
RT-MAE 2014-03 

LOGICAL CONSISTENCY IN SIMULTANEOUS 
TEST PROCEDURES 

by 

Rafrul lv,iclrl 
and 

Luis Gustal/0 EstelleS 

Palavnis-Chaves: Simultaneous Test Procedures, Monotonicity, Logical Coherence, 
Coherence Principle, Con.soaaace Principle, Classes of Hypotheses Tests. 

AMS Classification: 62A01; 62F03. 

- Feverciro de 2014 • 



Logical Consistency in Simultaneous Test Procedures 

RAfllel fabicki , Lurs Gustl\vo Esteves 

Abstract MMy hl\vc "rgued thl\t, when performing simultMeous test procedures, one should seek for 

solutions thl\t 11.rc easier to communicate to non-statisticians. In particula.r, logical incoherences should be 

avoided when reporting the results or such tests: for example, if hypothesis A implies hypothesis B, the 

rejection of B should imply the rejection or A, a property not always met by multiple test procedures. 

In this pllper we contribute to this discussion by exploiting how far one CM go in requiring a test 

procedure to be (logiclllly) coherent Md still preserve stlltistical optimality. This is done by studying 

four types of logical consistenc)' relations. We show that although the only procedures tha.t satisfy more 

thM (My) two of these properties l\l'e simple tests b11Sed on point estimation, it is possible to construct 

Vl\l'ious interesting methods thl\t fulfill one or two of them while preserving different st&tistical optimality 

criteria. This is lllustraled with several Bayesian and frequenlist examples. 

Keywords Simultaneous Test Procedures · Monotonicity • Logical Coherence · Coherence Principle · 

Consonance Principle • Classes of Hypotheses Tests 

AMS Classiftcatlon: 62A0I; 62F03. 

1 Introduction 

In many scientific problems, one is Interested fn testing several hypotheses simultaneously. Such a situa­

tion is called" multiple (or simultaneous) hypolhe.se.s te,ting problem (Shn!fer (1995)). This is typical, for 
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example, in clinical trials where one is interested in comparing the effectiveness of drugs and their &ide 

effects, or in genetic experiments involving microarr1Lys. Sec more examples in Hochberg 1Lnd TlllllhMe 

{1967). 

There exist mMy methods that ILim at crclLting optimal statisticlLl tests for simultMcous procedures. 

From a frcqucntist perspective, rather than only controlling the level of significlLDce o, of each test 

individuiuly, other criteri" h1we been introduced. Among them, popul1Lr appro1LChes are controlling the 

error rlLte per f,unlly (PFE), the f,unlly wise error r"te (FWE) Md the ft'1se discovery rl\te (FDR) 

{ShlLlfcr {1995); Finner and Gontscharuk (2009)). Other approaches suggest that rather thM control 

these (or related) quontities , one should estimate them (PawitM ct iu (2006)). The re&dcr is referred to 

Hochberg and TiunhMe (1987), ShlLlfer (1995) and FMcomeni (2008) for & review on tr&ditional methods 

for &imultancous tests. 

Of particular interest arc Lhe 60 called closure methods (Marcus ct al {1970); Sonnemann (1982, 

2008)) . Assume one is interested in testing a given set of hypotheses .A1 • For each hypothesis, &SSign 

an o,-level test, a E {0, 1 ). The closure method for testing each of these hypotheses consists in rejecting 

hypothesis H E A if, and only if, 

l. H is rejected &eeordin,: to the er-level test. 

2. All hypotheses in A that imply it (i.e. VH' ,;;; H, where H' e A) arc rejected according to their 

respective o, level tests. 

Besides controlling the FWE (Sonnemrum {1982)), this method h&S the &dv,mtnge of 8"tlsfying the 

coh,renu property: if hypothesis HJ implies hypothesis HJ (i.e., HJ ,;;; HJ) and HJ is rejected, HJ will 

also be rejected (Gabriel (1969)). 

Although coherence is desirable, not all simult1LDeous procedures satisfy it. For instance, this is shown 

by Hommel Md Bretz (2008) in " regression setting. Con•idering the linelLr model EjYJ:i:J = /Jo + /31:i: + 

/J-,:i:2 , they show that, for some samples, the Bonfcrroni-Holm procedure lc&ds one to reject {J2 = 0, but 

not to reject /J1 = /J, = 0. As /J1 = /J, = 0 implies /J, = 0, we have a logicnlly incoherent procedure 

(in the sense of GBbriel {1969)). See Blso RAviv (2013) for an interesting example where one rejects the 

equality of meMs /J> = /J2, but does not reject µ.1 = µ 2 = 0 in an ANOVA setting. 

Although "not rejecting /31 = /J2 = 0" is usually not under&tood as a definit ive assertion "/J1 

fJ-, = O", reporting the results of an incoherent procedure is usuiuly hud, A.Dd mAlly times cmbBrr&SSing 

(Templeton {2010}; Zhao ct ,u (20IO); RomBOo et ,.1 {2011)}. For instance, Schcrvish (1996) describes 

an example in the c&SC E.E.O.C. vs. FedcrBl Reserve BAnk of Richmond (Russell (1983)) "In this livdu 

achange the plaintiff's statistical aperts tries to up loin to a judge why one ,hould u.se o one-,ided test 

1 Given & subset A of the parametcT 1pa.ce 9 , we use '"t.cstlng the hypotheti1 A." u • ahorth&nd for the problem or t.estln& 
Ho : IE A ven;w Hi : It A. 



{with P value 0.037 in thu example) rother than a two-nded te,t {with P value 0.07,I}. The ngnifia,nce 

of the choice of the hypothtnJ wa.s quite apparent to the judge.• The problem in this example is that 

while the two-sided hypothesis {µ = 0) is not rejected At the level 5%, the one-sided (µ S 0) is. However, 

µ = 0 implies µ S 0. 

Some Authors therefore &rgue thAt some times one should wAive on only ml\Ximizing st1U1dArd effi­

ciency criteri& (such &S power of the tests) so &S to produce logiuJly coherent results th&t uc easier to 

communicate to non-statisticia.ns: "One could ( ... ) a,vue that power is not everything'. In particular for 

multiple test procedure, one a,n formulate additional requirement.,, such a.s, for uample, that the decision 

paUern.s ,hould be logical, concrivable to othtr p,r,on.s, and, ._. far ._. possiblt, nmple to communia,te 

to non-,tatutician.,. • (Hommel and Bretz (2008)). 

Coherence is not the only logicAI relAtionship one might expect from simultimeous hypotheses tests 

(to avoid confusions, from here on we call this property monotonicity in.stead, and reserve the use of the 

tcnn "coherent" for its mc1U1ing in St1U1dard Logic, that is, the overall logicAI consistency among the 

conclusions from the hypotheses tests). Recently, much emphasis hM been given to & different logical 

property named con.sonance, also introduced by G!lbricl (1969). Informally, such" property st&tes th&t 

when one rejects the intersection of several hypotheses, at least one of them should be rejected marginally 

(Sonnemann (1982, 2008}; Ro.enblum (2012)). Many closure methods thllt respect this property hllve 

been developed recently (Zhao et Al (2010); Romano ct Al (201 I)). Such procedures usuAlly hllve smaller 

comput&tional costs than traditional closure tests (Brannath and Bretz {2010)}, and hence provide useful 

shortcuts in prllCticc. Monotonic 1U1d consonlUlt procedures also h&vc better power properties th&n those 

thAt do not respect these consistency criteri11 (Sonncm&nn &nd Finner {1988); Rom&no et Al (2011)). 

