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Consistency conditions for the first-order formulation of Yang-Mills theory
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We examine the self-consistency of the first-order formulation of the Yang-Mills theory. By comparing
the generating functional Z before and after integrating out the additional field Fy,, we derive a set of
structural identities that must be satisfied by the Green’s functions at all orders. These identities, which hold
in any dimension, are distinct from the usual Ward identities and are necessary for the internal consistency
of the first-order formalism. They relate the Green’s functions involving the fields 7, to Green’s functions
in the second-order formulation which contain the gluon strength tensor f7,. In particular, such identities

may provide a simple physical interpretation of the additional field F7,.
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I. INTRODUCTION

The first-order formulation of gauge theories has a
simple form that involves only cubic interactions of the
gauge fields, which are momentum-independent. This
simplifies the computations of the quantum corrections
in the standard second-order gauge theories, which involve
momentum-dependent three-point as well as higher-point
vertices. It is well known that the first-order formulation
may be achieved by introducing, for example in the Yang-
Mills theory, an auxiliary field Fy, [1-9]. The correspond-
ing first-order Lagrangian density may be written as

£ =1L pa e

1
4 _EszFMW (11)

where f7, is the gluon field strength tensor

f4, = 0,A% — 9,A% + gf e ALAC. (1.2)

Using the Euler-Lagrange equation in conjunction with the
above Lagrangian, one can see that, at the classical level,
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F¢, = f4,. From this it follows that £ = —1/4f%,f%",
which corresponds to the usual second-order Lagrangian.
At the quantum level, the renormalization of the first-
order formalism has been previously studied from various
points of view [1-9]. In particular, the BRST renormaliza-
tion of this formulation has been addressed in [7,8]. The
BRST identities, which reflect the gauge invariance of the
theory, are suitable for a recursive proof of the renormaliz-
ability to all orders in perturbation theory [10-12].

In the present work, we examine different kinds of
identities, which are necessary for the consistency of the
first-order formulation. To this end, we introduce a source
Jy. for the gluon field Ay and also a source Jy,, for the field
F4,, and consider the generating functional Z[J,;] of
Green’s functions. We compare the functional dependence
of Z on the sources in the original first-order formalism
with that found after making a shift

Fo, = Fo,+ fi, =205 (1.3)
which enables us to integrate out the auxiliary field Fy,.
The equality of these functional forms leads to a set of
structural identities among the Green’s functions which
must be satisfied to all orders, in any dimension. These
show that in the first-order formalism, Green’s functions
containing only external gluon fields are the same as those
which occur in the second-order formulation. Furthermore,
these identities relate the Green’s functions with some
external Fj, fields to certain Green’s functions in the
second-order formalism that contain the gluon strength
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tensor field f7,. Such Green’s functions involve composite
fields, in which the external legs are “pinched” at the same
spacetime point. As is well known, these lead to ultraviolet
(short-distance) singularities [13—15]. In our case, such
singularities play an important role. They are essential for
the cancellation of ultraviolet divergences arising from loop
diagrams, which is necessary for the implementation of the
structural identities. Proceeding in this way, one obtains, in
particular, the identity

(O[T F4, (x)Ad (x,) - - Az (x,)[0)

= (0T, (x)Aa (x1) -+~ Aqy (x,)[0).  (1.4)
This may be interpreted as the quantum-mechanical gen-
eralization of the relation Fy, = fj, obtained at the
classical level. Namely, the Green’s functions containing
one Fy, field and an arbitrary number of Yang-Mills fields
are equal to the Green’s functions involving a single gluon
field strength tensor f7, and an arbitrary number of Yang-
Mills fields.

In Sec. II we analyze the Lagrangian and the generating
functional of Green’s functions in the first-order formulation.
In Sec. III, we proceed to derive the result (1.4), which has
been explicitly verified up to one-loop order. In Sec. IV, we
study a basic structural identity satisfied by the Green’s
functions and examine the cancellations between the loop
ultraviolet divergences and the ultraviolet singularities aris-
ing from tree graphs involving composite fields. We present a
brief discussion of the results in Sec. V. Some details of the
relevant calculations are given in the Appendices.

