
_124 _125

MEASURING THE PERFORMANCE OF REALTIME DSP USING PURE
DATA AND GPU

André Jucovsky Bianchi1, Marcelo Queiroz1

Computer Science Department, University of São Paulo, Brazil
{ajb,mqz}@ime.usp.br

ABSTRACT

In order to achieve greater amounts of computation
while lowering the cost of artistic and scientific projects
that rely on realtime digital signal processing techniques,
it is interesting to study the performance of commodity
parallel processing GPU cards coupled with commonly
used software for realtime DSP. In this article, we de-
scribe the measurement of data roundtrip time using the
Pure Data environment to outsource computation to GPU
cards. We analyze memory transfer times to/from GPU
and compare a pure FFT roundtrip with a full Phase Voco-
der analysis/synthesis roundtrip for several different DSP
block sizes. With this, we can establish the maximum
DSP block sizes for which each task is feasible in real-
time by using different GPU card models.

1. INTRODUCTION

The highly parallel nature of many Digital Signal Process-
ing (DSP) techniques makes the use of commodity hard-
ware for parallel processing specially useful for realtime
scenarios of artistic performances, small technical appli-
cations and prototyping. To make better use of parallel
processing devices it is interesting to study if different
combinations of hardware and software can meet speci-
fied criteria.

Widely used by digital artists, Pure Data2 (Pd) is a
realtime DSP software licensed under free software terms,
which can easily be extended and combined with control
hardware through wired or wireless interfaces. Also, Pd is
able to handle audio and video signals making it possible
to build and control arbitrary DSP algorithms.

To enhance Pd with parallel processing capabilities,
one of the lowest cost solutions nowadays is to attach to it
a Graphics Processing Unit (GPU) card, to which Pd will
then be able to transfer data back and forth and request
(parallel) computation to be performed over it. If all this
can be done in a time period of less than one DSP cycle
(the period for one block of samples that is act upon by
the DSP software at a time), then it may in fact be worth it
to combine Pd and GPU for realtime DSP performances.
This work focuses on performance measurements of com-
mon parallel tasks, such as memory transfer and kernel

1This work has been supported by the funding agencies CAPES and
FAPESP (grant 2008/08632-8).

2http://www.puredata.info/

execution times, and uses Pd extensible design to imple-
ment interaction with the GPU using C and CUDA C code
compiled as shared libraries.

The use of GPU for realtime audio signal processing
has been addressed in recent work [4, 2, 3, 5, 6]. For in-
stance, by measuring the performance of the GPU against
that of a commodity CPU, Tsingos et. al. showed that
for several applications it is possible to achieve dramatic
speedups (factors of 5 to 100) [6]. A similar approach to
ours was carried by Savioja et. al., who analyzed the GPU
performance on additive synthesis, FFT (and convolution
in frequency domain) and convolution in time domain [5].
Our work differs from these in two ways. First, we make
use of Pure Data as the software environment for inter-
action with the GPU API, thus providing a look into the
use of parallelism on a widely adopted realtime computer
music platform. Additionally, we provide a fine-grained
measurement of memory transfer times, so we can com-
pare these with actual processing time.

Our computation outsourcing model assumes that the
GPU will be used by Pd in a synchronous manner. At ev-
ery DSP cycle, Pd will contact the GPU, transfer a portion
of memory to it, call kernel functions over that portion of
data, wait for these kernel calls to end, and then transfer
data back to the host’s main memory. Our aim is to per-
form the following measurements, in order to establish the
feasibility of using a GPU-aided environment with Pd on
realtime performances:

• Memory transfer time. Since a GPU only processes
data that reside on its own memory, memory transfer
can represent a bottleneck for parallel applications that
use GPU: generally, the fewer the amount of data trans-
fers the better.

• Kernel execution time. This is the total time used by
all instructions performed on the GPU, after memory is
transferred from the host and before memory is trans-
ferred back to it.

• Full roundtrip time. This is the total time taken to
transfer data from host to device, operate on that data,
and then transfer it back to the host. This is the single
most important value to compare with the DSP cycle
period, in order to establish the feasibility of using the
GPU in realtime environments.

On the following section, we describe the setup used
for performing time measurements for these tasks.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

... 2
14

2
15

2
16

2
17

D
u
ra

ti
o
n
 (

m
s
)

Block size

FFT roundtrip time - GTX 470

host to device
kernel time

device to host
roundtrip

Figure 1. Memory transfer and kernel times for FFT on
Geforce GTX 470.

