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Abstract

We study the emergence of loose Hamilton cycles in subgraphs of random hypergraphs. Our main result states that the minimum
d-degree threshold for loose Hamiltonicity relative to the random k-uniform hypergraph Hk(n, p) coincides with its dense analogue
whenever p ≥ n−(k−1)/2+o(1). The value of p is approximately tight for d > (k + 1)/2. This is particularly interesting because the
dense threshold itself is not known beyond the cases when d ≥ k − 2.
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1. Introduction

A widely studied topic in combinatorics is the existence of vertex spanning substructures in graphs and hyper-
graphs. Since the corresponding decision problems are in many cases computational intractable, a large branch of
research has focused on obtaining sufficient and easily verifiable conditions assuring the existence of these struc-
tures. A classic example of such a result is Dirac’s theorem, which states that every graph on n ≥ 3 vertices and
minimum degree at least n/2 contains a Hamilton cycle. Since its inception, Dirac’s theorem has been generalised in
numerous ways [1, 2]. While the situation is increasingly well-understood for graphs, many problems in the setting of
hypergraphs remain largely open.
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In the past decades much effort has been dedicated to studying which phenomena of dense settings can be trans-
ferred to sparser but well-structured settings. The study of combinatorial theorems relative to a random set has seen
much progress in the recent years, which has gone alongside the development of powerful new methods and tools.
One of the most fascinating aspects of this field is that certain dense parameters can be transferred to the sparse setting,
without knowing their precise value, a famous example being hypergraph Túran densities as shown independently by
Conlon and Gowers [3] and Schacht [4]. For a more detailed exposition of these results, see the survey of Conlon [5].

Here we are interested in transference principles for spanning substructures. A commonly studied object in this
line of research is the random graph introduced by Erdős and Rényi. We denote by G(n, p) the binomial random graph
with n vertices that contains every possible edge independently with probability p. The study of Hamilton cycles in
random graphs dates back to Pósa [6] and Korshunov [7], who, independently, showed that G(n, p) contains a Hamilton
cycle with high probability1 (w.h.p. for short) provided that p is somewhat greater than (log n)/n. More precise and
stronger results were obtained by Komlós and Szemerédi [8], Ajtai, Komlós and Szemerédi [9] and Bollobás [10].

Given this, we can ask which subgraphs of G(n, p) typically contain a Hamilton cycle. Sudakov and Vu [11]
conjectured the following random analogue of Dirac’s theorem, which was proved by Lee and Sudakov [12]: For any
ε > 0, if p is somewhat greater than (log n)/n, then G(n, p) typically has the property that every spanning subgraph
with minimum degree at least (1 + ε)np/2 contains a Hamilton cycle. Since this work, there has been a lot of interest
in such resilience theorems for other types of spanning or almost spanning subgraphs (see, e.g., [13, 14, 15, 16, 17]),
introducing many new ideas and techniques.

We study this problem in the setting of hypergraphs. A k-uniform hypergraph (k-graph for brevity) G consists of
a set of vertices V(G) and a set of edges E(G) where each edge is a set of k vertices.2 The degree deg(S ) of a set
S ⊆ V(G) is the number of edges that contain S . For 1 ≤ d ≤ k− 1, we denote the minimum d-degree by δd(G), which
is defined as the maximum m such that every set of d vertices (d-set for short) has degree at least m in G.

An intriguing open question in extremal hypergraph theory is to determine asymptotically optimal minimum de-
grees conditions that force hypergraph analogues of Hamilton cycles. A loose cycle in a k-graph is a cyclic sequence
of edges such that each two consecutive edges overlap in exactly one vertex, and no pair of non-consecutive edges
have vertices in common. The order and the length of a loose cycle are, respectively, its number of vertices and its
number of edges. A loose cycle is Hamilton if it spans all vertices.

Definition 1.1. The minimum d-degree threshold for loose Hamilton cycles µd(k) is defined as the least µ ∈ [0, 1]
such that for every γ > 0 and large enough n divisible by k − 1, every n-vertex k-graph G with δd(G) ≥ (µ + γ)

(
n−d
k−d

)
contains a loose Hamilton cycle.

