‖u‖
L p

(
R+,W, dtt

) .As t∂t
(
Rε,τ0u

) =
(−iτ0) Rε,τ0u + εRε,τ0 (t∂t u), we conclude that

∥∥Rε,τ0u
∥∥
H1, 12

p

(
R+,L p(X,E j)⊕B0

p(X,Fj)
) ≤ (1+ |τ0|) ‖u‖H1, 12

p

(
R+,L p(X,E j)⊕B0

p(X,Fj)
) .

(3.i) We first show Lp-convergence: For u ∈ T 1
2
(R+,C∞ (X, E0, F0)) ,

lim
ε→0

∥∥∥∥T−1ε op
1
2
M (h) Tεu − op

1
2
M (h0) u

∥∥∥∥
L p

(
R+,L p(X,E1)⊕B0

p(∂X,F1); dtt
) = 0. (3.4)

The proof here is exactly the same as the proof of [28, Lemma 3.9]. It relies on the

fact that T−1ε op
1
2
M (h) Tε = op

1
2
M (hε) , where hε (t, z) = h (εt, z), and on Lebesgue’s

dominated convergence theorem.
Next we establish the Lp-convergence of the derivative:

lim
ε→0

∥∥∥∥T−1ε op
1
2
M (h) Tεu − op

1
2
M (h0) u

∥∥∥∥H1, 12
p

(
R+,L p(X,E1)⊕B0

p(∂X,F1)
) = 0. (3.5)

This follows almost immediately from the fact that

(−t∂t ) op
1
2
M (hε) u = op

1
2
M

(
((−t∂t ) h)ε

)
u + op

1
2
M (hε) ((−t∂t ) u) .
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Using (3.5), the fact that Tε are isometries and Proposition 52, we conclude that, as
ε → 0,

∥∥∥∥op
1
2
M (h) Tεu − Tεop

1
2
M (h0) u

∥∥∥∥H0, n+12
p (X∧,E1)⊕B0, n2

p (∂X∧,F1)

≤ C

∥∥∥∥T−1ε op
1
2
M (h) Tεu − op

1
2
M (h0) u

∥∥∥∥H1, 12
p

(
R+,L p(X,E1)⊕B0

p(∂X,E1)
) → 0.

(3.ii) It is straightforward to check that R−1ε,τ0
op

1
2
M (h) Rε,τ0 = op

1
2
M (hε), where

hε (z) = h (εz + iτ0). Repeating the previous arguments, we conclude that

lim
ε→0

∥∥∥∥R−1ε,τ0
op

1
2
M (h) Rε,τ0u − h (iτ0) u

∥∥∥∥
L p

(
R+,L p(X,E1)⊕B0

p(∂X,F1); dtt
) = 0.

Moreover, (−t∂t ) op
1
2
M (h (εz + iτ0)) u = op

1
2
M (h (εz + iτ0)) (−t∂t u). Hence

lim
ε→0

∥∥∥∥R−1ε,τ0
op

1
2
M (h) Rε,τ0u − h (iτ0) u

∥∥∥∥H1, 12
(
R+,L p(X,E1)⊕B0

p(∂X,F1)
) = 0.

Finally, using Proposition 52 and item 2, we conclude that, as ε → 0,

∥∥∥∥op
1
2
M (h) Rε,τ0u − Rε,τ0h (iτ0) u

∥∥∥∥HB pE1,F1 (X∧)

≤ C

∥∥∥∥Rε,τ0

(
R−1ε,τ0

op
1
2
M (h) Rε,τ0u − h (iτ0) u

)∥∥∥∥H1, 12
p

(
R+,L p(X,E1)⊕B0

p(∂X,E)
)

≤ C̃ (1+ |τ0|)
∥∥∥∥R−1ε,τ0

op
1
2
M (h) Rε,τ0u − h (iτ0) u

∥∥∥∥H1, 12
p (R+,L p

(
X,E1)⊕B0

p(∂X,E)
)

→ 0.

��
The next lemma is analogous to Lemma 22.