2. METHODS

In order to measure kernel and memory transfer time us-
ing Pd and GPU, we set up a Pd external that communi-
cates with the GPU and keeps track of elapsed time be-
tween operations. The external behaves as a normal Pd
object that receives input signals and produces output sig-
nals, but actual DSP is delegated to the GPU.

Our test environment is an Intel(R) Core(TM)
i7 CPU 920 @2.67GHzwith 8 cores and 6 GB RAM,
running Ubuntu GNU/Linux 11.04 with linux ker-
nel version 2.6.28-13-generic, and equipped with
two models of NVIDIA GPU cards: Geforce GTX 275
(240 cores, 896 MB RAM, 127.0 GB/s memory band-
width) and Geforce GTX 470 (448 cores, 1280 RAM,
133.9 GB/s).

For implementing the Pd external we used standard C
and CUDA C3. As a basic DSP algorithm implementation,
we make use of CUFFT4, NVIDIA’s implementation of
the FFT algorithm which is compatible with the widely
used FFTW collection of C routines5.

2.1. Implementations

To be able to evaluate the performance of our setup for re-
altime DSP, we started with an implementation of a pure
FFT external that transfers data into the GPU, runs the
FFT over it and then transfers data back to the host, thus
providing the host with a frequency domain description
of the signal block. The results for different block sizes
on the GTX 470 can be seen in Figure 1, and will be dis-
cussed in the next section.

In order to estimate how much more computation we
may export to the GPU while preserving realtime opera-
tion, we implemented a full Phase Vocoder [1] analysis
and synthesis engine. This also allows for a comparison
of the time spent by the GPU in regular user code versus
device-specific professionally-engineered library code.

3http://developer.nvidia.com/cuda-toolkit
4http://developer.nvidia.com/cufft
5http://www.fftw.org/

An implementation of the Phase Vocoder for the GPU
can use parallelism in two ways. First, it can estimate the
instantaneous amplitude and frequency for each oscillator
by making use of the parallel FFT as we just saw. Af-
ter that, as the result for each synthesized output sample
does not depend on the calculation of other sample val-
ues, the PV can perform one additive synthesis for each
output sample of a DSP block in parallel. Thus, an im-
plementation of the Phase Vocoder on the GPU uses the
same amount of data transfer between host and device as
the pure FFT algorithm, but comprises more kernel calls
and more computation inside each kernel. The results for
memory transfer and kernel time of our Phase Vocoder
tests for different block sizes can be seen in Figure2, and
will also be discussed in the next section.

2.2. Tests

We ran the FFT and PV algorithms for a period equal to
100 DSP blocks, for block sizes of 2i with 6 ≤ i ≤ 17,
and then calculated the mean time taken for data transfer
(back and forth) and full PV analysis and synthesis.

The maximum block size considered of 217 = 131072
samples corresponds to a period of about 3 seconds of
audio. The execution time of the full Phase Vocoder for
block sizes of more than 217 samples largely exceeds the
corresponding DSP period, so this block size seems enough
to provide upper bounds for feasibility of computation as
a function of block sizes.

As observed by Savioja et al. [5] the additive syn-
thesis snippet is computationally intensive and very sen-
sitive regarding the method used to obtain each sample
value of the sinusoidal oscillators. We have compared
the performance of 5 different implementations: (1) 4-
point cubic interpolation, (2) linear interpolation, (3) ta-
ble lookup with truncated index, (4) GPU’s trigonomet-
ric primitives (specifically, we used the sinf() function
of CUDA API, which computes a double precision float-
ing point number), and (5) GPU’s built-in texture lookup
functions. The results for each implementation can be
seen in Figure 2 and will be discussed in the next section.

3. RESULTS

To illustrate the results obtained, we present graphs for
the tests made with batch processing, i.e. letting Pd run
as fast as it can without waiting for the full periods of
DSP cycle to end to produce new samples. Wav files were
used as input and output for convenience and the FFT and
PV algorithms were carried out for different block sizes
as specified in the last section. Test results were gen-
erated for both models of GPU, but as memory transfer
times and FFT kernel execution time varied as expected
between models (due to the differences of transfer speed
and number of cores), we show these results just for the
faster model.