For d = k−1, the threshold µd(k) was determined by Kühn and Osthus [18] when k = 3 and in general independently
by Keevash, Kühn, Osthus and Mycroft [19] and by Hàn and Schacht [20]. Other than this, µd(k) is only known for
d = 1 and k = 3, a result due to Buß, Hàn and Schacht [21], which was later refined by Han and Zhao [22]. For later
reference, we note that µ1(k) ≥ 2−(k−1). This follows by considering the disjoint union of two cliques of the same order.
Additional lower bounds can be found in the work of Han and Zhao [23]. We remark that other types of cycles have
also been studied, and we refer the reader to a recent survey for a more detailed history of the problem [24].

Returning to the random setting, the binomial random k-graph Hk(n, p) on n vertices is defined analogously to
G(n, p) and contains every possible edge independently with probability p. Loose Hamiltonicity in the random setting
was investigated by Dudek, Frieze, Loh and Speiss [25], who showed that w.h.p. Hk(n, p) contains a loose Hamilton
cycle provided that p is somewhat greater than (log n)/nk−1 after preliminary work of Frieze [26]. The value of p is
asymptotically optimal, since below this threshold, w.h.p. Hk(n, p) contains isolated vertices. It should be noted that
these results have been recovered recently in a much more general setting [27, 28].

Given the resilience results in the graph setting, it is natural to ask whether extensions to the hypergraph setting are
possible. For loose cycles, this question was posed by Frieze [29, Problem 58]. Our main result gives an essentially
optimal answer to this question for d > (k+ 1)/2, which is in particular interesting as the threshold µd(k) is not known
beyond the cases in which we have d ≥ k − 2 [19, 20, 21, 30, 31].

1 Meaning with probability going to 1 as n tends to infinity.
2 For convenience, we write subgraph instead of subhypergraph.
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Theorem 1.2 (Main result). For every 1 ≤ d < k and γ > 0 there is a C > 0 such that the following holds. If
p ≥ max{n−(k−1)/2+γ,Cn−(k−d) log n} and n is divisible by k − 1, then w.h.p. G ∼ Hk(n, p) has the property that every
spanning subgraph G′ ⊆ G with δd(G′) ≥ (µd(k) + γ)p

(
n−d
k−d

)
contains a loose Hamilton cycle.

The value of p in this result is unlikely to be optimal for the whole range of d. On the other hand, p = Ω(nd−k log n)
is a natural lower bound, since otherwise δd(G) = 0 with high probability. Thus, our result is approximately tight
whenever d > (k + 1)/2: for such d, we have n−(k−1)/2+γ ≤ Cnd−k log n if γ is small enough, and hence our hy-
pothesis on p in Theorem 1.2 matches the natural lower bound for p mentioned above. Very recently, Petrova and
Trujić [32] gave a stronger bound for the case (k, d) = (3, 1), as they proved that for k = 3 it suffices to have
p ≥ C max

{
n−3/2, nd−3

}
log n for some C > 0. However, for all we know, the threshold for the property described

in Theorem 1.2 could even be of order nd−k log n for the whole range of d.
Resilience for Hamiltonicity has also been investigated for other types of hypercycles. In particular, Clemens,

Ehrenmüller and Person [33] studied Hamilton Berge cycles (which are less restrictive than loose cycles) in 3-graphs
and Allen, Parczyk and Pfenninger [34] studied tight Hamilton cycles (which are more restrictive than loose cycles)
for d = k − 1. Moreover, Ferber and Kwan [35] proved an analogous result to Theorem 1.2 for perfect matchings,
which gives approximately tight bounds for p whenever d > k/2.

Another line of research, going under the name of ‘random perturbation’, combines a deterministic graphs with a
random model to study the emergence of large structures, including loose Hamilton cycles [36, 37]. Finally, a related
set of questions has been studied in terms of random sparsifications of (hyper)graphs that robustly contain perfect
matchings and tilings [38, 39, 40, 41], which has been coined ‘(random) robustness’.

Our proof is based on the absorption method in combination with embedding results for the (Weak) Hypergraph
Regularity Lemma. We also benefit from a framework of Ferber and Kwan [35], which was introduced to tackle the
resilience problems for matchings. The main difference to matchings is that Hamilton cycles come with a notion of
connectivity. Hence, to prove Theorem 1.2 we need to extend this framework with further ideas in essentially every
step.