Finally, Lehmann (1957&) defined a different logical property which he named compatibility and will be 

revisited later ln the pt.per. ScvcrAI other coherence relationships can also be defined. 

The main goals of this work uc: 

1. to formalize and characterize four of these properties, 

2. to lnvestlgAte simult,meous test procedureoi th11t satisfy them, 

3. to cx .. mine how restrictive these properties are when put together. 

For these purposes, in •cction 2 we introduce the concept of a da.ss of hypothe,es test., which from now 

on we call CHT, 11 m11thematicAI device that ASSociates one test function to each hypothesis of interest. 

We Also Ulustr11te such concept with CHT's that will be used later on the p"per. In section 3 we fonna.lize 

four consistency relations one could desire from CHT's, They arc monotonicity, union con.sonance, inter­

section consonance and invertibility. Next, we study some of their properties and consequences. We also 

investlgl\te whether some common st11tisticAI procedures s11tisfy them. FinAlly, in Section 4, we study 



how restrictive these four requirements arc when put together. In particular, we compare them with 

compatible classes. Conclusions lll'C presented in Section 5. In the Supplementary M8.teri,J, we present 

the proofs of most of the results presented in this work. We omit trivi,J demonstrations. 

2 Classes of hypotheses tests 

We start by form&lly describing & cl&SS of hypothe.5es te.5ts (CHT), & mathematic&! object th&t formalizes 

the notion that for el\Ch hypothesis of interest one 11SSigns" hypothesis test (A test function). This r&ises 

the question of which are the hypotheses of interest for & ~iven problem. This is problem dependent. 

However, as stated by Hochberg and Tarnhane (1987), "In Jome twes of uplomtorv re•earch it may be 

impossible to specify in advance the family of all potential inferenu. that may be of intere,t ". · 10 this 

work, we IISSume one hAS to 11SSign a hypothesis test to each element or a given u-field of the parameter 

space. This allows one to assign .. test to each of the possible hypotheses that exist (by taking the u-field 

to be the power set of the parameter space 8), and also accommodates Bayesian procedures based on 

posterior probabilities, in which It is only possible to nssign prob .. bilities to some a-fields of 8 2 • Rec,JI 

that a test function is a meASurable function from the SAmple space X to (0, I} , where I represents the 

decision or rejecting the null hypothesis and O represents the decision of not rejecting it. 

Remark: While some argue the decision O should be interpreted as the definitive action "accept 

the hypothesis", othen. believe it is more appropriate to understand it as "not reject the hypothCllis", 

suggesting a more cautious posture over dcclsion-m&king (see1 e.g., discussion in MR.yo Md Spanos 

{2006)). Such a distinction plays an important role in this paper: the coherence properties we define can 

be more or less appealing depending on which of the above positions is adopted by a. pracLitioner. The 

reader should keep this in mind when judging how reasonable esch of these properties is. We return to 

this point later in the paper. 

Definition 1 (Cla,. of hllP"the,u teau (CHT)) Let a(e) be o u-fietd of e, a(X) be a a-field of 

X and 1/1 = {~: X ➔ {O, I I : ,pi., a(X)-mcosum!>I,} b, th, set of oil te,tfunctionJ. A CHT i., o /unction 

£ : e1(8) ➔ 1/1 that, for each hwothem A e u(0), o.uociol,. the t,.t .C(A) e 1/1 for te,ting hWothtm A. 

Hence, for hypothesis A E c,(8) and dat& :r EX, .C(A)(:r) = 0 represents the decision of not rejecting 

A, And .c{A)(:r) = I of rejecting It. Exl\Jllplcs I and 2 illustrate this concept by using classes induced 

by two trMlition,J statistical tests. We denote the likelihood function At 9 E e generated by the Sl\ffiple 

point :r EX by L,(9), which we 11SSume to be always defined. 

2 Also, in the cue where I c (lo, 11 ), 10 E 9o and 81 E 81, .,here Ii are nuisance par&meten (Cuelh1 and Berger 
(2002)), one can consider• a-field of the form a(B) = o(Bo) x 81 = {A. x 81 : A. e 0(60)). Hence, one can assign testa 
onJy to parametcn of interest. 



Example 1 (Clllu of li/celihood ratio teata of level aJ Let 9 = !I" and a(9) = 'P(9) be the power 

set of e. For each hVJJOth<JiJ A E a(9), lei ,C{A) : X ➔ {0, I} be defined by 

.C(A)(:i:) = 1 (sup1e11 L,(9) :5; c,.) , sup0,e L,(O) 

where 1(8) is the indicator Junction that B holds and c11 E [0, 1] is chosen so that each test has the same 

level a E (0, I) previowl11 fi:i:ed. This is the class that associates a likelihood ratio test of me a lo each 

hypothe,is A E 7'(9). 

□ 

Example 2 (Teat,, ba.ted on po.tenor probabilitiea) Assume the same setup as Example /, but 

riow with a(0) = 6(0), the Borelians of!!". Assume that a prior probabilit11 measure Pin a(0) is fi:i:ed. 

For each. A E a(9), let .C(A) : X ➔ {0, I} be defined bv 

where P( ,lr) is the po,terior distribution of 9, given :i:. This is the class that as,ociate, to each hypothesis 

A E B{!l'), the te,t lhat reject.! it when it. posterior probability is smaller lhan 1/2. 

□ 

From a BllyesiM Decision-Theoretic perspective, a hypothesis test is derived, for ellCh sample point, 

by minimizing the posterior expectation of a loss function3 with respect to the posterior distribution of 

the puameters after observing the data DeGroot (1970). Hence, for " given probllbility measure for 8 

and for el\Ch A E a(9) and "specified loss function L,. : {0, I} x e ➔ !I, one can derive " Bayes test for 

ellCh of the hypotheses A E a(0). This procedure is fonmuized by the following definition: 

Definition 2 (CHT generated b11 a family of loH Junctioru) Let (Xx 9 ,u(X x 9),P) be a 

Baye!ian statistical model. Let (L,.),.e,(eJ be a family of loss /unction,, where L,. : {0, I) x 0 ➔ !I 

is the loss function to teat A E a(9). A CHT generated bv the /amiJv of loss functions (L,.)11e,(eJ is 

any CHT .C defined ouer the element.! of a(9) .ruch that .C(A} is a Bayes te,t for hVJJOthesis A agairut 

P, \/A E a(9). 

A single f=ily of loss functions can generAte multiple CHT's. Exllmple 3 illustrates this. 

3 A lou function for • Lest. ii • funct.ion L : (0, 1} x B ➔ R that assod atc1 for each I E 9 the loss L(d, I) ror 
malc.ing the decision d E (0, 1) of rejecting or DOt the null hypothesis. The B~ test is &iY'Cf'I. (or each % E X , by 
arg min,E(•,l) E{L(d,9))X = zJ. 