Figure 1 presents the result of memory transfer times
and FFT kernel execution times for different block sizes
on the GTX 470. Figure 2 shows kernel times for the full

_124 _125

MEASURING THE PERFORMANCE OF REALTIME DSP USING PURE
DATA AND GPU

André Jucovsky Bianchi1, Marcelo Queiroz1

Computer Science Department, University of São Paulo, Brazil
{ajb,mqz}@ime.usp.br

ABSTRACT

In order to achieve greater amounts of computation
while lowering the cost of artistic and scientific projects
that rely on realtime digital signal processing techniques,
it is interesting to study the performance of commodity
parallel processing GPU cards coupled with commonly
used software for realtime DSP. In this article, we de-
scribe the measurement of data roundtrip time using the
Pure Data environment to outsource computation to GPU
cards. We analyze memory transfer times to/from GPU
and compare a pure FFT roundtrip with a full Phase Voco-
der analysis/synthesis roundtrip for several different DSP
block sizes. With this, we can establish the maximum
DSP block sizes for which each task is feasible in real-
time by using different GPU card models.

1. INTRODUCTION

The highly parallel nature of many Digital Signal Process-
ing (DSP) techniques makes the use of commodity hard-
ware for parallel processing specially useful for realtime
scenarios of artistic performances, small technical appli-
cations and prototyping. To make better use of parallel
processing devices it is interesting to study if different
combinations of hardware and software can meet speci-
fied criteria.

Widely used by digital artists, Pure Data2 (Pd) is a
realtime DSP software licensed under free software terms,
which can easily be extended and combined with control
hardware through wired or wireless interfaces. Also, Pd is
able to handle audio and video signals making it possible
to build and control arbitrary DSP algorithms.

To enhance Pd with parallel processing capabilities,
one of the lowest cost solutions nowadays is to attach to it
a Graphics Processing Unit (GPU) card, to which Pd will
then be able to transfer data back and forth and request
(parallel) computation to be performed over it. If all this
can be done in a time period of less than one DSP cycle
(the period for one block of samples that is act upon by
the DSP software at a time), then it may in fact be worth it
to combine Pd and GPU for realtime DSP performances.
This work focuses on performance measurements of com-
mon parallel tasks, such as memory transfer and kernel

1This work has been supported by the funding agencies CAPES and
FAPESP (grant 2008/08632-8).

2http://www.puredata.info/

execution times, and uses Pd extensible design to imple-
ment interaction with the GPU using C and CUDA C code
compiled as shared libraries.

The use of GPU for realtime audio signal processing
has been addressed in recent work [4, 2, 3, 5, 6]. For in-
stance, by measuring the performance of the GPU against
that of a commodity CPU, Tsingos et. al. showed that
for several applications it is possible to achieve dramatic
speedups (factors of 5 to 100) [6]. A similar approach to
ours was carried by Savioja et. al., who analyzed the GPU
performance on additive synthesis, FFT (and convolution
in frequency domain) and convolution in time domain [5].
Our work differs from these in two ways. First, we make
use of Pure Data as the software environment for inter-
action with the GPU API, thus providing a look into the
use of parallelism on a widely adopted realtime computer
music platform. Additionally, we provide a fine-grained
measurement of memory transfer times, so we can com-
pare these with actual processing time.

Our computation outsourcing model assumes that the
GPU will be used by Pd in a synchronous manner. At ev-
ery DSP cycle, Pd will contact the GPU, transfer a portion
of memory to it, call kernel functions over that portion of
data, wait for these kernel calls to end, and then transfer
data back to the host’s main memory. Our aim is to per-
form the following measurements, in order to establish the
feasibility of using a GPU-aided environment with Pd on
realtime performances:

• Memory transfer time. Since a GPU only processes
data that reside on its own memory, memory transfer
can represent a bottleneck for parallel applications that
use GPU: generally, the fewer the amount of data trans-
fers the better.

• Kernel execution time. This is the total time used by
all instructions performed on the GPU, after memory is
transferred from the host and before memory is trans-
ferred back to it.

• Full roundtrip time. This is the total time taken to
transfer data from host to device, operate on that data,
and then transfer it back to the host. This is the single
most important value to compare with the DSP cycle
period, in order to establish the feasibility of using the
GPU in realtime environments.