An important constraint for our proof is that the value of µd(k) is unknown in almost all cases. In contrast to the
aforementioned results for Hamiltonicity [34, 33, 32], we therefore cannot rely on any structural insights of past work
regarding µd(k). Our strategy thus uses only the mere existence of loose Hamilton cycles to extract certain character-
istic properties such as connectivity and covering most vertices and relate them to the random setting. Unfortunately,
this is not sufficient in certain critical situations, where multiple Hamilton cycles have to be combined. We overcome
the issues arising in this situation by showing that the threshold µd(k) actually allows us to find a Hamilton cycle with
additional properties such as certain vertices being far apart from each other. Hence, in order to find a Hamilton cycle
in the sparse setting, we develop in parallel a way to find an ‘enhanced’ Hamilton cycle in the dense setting.

The rest of the paper is organised as follows. In the next section, we present two main lemmas from which we
derive Theorem 1.2. The rest of the paper, Sections 3–4, is dedicated to the proofs of the above mentioned two
lemmas. We finish with some concluding remarks in Section 5.

2. Proof of Theorem 1.2 (Main result)

We apply the absorption method to find a Hamilton cycle in the proof of Theorem 1.2. Informally, this technique
separates the argument into two parts. First we find a special (loose) path A that allows us to integrate any small set
of vertices into a larger path. Then we cover all but few vertices with a loose cycle that contains A as a subpath. We
conclude the proof by using the property of A. A diagram showing how to build the proof from the main lemmas is
illustrated in Figure 1.

A loose path P in a k-graph is a sequence of edges such that each two consecutive edges overlap in exactly one
vertex, and no pair of non-consecutive edges have vertices in common. If the context is clear, we simply speak of a
path. The order of P is its number of vertices. For vertices u and v, we say that P is a loose (u, v)-path if u is in the first
edge, v is in the last edge and no other edge contains u or v. For convenience, the constant hierarchies are expressed
in standard ≪-notation in the remainder of the paper. To be precise, we write x ≪ y to mean that for any y ∈ (0, 1]
there exists an x0 ∈ (0, 1) such that for all x ≤ x0 the subsequent statements hold. Hierarchies with more constants
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Theorem 1.2
(Main result)

Lemma 2.2
(Sparse Cover Lemma)

Lemma 2.1
(Sparse Absorption Lemma)

Lemma 3.1
(Sparse Connection Lemma)

Lemma 4.4
(Sparse Absorber Lemma)

Lemma 4.5
(Dense Absorber Lemma)

Lemma 4.6
(Threshold exploitation)

Figure 1: Proof diagram.

are defined in a similar way and should be read from the right to the left. The first constant in a hierarchy is always
assumed to be positive. Finally, if we write 1/x in a hierarchy, we implicitly mean that x ∈ N.

Lemma 2.1 (Sparse Absorption Lemma). Let η ≪ α ≪ 1/k, 1/d, γ and 1/C ≪ 1/k, γ with k ≥ 3 and p ≥
max{n−(k−1)/2+γ,Cn−(k−d) log n}. Then w.h.p. G ∼ Hk(n, p) has the following property.

For any spanning subgraph G′ ⊆ G with δd(G′) ≥ (µd(k)+ γ)p
(

n−d
k−d

)
, there is a set A ⊆ V(G′) with |A| ≤ αn and two

vertices u, v ∈ A such that for any subset W ⊆ V(G′) \A with |W | ≤ ηn divisible by k−1, the induced graph G′[A∪W]
has a loose (u, v)-path covering A ∪W.

The next lemma allows us to cover most vertices with a single loose path.

Lemma 2.2 (Sparse Cover Lemma). Let 1 ≤ d ≤ k − 1 with k ≥ 3, η > 0, α ≪ 1/k, 1/d, γ and 1/C ≪ 1/k, γ and
p ≥ max{Cn−(k−d) log n, Cn−(k−2) log n}, then w.h.p. G ∼ Hk(n, p) has the following property.

For any spanning subgraph G′ ⊆ G with δd(G′) ≥ (µd(k)+γ)p
(

n−d
k−d

)
, Q ⊆ V(G′) with |Q| ≤ αn and u, v ∈ V(G′) \Q,

there is a loose (u, v)-path P in G′ − Q that covers all but at most ηn vertices of G′ − Q.

Lemmas 2.1 and 2.2 combine easily to a proof of our main result.