Lemma 57 The operators Tε and Rε,τ0 satisfy the following properties:

(1) If u ∈ T 1
2
(R+) with supp(M 1

2
u) ⊂ {

ξ ∈ �0; |ξ | ≤ 1
2

}
, v ∈ C∞

(
X, E j , Fj

)

and ε < 1, then supp(M 1
2

(
Rε,τ0u

)
) ⊂ Km, where K0 := {ξ ∈ �0; |ξ | ≤ 2},

K j :=
{
ξ ∈ �0; 2 j−1 ≤ |ξ | ≤ 2 j+1}, j ∈ N0\ {0}. The number m ∈ N0 is equal

to 0 if |τ0| + 1
2 < 2 and, for |τ0| + 1

2 > 2, m is the smallest number such that
2m−1 < |τ0| − 1

2 < |τ0| + 1
2 < 2m+1. Hence m ≤ C 〈ln (τ0)〉.
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(2) There is a constant C > 0 such that for all ε < 1, v ∈ C∞
(
X, E j , Fj

)
and

u ∈ T 1
2
(R+) with supp(M 1

2
u) ⊂ {

ξ ∈ R; |ξ | ≤ 1
2

}

1

C 〈ln τ0〉 ‖u ⊗ v‖HB pE j ,Fj (X
∧)

≤ ∥∥Rε,τ0 (u ⊗ v)
∥∥HB pE j ,Fj (X

∧)
≤ C 〈ln τ0〉 ‖u ⊗ v‖HBpE j ,Fj (X

∧) .

(3) For all u ∈ T 1
2

(
R+,C∞

(
X, E j , Fj

))
, we have limε→0 Tε (u) = 0 weakly in

HB pE j ,Fj

(
X∧

)
.

Proof (1) Aneasy computation shows thatM 1
2

(
Rε,τ0u

)
(z) = ε

1
p−1M 1

2
u
(
z
ε
− iτ0

ε

)
.

When ε < 1, this means that, if x ∈ R is such that M 1
2

(
Rε,τ0u

)
(i x) �= 0, then

τ0− 1
2 < x < τ0+ 1

2 , which implies that supp(M 1
2

(
Rε,τ0u

)
) is contained in some

ball of radius 1
2 .

(2) As supp(M 1
2
u) ⊂ K0, Proposition 53 implies that

‖u ⊗ v‖HB pE j ,Fj (X
∧) ≤ C1 ‖u ⊗ v‖

L p

(
R+,L p(X,E j)⊕B0

p(∂X,Fj); dtt
)

= C1
∥∥(Rε,τ0u

)⊗ v
∥∥
L p

(
R+,L p(X,E j)⊕B0

p(∂X,Fj); dtt
)

≤ C2 〈ln τ0〉
∥∥(Rε,τ0u

)⊗ v
∥∥HB pE j ,Fj (X

∧)

and

∥∥(Rε,τ0u
)⊗ v

∥∥HB pE j ,Fj (X
∧)
≤ C3 〈ln τ0〉

∥∥(Rε,τ0u
)

⊗v‖
L p

(
R+,L p(X,E j)⊕B0

p(∂X,Fj); dtt
)

= C3 〈ln τ0〉 ‖u ⊗ v‖
L p

(
R+,L p(X,E j)⊕B0

p(∂X,Fj); dtt
)

≤ C4 〈ln τ0〉 ‖u ⊗ v‖HB pE j ,Fj (X
∧) .

(3) We identify the dual ofHB pE j ,Fj

(
X∧

)
withHBqE j ,Fj

(
X∧

)
, where 1

p + 1
q = 1,

using the scalar product L2
(
R+, L2

(
X, E j

)⊕ L2
(
∂X, Fj

)
, dt

t

)
. As Tε is an

isometry inHB pE j ,Fj

(
X∧

)
, it is enough to prove that

lim
ε→0

∫

R+
〈u(t/ε), v(t)〉L2(X,E j)⊕L2(∂X,Fj)

dt

t
= 0

for all u, v ∈ C∞c
(
R+,C∞

(
X, E j , Fj

))
. But this is true. In fact, let a, b, R > 0

be such that supp (u) ⊂ [0, R] and supp (v) ⊂ [a, b], then, for ε < a
R , we have

supp (Tεu) ∩ supp (v) = ∅. Hence we obtain the result.
��
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Lemma 58 Let h ∈ B̃ p
E0,F0,E1,F1

(X, �0) and suppose that there is a constant c > 0
such that, for each u ∈ T 1

2
(R+,C∞ (X, E0, F0)), we have

‖u‖HB pE0,F0 (X∧) ≤ c

∥∥∥∥op
1
2
M (h) (u)

∥∥∥∥HB pE1,F1 (X∧)

.