Example 3 (Tests ba.,ed on posterior probabilitie•) As$Ume the ,ame scenario BS &ample 2 and 

!hat {L.,)Aeo(Bl is a family of loss functioru such that VA E <1(0) and \18 E 0, 

L,4{0,8) = 1(0 'i, A) and L,4(1,8) = 1(0 EA), 

!hat is, LA is the 0-1 loss for A. The class C defined in &ample e is a CHT generated. b11 this family of 

loss functions, as is the c1BS• C' defined b11 

C'{A)(x) = I (r(AJ:r) $ D, \IA E a(0) and 'rlx EX. 

□ 

Example 4 shows "cl"5S of BRyeslru1 tests that is motivRted by different epistemologicl\l considerRtions 

(see Stern (2011 ), but "lso see Mll<lrugR et iu (2001) for" decision-theoretic motivation), the FWl Bayesian 

Significance Tests, FBST, (Pereira and Stern (1999)). See also Patriot& (2013) for a frequenUst version 

or this test. 

Example 4 (Clau of te,ts FBST) Let 0 = R", a(B) = 8('1"), and f(O) be the prior probabilit11 

density function (p.d.f.) for 8. Suppose that, for each x EX, there uiJts f(Blx), the p.d.f. of the posterior 

distribution of 8, given x. For each hVPothesis A E <1(0), let 

T: ={OE 0 : f{Olx) > supf{Olx)} 
DEA 

be the set tangent to the null hVPotheJis and let ev,(A) = 1- P(O E T,"Jx) be the Pereiro-Stem evidence 

value for A. See Pereiro and Stem (1999) for a geometric motivation. One can define a CHT C b11 

C{A)(:r) = l(ev,(A) $ c), 'IA E a(0) and'rlx EX, 

in which c E (0, ii is fixed. In words, one does not reject the null hVPothesis when its evidence is larger 

than c. 

□ 

We end this section by defining R CHT generated by " point estimRtion procedure, R concept thRt 

plays an important role when characterizing logically coherent procedures in Section 4. 

Definition 3 (CHT generated by a point e•timation procedure) Let O : X ---+ 0 be a point 

estimator. The CHT generoted by O is defined by C(A)(x) = l(O(x) ¢ A). 

Hence, we reject bypotbcsis A after observing x if, and only if, the point cstlmate for 6, 6(:r:), is not 

in A. 



(•) Monolonicily (b) lntcncction CoMOnMCe 

(~) Union Conaonance (d) ln..nlhUlty 

Fig. I: Logical properties one might expect from hypotheses tests. 

3 Consistency propertic• 

In this section, we study four properties thl\t one might expect from CHT's to induce logically coherent 

tests. EACh formAl definition in the sequence is preceded by An exAmple ror motiv1ttion. Figure I presents 

a visualization or the properties studied. 

3.1 Monotonicity 

The first property we describe i.s related to nested hypotheses. It states that if hypothesis A implie• 

hypothesis B (i.e., A ~ B), the rejection or B must imply the rejection of A (equivalently, not rejecting 

A must imply not rejecting B). 

Example 5 Suppo•e thct in 4 ca..1e-conlrol study one mea..1ure, the genotype in 4 certcin locus for ecch 

individual of 4 ,ample. Re.ullJ are ,hown in Table 1. These numbers were taken from a ,tudy pre.enled by 

Lin et al (2003) that had the aim of verifJling the hypathesu that ,ubunit., of the gene CAB AA contribute 

lo a condition known a..1 methamphetamine Ule di!iorder. 

Table I: Genotypic sample frequencies 

AA I AB I BB I TotA! I 
Case 55 83 50 188 

Control 24 42 39 105 



Hen:, the sel of all possible genotypes u {AA,AB, BB). UI -y = (-r.u,-YAB,-rBB), whtre -,, i.! the 

. probabilitv that an individual from ~ ca.,e group ha.s genolypt i. Similarlv, lei ,r = (11,.,., "AB, "BB), 

where 111 u tht probabililv that an individual of control group ha.s genotype i. The parameter -'J><IU, sample 

-'J><IU and likelihood function generated bv the data are slraightforwardlv specified. 

In this conla:I, two hypotheses are of interest: the hypothesis that the genotwic proportions are lhe 

same in both groups, Hf : -, = ,r, and the hwothesis that the allelic proportions are the same in both 

groups Ht : 'Y,<A +hAB = 11,.,. +}.-AB· The p-values oblaintd using chi-square le,tsfor the,e hwothe,es 

are, respectivdv, 0.J5t and 0.069. Hena, at the level of significana Q = 10%, Ht i.! rejected, but Ht/ 

is not. That i.s, one concludes that the genotwic proportions are U1e same in both groups, but that the 

allelic proportions are not. This is absurd! If genolypic proportions are the same in both groups, allelic 

proportions must also bt the same. Mathematically, if OE Hf, then...,,= 111, 'Ii E G and hena /J E Ht. 

This uample i.s further di.scus.std in /zbicki el al (to/ t). 

D 

This example motivates the foUowing definition, first introduced by Gabriel (1969): 

Deflnition 4 (Monotonicity) A class of hypotheses tests r. u monotonic (that is, satisfies monotonic• 

ily) i/ 

'IA, BE a(8), A~ B ~ C(A) ~ C(Bj<. 

In words, i/ after observing :r, a hypothesis is rejected, any hypolhesis that implies ii /143 lo be rejected 

a.s we/L 

Remark: it is striughtforw,ud to show thllt a clllSS r. hi monotonic if, Md only if, for all set of indices 

I, 

Theorem I shows thllt monotonic closses hAve the AdvMtllge of controlling the -FWE. Its proof is 

omitted as different versions of it were already provided in several works. (e.g., Hochberg And Tamhanc 

(1987) Md SonnemMn (1982, 2008)). 

Theorem 1 UI £ bt a monotonic CHT and a.ssume that {O) e u(e), '10 e 8, that u, Ute simple 

hypotheses are in a(e). Then, 

FW E := supP(Reject al lea.st one correct A E a(0)10) = sup P(£( {O} )(X) = 110). 
IE9 IE<, 

In particular, if each of the tests for the simple hypotheses is of size Q, FW E :!, Q , 

' I.e., '1/z EX, £(A)(z) ? £(B)(z), 



Hence, if a monotonic class assigns a size Q test for each simple hypothesis, we must have FW E $ Q, 

11nd, in plU'ticuhu-, er.ch hypothesis test (for A simple or composite one) will aJso hllvc size Q, 

A5 we Sllw in the introduction, closure procedures Are monotonic. Moreover, Sonncmllnn (1982, 2U08) 

show that IUl)' monotonic procedure ca.n be constructed using the closure method. Sonnemann and Finner 

(1988) also showed that any non-monotonic procedure can be replaced by a monotonic one which is better 

in the sense thl\t it has the Sl\llle FWE as the original procedure, a.nd reject. not only the hypotheses 

rejected by the first, but &lso potenti&lly more or them. 

Example 5 showed that p-v&lucs can yield non-monotonic classes. The use of Bayes Factors can &lso 

result In inconsistent conclusions (Lllvinc a.nd Schervish (1999)). In fact, in Ex&mple 5, the BAyes Factor 

in fAvor or Hf is 0.28, while the BAyes FACtor in fAvor or Hf is 6.63 (using independent uniform priors 

over the simplexes). Hence, inconsistency remains. Likelihood ratio tests with a fixed level Q (Example 

I) arc also not monotonic (Izbicki ct al (2012)). However, the likelihood ratio statistic is. This motivates 

the tests proposed by Gllbriel (1969), which we rec&II in the next example. 