Proof of Theorem 1.2. The case when k = 2 is covered by the work of Lee and Sudakov [12]. So in the following,
we assume that k ≥ 3. Consider α, η with η ≪ α ≪ 1/k, γ. Then w.h.p. G ∼ Hk(n, p) satisfies the outcomes of
Lemmas 2.1 and 2.2. Now let G′ ⊆ G be a spanning subgraph with δd(G′) ≥ (µd(k) + γ)p

(
n−d
k−d

)
. By assumption on G,

we may pick a set A ⊆ V(G′) and two vertices u, v ∈ A with the property described in Lemma 2.1. Let Q = A \ {u, v}.
By assumption on G, there is a loose (u, v)-path P in G′ − Q that covers all but at most ηn vertices W of G′ − Q. To
finish the proof, we use the property of A to find a loose (u, v)-path P′ covering A∪W. It follows that P∪ P′ is a loose
Hamilton cycle.

The remaining sections are dedicated to the proofs of Lemmas 2.1 and 2.2.

3. Connecting and covering vertices

In the proofs of Lemmas 2.1 and 2.2, we need to connect vertices with a short path of uniform order while avoiding
a few other vertices. This is the purpose of the following lemma.
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Lemma 3.1 (Sparse Connection Lemma). Let k ≥ 3 and suppose 1 ≤ d < k, α ≪ 1/k, γ and 1/K ≪ 1/k, γ. Suppose
further that 0 < ν ≤ 1 − α and ϱ ≪ 1/k, ν. If p ≥ max{Kn−(k−d) log n, ω(n−(k−2))}, then w.h.p. G ∼ Hk(n, p) has the
following property.

Let G′ ⊆ G be a spanning subgraph with δd(G′) ≥ (µd(k) + γ)p
(

n−d
k−d

)
and Q ⊆ V(G′) with |Q| ≤ αn. Let C ⊆

V(G′) \ Q be a νn-set taken uniformly at random. Then with probability at least 2/3 the following holds. For any
R ⊆ C with |R| ≤ ϱn and distinct u, v ∈ V(G′) \ (Q ∪ R), there is a loose (u, v)-path P in G′ of order 8(k − 1) + 1 with
V(P) \ {u, v} ⊆ C \ R.

The basic idea for the proof of Lemma 3.1 is to apply a sparse version of the (Weak) Hypergraph Regularity
Lemma. This reduces the problem to performing the required connections in a dense setting, where we can benefit
from the assumptions on the minimum degrees. We remark that with the help of Lemma 3.1 we already have all the
requirements for proving Lemma 2.2 (Sparse Cover Lemma). Both proofs will appear in the full version of the paper.

4. Absorbing vertices

This section is dedicated to the proof of Lemma 2.1. The basic idea is to combine many small absorbing structures
to a larger one. We define the former as follows.

Definition 4.1 (Absorber). Let X = {x1, . . . , xk−1} be a set of vertices in a k-graph G. A collection A = {P j
1, P

j
2} j∈[q] is

an absorber rooted in X if the following hold:

• P1
i , . . . , P

q
i are pairwise vertex-disjoint loose paths for i ∈ [2];

• V(
⋃

j∈[q] Pj
1) = V(

⋃
j∈[q] Pj

2) ∪ X and X ∩ V(
⋃

j∈[q] Pj
2) = ∅;

• Pj
1 has the same starting and terminal vertices as Pj

2 for each j ∈ [q].

The vertices of A are the vertices in
⋃

j∈[q] Pj
2 and we let V(A) =

⋃
j∈[q] V(Pj

2). Note that V(A)∩ X = ∅. The order of A
is |V(A)|.

Next we define templates, which encode the relative position of the absorbers in our construction.

Definition 4.2 (Template). An r-graph T is an (r, z)-template if there is a z-set Z ⊆ V(T ) such that T −W has a perfect
matching for any set W ⊆ Z of size less than z/2 with v(T −W) divisible by r. We call Z the flexible set of T .

Templates were introduced by Montgomery in [42]. We remark that r = k − 1 in our proof, because we intend to
absorb k − 1 vertices at a time. The next lemma was derived by Ferber and Kwan [35] from the work of Montgomery
and states that there exist sparse templates.