Then, for every v ∈ C∞ (X, E0, F0) and τ ∈ R, we have

‖v‖H0
p(X,E0)⊕B0

p(∂X,F0) ≤ C 〈ln (τ )〉2 ‖h (iτ) v‖H0
p(X,E1)⊕B0

p(∂X,F1) ,

for some constant C independent of v.

Proof Let 0 �= u ∈ T 1
2
(R+), be a function with supp(M 1

2
(u)) ⊂ {

z ∈ �0; |z| < 1
2

}
and v ∈ C∞ (X). Then item 2 of Lemma 57 implies that

‖u ⊗ v‖HB pE0,F0 (X∧)

≤ C1 〈ln τ0〉
∥∥op

1
2
M (h) Rε,τ0 (u ⊗ v)− Rε,τ0h (iτ0) (u ⊗ v)

∥∥HB pE1,F1 (X∧)

+ C2 〈ln τ0〉
∥∥Rε,τ0h (iτ0) (u ⊗ v)

∥∥HB pE1,F1 (X∧)
.

As limε→0
∥∥op

1
2
M (h) Rε,τ0 (u ⊗ v)−h (iτ0) (u ⊗ v)

∥∥HB pE1,F1 (X∧)
= 0, we see again

from Lemma 57 that

‖u ⊗ v‖HB pE0,F0 (X∧) ≤ C1 〈ln τ0〉
∥∥ (

Rε,τ0u
)⊗ h (iτ0) v

∥∥HB pE1,F1 (X∧)

≤ C2 〈ln τ0〉2 ‖u ⊗ h (iτ0) v‖HB pE1,F1 (X∧) ,

where (u ⊗ h (iτ0) v) (t, x) := u(t) (h (iτ0) v) (x). Now, it is easy to conclude that

‖v‖H0
p(X,E0)⊕B0

p(∂X,F0) ≤
C

‖u‖
L p

(
R+, dtt

) ‖u ⊗ v‖HBpE0,F0 (X∧)

≤ C̃
1

‖u‖
L p

(
R+, dtt

) 〈ln τ0〉2 ‖u ⊗ h (iτ0) v‖HB pE1,F1 (X∧)

≤ C̃ 〈ln τ0〉2 ‖h (iτ0) v‖H0
p(X,E1)⊕B0

p(∂X,F1) .

��
Wefinishwith the following proposition that proves the invertibility of the conormal

symbol.

Proposition 59 Let A ∈ C̃ p (D; k) be a Fredholm operator in the space

B
(
HB pE0,F0

(
X∧

)
,HB pE1,F1

(
X∧

))
.
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Then the conormal symbol is invertible on �0, and its inverse is an element of
B̃ p
E1,F1,E0,F0

(X, �0).

Proof We are going to consider operators given as

A = ωop
1
2
M (h) ω0 + (1− ω) P (1− ω1)+ G, (3.6)

where P ∈ B̃ p
2E0,2E1,2F0,2F1

(2D),G ∈ C̃ p
O E0,F0,E1,F1

(D, k), and h (t, z) = a (t, z)+
ã (z) with functions a ∈ C∞

(
R+, M̃ p

O E0,F0,E1,F1
(X)

)
and ã ∈ M−∞

P E0,F0,E1,F1
(X)

for some asymptotic type P with πCP ∩ �0 = ∅. In particular, h0 (z) := h (0, z) =
σ 0
M (A) (z).
Let us first prove that for all u ∈ HB pE0,F0

(
X∧

)

‖u‖HB pE0,F0 (X∧) ≤ c
∥∥op

1
2
M (h0) (u)

∥∥HB pE1,F1 (X∧)
. (3.7)

It suffices to show this for u ∈ C∞c (R+,C∞ (X, E0, F0)). We find operators
B1 ∈ B

(
HB pE1,F1 (D),HB pE0,F0 (D)

)
and K1 ∈ B

(
HB pE0,F0 (D),HB pE0,F0 (D)

)
,

where K1 is compact, such that B1A−1 = K1. Let us choose σ and σ1 inC∞c ([ 0, 1 [ )
such that σσ1 = σ , σ1ω1 = σ1 and σ1ω = σ1. Then

K1σ = B1Aσ − σ = B1σ1Aσ + B1 (1− σ1) Aσ − σ.