On the following section, we describe the setup used
for performing time measurements for these tasks.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

... 2
14

2
15

2
16

2
17

D
u
ra

ti
o
n
 (

m
s
)

Block size

FFT roundtrip time - GTX 470

host to device
kernel time

device to host
roundtrip

Figure 1. Memory transfer and kernel times for FFT on
Geforce GTX 470.

2. METHODS

In order to measure kernel and memory transfer time us-
ing Pd and GPU, we set up a Pd external that communi-
cates with the GPU and keeps track of elapsed time be-
tween operations. The external behaves as a normal Pd
object that receives input signals and produces output sig-
nals, but actual DSP is delegated to the GPU.

Our test environment is an Intel(R) Core(TM)
i7 CPU 920 @2.67GHzwith 8 cores and 6 GB RAM,
running Ubuntu GNU/Linux 11.04 with linux ker-
nel version 2.6.28-13-generic, and equipped with
two models of NVIDIA GPU cards: Geforce GTX 275
(240 cores, 896 MB RAM, 127.0 GB/s memory band-
width) and Geforce GTX 470 (448 cores, 1280 RAM,
133.9 GB/s).

For implementing the Pd external we used standard C
and CUDA C3. As a basic DSP algorithm implementation,
we make use of CUFFT4, NVIDIA’s implementation of
the FFT algorithm which is compatible with the widely
used FFTW collection of C routines5.

2.1. Implementations

To be able to evaluate the performance of our setup for re-
altime DSP, we started with an implementation of a pure
FFT external that transfers data into the GPU, runs the
FFT over it and then transfers data back to the host, thus
providing the host with a frequency domain description
of the signal block. The results for different block sizes
on the GTX 470 can be seen in Figure 1, and will be dis-
cussed in the next section.

In order to estimate how much more computation we
may export to the GPU while preserving realtime opera-
tion, we implemented a full Phase Vocoder [1] analysis
and synthesis engine. This also allows for a comparison
of the time spent by the GPU in regular user code versus
device-specific professionally-engineered library code.

3http://developer.nvidia.com/cuda-toolkit
4http://developer.nvidia.com/cufft
5http://www.fftw.org/

An implementation of the Phase Vocoder for the GPU
can use parallelism in two ways. First, it can estimate the
instantaneous amplitude and frequency for each oscillator
by making use of the parallel FFT as we just saw. Af-
ter that, as the result for each synthesized output sample
does not depend on the calculation of other sample val-
ues, the PV can perform one additive synthesis for each
output sample of a DSP block in parallel. Thus, an im-
plementation of the Phase Vocoder on the GPU uses the
same amount of data transfer between host and device as
the pure FFT algorithm, but comprises more kernel calls
and more computation inside each kernel. The results for
memory transfer and kernel time of our Phase Vocoder
tests for different block sizes can be seen in Figure2, and
will also be discussed in the next section.

2.2. Tests

We ran the FFT and PV algorithms for a period equal to
100 DSP blocks, for block sizes of 2i with 6 ≤ i ≤ 17,
and then calculated the mean time taken for data transfer
(back and forth) and full PV analysis and synthesis.

The maximum block size considered of 217 = 131072
samples corresponds to a period of about 3 seconds of
audio. The execution time of the full Phase Vocoder for
block sizes of more than 217 samples largely exceeds the
corresponding DSP period, so this block size seems enough
to provide upper bounds for feasibility of computation as
a function of block sizes.

As observed by Savioja et al. [5] the additive syn-
thesis snippet is computationally intensive and very sen-
sitive regarding the method used to obtain each sample
value of the sinusoidal oscillators. We have compared
the performance of 5 different implementations: (1) 4-
point cubic interpolation, (2) linear interpolation, (3) ta-
ble lookup with truncated index, (4) GPU’s trigonomet-
ric primitives (specifically, we used the sinf() function
of CUDA API, which computes a double precision float-
ing point number), and (5) GPU’s built-in texture lookup
functions. The results for each implementation can be
seen in Figure 2 and will be discussed in the next section.

3. RESULTS

To illustrate the results obtained, we present graphs for
the tests made with batch processing, i.e. letting Pd run
as fast as it can without waiting for the full periods of
DSP cycle to end to produce new samples. Wav files were
used as input and output for convenience and the FFT and
PV algorithms were carried out for different block sizes
as specified in the last section. Test results were gen-
erated for both models of GPU, but as memory transfer
times and FFT kernel execution time varied as expected
between models (due to the differences of transfer speed
and number of cores), we show these results just for the
faster model.

