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Abstract
The transition between Hermitian and non-Hermitian matrices of the Gaussian
unitary ensemble is revisited. An expression for the kernel of the rescaled
Hermite polynomials is derived which expresses the sum in terms of the highest
order polynomials. From this Christoffel–Darboux-like formula some results
are derived including an extension to the complex plane of the Airy kernel.

PACS numbers: 05.40.−a, 02.70.Rr, 05.10.−a

1. Introduction

The Gaussian ensemble of random matrices introduced in late 1950s by Wigner [1] has since
then a successful history. It consists of three classes of Hermitian matrices whose elements
are real, complex and quaternion, respectively, denoted as the orthogonal (GOE), the unitary
(GUE) and the symplectic (GSE) indexed by the number of degrees of freedom β = 1, 2
and 4 of the matrix elements. The link with the characterization of the manifestation of chaos
in quantum mechanics [2] multiplied its applications. By the same time, Ginibre studied the
classes of Gaussian matrices obtained by removing the Hermiticity condition [3]. Remaining
obscured by the success of the Hermitian ensemble, that model has attracted, in more recent
years, great attention, and important contributions extended Ginibre’s pioneering work [4].
The transition from Hermitian to non-Hermitian has also been investigated (see, for instance,
[5] for developments and applications).

A crucial step in RMT analytical derivations of the eigenvalue statistical measures is to
find appropriate orthogonal polynomials in terms of which the joint distribution of matrix
elements can be put in a determinantal form. Once this is done, measures can be expressed
in terms of the associated polynomial kernel. Next, the polynomial’s Christoffel–Darboux
formula is used to derive the kernel asymptotics for large order of polynomials, the regime
one is usually interested in. This was the procedure followed by Mehta to unravel, in his
seminal work, the statistical properties of the Wigner Gaussian ensemble in which case the
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polynomials are the Hermite ones [6]. In the studies of the transition from GUE to its non-
Hermitian Ginibre correspondent, it has been found that, by an appropriate rescaling, the
same Hermite polynomials are the ones to be used. However, with the argument rescaled,
the Christoffel–Darboux formula of the Hermite polynomials is no longer valid. Despite this,
several results have already been obtained. It has been shown that, asymptotically, starting
from Wigner’s semi-circle law on the real axis, the density of eigenvalues evolves into an
elliptic shape distribution as the Hermitian condition is progressively broken, approaching the
uniform circular distribution of the Ginibre case [7]. The existence of an important quasi-
Hermitian regime with special properties [8] has also been established. The expression for
the gap probability at the bulk of the spectrum was derived [9] and also statistics at the
spectral edge have been investigated [10]. The structure of the eigenvalue trajectories along
the transition has recently been revealed [11].

Important as they are, the above achievements do not make worthless the endeavor to have,
for the rescaled polynomials, some equivalent of Christoffel–Darboux formula. Of course, the
obtainment of a formula of this kind has in itself an obvious mathematical interest. But also
from the side of applications, one might expect that with it, analytical difficulties can be
avoided [10] allowing us to derive other results.

In the next section, we show that there is indeed a way to express the sum over polynomials
appearing in the kernel associated with the rescaled Hermite polynomials in terms of the higher
order ones. Then, in the following section the formula is applied to derive the elliptic shape of
the asymptotic density distribution, a known result, and the gap probability at the bulk of the
spectrum, a new result. Finally, the extension of the Airy kernel at the edge is obtained, and
the presence of different asymptotic regimes is discussed.