As the supports of σ and 1 − σ1 are disjoint, the operator (1− σ1) Aσ is a Green
operator and therefore compact. Hence

σ1B1σ1Aσ − σ = σ1K1σ − σ1B1 (1− σ1) Aσ = σ1K2σ,

where K2 is a compact.UsingEq. (3.6) for Aσ ,we conclude thatσ = Bop
1
2
M (h) σ−K ,

where B = σ1B1σ1 and K = σ1 (K2 − B1σ1G) σ is compact.
Now let u ∈ C∞c (R+,C∞ (X, E0, F0)). We know that Tε (u) = σTε (u), when ε

is small. As σ = Bop
1
2
M (h) σ − K , we have that, for ε sufficiently small,

‖u‖HB pE0,F0 (X∧) = ‖σTε (u)‖HB pE0,F0 (X∧)

≤ ‖B‖B(HB pE1,F1 (X∧),HB pE0,F0 (X∧)
) ∥∥op

1
2
M (h) Tε (u)− Tεop

1
2
M (h0) u

∥∥HB pE1,F1 (X∧)

+‖B‖B(HB pE1,F1 (X∧),HB pE0,F0 (X∧)
) ∥∥Tεop

1
2
M (h0) u

∥∥HB pE1,F1 (X∧)

+‖KTε (u)‖HB pE0,F0 (X∧) .

As Tεu weakly tends to zero and K is compact, limε→0 ‖KTε (u)‖HB pE0,F0 (X∧) =
0. Using that Tε is an isometry and item 3.(ii) of Proposition 56, we conclude that
Inequality (3.7) holds. This result together with Lemma 58 implies that
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‖v‖H0
p(X,E0)⊕B0

p(∂X,F0) ≤ C 〈ln (τ )〉2 ‖h (iτ) v‖H0
p(X,E1)⊕B0

p(∂X,F1) , (3.8)

for some constant C independent of v.
As A ∈ C̃ p

E0,F0,E1,F1
(D; k) is Fredholm, so is A∗ ∈ C̃q

E1,F1,E0,F0
(D; k). The above

argument implies that σ 0
M (A∗) (z) = h (iτ)∗ also satisfies an estimate as (3.8), for q

instead of p, where 1
p + 1

q = 1. Hence, for all τ ∈ R, h (iτ) is injective, has closed
range and the same is true for its adjoint. Lemma 23 implies that h (iτ) is bijective
and

∥∥h (iτ)−1
∥∥
B
(
H0

p(X,E1)⊕B0
p(∂X,F1),H0

p(X,E0)⊕B0
p(∂X,F0)

) ≤ C̃ 〈ln (τ )〉2 .

Theorem 29 implies that h−10 ∈ B̃ p
E1,F1,E0,F0

(X, �0). ��

3.6 Spectral Invariance of Boundary Value Problems with Conical Singularities

Once we know the equivalence of Fredholm property and ellipticity, we can establish
the spectral invariance.

Theorem 60 Let A ∈ C̃ p
E0,F0,E1,F1

(D, k). Suppose that, for each λ ∈ �, the operator

A : H0, n+12
p (D, E0)⊕ B0, n2

p (B, F0)→ H0, n+12
p (D, E1)⊕ B0, n2

p (B, F1) .

is invertible. Then A−1 ∈ C̃ p
E1,F1,E0,F0

(D, k).

Proof The operator A is invertible, hence it is Fredholm and there are operators B ∈
C̃ p
E1,F1,E0,F0

(D, k), K1 ∈ C̃ p
G E1,F1,E1,F1

(D, k) and K2 ∈ C̃ p
G E0,F0,E0,F0

(D, k) such
that AB = I + K1 and BA = I + K2. These identities imply that

A−1 = B − K2B + K2A
−1K1.