II. THE LAGRANGIAN AND THE
GENERATING FUNCTIONAL

The complete Lagrangian density for the first-order
formulation in covariant gauges is

1 1 1 o
L= PP = TP = (0,40 + (0,7 D "

(2.1)
where & is a gauge fixing parameter, 77, ” are ghost fields

and D" is the covariant derivative
|

Z'1, )

_ J DyDiDAexpi [ dlx(Ly + T f* = Jo,J" " + jaAr<) '

DHab — §abogr — gfabepre, (2.2)
In addition, we will also introduce the external sources J ,‘jl,
and j; as follows

Esource = JZDF’M“ + jZA”a' (23)

The normalized generating functional for Green’s functions
is given by

2.1 | DyDADFDAexpi[S+ [ ddx(Ja, Fra+ jaAua)]
JI= [ DyDiDFDAexpis ’

(2.4)

where S = [ d?xL. This equation is in a form suitable for
functional differentiation with respect to J and j, and
therefore for finding the Green’s functions.

If we were to set Jj;, = 0 at the outset (so that we would
consider Green’s functions with only external fields Ay)
and make the change of variable in the functional integral

Foy = Fu+ fw (2.5)

then we find that

ZlJ = 0.j] = Z,[j]. (2.6)
where Z,[j] is the generating functional for the second-
order theory, characterized by the Lagrangian density

1 1
‘CZ = _Z /wfﬂyu - E(aﬂAﬂu)z + (8ﬂf]u)Dﬂubnb (27)

together with the source term j;A#“. This establishes the
important property that the Green’s functions with only
external gluon fields are the same in both approaches.
We now consider using Z[J, j] with J # 0 and examine
what changes occur in the first-order formalism when there
are external fields F, . To this end we make the shift (1.3) in
the numerator of (2.4) which leads, after integrating out the
F field, to the alternative form of the generating functional

This equals to Z,[j] in Eq. (2.6) if we set Jj, = 0. It is
worth noticing here the unusual dependence of Z'[/, j]
on Jy,.

Comparing the forms (2.4) and (2.8) of the generating
functionals and differentiating these with respect to J and j,

| DnDifDAexpi [ d'xL,

(2.8)

|
leads to a set of structural identities among the Green’s
functions, which must be satisfied to all orders. In principle,
the Green’s functions obtained in this way should be
evaluated by using the Feynman rules appropriate to the
first-order formalism. However, since Green’s functions

085013-2



CONSISTENCY CONDITIONS FOR THE ...

PHYS. REV. D 101, 085013 (2020)

(@)

(®)

FIG. 1. Tadpole (a) and “pinched” contributions (b) from (0|7 f*4A¢ (x)Af (x)AL(y)|0).

with only external gluon fields are the same as those in the
second-order formulation, the Green’s functions obtained
via Eq. (2.8) are equal to the corresponding ones obtained
by using this formulation. Therefore, we see that such
structural identities may relate the Green’s functions
involving some F fields to certain Green’s functions in
the second-order formulation that contain gluon strength
tensor fields f7,. These identities hold in any dimensions,
both for the finite as well as for the ultraviolet divergent
parts of the Green’s functions.

III. DERIVATION OF RELATION (1.4)

Taking the functional differentiation of Eqs. (2.4) and
(2.8) with respect to J and j, and equating the results we
obtain, by setting J = j = 0, the equation

(0T Fy, (x)A5(y)10) = (OIT £, (x)Aq(»)]0).

Using the Feynman rules given in Appendix A one can
verify that this equation, which relates the propagators FA
and fA, is satisfied in the tree approximation. To one-loop
order, the divergent part of the left-hand side in momentum
space is [see Eq. (B39)]

(yab CYMQ2 5ab 11— %i
Fhmwa = 16x2e 12 K

where we have used dimensional regularization in d =
4 —2¢ dimensions. Our conventions are such that the
configuration space derivative 0, becomes in momentum
space +ik where the momentum £ is flowing into the vertex
with which it is associated.