2. The Christoffel–Darboux-like formula

Consider a matrix S, of size N, taken from the ensemble of random matrices whose joint
distribution of elements is given by

P(S) = exp[−tr(S†S)], (1)

and define a matrix H(t) by the relation

H(t) =
(

S + S†

2

)
+ t

(
S − S†

2

)
, (2)

where the parameter t varies from 0 to 1. It can easily be proved that H(0) is a Hermitian GUE
matrix [11]. As S = H(1) belongs to the Ginibre ensemble of non-Hermitian matrices, H(t)
undergoes a transition from the Wigner to the Ginibre ensemble. With t > 0, equation (2)
together with its adjoint can be inverted to express S in terms of H and H† as

S =
(

1 + t

2t

)
H −

(
1 − t

2t

)
H†. (3)

Substituting equation (3) into equation (1), we obtain the density distribution of the t-dependent
matrix elements of H:

P(H) = KN (t) exp

{
−tr

[
1 + t2

2t2
(H†H) − 1 − t2

4t2
(HH + H†H†)

]}
. (4)

Replacing in (4), H by its decomposition H = QDQ−1, where D is a diagonal matrix which
contains the complex eigenvalues z = x + iy, the traces in (4) can be calculated. The two last
ones immediately give tr(HH) = ∑

z2
i and tr(H†H†) = ∑

z̄2
i , while the trace tr(H†H) can
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be dealt with using the method developed by Ginibre or alternatively Dyson’s version of it [6].
After some manipulations the joint density distribution

P(z1, z2, . . . , zN ) = const exp

[
−

N∑
k=1

(
x2

k + y2

t2

)] ∏
j>i

|z j − zi|2 (5)

of the eigenvalues in the complex plane is obtained. The structure of this distribution, namely
the exponential of a sum of individual eigenvalue terms multiplied by the product of the
differences between each pair of them is typical of the joint density distributions of eigenvalues
of the RMT ensembles. To investigate statistical properties of the eigenvalues of H(t), we
would like, therefore, to be able to use the powerful RMT method of multidimensional
integration. The first step in this method is to find polynomials pn(z) orthogonal with respect
to the weight defined by the exponential factor; then the term with the differences is written as
the product of Vandermonde determinants in which rows are put in the form of polynomials.
With these definitions, the normalized joint density distribution can be written as

P(x1, y1, x2, y2, . . . , xN, yN ) = 1

N!
det[KN (xi, yi, x j, y j)], (6)

where

KN (z1, z2) =
N−1∑
k=0

fk(z̄1) fk(z2), (7)

with

fk(z) = exp

[
−1

2
(x2 + y2/t2)

]
pk(z). (8)

The effect of integrating one eigenvalue in equation (6) is to remove the row and column
corresponding to the given eigenvalue with the remaining determinant being multiplied by
a constant. Integrating, for instance, all eigenvalues gives the normalization constant N! in
equation (6). Integrating keeping a set of n eigenvalues fixed gives the n-point correlation
function:

Rn(x1, y1, . . . , xn, yn) = N!

(N − n)!

∫
· · ·

∫
P(x1, y1, . . . , xN, yN )

N∏
n+1

dxi dyi. (9)

With n = 1, we have the density of eigenvalues

R1(x, y) = KN (z, z) =
N−1∑
j=0

f j(z̄) f j(z) (10)

and, with n = 2, the two-point correlation function

R2(x1, y1; x2, y2) = KN (z1, z2) =
N−1∑
j=0

f j(z̄1) f j(z2). (11)

In the Ginibre case, t = 1, the method applies due to the orthogonality∫
dx dy

π
exp(−|z|2)z̄iz j = i!δi j (12)

of the product z̄iz j with respect to the weight exp(−|z|2), such that the polynomials are the
monomials

pn(z) = zn

√
n!

. (13)
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As the imaginary part of z appears in equation (5) divided by the parameter t, this orthogonality
does not hold for t �= 1. To overcome this difficulty we define, by the Rodrigues formula, the
polynomials

pn(z) = (−1)n

2n/2
√

n!(1 + t2)n/2
ex2+y2/t2

(
∂

∂x
+ it2 ∂

∂y

)n

e−x2−y2/t2
. (14)

Expanding the power operator, equation (14) can be written as

pn(z) = 1

2n/2
√

n!(1 + t2)n/2

n∑
k=0

n!

k!(n − k)!