Example 6 (Likelihood Ratio Teat., with fized thruhold) Let c E [0, lj and define£ by 

Thu c/a.,1 i.J monotonic. Thu follow, from the fact that if A, BE o(B) are ,uch that A,;; B and r EX, 

then sup,.,. L,(S) $ sup,. 8 L,(8). 

a 

In this example, in order to Attain monotonic clASSes with likelihood ratio tests, one gives up on 

havin~ common size Q for each test. Some authors defend the uso of the likelihood itself,.. a measure of 

evidence (Bickel (2008)). In these cases, the class defined in Example 6 is appropriate, with cutoffs being 

chosen by some predefined rules (e.g., Bickel (20ll8)). 

The FBST chw defined in Ex1U11ple 4 is in some sen,e the BAyesiM counterpart of Example 6 Md is 

also monotonic: 

Example 7 (Cla,a of teata FBST) £ defined in facmple J i.J monotonic. In fact, let A , BE o(0) be 

•uch that A ,;; B and let r E X be ,uch that £.(A)(z) = 0. Wt have •up0 /(Sir) ,:! sup,. /(Sir). Hence, 

Tf,;; T,", and, therefore, ev,(A) $ ev,(B), from whieh follows the monotonicity of the cla.,1. 

a 

Bayesian tests based on posterior probabilities with a fixed common cutoff (as in Example 2, with 

cutoff 1/2), generated by o. fMlily of 0-1-c loss functions, are monotonic. This follows from monotonicity 
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of probabilities. However, other families of loss functions may induce non-monot.onic classes of tests: •ucb 

loss functions lead t.o a different cut.off for each hypothesis test to be conducted. This is illustrated in 

Example 8. 

Example 8 Am,me X ~ Ber(8), 8 E IO, IJ, and 1h41 we are interested in testing the following h1fPOthe-

sc.s: 

Ht : 8 S. 0.6, and Hf : 0 S. 0.7. 

Notice that Ht C Hf. A1sume we u,e the /os, function, from Table 2. 

Tobie 2: Loss function for tests of Exomple 8 

State of Nature 
Decision Decision OE H,f I 0¢ Hf 

0 0 I I 
I I I 0 

The Bay•• test. for te,ting Ht and Hf oonsidering thue loss /unction, are, respectively, 

C(Ht)(z) = I (P(O E Htlz) S. 1/3) and C(Hf )(z) = I (P(O E Hf lz) S. 1/2). 

If u,e auign a uniform prior for O and obsen,e :r = I, we have P(O E Ho'l:r) = 0.36 and P(O E 

Hfl:r) = 0.49, Jo that we do not reject Ht, but reject Hf. A• H0' f Hf, we conclude monotonicity 

doe• 1101 hold. Intuitively, thil happen• becau,e the loJI of rejecting Ht when O E Ht ii twice OJ large 

OJ the lou of rejecting Hf when O e Hf. Hence, we only reject Ht when lhere iJ very little evidence ii 

holds {when compared to the amount of evidenu needed to reject Hf). 

D 

A question then arises. WhAt conditions must be imposed on the loss functions so that the resultant 

CRTs arc monot.onic? Next, we study monotonicity under a Decision-Theoretic perspective by consid­

ering two properties for a family of loss functions (L,.)AE•("l · 

LI VA E o(R), 0 EA~ L,.(O,O) S. L,.(1,0) and OE A'~ L,.(0,8) ~ L,.(1,8) 

L2 VA, BE 0(8) with A!;; B and VOE 8, L,.(0, 0) - L,.(I, 0) ~ LB(0, 0) - LB(I, 8) 

In words, Ll means that by taking a correct decision we lose the same or less than by taking a wrong 

decision (as a matter of fact, 110me authors regard condition LI in the early definition of a hypothesis 

testing problem, "" Scbervish (1997) does). Property L2 CM be interpreted in three different cASeS. 



II 

Denoting by relative /os, the difference between the losses of taklng the wrong and the correct decisions, 

- If 8 E A, both A and B are true. L2 describes the situation in which the relative loss is larger for B 

than for A. The rougher error of rejecting B compared to rejecting A should be assigned & ,;ru.ter 

relative loss. 

- If 8 E B\A, this is 11. consequence of property Ll. 

- If O E B', it can be interpreted in " similar w&y as the first CII.Se-

Example 9 The Jollowin9 families of lou /unclioru satisfy LI and L!: 

- Los••• of the form of Table 3, with the restriction, that VA E a(8), a,. = b,.., and that VA, BE a(8) 

such that A~ B, a_. ~ ao ~ 0. 

Tit.hie 3: Example of loss function 

State of Nature 
Decision O E A 8 E A' 

0 0 a,. 
1 b,. 0 

- L,.(0,8) = J(d(8,A)) and L,.(1,8) = f(d(O, A•)), in which d(8, A) is a di.tlance bdween 8 and A and 

f is a non-decreasing Junction in R+. 

D 

Theorem 2 cst11.blishes th11.t L2 is " sufficient condition for producing monotonic classes. and th11.t 

when Ll holds, L2 Is, in some sense, necessary for monotonicity. 

Theorem 2 Let (L,.),1e,(B) be a family of loss function, and C a CHT genenited by this family. Suppose 

that VA E a(0) and V,: EX, IEIL,1(0, O)lz)I < oo and IEIL,i(l,O)lzll < oo. Then: 

I. If (L,<),<e,(8) satisfies L!, C is monotonic, whatever the prior distribution for 8 is. 

!?. If (L,1),<e,(8) satisfies LI, but there uist A, BE a(0), with AC B, and 91 E A and 9-., E B•, with 

{Bi), (0,) E a(e), such that L,.(o,O,)- L,.(1,8,) < £ 8 (0,8;) - Ls(l,81), i = 1,2 {and, therefore, 

L! does not hold), and L,, (z), L,, (z) > 0 Vz E X, then there ezis/J a prior distribution for which C 

is not monotonic. 

Sec the Supplementary Material for a proof of part 2. L2 Is not reasonable when one prefers "smaller" 

hypotheses, that is, when the cost of not rejecting a "large" hypothesis is gn,&ter than that of not rejecting 
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a "small" one, even when both arc correct (as Is the case of the loss in Example 8). Theorem 2 says that 

this is exactly when monotonicity may not hold. On the other cases, the theorem shows monotonicity 

will hold. Hence, My chw derived from the loss functions of Example 9 is necessarily monotonic. 

More properties of monotonic classes, such as further characterizations and its relationship to admis­

sible classes, will be explored in a forthcoming paper. 

3.2 Intersection Coru;onance 

The second property we describe involves testing two hypotheses separately and then testing their in­

tersection. From a standard logical point of view, if we reject the intersection of these hypotheses, we 

should reject at /ta.st one of the original hypotheses. The following example shows this is not always the 

case. 