Lemma 4.3 (Lemma 7.3 in [35]). For 1/z, 1/L ≪ 1/r, there is an (r, z)-template T with v(T ), e(T ) ≤ Lz and v(T ) ≡
0 mod r.

To use templates we require the following key lemma, which provides us with a single absorber avoiding any
specified small set of vertices.

Lemma 4.4 (Sparse Absorber Lemma). Let k ≥ 3 and suppose 1/M ≪ α ≪ 1/k, 1/d, γ and 1/C ≪ 1/k, γ. If
p ≥ max{n−(k−1)/2+γ,Cn−(k−d) log n}, then w.h.p. G ∼ Hk(n, p) has the following property.

For any spanning subgraph G′ ⊆ G with δd(G′) ≥ (µd(k) + γ)p
(

n−d
k−d

)
, any set Q of at most αn vertices and any

(k − 1)-set X in V(G) \ Q, there is an absorber A in G′ rooted in X that avoids Q and has order at most M.

Once Lemma 4.4 has been established, we may combine the above results to obtain a proof of Lemma 2.1, whose
outline is given in the following. A formal proof will appear in the full version of the paper.

Sketch of the proof of Lemma 2.1 (Sparse Absorption Lemma). Consider ν and M with η ≪ ν, 1/M ≪ α. We begin
by reserving a set Z ⊆ V(G′) and vertices u′ ∈ Z and v � Z such that, for any set W ⊆ V(G′)\Z with |W | ≤ ηn, we may
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cover W′ = W ∪ {v} with a loose (u′, v)-path PW′ of order at most
√
ηn in G′[Z ∪ W′]. This is possible by applying

Lemma 3.1 with Z playing the role of C and an auxiliary result proved by Ferber and Kwan [35, Lemma 7.5].
Next, we use Lemma 4.3 to find a (k−1, νn)-template T . We assume that V(T ) ⊆ V(G′) and that Z considered above

is the flexible set of T . In the next step, we find absorbers rooted in the edges of T . More precisely, by Lemma 4.4
there is an absorber Ae in G′ rooted in e of order at most M for each e ∈ E(T ). Denote by Pe the collection of loose
paths of Ae that do not cover e, that is, the paths corresponding to the passive state of Ae. We can assume that the
collections Pe are pairwise vertex-disjoint. This can be guaranteed by choosing the above absorbers one after another,
avoiding the already involved vertices with the help of the set Q in Lemma 4.4. Finally, fix u ∈ V(G′) \ (V(T ) ∪ {v})
arbitrarily and integrate the absorbers Ae (e ∈ E(T )) into a single loose (u, u′)-path P1 with V(P1)∩ (V(T )∪{v}) = {u′}
using Lemma 3.1 several times.

Set A = V(P1) ∪ V(T ) ∪ {v}. We claim that A has the properties detailed in Lemma 2.1. We may pick the involved
constants so that |A| ≤ αn. For the absorption property, consider an arbitrary subset W ⊆ V(G′) \ A with |W | ≤ ηn
and |W | divisible by k − 1. We have to show that the induced graph G′[A ∪W] has a loose (u, v)-path covering A ∪W.

To that end, let W′ = W ∪ {v}. By the choice of Z, we can find a loose (u′, v)-path PW′ of order at most
√
ηn in

G′[Z ∪W′] that covers W ′. We now concatenate P1 and PW′ to obtain a loose (u, v)-path P that covers W and uses at
most |Z|/2 vertices of Z. Moreover, one can check that |V(T ) \ V(P)| ≡ 0 mod (k − 1). Recall that T is a (k − 1, νn)-
template with flexible set Z. It follows that T − V(P) admits a perfect matchingM. We then ‘activate’ each absorber
Ae with e ∈ M and leave all other absorbers in their passive state. For each e ∈ M, let P′e be the collection of paths
of Ae that cover e. Let P′ be obtained from P by replacing Pe with P′e for each e ∈ M. It follows that P′ is a loose
(u, v)-path in G′[A ∪W] covering A ∪W.

4.1. Absorbers in the sparse setting

Let us now discuss the proof of Lemma 4.4 (Sparse Absorber Lemma). The idea of the proof is to find an absorbing
structure A in the dense setting and embed it in the random graph via an embedding lemma for hypergraph regularity.
One issue arising in this approach is that the probability p depends on the ‘densest spots’ of A. So to minimise p, we
have to find an absorbing structure A whose edges are nowhere too cluttered. This can be formalised by the following
definition, which we adopt from Ferber and Kwan [35].