(
ex2 dk

dxk
e−x2

)

× (it)n−k

(
ey2/t2

tn−k dn−k

dyn−k
e−y2/t2

)
, (15)

such that the Rodrigues formula of the Hermite polynomials, namely Hn(x) =
(−1)n exp(x2)dn/dxn exp(−x2), can be used to express the polynomials pn(z) in terms of
the Hermite ones as

pn(z) = 1

2n/2
√

n!(1 + t2)n/2

n∑
k=0

n!

k!(n − k)!
Hk(x)(it)n−kHn−k

(y

t

)
. (16)

Using this expression and the orthogonality relations∫ ∞

−∞
exp(−x2)Hm(x)Hn(x) = √

π2nn!δmn (17)

of the Hermite polynomials, the orthonormality relations∫
dx dy

tπ
exp(−x2 − y2/t2)pm(z̄)pn(z) = δmn (18)

for the polynomials pn(z) are straightforwardly proved. Multiplying now equation (16) by
wn/

√
n! and summing from zero to infinite we obtain

∞∑
n=0

wn

√
n!

pn(z) =
∞∑

n=0

wn

2n/2(1 + t2)n/2

n∑
k=0

1

k!(n − k)!
Hk(x)(it)n−kHn−k

(y

t

)
, (19)

which, after inverting the order of summations and the introduction of the new index l = n−k,
becomes the product of independent sums as

∞∑
n=0

wn

√
n!

pn(z) =
∞∑

k=0

(
w√

2(1 + t2)

)k
Hk(x)

k!

∞∑
l=0

1

l!

(
itw√

2(1 + t2)

)l

Hl

(y

t

)
. (20)

By an appropriate definition, in each case, of the variable q of the generating function

exp(2qx − q2) =
∞∑

n=0

qn

n!
Hn(z) (21)

of the Hermite polynomials, these two sums can be resummed to give
∞∑

n=0

wn

√
n!

pn(z) = exp

[
2wz√

2(1 + t2)
− (1 − t2)w2

2(1 + t2)

]
. (22)

Moreover, by rearranging the argument in this exponential, it turns out that, with an appropriate
definition of the variable q, again it can be put in the form of the generating function

∞∑
n=0

wn

√
n!

pn(z) = exp

[
2w

√
1 − t2√

2(1 + t2)

z√
1 − t2

− (1 − t2)w2

2(1 + t2)

]
(23)
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of the Hermite polynomials. Expanding it, a comparison between terms of the same power in
the two series leads to the explicit expression

pn(z) = 1√
2nn!

(
1 − t2

1 + t2

)n/2

Hn

(
z√

1 − t2

)
(24)

of the rescaled Hermite polynomials. Apart from the fact that we are using a different
parameterization, this expression is known; nevertheless, the present derivation furnishes
for them, as byproducts, a Rodrigues formula and a generation function.

From equation (7), the key quantity in deriving the spectral statistical properties of the
ensemble is the kernel function

Sn(a, z, t) =
n−1∑
k=0

pk(ā)pk(z) (25)

associated with these polynomials. More precisely, we are interested in its asymptotic
expression in the limit of large matrix sizes. In order to be able to deduce this asymptotics,
a relation expressing the sum in terms of higher order polynomials is needed. To derive this
relation, consider the quantity

Gn(a, z) = −1 + t2

4t2
[(1 + t2)pn(ā)p′

n(z) − (1 − t2)p′
n(ā)pn(z)] (26)

and the recurrence relations

p′
n =

√
2n

1 + t2
pn−1 (27)

and √
2n(1 + t2)pn = 2zpn−1 − (1 − t2)p′

n−1, (28)

obtained from the recurrence relations H ′
n(x) = 2nHn−1(x) and Hn = 2xHn−1 − 2(n − 1)Hn−2

of the Hermite polynomials. Now, if the derivatives in equation (26) are replaced using
equation (27), and the polynomials of order n are expressed in terms of the polynomials of
order n − 1 and their derivatives using equation (28) then, by rearranging terms, Gn(a, z) can
be written as