Example 10 ( A NOVA) Suppo•e that X1, .. . , X20 are i.i.d. N(µ1, u2); X21, ... , X,o are i.i.d. N(µ2,u2) 

and X41 , .. , ,Xsa are i.i.d. N(µ3,u2). Coruider the following hwotheses: 

H~l,2,3) : µ, = µ, = µ3 

HJl,2) : µ 1 = µ, 

H~l,O) : µ, = µ3 

o.nd •uppose tho.I' we obsert1e the following meoM o.nd sto.ndo.rd-del!iation.s on the data: X, = 0.15; S1 = 
1.09; X2 = -0.13; S2 = 0.5 X, = -0.38; S3 = 0.79. U,ing the likelihood rutio •tatistic,, we have the 

following p-value, for the•t h,;pothe,es: 

Therefore, ot the level of significance Q = 5%, we reject HJ'•2·3> but do not reject either Ht•> or 

H~1
-
3>, Hence, we conclude that ot leOJI two of the three group• have different mearu. However, when 

we compare the fint with the ,econd, we don't reject that the~ have the same mean, as well OJ when we 

compare the first with the third. Therefore, there is a contradiction. 

0 

This contradiction is named as & coruonance contradiction· by Gabriel (1969). Here, we call this 

property inler,ection con.sonance, as later we will introduce the union consonance. Several variations 

of intersection consonance were defined in the literature (Bickel {2008); Rosenblum (2012)). Herc, we 

present the definition of ISi-intersection consonance, where we use ISi to denote the cardinality of set S. 
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Definition 5 (]SI-intersection conaonance) A CHT C. satufies the ISi-intersection consonance if 

for all sets of indices I with cardinality Ill ~ ISi, 

V(A;},e, ~ 11(0) such that n;e1 A, E 11(0), 

In words, if we don't reject any of the hypotheses {A;);e1 , we should also not reject their intersection. 

In Section 4, we will specil\lly ~ interested in three coses of intersection consonance, namely 

- finite intersection consonance. In this case, S = {O, !}, and we only require such property to hold 

for a finite number of hypotheses5• 

- countable intersection consonance. In this CI\SC, S = N, and we only require such property to 

hold for a countable number of hypotheses. 

- complete intersection consonance. In this case, S = 0, and we require such property to hold for 

any set of hypotheses with the same cardinality of the pMameter space. 

It can be shown that although complete intersection consonance implies countable intersection con­

sonMce which implies finite intersection consommce, the reverse is not true. 

Example 11 For each A e o-(0), let 

C.(A}(.i:) = I (R{.i:) '{,.A), V.i: EX, 

in which R: X -t o-(0) u a region estimator of 8. In words, we reject a hypothesis if, and only if, the 

estimated region u not fully contained in (i.e., u not a subset of) the hypothesis of interest.• C. satufies 

both the 101-intersec!ion consonance and monotonicity. 

□ 

Many simultaneous hypotheses procedures developed satisfy intersection consonance (sec e.g. Son­

nemAnn (2008), as well as Romano et al (2011 ), who also discusses optlml\l power properties of such 

procedures). As noted by Gabriel (1969), tests that satisfy monotonicity and intersection consonance 

arc related to union-intersection tests. The following Theorem establishes this relation in the context of 

CHTs, Md is useful when one wants to build cll\SSOS that respect these properties. As the proof of this 

result is essentially the same as that from Gl\briel (1969), it is omitted. 

& It is passible to check that ta.king S = {0, 1} yields the same classes u taking S = {O, ... , n} for any finite na.tu.raJ n. 
• This i.s different Crom the test. that rejects a hypothesis when & reaion estimate does not. intercept it, see Example 13. 
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Theorem 3 Let C be a CHT oon.struct•d in th•following way: for each OE 0, a t••I £(0\{0}) is jueif. 

For each A E a(0), define 

C(A) = ~~C(0\{0}), 

the union-intersection test for A based on tests for the hypoth<sts {9}, 0 EA (Casella and Bergor {2002)). 

Th•n 

1. C satisfies 101-inter,ection con.sonance and monotonicity. 

1!. Let C' be a CHT that satisfies monotonicity, with C'(B\{0}) = C(8\{0) ), \/0 E 8. If C' also ,atisfies 

101-int<rsection con.sonance, we must haue C' = C. 

While pBrt 1. of the above theorem provides a way to construct CHTs thAt arc monotonic and 

SAtisfy intersection consonance, part /!. shows that it is not possible to h,.ve two distinct CHTs that 

arc monotonic &nd satisfy intersection consonance while preserving the tests e.ssigncd for hypotheses 

of the type 0\{0}. Sec Gabriel (1969) &nd Hochberg and Tamhanc (1987) for power considcrati~ns of 

union-intersection tests RS described in this theorem. Notice lllso that, bccAuse of monotonicity, these 

tests control the FWE (Sonnemann (2008)). 

3.3 Union Consonance 

The third property we describe is similnr to intersection conson&nce, however it involves testing the 

union of two hypotheses. From a logical point of view, if we reject ca.ch of the hypotheses A and B, we 

should also reject their union AU B. This is equivalent to stating that if we don't reject the union of 

the hypotheses, we should Also not reject at least one of them. The following eXAmpic shows this is not 

alwAys the cASe. 

Example 12 Suppo,e thru candidate, are running for a majority election. The proportion of electors 

uoting for each candidate are 0,,02 and 03, with I;~=• O; = I. We are intere,ted in testing the following 

four hypotheses: 

0 
3 

{ I} H0 : LJ O; > 2 , 
•=• 

HJ: {o, > ½} 

H~: {oa > ½}-

Hence, the null hypothesis H8 is the hwothesis that one of the candidates has more than 50% of 

the uot.eJ, while the null hwothesis HJ, for i = 1, 2,3, is the hypothesis that the i1h candidate has more 

than 50% of the vote,. Assume we observe a ,ample of 410 electors. Let X = (X,,X2,Xa), in which X; 

1 We ...ume that {') E ~(9), v, E 9. 
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is the number of electors in I.he sample that vote for c,mdidate i, i = I, 2, 3. Assuming a multinomial 

distribution for XIIJ and using a uniform prior for 8, if the ob,erved sample is :r: = (200,200, 10), u,e 

have 

p (~ { o, > n ,., ) = 0.588; 

p ( { o, > ½} 1%) = 0.294; 

P ( { 81 > ~} '"') = 0.294; 

P ( { e, > ½} j:r:) = u.ooo. 

When using the CHT described in Example I!, we don't rejut Hg but reject HA, i = I, 2, 3. From a 

logical point of view, we have a contradiction: we don't rejut that one of the candidates has at least 50% 

of the votes (i.e., O, > 1/2 for some i), however, separately, we conclude that each of the candidate• have 

at mo•I 50% of I.ht vote, (i.e., IJ,:,; 1/2 for all i). 

□ 

We call this inconsistency lack of union consonance, which we formally define in what follows: 

Definition 6 (]SI-union consonance) A CHT £ ,ati.sfi•• the ISi-union consonance if for all ••ts of 

indice, I with cardinality Ill :,; ISi, 

V{A;}iel o;;; e7(B) such that U;e/ A, E e7(B), 

In words, ifu,e don't reject the union of the hypothe,., {A,},e,, we should al.,o not rejut at lea.I one 

of them. 

As with intersection consonMce, we l\fe mostly interested in the cases S = {O, l},N and e. 