As B ∈ C̃ p
E1,F1,E0,F0

(D, k), K2B ∈ C̃ p
G E1,F1,E0,F0

(D, k) and K2A−1K1 belongs to

C̃ p
G E1,F1,E0,F0

(D, k), we obtain the result. ��
Theorem 61 Let A ∈ Cm,d

E0,F0,E1,F1
(D, (γ, γ − m, k)), where m ∈ Z, d =

max {m, 0}. Suppose that there is an s ∈ Z, s ≥ d such that

A : Hs,γ
p (D, E0)⊕ B

s− 1
p ,γ− 1

2
p (B, F0)→ Hs−m,γ−m

p (D, E1)

⊕Bs−m− 1
p ,γ−m− 1

2
p (B, F1)

is invertible. Then, A−1 ∈ C−m,d ′
E1,F1,E0,F0

(D, (γ − m, γ, k)) , whered ′ := max {−m, 0}.
In particular, for all s > d − 1 + 1

q and 1 < q < ∞ the operator A is invertible in

B
(
Hs,γ

q (D, E0)⊕Bs− 1
p ,γ− 1

2
q (B, F0) ,Hs−m,γ−m

q (D, E1)⊕Bs−m− 1
q ,γ−m− 1

2
q (B, F1)

)
.
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Proof As in the proof ofCorollary 50weconsider the operator Ã ∈ C̃ p
E0,F0,E1,F1

(D, k)

defined by (3.3). As A is invertible, so is Ã. We infer from Theorem 60 that ( Ã)−1
belongs to C̃ p

E1,F1,E0,F0
(D, k) and hence A−1 ∈ C−m,d ′

E1,F1,E0,F0
(D, (γ − m, γ, k)). ��

4 Application: The Dirichlet Laplacian

In order to illustrate the applicability of Theorem 61, we show how it can be used to
study the spectrum of the Dirichlet Laplacian.

We consider a two-dimensional manifold with conical singularities D, for example
the closure of a domain in R

2, which has a smooth boundary apart from a finite
set of conical points. Let D be the associated manifold with corners introduced in
Definition 30, B its boundary and X be the union of the connected components of the
cross-sections of each conical point. Working on D is analytically simpler; it amounts
to introducing polar coordinates near the conical singularities. As before, we write
t ∈ [0, 1] for the variable that represents the distance to the conical points.

We will consider a particular instance of the Dirichlet problem on D; see also [5,
Section 6] for more background on the Dirichlet problem on manifolds with boundary
and conical singularities. Since dimD = 2, we have n = 1 in the notation of the
previous section.

Denote by� the Laplace-Beltrami operator onDwith respect to a straight conically
degenerate metric on D, i.e. a Riemannian metric on D, which near t = 0 takes the
form

g = dt2 + t2h

for a (non-degenerate) Riemannian metric h on X that does not depend on t . By γ0
denote the trace on B of a function defined in D. We consider the operator

A =
(

�

γ0

)
: Hs+2,γ+2

p (D)→
Hs,γ

p (D)

⊕
Bs+2−1/p,γ+3/2
p (B)

(4.1)

for suitable parameters s, γ and p. Let Q ∈ C2,0
C,C

(
B,

(
γ + 3

2 , γ − 1
2 , k

))
be an invert-

ible operator as in Proposition 48, (5). Then
(

�
Qγ0

)
is an operator in C2,0

C,0,C,C
(D, (γ +

2, γ, k)) for arbitrary k.
For the above metric, the Laplace–Beltrami operator near t = 0 is of the form

� = t−2((t∂t )2 +�X )

where �X is the Laplacian on the 1-dimensional manifold X .
We will next check the ellipticity conditions for A . The analysis can be found

in [5, Section 6.1]. It is easy to see that the principal pseudodifferential symbol and
the principal boundary symbol are elliptic in the sense of Remark 47. The conormal
symbol of A is
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σ 2
M (A )(z) =

(
z2 +�X

γ0,X

)
: H2(X) →

L2(X)

⊕
H3/2(∂X).

,

where γ0,X is the trace operator for functions defined on X to functions on ∂X . Note
that here ∂X consists of finitely many points, so that H3/2(∂X) is just C

2N , where
N is the number of components of cross sections of all conical points. We denote
by 0 > λ1 > λ2 > . . . the different eigenvalues of the Dirichlet problem for the
Laplacian on X . Let q±j = ±

√−λ j . Then the conormal symbol will be invertible for

all z ∈ C\{q±j ; j = 1, 2, . . .}. In this case, the operatorA in (4.1) will be a Fredholm
operator whenever 1 < p <∞ and s > −2+ 1/p, due to Proposition 48. 4).