We must now calculate the divergent part of the propagator
on the right-hand side of Eq. (3.1). One contribution to this
comes from the 9,A} — 9,A{ partof f7,. With the help of the
Eq. (B36), this part yields in momentum space

(3.1)

(kﬂrlya - kvn/m)v (32)

Cymg* ap 13— 351
167%¢ 6 Kk

The other contribution comes from the composite field
gf**cAb(x)A¢(x) which occurs in f¢,(x). Using Wick’s
theorem, one can verify that to order ¢°, such a term arises
from the Feynman diagrams shown in Fig. 1. The first graph
contains a tadpole, Fig. 1(a), which vanishes by using
dimensional regularization. The second diagram corresponds

(kynva - ku’];m)' (33)

to a three-point tree Green’s function which has however two
coordinates “pinched” at the same spacetime point x. As
noted earlier, such a composite field leads to an ultraviolet
(short-distance) singularity (see also Appendix B). Using the
well known expression for the three-point gluon vertex, it is
straightforward to evaluate this contribution in momentum
space, which turns out to be [see Eq. (B42)]

Oy’ oy €45 1
167%¢ 4 K

Adding the contributions given in Egs. (3.3) and (3.4), we
obtain aresult which agrees with that givenin Eq. (3.2). Thus,
we have explicitly verified, to one-loop order, the validity of
the identity (3.1) for the UV divergent parts (in Appendix B
we show that this is valid for the full expression in d
dimensions). It is straightforward to generalize Eq. (3.1)
so as to include an arbitrary number of gluon fields, namely

(kﬂ”l/(l - ky’?ua)' (34)

(O|TF3, (x)A%) (x,) - - Al (x,)]0)
= (0|2, (x)A% (x)) - - Al (x,)|0).

As we have mentioned, this relation may be interpreted as
being a quantum-mechanical extension of the relation Fy, =
S which holds at the classical level.

(3.5)

IV. A BASIC STRUCTURAL IDENTITY

Applying 6°/6J5,(x)8J}(y) to Egs. (2.4) and (2.8) and
equating the results, leads to

(0T Fy, (x)Fly(y)]0)
= 261, 058* (x — ) + (O|Tf2, (x) f25()[0),

where 1, .5 is given by Eq. (A2). As we have explained
following Eq. (2.8), the above equation relates the propa-
gators <O|TFz,,(x)F2ﬁ(y)|O> calculated in the first-order
formalism to the Green’s functions (0|7'fy, (x) Zﬂ(y)|0>
computed in the second-order formalism. We now will
examine the perturbative expansion of each side of
Eq. (4.1). It is easy to verify that this equation is satisfied
at the tree level. To one-loop order, using the Feynman rules
given in Appendix A, one can show [see Eq. (B24)] that the
graphs that contribute to the left side (see Fig. 4) yield in
momentum space the pole term

(4.1)
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CYMg
16 167%€

+ <§ + 25) %Lﬂuﬁaﬂ(k)} T (42)

(1)ab
FF/u/,aﬂ

5 {_(5 + l)lﬂv.aﬂ

where L, ,4(k) is given by Eq. (A3) and we use dimen-
sional regularization in 4 — 2e dimensions.

The computation of the right-hand side of Eq. (4.1) is
somewhat more involved at order ¢°, where we encounter
contributions from three sources. The first one, which
corresponds to (0[7(8,A5 —9,A5)(x)(9,A;—0sA%) (¥)[0)
comes from one-loop graphs shown in Fig. 2. This yields in
momentum space the pole term [see Eq. (B32)]

l.CYMQz 5(117 35— 13i

167°¢ 3K

The other contributions arise from the composite fields
which occur in the Green’s functions gf*<¢(0|T(9,A¢—
8,,AZ)A3AZ|O), gf“Cd(O|TAf,Af,’(8aA§ — 9pA0)|0)  and
GAfe 40| TAGAZAG A4'10). Since the tadpole graphs
vanish when using dimensional regularization, the only
Feynman diagrams which contribute to these Green’s
functions are shown in Figs. 5(a)-5(c) respectively.