Figure 1 presents the result of memory transfer times
and FFT kernel execution times for different block sizes
on the GTX 470. Figure 2 shows kernel times for the full

_126 _127

PV analysis and synthesis as a function of block size for
both cards.

By comparing Figures 1 and 2, we can see that there
is a noticeable difference, of some orders of magnitude,
between the time it takes to run the pure FFT and the full
PV. Comparing the time taken by the two different algo-
rithms on the same model of card, we see that the FFT it-
self takes time comparable to the memory transfers time,
of about tenths of milliseconds, while the full PV imple-
mentation will take many seconds for larger block sizes.
This means that hundreds of pure FFT executions could
occur in a DSP cycle while only few full PV analysis and
synthesis can actually be performed on the same amount
of time.

3.1. Memory transfer times

Regarding memory transfer, we can observe on Figure 1
that the time it takes to transfer a certain amount of mem-
ory from host to device and back seems approximately
linear in relation to block size. This seems reasonable
once the bandwidth of data transfer between the host and
the GPU is constant (see table on Section 2). Despite
that, we should notice that it is unwise to use the memory
bandwidth value to make assumptions regarding memory
transfer speed, because this relation depends on the archi-
tecture implementation of the memory hierarchy.

Also, we could determine that memory transfer results
are very close for the FFT and PV implementations. This
also seems reasonable given that the amount of memory
transferred on both implementations is the same. This in-
dicates that the number of kernel calls or the amount of
time kernels take working on data seems to have no influ-
ence on memory transfer speed.

Finally, we should notice that the difference of time
taken for memory transfer on the two different GPU mo-
dels is very small, and in both scenarios the back trip
takes a little longer than host-to-device transfer. Again,
the small difference between models is the expected be-
haviour because, despite being from different architec-
tural NVIDIA GPU families, both models have high ad-
vertised memory bandwidth compared to the amount of
data transferred during the tests (a maximum of about
4 MB at each DSP cycle).

3.2. Kernel times

Both sequential and parallel versions of the FFT algorithm
are O(n logn/p) where p is the number of available pro-
cessors. As we spawn tens of thousands of parallel threads
at each DSP cycle (i.e. n � p), the number p of proces-
sors can be regarded as a constant that depends only on
the GPU card the user has access to. Thus, the expected
tendency is for the FFT kernel time to overcome memory
transfer times as blocks get bigger in size.

As for the PV implementation, as noted in the last
section, we could determine that the part that consumes
the most GPU time is the oscillator sum of the PV syn-
thesis. To be able to get a feel of how much resources

1

2

3

2
14

2
15

2
16

D
u
ra

ti
o
n
 (

s
)

Block size

PV synth kernel time - GTX 275

1

2

3

2
14

2
15

2
16

D
u
ra

ti
o
n
 (

s
)

Block size

PV synth kernel time - GTX 470

DSP block period
1. cubic interp
2. linear interp

3. truncated
4. builtin sine

5. texture interp
no calculation

Figure 2. Kernel times for different implementations of
oscillator calculation running on different card models.

user-defined computation consumes, we compared 5 dif-
ferent implementations of the oscillator calculation. Three
of them use a 1024−point sine wave lookup table, previ-
ously calculated and copied from the host to the device,
and two of them use GPU’s built-in functions to aid the
calculation. The five different oscillator implementations
are: (1) table lookup with 4-point cubic interpolation, (2)
table lookup with 2-point linear interpolation, (3) table
lookup with truncated index, (4) direct use of the built-
in sine wave function, and (5) table lookup with (linearly
interpolated) texture fetching.

The time taken for each oscillator implementation can
be seen on Figure 2. We have also plotted the DSP cy-
cle period for each block size as well as a “control” im-
plementation with no oscillator calculation at all, to work
as a basis for comparison. Notice, though, that the con-
trol implementation includes the full PV analysis (which
comprises one FFT run for the oscillators’ phase estima-
tion) and also the main synthesis loop, but with no oscil-

lator calculation (the loop just sums a small constant float
number at each round).

Regarding implementations (1), (2) and (3), we can
see that they behave as expected, i.e. they grow roughly
proportionally, according to the number of operations in-
volved; truncated table lookup is faster than linear inter-
polation, which is in turn faster than cubic interpolation.
Consistently, all of them are faster on the GTX 470 when
compared to the same implementation running on the GTX
275.