Example 13 For each A e e7(B), let 

in which R: X--+ C7(B) is a region e,timator of 9. In words, wt rejut a hypothuis if, and only if, the 

estimated region doeJ not intersect the hypothesis of interest. This very intuitive proadure u,a, proposed 

by Aitchison {1964) focusing on classical confidence regions. It is straightforward to show £ sati.sfie• 

!Bl-union consonance. AL,o, Hochberg and Tamhane {/987) noticed it is monotonic and hence control., 

FWE (Theorem,/}. In particular, if R(X) ha, confidence l - o (i.e. , P(IJ e R(X)l6) = 1- o, VIJ e BJ, 

the te,ts for each of the •imple hypotheJu ( O} have level o. 
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D 

As discussed in the IASt section, CHT's thAt are monotonic and sAtisfy intersection consonance o.re, to 

some extent, derived from union-intersection tests. An analogous relationship between union consonance 

and intersection-union tests bolds. More precisely, the following theorem shows that to create a CHT 

that satisfy monotonicity and union consonance simultMeously, it is only necCSSILJ'Y to define the tests 

for the simple hypotheses (that is, for each {8} E a(0)) and ccnsider intersection-union tests derived 

from them. 

Theorem 4 Ld C be a CHT constructed a., follows: for each O E 0, fiz a test £((0))1 • For each 

A E a(0), define 

the int,nection-union test for A b<>Sed on the hwotheses (8), 0 E A (Casella and Berger (2002)). Then, 

1. l. satisfies the 101-union con.oonance, a., well a., monotonicity. 

I!. Let C' be a CHT that satisfies monotonicity, UJith l.' ({O}) = C({O)), VO E 0 . If C' al.so satisfies 

101-union consonance, we must have C = C. 

The proof of this theorem Is shown in the Supplementllr)' Material. As Is the cASc of closure procedures 

(Shaffer (1995)), classes created according to Theorem 4 control the FWE. This follows from Theorem 

1. In particular, if each of the tests for the simple hypotheses is of si"" a, then the FWE is also a. Notice 

tbAt the class presented in Example 13 is composed of lntel"8ection-union tests based on tests of the form 

£((8))(:r) = 1(8 r/. R(:r)), 0 E 0, AS In Theorem 4. The second pArt of Theorem 4 asserts th"t such clASS 

is the unique extension of the above-mentioned tests assigned to simple hypotheses to a CHT that Is 

monotonic and SA.tisfics union consonance. 

In practice, procedures that satisfy both union consonance and monotonicity arc usually easier to 

implement than the traditionl\l closure method described in thdntroduction. This is because only tests 

for the simple hypotheses have to be conducted. If .!') is finite, it requires only IRI operMions (instead 

of 219 1, as in the case of the closure method when all hypotheses arc rejected). Such procedures arc also 

e11.>y to implement when 0 is continuous if confidence regioru; CAD be ensily built, AS in the following 

example of Anlllysis of VariMce (ANOVA). 

Example 14 {A NOVA) Suppose that x.,1, ... ,X•.•• are i.i.d. N(µt,a 2), k = l , ... ,g, conditionally 

on µ 1, ... ,µ,,a•, and that X;., is independent of x •. , \Ii 'I k and \II. Here X,., repre,ent., the measure­

ment made on the j- th sample unit of the i-th group. A confidence region for {µ1, . . . , µ1) of confiden~ 

• We asaume that {9} E <7(8), V9 E 8 . 



at leiut 1 - a presented b11 Johnson and Wichern (2007) a.uociate, lo the ,ample point :r the region 

R(:i:)= {(µ1, , .. ,µ1)ER1 : Vkflµk-µ1E [xt-:1!1 ±t..-,(g(g~I)) 

k,I = l, ... ,g}, 
-- -+-,2 ( I I ) 
n- g nt n, ' 
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where n = n 1 + ... + n1 , :ft iJ the sample average of the k-th group, , 2 = (n1 - 1)•1 + ... + (n, - I)•!, 

where•? iJ the ,ample varianct of k-th group, and 10(0) denote, the a perctntilt of a t diJtribution with 

d dtgretJ of freedom. Plugging tht region estimator R above in the CHT defined in E:tamplt 13 111eld., a 

CHT that 

1. is monotonic, 

Ji. 1atiJ/it1 101-union consonanct, 

3. control., tht FW E. 

Htnct, it iJ po.,iblt lo ltJI all hypothe1t1 of inlereJI in an Analym of Variance problem whilt pre,en,ing 

thut propt rlits. Notice that wt are treating cr2 QI a nuiJanct poramtttr (•tt footnote 2 in Section 2). 

a 

Next example provides another application of Theorem 4, and also illustrates tbe class of Example 

13 for "' po.rticulo.r sltuBtion. 

Example 15 (Uni/onnly Mo,t Powerfvl Unbi4J1ed Tuu) ut X 1, • •• , X.18 ~ N(B, I} and Ql.,Umt 

one want, lo test each of tht Jimplt null hypothests { 8} \; e with the Uniformly Most P owerful UnbiQled 

(UMPU) Tt1t, of ltvtl a for them (CQltl/n and Berger ('i00J!)), and uttnd the1t te,ts lo 8(0) while 

pre,en,ing monolonicili, and compltlt union consonance. Thu con bt accompliJhtd by uJing tht cla.u 

of E:ramplt 13 with R(:i:) = (:r - •1-a/27n,! + •1-a127n), where •1-0/2 iJ tht 1 - a/2 ~rctnlilt of 

a ,tandard normal diJtribution. Tht uttndtd cla.u of inltr1tclion-union lt1ts of Thtorem ,I QIJign, lo 

hypotht1es of the form (-00,Ool, Bo Ee, the Uniformly Mo,t Powerful Tt1ts of level a/2, and not of level 

a . Theorem ,I port 2. guanmlee, that thiJ t:rltnsion iJ unique i/ont dtJireJ monolonicit11 and 101-union 

consonance starting from level-a UMPU ltstl for Jimple hypothtJts. Htnce, it iJ not posJiblt to build a 

CHT compo1td of UMPU te,t, for Jimple hypotht1t1 and for hypotht1t1 of the Jann (-·oo, Doi (one-Jidtd 

hwotht1e,) with common level a that 1atiJ/it1 both monotonicity and 101-union coruc,nance. Therefore, 

to prestrvt logical propertie,, one should con.sider level-a ttJts for Jimplt hwothese,, 11nd level•a/2 test, 

for ont-Jided hypothe,t1. In a ••rue, port 2. of Theorem ,I may bt ,een QI an impo,.su,ilily result for the 

construction of common level-a UMPU ltst, in thiJ uample. 

a 
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If one is not interested in controlling the si2e of the tests, other procedures can be built. Two examples 

are shown below. 

Example 16 (Likelihood Ratio Test, with fi:,ed thr-eahold} The CHT of Example 6 was aln,ady 

shown to satisfy monotonicity. It also satiJ/ies 101-union consonance. In fact, let A E a(0). We have 

C(A)(:,;) ~I (SUPou L,(
9

) $ c) = min I ( L,(Oo) $ c) ~ min C({9o))(:i:). 
SUPoee L,(0) BoEA SUP,ee L,(9) 9oEA 

The n,sult follows from the first part of Theorem ,I. 