We will now consider the realizations of the Laplace operator with Dirichlet con-
ditions on Hs,γ

p (D). Let C∞c (D) be the set of smooth functions on D supported in
int (D) and C∞c (D)γ0 =

{
u ∈ C∞c (D)γ0 ; γ0 (u) = 0

}
. To the Laplace operator

with Dirichlet conditions � : C∞c (D)γ0 → C∞c (D), we can associate two important
closed extensions: the minimal and maximal realization. The maximal realization is
the Laplace operator �Dir,max : D s,γ

p
(
�Dir,max

) ⊂ Hs,γ
p (D) → Hs,γ

p (D) with the

domain D
s,γ
p

(
�Dir,max

) =
{
u ∈ Hs+2,γ

p (D) ; γ0 (u) = 0 and �u ∈ Hs,γ
p (D)

}
.

The minimal realization �Dir,min is the closure of the operator � : C∞c (D)γ0 ⊂
Hs,γ

p (D) → Hs,γ
p (D). Its domain is denoted by D

s,γ
p

(
�Dir,min

)
. It is clear that

�Dir,min ⊂ �Dir,max. The closed extensions of the Dirichlet Laplacian are therefore
precisely those with a domain between that of the minimal and that of the maximal
realization.

Instead of A , we will study the realization �Dir, acting like � on the domain

D(�Dir) := Hs+2,γ+2
p (D)Dir := {u ∈ Hs+2,γ+2

p (D); γ0u = 0}. (4.2)

It is well-known that the Fredholm property and the invertibility of the realization�Dir
are equivalent to that of the operatorA in (4.1); a proof can be found in [5, Section 8].

In applications to nonlinear partial differential equations like the Cahn-Hilliard
equation or the porous medium equation one is often interested in realizations with
particular weights γ , for example, because the functions in the domain should be
bounded near the singular set.

We shall explain this briefly. Forq ∈ {q±j ; j = 1, 2, . . .}, letEq = {ωt−qe; e ∈ Eq},
whereω is an arbitrary cut-off function near ∂D and Eq is the eigenspace of the Laplace
operator with Dirichlet conditions acting on X , �X,Dir, with respect to the eigenvalue
λ j .

For v ∈ Eq±j
, the function�v is smooth and vanishes near t = 0, so it is an element

of H∞,∞
2 (D). Moreover v satisfies the Dirichlet boundary condition.
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It was shown in [5, Proposition 6.1]1 that the domain of the maximal extension of
the Laplacian with Dirichlet boundary condition in the spaceHs,γ

p (D), s > −2+1/p,
is

D
s,γ
p (�Dir,max) = D

s,γ
p (�Dir,min)⊕

⊕
q∈Iγ

Eq . (4.3)

Here Iγ = ] − 1 − γ, 1 − γ [ ∩{q±j ; j = 0, 1, . . .}. Moreover, it can be shown that

�Dir = �Dir,min, whenever −1 − γ is not one of the q±j . In particular, in this case,

D
s,γ
p (�Dir,min) = Hs+2,γ+2

p (D)Dir.
In general, we know from [5, Theorem 4.13] that

D
s,γ
p (�Dir,min) =

{
u ∈

⋂
ε>0

Hs+2,γ+2−ε
p (D)Dir;�u ∈ Hs,γ

p (D)
}
. (4.4)

As in [24,26] we choose the weight γ of the form

γ = −1+ δ, where 0 < δ < min{−q−1 , 2}

(note that q−1 is negative). Then −1− γ = −δ ∈ ]q−1 , 0[ equals none of the q±j .
We will now study the spectrum of �Dir.

Proposition 62 For s = 0 and p = 2 the unbounded operator λ−�Dir in H0,γ
2 (D)

with domain (4.2) is invertible provided λ /∈ ]−∞, 0 ].

Proof We first note that� : C∞c (D) → C∞c (D) is a non-positive symmetric operator
when we consider the scalar product given by H0,0

2 (D). Therefore we can define its
Friedrichs extension �Dir,F. Similarly as in the proof of [25, Theorem 4.1] we relate
our operator to the Friedrichs extension, whose domain has been determined in [5,
Theorem 6.4]:

D(�Dir,F ) = D0,0
2 (�Dir,min)⊕

⊕

−1<q−j <0

Eq−j
.