Gn(a, z) = − 1

2t2
[(1 + t2)ā − (1 − t2)z]pn−1(ā)pn−1(z)

− 1 − t2

4t2
[(1 − t2)pn−1(ā)p′

n−1(z) − (1 + t2)p′
n−1(ā)pn−1(z)]. (29)

Multiplying this equation by the exponential e− (1+t2 )

2t2
āz+ (1−t2 )

4t2
z2

, an integration by parts between
arbitrary limits leads to the recurrence relation∫ z

z0

dv exp

(
− (1 + t2)

2t2
āv + (1 − t2)

4t2
v2

)
Gn(a, v) = exp

(
− (1 + t2)

2t2
āz + (1 − t2)

4t2
z2

)
×pn−1(ā)pn−1(z)|zz0

+
∫ z

z0

dv exp

(
− (1 + t2)

2t2
āv + (1 − t2)

4t2
v2

)
Gn−1(a, v). (30)

A recurrent application of this relation, and the fact that G0(a, z) = 0, gives for the polynomial
kernel the formula

Sn(a, z, t) = exp

(
(1 + t2)

2t2
āz − (1 − t2)

4t2
z2

)[
Sn(a, z0, t)exp

(
− (1 + t2)

2t2
āz0 + (1 − t2)

4t2
z2

0

)

+
∫ z

z0

dv exp

(
− (1 + t2)

2t2
āv + (1 − t2)

4t2
v2

)
Gn(a, v)

]
, (31)

5
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which is a main result of the present paper. By expressing the sum in the kernel over the
polynomials up to a given order in terms of an integral which contains the highest order ones,
it has, for our polynomials, the same meaning of the Christoffel–Darboux formula. Of course,
it provides, as the Christoffel–Darboux formula does, a way of using the asymptotics of higher
order polynomials. Asymptotics which in the case of the Hermite polynomials are well known
in the whole complex plane [14].

The integration limit z0 in equation (31) remains indefinite and this freedom can be used to
address calculations in the two main regions of interest in the complex plane, namely the bulk
and the edge of the eigenvalue distribution. For the bulk, the appropriate interval of integration
is from the origin to z and therefore z0 = 0; on the other hand, for the edge, the integral is
from z to infinity, and z0 = ∞.

Before passing to applications, we remark that equation (31) is the solution of the first-
order non-homogeneous differential equation:

∂Sn(a, z, t)

∂z
− 1

2t2
[(1 + t2)ā − (1 − t2)z]Sn(a, z, t) = Gn(a, z). (32)

In particular, putting t = 1, it reduces to

∂Sn(a, z, 1)

∂z
− āSn(a, z, 1) = −pn(ā)p′

n(z), (33)

which, with pn(z) given by equation (13), is satisfied by

Sn(a, z, 1) =
n−1∑
k=0

(āz)k

k!
. (34)

3. Applications

Starting with the bulk region with z0 = 0, equation (31) becomes

Sn(a, z, t) = exp

(
(1 + t2)

2t2
āz − (1 − t2)

4t2
z2

)

×
[

Sn(a, 0, t) +
∫ z

0
dv exp

(
− (1 + t2)

2t2
āv + (1 − t2)

4t2
v2

)
Gn(a, v)

]
, (35)

where using equations (25) and (35) itself, the ‘initial’ condition Sn(a, 0, t) can be determined
to be given by

Sn(a, 0, t) = Sn(0, ā, t)

= exp

(
− (1 − t2)

4t2
ā2

)[
Sn(0, 0, t) +

∫ ā

0
dv exp

(
(1 − t2)

4t2
v2

)
Gn(0, v)

]
. (36)

This leads to the expression

Sn(a, z, t) = exp

(
(1 + t2)

2t2
āz − (1 − t2)

4t2
z2 − (1 − t2)

4t2
ā2

){
Sn(0, 0, t)

+
∫ ā

0
dv exp

(
(1 − t2)

4t2
v2

)
Gn(0, v)

+ exp

(
(1 − t2)

4t2
ā2

) ∫ z

0
dv exp

(
− (1 + t2)

2t2
āv + (1 − t2)

4t2
v2

)
Gn(a, v)

}
,

(37)
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where

Sn(0, 0, t) =
n−1∑
k=0

p2
k(0) =

[(n−1)/2]∑
l=0

(2l)!