These yield, in momentum space, the following pole terms
[see Egs. (B44) and (B46)]

Ly ap(k). (4.3)

9 CYM

16 2 5ab(§+5> k2 ;waﬂ(k) (44)
and
_;9 *Cym o
16 Y2M5h<§+1) nv,of+ (45)

There is an aspect of the contributions from Fig. 5 that is
worth pointing out. The divergent terms given respectively
by Egs. (4.4) and (4.5), come from “pinching” at the same
spacetime point the legs of what would otherwise be a tree
diagram. Explicit calculation of such diagrams once the
external legs are “pinched,” gives rise to short distance
(ultraviolet) singularities as ¢ — 0 when using dimensional
regularization. Adding the contributions coming from
Egs. (4.3), (4.4) and (4.5) leads to the result (4.2), thereby
verifying the pole part of the identity (4.1) to order ¢* (in
Appendix B we show that this is valid for the full
expression in d dimensions).

V. DISCUSSION

We have studied certain consistency conditions for the
first-order formulation of the Yang-Mills theory. To this
end, we examined the forms of the generating functionals
of Green’s functions Z(/, j), before and after integrating
out the additional field Fy, . Differentiations of these forms
with respect to Ji;, and jj; yield a set of structural identities

which are complementary but distinct from the usual Ward
identities. Such identities lead to connections between the
Green’s functions involving the field F¢, and the Green’s
functions in the second-order formulatlon that contain the
gluon strength tensor f7,. An interesting outcome of these
relations is a quantum—mechanical extension of the classical
result Fy, = which provides a simple interpretation of
the field F .

The structural identities hold for the complete Green’s
functions, in any dimensions and to all orders. We have
explicitly verified such identities to one loop-order, for the
ultraviolet divergent parts. These require subtle cancella-
tions between the ultraviolet divergences coming from loop
graphs and the short-distance singularities induced by the
composite fields present in the gluon strength tensor f7,.
These results provide a simpler computation of the expect-
ation values of time-ordered products of operators contain-
ing the composite gluon strength tensor f7,, in terms of
those involving the local field F'

It is known that the renormalizability of the first—order
formulation requires, as well as a scaling of the F¢, field,
also a mixing with the gluon strength tensor ﬁeld fZ,,

s

1/2 "
Fo, — Z}/°F, + Zp, f4, (5.1)
where Zpy is a counterterm which is equal to

(1 =3&)g*Cym/1927%, at one-loop order [7]. Hence,
one may also expect a scaling and mixing of sources of
the form

1/2 .a

Ji = Z;"j + 2D, (5.2)

which is admissible on dimensional, Lorentz and charge-
conjugation symmetry grounds. Yet, our explicit one-loop
calculations show that z = 0. This result may be under-
stood by noting that the last term in Eq. (5.2) could induce
corrections which would violate the Eq. (4.1). Thus we
infer that, to all orders, the structural identities forbid a
mixing between the sources ji and Jy, .

Finally, we remark that the first-order formalism is also
useful in quantum gravity, where it allows us to replace an
infinite number of complicated multiple graviton couplings
by a finite number of simple cubic vertices [5,6]. In this
theory, one would similarly get corresponding structural
identities, which ensure the internal consistency of such a
formulation. This is an interesting issue which deserves
further study.
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APPENDIX A: FEYNMAN RULES

The following Feynman rules for the first-order Yang-
Mills theory can be readily obtained from the Lagrangian
density in Eq. (2.1) (for details, see Ref. [5])

a, Ao b, px 1 b
—_— i p a
» 2 (I)\U,pK - FL)\U,;)K([))> 0 5
(Ala)
a, b,v i 1-¢
AN ab
)
(A1b)
a, b, pr 1
O e o _ 5ab
DPpllk Pk )
; P2 (o i)
(Alc)
a,\o b,v 1
—_—S e - (p/\nUV — panky) 6ab,
D p
(Ald)
b, p
s A .9 rabe
A7 *ng b (nk,unau - nou'fb\u)a
c, v
(Ale)
a b ;
————— >---- e, (AIf)
P p
a’ll'
; 95" Py, (Alg)
I, N G ——
c p b

where the quanta of the Aj and Fy, fields are represented

respectively by the wavy and the continuous lines. Here, the
tensors 1,,,; and L, ,5(p) are given in momentum
space by