D 

There l\re l\lso Bayesian tests that are in accordMce with union consonance. Although classes bl\Sed 

on posterior probabilities with a fixed threshold (Example 12 ) do not respect union consonance, classes 

of tests FBST do satisfy it: 

Example 17 (Glau of tests FBST) Example ,I shows that a FBST class satiJfies m onotonicity. It 

can also ~ shown that it satiJ/ies 101-union consonance, provided that 'I:,; E x and 'la E !R+, P( { 0 : 

f(91:i:) = a)I:,;) = 0 (lzbicki {2010)). ft iJ also interesting to note that thiJ class is a particular case of 

the CHT's described in Example 13: it can ~ ,hown that thiJ CHT iJ equivalent to 

C(A)(:i:) = l (An HPU, = 0) , 

when, HPU, is the Highest Probability Density n,gion (Jaynes (1976)) with probability I - c, based on 

ob.ervation :,;. Hence, the FBST procedure can be efficiently implemented by corutructing the posterior 

(I - c)-HPD for 9 and not rejecting all hypotheses that intm:ept it' . In a sense, a class of test, FBST e:,;­

tendJ Lindley's test, for simples hypotheses (Lindle11 (I 965)), according to inter,ection-union procedures 

in Theorem ,I. 

D 

3.4 Invertibility 

The following example is traditional in introductory statistics courses and illustrates the difference that 

exists between choosing the labels "null hypothesis" and "alternative hypothesis" under the classical 

l\pproACh to inference. 

9 Note that this procedure is more easily implemented. only for the purpose of testing the hypotheses, a.nd noL for 
calculating their measures of evidence. 



19 

Example 18 Suppose that XIO ~ No-rrnal(9, 1) and that one want., to test the followin,9 null hypotheses: 

Hf: 9 ~ 0 

H6': 0 > 0 

The Uniformly Most Powerful Test.I for these hypotheses havt the following critical rtJ1ion.,, at the level 

5%, respectively: 

{z E !l::,: > 1.64} and {z E !l::,: < -1.64). 

Hence, if we observe :,: = I .0, we do not reject tither that the mean i.s less than or el{ual to O (Hf) or 

that it i.s greater than O (H6' ). That i.s, on one hand, x = 1.0 does not bring enough ev,idence in favor of 

!l:;_ /!L i.s preferred to !l'.;. in the firat test); on the other hand, it suggest., '1+ cannot be rejected l'R+ 
i.s preferred to !l_ in the second problem). Therefore, the conclusion drawn from the so:mple observation 

about a hypothesi.s of interest {here !l:;_, for instance) strongly depends on whether it i.s considered as the 

null or the alternative hypothesi.s. We note that if the level of significance was taken to be any a> 50%, 

oherving :,: = 0 would lead one to reject both Hf and H? simultaneously. 

0 

MMy ftUthors believe thnt the BSymmetry between the null ,wd the &ltcrn.,tive hypotheses is some­

what unlll\tur&I (e.g., Robert (2007), Section 5.3). The next definition form&lizes the notion of simulta­

neous tests independent of tbe labels "null" and "&lternative" for the hypotheses of lnt<ircst. 

Definition 7 {lnvertibility) A CHT C satisfies inver1ibility if 

VA E <t(0), C(A) = I - C(A•). 

In words, it is im,ltvant which hypothesis is labeled as null and which i.s labeled as ,alternative. 

Example 19 Suppose that (L,.J,.e•C"l i.s a family of loss function., with 

L,.(O, 9) = a,.1(8 rt, A) and L,.(l, 9) = b,.1(9 EA), VB Ee, 

with a,. = b,.. > 0, \fA E a(B). Let 90 = 80 (:r) Ee and C. bt defined as 

C(A)(z) = I (P(Alz) < ~b) + I (P(Alz) = ~b and Bo rt, A) , o,. + ,. a,.+ ,. 
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VA E a(B) and V,: EX. In word.s, we reject A whenever its posterior probability is mialltr than • .°+'t., 
or its postenor probability is • .°+\. and Bo (which may depend on:,;) is not in A. C is a Bayesian CHT 

generated l>y the family (L,.J,.e,(9)· This CHT satisfies both invertibility and monotonicity. •0 

□ 

Ex,unplc 19 can be generAlizcd. In fact, one can verity that any family of loss functions (L,.),.e,(1!1) 

that satisfies L,.(0,9) = L,..(1,9), VA E a(B) and V9 Ee, generates CHTs that respect invertibility 

(see, e.g., Silva (2010)). This restriction on the loss functions Implies that a type I error for testing A 

bas to be penalized in the same way as a type II error for testing A'. 

Exnmple 20 Any CHT generated by a point e&timation proc,,dure (recall Definition 3) is invertible. 

Moreover, .such CHT, auo ,atisfy monotonicity, IBl-inter,ection and IBl-union coruonana,. 

□ 

4 How restrictive are the consistency properties? 

In Section 3, we studied four logiclll properties one may expect for clRSSes of hypotheses tests. We Also 

provided results Md examples with useful tests thllt respect two of these conditions simultaneously (e.g, 

Theorems 3 and 4, Examples 13, 16 and 19). In this section, we will show th&t requiring more than two 

of such properties to hold simultaneously i.s very restrictive: under quite general conditions, CHTs thlLt 

sat isfy them are alw,.ys generated by point estimlltion procedures. 

We start by recalling the concept of compatibility of a multiple test procedure, introduced by Lehmonn 

(1957a). Herc we define this property adapted to the framework of CHTs. 

Definition 8 (Compatible Cla .. J A CHT C is compatible (or generally coruistent) if V,: E X 

n A£(A)(•J f- 0, 
AE,(9) 

where A0 ~ A and A1 ~ A', for A E <1(8). 

CompAbbility h"" been considered too strong by mMy l\uthors (SonnemMn (2008)), including 

LehmMn himself {LehmMn (1957b)), who provides less stringent definitions motivAted by the f..ct 

that one mi~ht interpret the result of a test ~(,:) = 0 as "not reject" rather than "accept". In fact, 

IO When P( Air) = •A•,:.A, the decision lo not re:Ject A hu the 1une expected IOSt u the decision of rejcctln1 A.. Thi.I 
CHT wu chosen bee•~ among all cluses generated by (LA)AEo(S), which a.re equivalent from• decision•Uu:orctk: point 
of view, it ut.isfies invertibility. or course, other CHT's derived from (LA)A.E•(S) do as wt!II. 
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when {8} e a(8), '18 Ee, it is straightforward to show th&t £ is compatible if, and only if,£ is gener­

ated by a point estimation procedure (recall Definition 3). Such clASSCS do not allow 1111y kind of logical 

contrlldiction l\lllong conclusions obta.ined after testing each of the hypotheses. 

We will now put together the properties presented in Section 3 with the goal or understanding how 

restrictive such requirements a.re when compared to those of a compa.tible class. We begin witb the 

following definition: 

Definition 9 (CHT of type ISi) We say a CHT is of twe ISi if it satufie, the four properties from 

Section 3: monotonicity, ISl-inteuection con.sonance, ISi-union con.sonance and invertibility. 

The following theorem shows alterna.tive cbMacterizations of clASSCS of type ISi. 