22l(l!)2

(
1 − t2

1 + t2

)2l

, (38)

which for large values of n can be approximated as

Sn(0, 0, t) ∼
∞∑

l=0

(2l)!

22l(l!)2

(
1 − t2

1 + t2

)2l

=
[

1 −
(

1 − t2

1 + t2

)2
]− 1

2

= 1 + t2

2t
. (39)

3.1. The density and the two-point correlation function

The asymptotic of the density can be derived using equation (37) together with equation (10).
Since

x2 + y2/t2 = (1 + t2)

2t2
|z|2 − (1 − t2)

4t2
(z̄2 + z2) (40)

we obtain

Kn(z, z, t) = Sn(0, 0, t) +
∫ z̄

0
dv exp

[
(1 − t2)

4t2
v2

]
Gn(0, v)

+ exp

[
(1 − t2)

4t2
z̄2

] ∫ z

0
dv exp

[
− (1 + t2)

2t2
z̄v + (1 − t2)

4t2
v2

]
Gn(z, v). (41)

To proceed, we write

Gn(a, z) = −1 + t2

4t2

[
(1 + t2)pn(ā)p′

n(z) − (1 − t2)

√
n

n + 1
pn−1(ā)p′

n+1(z)

]
(42)

using equation (27). Performing an integration by parts produces an integral which can also
be integrated by parts using again equation (27). Repeating this procedure, a series in inverse
powers of n is generated in which polynomials appear in increasing order. The first dominant
term of this series is

Kn(z, z, t) = Sn(0, 0, t)

−
(

1 + t2

4t2

) [
(1 + t2)| fn(z)|2 − (1 − t2)

√
n

n + 1
fn−1(z̄) fn+1(z)

]
, (43)

where the functions fn(z) are localized in the complex plane. Their modulus reaches a
maximum, which defines a curve in the complex plane. To deduce the defining equation
of this curve, we resort to the asymptotic form [14]

exp

(
−x2

2

)
Hn(x) = 2

n
2 − 3

4

(nπ)
1
4

√
n!

sinh θ
exp

[(
n

2
+ 1

4

)
(2θ − 2 sinh 2θ )

]
(44)

of the Hermite polynomials, where

x =
√

2n cosh θ. (45)

For the complex argument of the fn, writing θ = u + iv we have

z =
√

2n(1 − t2)(cosh u cos v + i sinh u sin v) (46)

which corresponds to a transformation from Cartesian to elliptic coordinates. The modulus
| fn(z)| contains a rapidly varying exponential term and a slowly varying coefficient. As a
consequence, the points where the argument of the exponential is maximum correspond to the

7
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locus where | fn(z)| reaches, in the complex plane, its maximum values. In terms of (u, v),

this argument is

2n

(
t2 cosh2 u cos2 v − sinh2 u sin2 v

t2
+ u − sinh u cosh u cos 2v

)
, (47)

which for a fixed value of v has, as a function of u, a parabolic shape. At the maxima of this
family of parabolas the derivatives with respect to u and v of the above function vanish. This
condition leads to the pair

sinh 2u

(
t2 cos2 v − sin2 v

t2

)
+ 1 − cosh 2u cos 2v = 0 (48)

and

− sin 2v

(
t2 cosh2 u + sinh2 u

t2

)
+ 2 sinh u cosh u sin 2v = 0 (49)

of coupled equations. The second equation has the solution

tanh u = t2 (50)

which substituted in the first equation makes it vanish for any value of v. As a consequence,
the curve is an ellipse of axes

a =
√

2n

1 + t2
(51)

and

b = t2

√
2n

1 + t2
(52)

and area

πab = 2nt2

1 + t2
, (53)

which satisfies the condition Sn(0, 0, t)πab/(πt) = n.
Turning to correlations, asymptotically we can assume that, at the bulk of the distribution,

the polynomial kernel can be approximated by the first term in equation (37) such that the
expression