The built-in sine wave implementation (4) takes ap-
proximately the same time as implementation (2) on the
GTX 275, but has a proportionally worse performance on
the GTX 470, achieving an intermediate result between
implementations (1) and (2).

As for the built-in texture fetching with linear inter-
polation, also known as implementation (5), its behaviour
is a bit difficult to explain. On the GTX 275, it has the
worse behaviour of all methods, taking 40% longer than
the second most expensive, cubic interpolation. On the
other hand, on the GTX 470 implementation (5) has a per-
formance comparable to the others, being a little bit faster
than cubic interpolation. We assume that this behaviour
has something to do with differences in texture memory
fetching implementations on different card models.

From these plots we can see that, for the GTX 275,
blocks with size bigger than 216 take more time to com-
pute any of the Phase Vocoder implementations than the
time available for realtime applications. A similar result
was found for the GTX 470 with blocks bigger than 217

samples.
We can also observe that Phase Vocoder times grow

superlinearly for all implementations. Since the number
of oscillators in the additive synthesis is roughly half the
number of samples in a block, a quadratic computational
complexity O(n2) is expected. The degree of parallelism
brought by the GPU is not enough to produce differences
in profile for the variant oscillator lookup methods imple-
mented, and the differences in scale are accountable by
the hidden constant in the big-O notation.

4. DISCUSSION

Given the results described in the last section, we can con-
clude that small implementation differences can have sig-
nificant results regarding kernel time consumption on the
GPU. It is not clear whether the numerical quality of the
built-in sine function is better than our 4-point cubic in-
terpolation, but it is clear that conscious choices have to
be made in order to use the GPU’s full potential for larger
block sizes.

We can also conclude that, if we restrict the roundtrip
to few memory transfers in each direction, then there is no
need to bother with memory transfer time as its magnitude
is of the order of tenths of milliseconds while DSP block
periods are of the order of several milliseconds even for
the smaller block sizes considered.

By analyzing the time results of the full PV analysis

and synthesis, it is possible to obtain the maximum block
size for the realtime use of each oscillator implementation
for each card model. The maximum number of samples
achieved in each scenario is summarized below:

model \ implementation 1 2 3 4 5

GTX 275 214 215 215 215 214

GTX 470 215 216 216 215 215

4.1. Future work

Many interesting questions arose from this investigation,
and there are plenty of directions to be followed. We sum-
marize below some approaches which we shall pursue in
future works:
• One of the present works of our Computer Music Re-

search Group at IME/USP6 deals with audio distribu-
tion over computer networks. It would be very inter-
esting to analyze the possibility of outsourcing compu-
tation over the network to remote machines with GPU
cards installed on them. Would it be worth it to use
remote parallel resources for realtime scenarios given
network delay?

• By using GPU’s asynchronous execution possibilities,
it is possible to decouple memory transfer and kernel
execution from the Pd DSP cycle. We could, for exam-
ple, use a producer/consumer model to feed interme-
diate buffers that could then be played independently
from computation control. This could also give us bet-
ter results for computing performance.

5. REFERENCES

[1] M. Dolson, “The phase vocoder: A tutorial,” Com-
puter Music Journal, vol. 10, no. 4, pp. 14–27, 1986.

[2] E. Gallo and N. Tsingos, “Efficient 3D audio process-
ing on the GPU,” in Proceedings of the ACM Work-
shop on General Purpose Computing on Graphics
Processors. ACM, August 2004, pp. 2004–2004.

[3] C. Henry, “GPU audio signals processing in Pure
Data, and PdCUDA an implementation with the
CUDA runtime API,” in Pure Data Convention, 2011.

[4] K. Moreland and E. Angel, “The FFT on
a GPU,” in Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics
hardware, ser. HWWS ’03. Eurographics Associa-
tion, 2003, pp. 112–119.

[5] L. Savioja, V. Välimäki, and J. O. Smith, “Audio sig-
nal processing using graphics processing units,” J. Au-
dio Eng. Soc, vol. 59, no. 1/2, pp. 3–19, 2011.

[6] N. Tsingos, W. Jiang, and I. Williams, “Using pro-
grammable graphics hardware for acoustics and au-
dio rendering,” J. Audio Eng. Soc, vol. 59, no. 9, pp.
628–646, 2011.