A Berge cycle in a (possibly non-uniform) hypergraph is a sequence of distinct edges e1, . . . , eℓ such that there
exist distinct vertices v1, . . . , vℓ with vi ∈ ei ∩ ei+1 for all i (where eℓ+1 = e1). The length of such a cycle is its number
of edges ℓ. The girth of a hypergraph is the length of the shortest Berge cycle it contains (if the hypergraph contains
no Berge cycle we say it has infinite girth, or is Berge acyclic). We say that an absorber rooted on {x1, . . . , xk−1} is
K-sparse if it has girth at least K, even after adding the extra edge {x1, . . . , xk−1}. The following lemma allows us to
find a sparse absorber in the dense setting.

Lemma 4.5 (Dense Absorber Lemma). Let 1/n ≪ η ≪ 1/M ≪ γ, 1/k, 1/d, 1/K. Let G be an n-vertex k-graph in
which all but ηnd d-sets have degree at least (µd(k) + γ)

(
n−d
k−d

)
. Let X be a (k − 1)-set of vertices each of degree at least

(µd(k) + γ)
(

n−1
k−1

)
. Then G contains a K-sparse absorber A rooted in X of order at most M.

To prove Lemma 4.4 we apply a sparse version of the (Weak) Hypergraph Regularity Lemma. This reduces the
problem to a dense setting, where we may use Lemma 4.5 to find the desired absorbers. The proof will appear in the
full version of the paper.

4.2. Absorbers in the dense setting

Finally, we discuss the proof of Lemma 4.5. We require the following strengthening of the minimum degree
threshold for loose Hamilton cycles, which ensures the existence of a loose Hamilton cycle under slightly more
general conditions and with some additional properties. We say that a set X ⊆ V(C) in a loose cycle C is K-spread if
the distance (in terms of vertices) between any pair of (distinct) vertices of X is at least K with respect to the ordering
of C.

For 1 ≤ d ≤ k−1, we define µ∗d(k) as the least µ ∈ [0, 1] such that for all γ > 0, positive integers t, K and n divisible
by k − 1 and sufficiently large the following holds: if G is an n-vertex k-graph, y ∈ V(G) and X ⊆ V(G) is a t-set such
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that δd(G − X) ≥ (µ + γ)
(

n−d
k−d

)
and deg(x) ≥ (µ + γ)

(
n−1
k−1

)
for every x ∈ X, then G contains a loose Hamilton cycle C in

which X is K-spread and y has degree 2.
Note that we trivially have µ∗d(k) ≥ µd(k). The following lemma, whose proof will appear in the full version of the

paper, shows that these two thresholds actually coincide.

Lemma 4.6 (Threshold exploitation). We have µd(k) = µ∗d(k) for all 1 ≤ d ≤ k − 1.

Given this, the proof idea for Lemma 4.5 is to find a set of M vertices S ⊆ V(G) that contains X and appropriately
reflects the minimum degree structure of the host graph G. One can then apply Lemma 4.6 to the induced graph G[S ]
in order to obtain the desired absorber. The details of this argument will appear in the full version of the paper.

5. Conclusion

In this paper, we investigated for which probabilities p = p(n) ∈ [0, 1] a subgraph G′ ⊆ G of a k-uniform binomial
random graph G ∼ Hk(n, p) with minimum d-degree δd(G′) ≥ (µd(k)+o(1))p

(
n−d
k−d

)
typically contains a loose Hamilton

cycle. Our main result determines the optimal value for p when d > (k + 1)/2. While we do provide bounds for p
when d ≤ (k + 1)/2, it is unlikely that our results are optimal in this range. Hence a natural question is whether one
can improve on this. It would furthermore be very interesting to understand whether one can obtain similar results for
‘tighter’ cycles. A first step in this direction was undertaken by Allen, Parczyk and Pfenninger [34] for d = k−1. Note
that in this situation, the problem of finding a tight Hamilton cycle in a dense graph is quite well-understood. Going
beyond this, one potentially challenging problem would be to prove such a result for values of d and k for which we
do not yet know the precise value of the (dense) minimum degree threshold.
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