K(a, z, t) = 1 + t2

2t
exp

[
1 − t2

8t2
(ā2 − z2) − 1 + t2

4t2
(|a|2 + |z|2)

]

× exp

[
1 − t2

8t2
(a2 − z̄2) + 1 + t2

2t2
āz

]
(54)

for the kernel is obtained. As a matter of fact, this expression can also directly be derived by
solving the differential equation (32) neglecting its non-homogeneity. By taking the modulus
of equation (54) the two-point correlation function

|K(a, z, t)|2 =
(

1 + t2

2t

)
exp

(
−1 + t2

2t2
|a − z|2

)
(55)

is obtained, which is just a rescaling of the Ginibre result. As a consequence, at the bulk, other
statistical measures too are expected to be rescaling those of the Ginibre limit (t = 1) [8].

8
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3.2. The gap probability

Turning to eigenvalue spacings, we want to calculate the probability E(0, s) that a disc of
radius s be empty. In the limit when n → ∞, this is given by the Fredholm determinant [12]

E(0, s) = lim
λ→1

det(1 − λK), (56)

which has the expansion

log[det(1 − λK)] = −
∞∑

n=1

λn

n

∫
Cs

d2z1d2z2 · · · d2znK(z1, z2)K(z2, z3) · · · K(zn, z1). (57)

Substituting the kernels K(zi, z j) by its expression given by equation (54), their product in
equation (57) assumes the simpler expression

K(z1, z2) · · · K(zn, z1) =
(

1 + t2

2t

)n

exp

[
−1 + t2

2t2

n∑
i=1

|zi|2
]

× exp

[
1 + t2

2t2
(z̄1z2 + z̄2z3 + · · · + z̄nz1)

]
. (58)

Replacing equation (58) into equation (57), the integrations are better performed using the
complex form zi = riξi with ξi = eiφi and writing the elements of area as d2zi = ridridξi/iπξi.

The integrations in the radial variables are from 0 to s and in the unit circle for the angle
variables. Expanding the n exponentials exp(z̄iz j)), the integrations in the angle variables
become ∑

l1=0

· · ·
∑
ln=0

∮
dξ1

iπξ1
· · ·

∮
dξn

iπξn
(r1r2ξ̄1ξ2)

l1 (r2r3ξ̄2ξ3)
l2 · · · (r1r2ξ̄nξ1)

ln , (59)

which can also be written as

(r1)
ln+l1 · · · (rn)

ln−1+ln
∑
l1=0

· · ·
∑
ln=0

∮
dξ1

iπξ1
· · ·

∮
dξn

iπξn
(ξ̄1ξ2)

l1 · · · (ξ̄nξ1)
ln . (60)

It is easy to convince ourselves that the above integrations vanish unless all the indices li are
equal, that is, we must have l1 = l2 = · · · = ln = l. In this case, each integration gives a factor
of 2. The integrations in the radial variables of the nth term in equation (57) are all equal to
the same incomplete gamma function such that the expression of the Fredholm determinant
becomes

log[det(1 − K)] = −
∞∑

n=1

1

n

∞∑
l=0

(
λ

l!

∫ 1+t2

2t2
s2

0
dv e−vvl

)n

. (61)

Performing the summation in the index n we arrive, with λ = 1, at the expression

E(0, s) =
∞∏

l=0

(
1 − 1

l!

∫ 1+t2

2t2
s2

0
dv e−vvl

)
(62)

of the gap function as an infinite product. As predicted, this is just a rescaling of the Ginibre
result (t = 1) [13]. In figure 1, the exactness of this formula is shown.