1
I/w,aﬂ = 5 (Wﬂai/]uﬁ - nuar]ﬂﬁ) (A2)

and

1
Luv,aﬂ(p) = E (pﬂpal/lvﬁ + PuPplua — PuPallup — PyPﬂ’?m)-
(A3)

It is also convenient to denote the free propagators
in Egs. (Ala), (Alb), (Alc) and (Ald) respectively as

0)ab 0)ab 0)ab 0)ab
Detywap(P)s Dikye (P): Ditys(p) and DEYG (p).
Note that the tensors (A2) and (A3) satisfy

1

1
p[)I/w,ap = p/) ?L/w,ap(p) = 5 (nyapu - nuap;t) (A4)

which imply that the F-propagator in (Al) satisfies the
transversality condition

0) ab

pﬂD%Fﬂy,aﬂ(p) = 0 (AS)
Also, the identities
Loips L ap(P) = Ly 3y ()5 2 (P) =~ Ly ()
vAp T D ap\P) =" z/,p_ ap\P) =" L/,ap
JZ ippz p pz Hv.Ap pz p pz uv.af
(A6)

(L,w.qp(p)/p* is idempotent) imply that the F-propagator
satisfies the relation

0) 2 a
Lﬂu,ﬂ/)(p)Dl(Wl & alf;(p) = 0

(A7)

For completeness, let us also display the well-known
Feynman rules obtained from the second-order formalism
Lagrangian given by Eq. (2.7). The propagators for the Aj
and the ghost fields, as well as the ghost vertex, are the
same as in Egs. (A1b), (A1f) and (Alg). But now, instead of
the single momentum independent vertex, given by (Ale),
as well as the mixed propagator in Eq. (Alc), we have the
following cubic and quartic vertices

085013-5
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q, s b
pa,a abe
af b [(pu - (Iu) Npa + (Qa - ka) N + (k# - pu) 77041/] s (ASa)
k,v,c
a,«a b, 8
_igz [fabedee (naun,@l/ - nﬁltnau)"'
facefdbe (naunuﬂ - 77;wﬁa,8)+ (ASb)
fadefbce (77045771/“ - nuﬁna,u) 3
d’ v C, .u‘

with all momenta flowing inwards.

The identities (3.1) and (4.1) can be verified at the lowest
order, in the momentum space, using the free propagators
introduced in the Feynman rules above. The tree level
momentum space version of Eq. (3.1)

. 0)ab
- lPaDﬁuz/w (Ag)
is verified using Eqgs. (Ald) and (Alb) (note that the
momentum space expression of the bilinears like
(0A(x) ---A(x)) is ipA(p) - --A(=p)).

Similarly, the momentum space form of Eq. (4.1) can be
written as

(0)ab (0)ab

Dippjow = 1PiDps,

0)ab . 0)ab 0)ab
D;}yu,aﬁ = 215ab[ﬂ”7‘1ﬂ + pﬂplel(Afivﬂ - pﬂp/”Dx(‘h‘zl/a
0)ab 0)ab
- pypaDz(MiZ/)’ + pupﬂDz(A/EZa’ (AIO)

which can be readily verified using the Egs. (Ala)
and (A1lb).

APPENDIX B: ONE-LOOP RESULTS

1. Self-energies

a. The general method and the Aj self-energy
in the second-order formalism

Let us first consider all the possible self-energy diagrams
that can be computed using the Feynman rules presented in
Appendix A. As is well known, these basic 1PI diagrams
are the basic building blocks that contribute to the identities
like the ones given by Egs. (3.1) and (4.1).