6http://compmus.ime.usp.br/

_126 _127

PV analysis and synthesis as a function of block size for
both cards.

By comparing Figures 1 and 2, we can see that there
is a noticeable difference, of some orders of magnitude,
between the time it takes to run the pure FFT and the full
PV. Comparing the time taken by the two different algo-
rithms on the same model of card, we see that the FFT it-
self takes time comparable to the memory transfers time,
of about tenths of milliseconds, while the full PV imple-
mentation will take many seconds for larger block sizes.
This means that hundreds of pure FFT executions could
occur in a DSP cycle while only few full PV analysis and
synthesis can actually be performed on the same amount
of time.

3.1. Memory transfer times

Regarding memory transfer, we can observe on Figure 1
that the time it takes to transfer a certain amount of mem-
ory from host to device and back seems approximately
linear in relation to block size. This seems reasonable
once the bandwidth of data transfer between the host and
the GPU is constant (see table on Section 2). Despite
that, we should notice that it is unwise to use the memory
bandwidth value to make assumptions regarding memory
transfer speed, because this relation depends on the archi-
tecture implementation of the memory hierarchy.

Also, we could determine that memory transfer results
are very close for the FFT and PV implementations. This
also seems reasonable given that the amount of memory
transferred on both implementations is the same. This in-
dicates that the number of kernel calls or the amount of
time kernels take working on data seems to have no influ-
ence on memory transfer speed.

Finally, we should notice that the difference of time
taken for memory transfer on the two different GPU mo-
dels is very small, and in both scenarios the back trip
takes a little longer than host-to-device transfer. Again,
the small difference between models is the expected be-
haviour because, despite being from different architec-
tural NVIDIA GPU families, both models have high ad-
vertised memory bandwidth compared to the amount of
data transferred during the tests (a maximum of about
4 MB at each DSP cycle).

3.2. Kernel times

Both sequential and parallel versions of the FFT algorithm
are O(n logn/p) where p is the number of available pro-
cessors. As we spawn tens of thousands of parallel threads
at each DSP cycle (i.e. n � p), the number p of proces-
sors can be regarded as a constant that depends only on
the GPU card the user has access to. Thus, the expected
tendency is for the FFT kernel time to overcome memory
transfer times as blocks get bigger in size.

As for the PV implementation, as noted in the last
section, we could determine that the part that consumes
the most GPU time is the oscillator sum of the PV syn-
thesis. To be able to get a feel of how much resources

1

2

3

2
14

2
15

2
16

D
u
ra

ti
o
n
 (

s
)

Block size

PV synth kernel time - GTX 275

1

2

3

2
14

2
15

2
16

D
u
ra

ti
o
n
 (

s
)

Block size

PV synth kernel time - GTX 470

DSP block period
1. cubic interp
2. linear interp

3. truncated
4. builtin sine

5. texture interp
no calculation

Figure 2. Kernel times for different implementations of
oscillator calculation running on different card models.

user-defined computation consumes, we compared 5 dif-
ferent implementations of the oscillator calculation. Three
of them use a 1024−point sine wave lookup table, previ-
ously calculated and copied from the host to the device,
and two of them use GPU’s built-in functions to aid the
calculation. The five different oscillator implementations
are: (1) table lookup with 4-point cubic interpolation, (2)
table lookup with 2-point linear interpolation, (3) table
lookup with truncated index, (4) direct use of the built-
in sine wave function, and (5) table lookup with (linearly
interpolated) texture fetching.

The time taken for each oscillator implementation can
be seen on Figure 2. We have also plotted the DSP cy-
cle period for each block size as well as a “control” im-
plementation with no oscillator calculation at all, to work
as a basis for comparison. Notice, though, that the con-
trol implementation includes the full PV analysis (which
comprises one FFT run for the oscillators’ phase estima-
tion) and also the main synthesis loop, but with no oscil-

lator calculation (the loop just sums a small constant float
number at each round).

Regarding implementations (1), (2) and (3), we can
see that they behave as expected, i.e. they grow roughly
proportionally, according to the number of operations in-
volved; truncated table lookup is faster than linear inter-
polation, which is in turn faster than cubic interpolation.
Consistently, all of them are faster on the GTX 470 when
compared to the same implementation running on the GTX
275.