3.3. The complex Airy kernel

Let us now consider the problem of investigating statistical properties at the asymptotic region
far from the origin. At this region the polynomial kernel Sn(a, z) is given by

Sn(a, z, t) = −exp

(
(1 + t2)

2t2
āz − (1 − t2)

4t2
z2

)

×
∫ ∞

z
dv exp

(
− (1 + t2)

2t2
āv + (1 − t2)

4t2
v2

)
Gn(a, v) (63)

9
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Figure 1. The expression for the gap probability E(0, s), equation (62), for t = 1 and t = 0.5 is
compared with numerical simulation.

obtained by performing the integration in equation (30) from z to infinity. As the argument
of the exponential in the integrand is supposed to be large, an asymptotic series whose first
dominant term is

Sn(a, z, t) = 1 + t2

2

pn(ā)p′
n(z) − p′

n(ā)pn(z) + t2[pn(ā)p′
n(z) + p′

n(ā)pn(z)]

ā − z + t2(ā + z)
(64)

can be generated integrating by parts. Expressing the polynomials in terms of the rescaled
Hermite ones, equation (64) can be written as

Sn(a, z, t) = 1 + t2

2n+1n!

(
1 − t2

1 + t2

)n
A− + t2A+

ā − z + t2(ā + z)
, (65)

where

A± = Hn

(
ā√

1 − t2

)
H ′

n

(
z√

1 − t2

)
± H ′

n

(
ā√

1 − t2

)
Hn

(
z√

1 − t2

)
. (66)

Immediately, by taking the limit t → 0, the Christoffel–Darboux formula at the real axis is
recovered.

At the edge, the Hermite polynomials can be replaced by their asymptotic approximation
[14]

exp

(
− z2

2

)
Hn(z) = π−3/42(2n+1)/4

√
n!Ai(ξ ), (67)

where Ai(ξ ) is the Airy function and

z = √
2n + 1 − ξ√

2n1/6
. (68)

At the same order of approximation, the polynomial derivative can be replaced by

exp

(
− z2

2

)
H ′

n(z) =
√

2nπ−3/42(2n+1)/4
√

n![Ai(ξ ) − n−1/3Ai′(ξ )]. (69)

10
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Using these approximations in equation (65), the complete kernel, that is equation (7), omitting
exponential terms becomes

Kn(ξ1, ξ2, t) ∼ Ai(ξ̄1)Ai′(ξ2) − Ai′(ξ̄1)Ai(ξ2) + 2t2n1/3Ai(ξ̄1)Ai(ξ2)

ξ̄2 − ξ1 − t2(4n2/3 + ξ̄1 + ξ2)
. (70)

For t �= 0, this expression extends the Airy kernel [15] to the complex plane. Taking now the
usual asymptotic limit n → ∞ keeping t fixed, the kernel factorizes implying an uncorrelated
regime. Assuming that the parameter t scales with n as t ∼ n−α with α positive such that it
approaches zero as n gets larger, then α = 1/3 is a critical value above which the behavior
at the edge is governed by the standard Airy kernel, while below it an uncorrelated regime
prevails.

4. Conclusion

We have obtained for the rescaled Hermite polynomials, which are the main ingredient in
the formalism describing the transition between the Hermitian (Wigner) and the totally
non-Hermitian (Ginibre) Gaussian unitary ensembles, a Christoffel–Darboux-like formula.
It expresses the sum of polynomials up to an order in terms of an expression that contains only
the higher order ones. Combining this formula with asymptotics of the Hermite polynomials
in the complex plane, we have been able to derive the level density, the two-point correlation
function and the gap probability at the bulk of the 2D spectrum. On the other hand, asymptotics
at the edge provides an extension to the complex plane of the Airy kernel. A Rodrigues formula
and a generating function for the rescaled Hermite polynomials also have been established.
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