Theorem 5 Let S be {0, I), N ore. The following are equivalent: 

1. C u of type ISi; 

H. t:. satisfies monotonicity, ISl-inteuection con.sonance and invertibility; 

3. t:. satisfies monotonicity, ISi-union con.sonance and invertibility; 

,I. C(0) = I 11 , C(e) = 0, and C satisfies ISl-interm:tion con.sonance and ISi-union consonance; 

For the case S = {0, I}, we auo have the additional equivalence: 

5. V{A1 , ... ,A.} finite measurable partition of 8, 

n 

~)! - £(A;))= I. 
i=l 

That is, one, and only one, A , is not rejected. 

Moreover, for the case S = N, we auo have the equivalence: 

5. 'l{A1,A2, . . . ) countable measurable partition of 8, 

L(I - C(A;)) = 1. 
i?:l 

That is, one, and onl11 one, A, is not rejected. 

A sketch of the proof of these f11ets CM be found in the Supplementa:y Materi"1. Of p,Lfticular interest 

,ue ch,uacterizations ,I. and 5., which do not involve invertibility, controversial among advocates of~ 

qucntist methods. Moreover, characterizations !. and 3. show that under invertibility a.nd monotonicity, 

requiring union consonance is equivalent to requiring intersection consonance. Hence, the definition of a. 

CHT of ty pe IS[ may be reduced by requiring either intersection or union consonance. 

11 1.,., C(0)(z) - I , 'II• EX. 
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It is possible to show that when {9} e u{0), \18 e 0, a class is or type 101 if, and only if, It is 

compatible. Although the proof or this (act is intuitive, we omit it here for the •Ake or brevity. Hence, the 

only e:rample, of CHT'• of type 101 are tho,e generated by point e,timation proceduru. In the rem,.ining 

or this section, we will investigate whether this is e.lso true when S =Nor S = {O, I}. 

The following theorem shows that, under some conditions, the only cle.sscs of type !NI e.re auo the 

ones generated by a point estimation procedure. Hence, under these conditions, cle.sses o( type INI e.re 

these.me e.s compe.tible cle.sses, which e.re, e.s we e.rgued, the S1U11e u cle.sses or type 101. 

Theorem 6 A.,ume there eri,t, a metrizable topology -r !:; u( 0) which is Lindelof 12• Then C is of type 

INI if, and only if, it is generated by a point estimation procedure. 

The proof of this theorem is presented in the Supplementary Material. 

Corollary 1 If 0 = ,i•, a claJ• C defined over any ,igmo-field u(0) :;;? 8(0) i.s of type INI if, and only 

if, it i.s generated bv a point e,timation procedure. 

Hence, under some conditions on 0 and u(0), we have that compe.tible classes, cle.sscs of type 101, 

cle.sses or type INI and clASSes generated by a point estimation procedure e.re equivAlent. Theorem 6 

also formally links, in a sense, point estimation and hypothesis testing. In the vast statistical literature, 

these two celebrated problems e.rc most or the times treated separately13• This theorem asserts that e. 

practitioner that desires to use clASSes of type INI cannot decide. for example, that an unknown proportion 

or interest is e.t most 50% and estimate it e.s 52% on the be.sis or the se.rne se.rnple information. 

Are cle.sses or type INI in fact more restrictive than clASSes of type l{O, I }I? The following theorem, 

whose proof is presented in the Supplemeote.ry Material, show• that the answer Is yes. 

Theorem 7 Auume that 0 = Bl' and 8(0) !:; u(0). There ui.st, a CHT of twe l{O, !}I which i.s not 

of type INI, /n particular, if u(0) = -P(0), this e:ri.stence i.s equivalent to the erislence of a nontrivial 

ultra/ilter over 0. 

It is not possible to prove the existence or a nontrivial ultrafiltcr using only the Zcrmelo-Fracnkel 

RXioms. One needs more axioms such e.s e.g. the Axiom or Choice (Engelking (1989)). Hence, it is not 

possible to construct "explicit exe.rnples" of such clRSSes (see, e.g., Scl1cchter (199G)). Therefore, when 

u(0) = -P(0), esscntiAlly All cla.sscs of type l{O, I }I that can be built arc cle.sses generated by point 

estimation procedures. It is still an open question whether this ill true when u(0) s; -P(0). Figure 2 

summarizes the relationships between the different types of CHT'• studied here. 

J'2 A topoloa over 9 is LlndelO( if all open coven or B admit countable subcovers (Engclkinr (1D89)). 
u Thi.s is not the cue of region estimation, u dilcussed in Section 3. 
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Fig. 2: Summa..ry of relationships between the types of CHT. Uthe u-field under consideration contains 
the singletons, compatible cll\SSes and clASSeS generated by point estimlltion procedures are equivalent 
to CHT's of type 1e1. (!) doesn't hold if e = !l• and B(e) ~ u(e), (2) holds if there exists a Lindelof 
metrizable topology contained in u(e). 

5 Discussion and Conclusions 

We introduced the concept of a cl11SS of hypotheses tests. Such a concept allows one to define several 

coherence properties that might be expected from simultaneous hypotheses tests. In particular, we studied 

four properties: monotonicity (also known as coherence, Gl\briel (1969)), inten;cction oonsonance, union 

consonl\Dce Md invertibility. Among these, monotonicity is the one that has been most emphasized 

in the literature (in particular due t.o closure procedures), followed by intersection consonance. We 

showed necessa..ry and sufficient conditions for a class to be monotonic from a Bayesian decision-theoretic 

perspective. We fllso gllve exllmples of classes of tests th&t satisfy ellch of the properties that were 

defined. Moreover, we gave general procedures that allow one to build clASSeS that satisfy monotonicity 

and consonance (both for union and intersection) simultaneously. Finally, we showed that when put 

together, these properties arc very restrictive: classes of hypotheses tests that satisfy (&ny) three of these 

properties are essentially equivalent to classes generated by point estimation procedures. 

The f11Ct that the consistency properties are too restrictive when put together sugg;ests that a prac­

titioner may abandon two or more of these properties when performing simultaneous tests procedures, 

and then choose a class that combines attainment of some optimality criteria (e.g., oont:rolling the FWE 

or requiring the CHT to be a Bayesian class derived from an adequate family of loss functions) with 

Agreement to the logical consistency properties he finds more important. We provided several examples 

that illustrate how this can be done. Alternatively, he might want to use a class based on a sensible point 

estimation procedure if monotonicity, invertibility and consonance arc all of primary inoportance. 

Several problems are open. From a Bayesian decision-theoretic perspective, an al1tcrnative way to 

proceed when dealing with several hypotheses tests is to consider a single decision problem with decision 



space { 0, I )•<9 > taking into account joint loss functions rather than CHT's. This is done by e.g. Lavine and 

Schervish (1999) and Duncan {1965) for a finite number of hypotheses. Which constraints arc nccessory 

on such loss functions so that logical properties of interest are preserved? 

A different approach that can be taken is that instead of considering decisions in the space {O, I), one 

can create rules ta.king values on a decision space with three clements: accept a hypothesis of Interest, 

reject it, or do not accept or reject It, the so called "agnostic" tests. See for ei<ample Ripley (1996). 

One can then ask which coherence properties are expected in this framework, which is similar to the 

one presented by Levi (1967). Thi• approach also seems to be interesting as it n1Lturally deals with the 

question of how (and to what extent) "not rejecting H" is different from "a<cepting H", maybe ailowing 

11 conciliation between properties expected by different pra<titioners. 
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