The built-in sine wave implementation (4) takes ap-
proximately the same time as implementation (2) on the
GTX 275, but has a proportionally worse performance on
the GTX 470, achieving an intermediate result between
implementations (1) and (2).

As for the built-in texture fetching with linear inter-
polation, also known as implementation (5), its behaviour
is a bit difficult to explain. On the GTX 275, it has the
worse behaviour of all methods, taking 40% longer than
the second most expensive, cubic interpolation. On the
other hand, on the GTX 470 implementation (5) has a per-
formance comparable to the others, being a little bit faster
than cubic interpolation. We assume that this behaviour
has something to do with differences in texture memory
fetching implementations on different card models.

From these plots we can see that, for the GTX 275,
blocks with size bigger than 216 take more time to com-
pute any of the Phase Vocoder implementations than the
time available for realtime applications. A similar result
was found for the GTX 470 with blocks bigger than 217

samples.
We can also observe that Phase Vocoder times grow

superlinearly for all implementations. Since the number
of oscillators in the additive synthesis is roughly half the
number of samples in a block, a quadratic computational
complexity O(n2) is expected. The degree of parallelism
brought by the GPU is not enough to produce differences
in profile for the variant oscillator lookup methods imple-
mented, and the differences in scale are accountable by
the hidden constant in the big-O notation.

4. DISCUSSION

Given the results described in the last section, we can con-
clude that small implementation differences can have sig-
nificant results regarding kernel time consumption on the
GPU. It is not clear whether the numerical quality of the
built-in sine function is better than our 4-point cubic in-
terpolation, but it is clear that conscious choices have to
be made in order to use the GPU’s full potential for larger
block sizes.

We can also conclude that, if we restrict the roundtrip
to few memory transfers in each direction, then there is no
need to bother with memory transfer time as its magnitude
is of the order of tenths of milliseconds while DSP block
periods are of the order of several milliseconds even for
the smaller block sizes considered.

By analyzing the time results of the full PV analysis

and synthesis, it is possible to obtain the maximum block
size for the realtime use of each oscillator implementation
for each card model. The maximum number of samples
achieved in each scenario is summarized below:

model \ implementation 1 2 3 4 5

GTX 275 214 215 215 215 214

GTX 470 215 216 216 215 215

4.1. Future work

Many interesting questions arose from this investigation,
and there are plenty of directions to be followed. We sum-
marize below some approaches which we shall pursue in
future works:
• One of the present works of our Computer Music Re-

search Group at IME/USP6 deals with audio distribu-
tion over computer networks. It would be very inter-
esting to analyze the possibility of outsourcing compu-
tation over the network to remote machines with GPU
cards installed on them. Would it be worth it to use
remote parallel resources for realtime scenarios given
network delay?

• By using GPU’s asynchronous execution possibilities,
it is possible to decouple memory transfer and kernel
execution from the Pd DSP cycle. We could, for exam-
ple, use a producer/consumer model to feed interme-
diate buffers that could then be played independently
from computation control. This could also give us bet-
ter results for computing performance.

5. REFERENCES

[1] M. Dolson, “The phase vocoder: A tutorial,” Com-
puter Music Journal, vol. 10, no. 4, pp. 14–27, 1986.

[2] E. Gallo and N. Tsingos, “Efficient 3D audio process-
ing on the GPU,” in Proceedings of the ACM Work-
shop on General Purpose Computing on Graphics
Processors. ACM, August 2004, pp. 2004–2004.

[3] C. Henry, “GPU audio signals processing in Pure
Data, and PdCUDA an implementation with the
CUDA runtime API,” in Pure Data Convention, 2011.

[4] K. Moreland and E. Angel, “The FFT on
a GPU,” in Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics
hardware, ser. HWWS ’03. Eurographics Associa-
tion, 2003, pp. 112–119.

[5] L. Savioja, V. Välimäki, and J. O. Smith, “Audio sig-
nal processing using graphics processing units,” J. Au-
dio Eng. Soc, vol. 59, no. 1/2, pp. 3–19, 2011.

[6] N. Tsingos, W. Jiang, and I. Williams, “Using pro-
grammable graphics hardware for acoustics and au-
dio rendering,” J. Audio Eng. Soc, vol. 59, no. 9, pp.
628–646, 2011.

6http://compmus.ime.usp.br/