Step 1. We first check injectivity: Suppose u ∈ H2,γ+2
2 (D)Dir and (λ −�)u = 0.

The fact that �u = λu ∈ H2,γ+2
2 (D) implies that u is in the maximal domain of �Dir

inH2,γ+2
2 (D), which, according to (4.3)/(4.4) is given by

D
2,γ+2
2 (�Dir,min)⊕

⊕
q∈Iγ+2

Eq ⊆ H4,γ+4−ε
2 (D)Dir ⊕

⊕
q∈Iγ+2

Eq , ε > 0.

1 The result is stated for s = 0 but extends to other values of s.
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We observe that Iγ+2 =] − 2 − δ,−δ[ ∩{q−j ; j = 1, 2, . . .}, and γ + 4 = 3 + δ >

3. Hence u actually is in the domain of the Friedrichs extension. As the Friedrichs
extension has no spectrum outside ]−∞, 0 ], we conclude that u = 0.

Step 2. Since �Dir is a Fredholm operator, it has closed range. Therefore to prove
that λ−�Dir is surjective, it is enough to prove that its adjoint is injective, see Lemma
23. This is the content of the next step.

Step 3. As the scalar product ofH0,0
2 (D) can be used to identify the dual ofH0,γ

2 (D)

withH0,−γ
2 (D), we can consider the adjoint�∗Dir of�Dir as an unbounded operator on

H0,−γ
2 (D). Noting that the domain (4.2) is actually theminimal domain, that the adjoint

boundary condition to theDirichlet boundary condition is again theDirichlet boundary
condition and that � is symmetric, the domain of the adjoint can be determined from
[5, Theorem 4.6] (or [5, Theorem 6.3]):

D
0,−γ
2 (�∗Dir) = D

0,−γ
2 (�Dir,max)

= D
0,−γ
2 (�Dir,min)⊕

⊕
q∈I−γ

Eq ⊆ H2,2−γ
2 (D)Dir ⊕

⊕
q∈I−γ

Eq , ε > 0. (4.5)

The last inclusion follows from (4.4). Since I−γ =]− 2+ δ, δ[ ∩ {q±j ; j = 1, 2, . . .}
and δ < q+1 , we see that I−γ contains only the q−j with −2+ δ < q−j < 0.

Suppose u ∈ D
0,−γ
2 (�∗Dir) with (λ − �)u = 0. Write u = v + w with v ∈

H2,2−γ
2 (D)Dir andw ∈⊕

q∈I−γ
Eq . Since (λ−�)v = −λw−�w,�w ∈ H∞,∞

2 (D)

and λw ∈ H∞,1+δ
2 (D) (this follows from the fact that t−q ∈ H∞,μ

p (D) if and only if
"(q) < 1− μ), we see that

v ∈ D2,1+δ
2 (�Dir,max).

This implies that v is in the domain of the Friedrichs extension, and so is w, as
H2,1

2 (D) ∩ D0,0
2

(
�Dir,max

) ⊂ D
(
�Dir,F

)
, where D

(
�Dir,F

)
is the domain of the

Friedrichs extension. This was shown in the proof of Theorem 6.4 of [5]. Since the
Friedrichs extension has no spectrum outside ] − ∞, 0 ], we conclude that u = 0.
Therefore λ−�∗Dir is injective. ��
Theorem 63 For 1 < p < ∞ and s > −2+ 1/p the unbounded operator λ−�Dir
inHs,γ

p (D) with domain (4.2) is invertible whenever λ /∈ ]−∞, 0 ].

Proof According to [5, Section 8], the invertibility of

λ−�Dir : Hs+2,γ+2
p (D)Dir → Hs,γ

p (D) (4.6)

is equivalent to that of

(
�

Qγ0

)
: Hs+2,γ+2

p (D) → Hs,γ
p (D)⊕ Bs−1/p,γ−1/2

p (B). (4.7)
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In Proposition 62 we have shown invertibility of (4.6) for s = 0 and p = 2. Hence
we obtain invertibility of (4.7) for this case. According to Theorem 61 the inverse is
an element in C−2,0

C,C,C,0(D, (γ, γ + 2, k)) for arbitrary k. It therefore also furnishes
the inverse for arbitrary p and s > −2 + 1/p. As a consequence we also obtain the
invertibility of �Dir in (4.6) for these values of s and p. ��
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