The diagrams which contribute to the well known result
for A field self-energy, in the second-order formalism, are
shown in Fig. 2 (diagrams in Figs. 2(a), 2(c) and 4(c) have a
combinatorial factor 1/2; there is a minus sign for the ghost
loop diagrams). Figure 3 show the contributions to the A
field self-energy in the first-order formalism. Our basic

|
approach for the computation of all the self-energies will be
based on tensor decompositions. In the case of Figs. 2 and
3, all the diagrams will have, after the loop momentum
integration, the following covariant tensor structure

k,k,
Hl%(k) = Cyp &% <C{’7/w +Ch ;{2 );

I = (2a), (2b), (2¢) (B1)

(we are using e fomn — Cy\160).
The coefficients C! can be obtained solving the follow-
ing system of two algebraic equations

ue ! ) k :dCI+CI
{77 P (k) 1 2 I=(2a),(2b)and (2c),

I, (k) =k2CL+K2CY
(B2)

where we have introduced I, (k) (without the color
indices) such that I'42 (k) = Cyy6°°T1 ().

Using the Feynman rules given in Appendix A, the scalar
integrals on the left-hand side of the Egs. (B2) will have the

following form
dp
[ -0

where ¢ = p + k; p is the loop momentum, £ is the external
momentum and s’ (p, g, k) are scalar functions of p - k, g - k,
p-q, p>, ¢* and k*. Upon using the following relations

(B3)

p-k=(q*-p*—ik)/2, (B4a)
q-k=(q*+ k- p*))/2, (B4b)
p-qg=(p*+q4*-k)/2, (B4c)

085013-6
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q 9
//’ \\\
a, i b,ll a, 1 £ \ ba”
k k N i
p p
(a) (b)

a,p

b,v

FIG. 2. One-loop contributions to the gauge field self-energy in the second-order formalism (¢ = p + k and k in an inward external
momentum). There is a combinatorial 1/2 factor associated with diagrams (a) and (c¢) and a minus sign associated with the ghost-loop
diagram in (b). The relevant Feynman rules are given in Egs. (Alb), (Alf), (Alg), (A8a) and (A8D).

the scalars s’(p, g, k) can be reduced to combinations of
powers of p? and g°. As aresult, the integrals in Eq. (B3) can
all be expressed in terms of combinations of the following
simple integrals

where powers / > 1 and m > 1 may only arise from the terms
proportional to 1 — £ in the gluon propagator [see Eq. (A1b)].
The only nonvanishing (i.e., nontadpole) integrals are

d+1 (k2)d/2—2 F(Z - %)F(% - 1)2

1 _
o [ L M e R e
2m)? (p*)'(g*)" .
_ (k2>d/2—l—m L(l+m—d/2) 712 — 21 (3;_2)111 (B6b)
(47)4/? ()T (m)
['(d/2-DI(d/2—m) (3—-4d)(6-d)
T Tdelem) (BS) ” k4 . (Bée)
q q
a,p b, v a,p b,v
k k
p p
(@) (b)
a, //, \\ by”
~— RIS
k . ’

FIG. 3. One-loop contributions to the gauge field self-energy in the first-order formalism (¢ = p + k and k in an inward external
momentum). The relevant Feynman rules are given in Egs. (Al).
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In d = 4 — 2¢ dimensions, 1/¢ ultraviolet pole part of the
basic integral I'! is given by

i
 167%€’

M (B7)

Implementing the above-described procedure as a
straightforward computer algebra code, we readily obtain
the following results

C§2!1) _ _kz(f“(«f—l)(§+7)+d(189(1—1{(15)&26))+4§(§+5)—14)g2111

C(ZZ”) — _C(IZ“) _%292111

(B8a)
|

(2b) B 2711
C =91
(1217) 4§d ! @b) (BSb)
¢ =5 |
) =P =o, (B8c)

where we have used the formulas in Egs. (B6).

Equation (B8c) follows from the tadpole nature of the
diagram in Fig. 2(c) which vanishes when one uses
dimensional regularization. Notice that Eqs. (B8a), (B8b)

and (B8c) imply that CS + P + P = (P4

CEZb) + C(lzc)), so that the self-energy will be transverse.

(24) (2b)

The sum C{7 + C7 + ngc) gives the following result

(1= E)(E+T) + d(E(5E+26) — 19) —4E(E+5) + 169

21V k2, B9
8(d—1) (B9)
Therefore, the final result for the Ay field self-energy in the second-order formalism is given by
H(2”d>“b(k) _ H(Za)ab(k) 4 H(Zb)ab(k) 4 H(2c)ab (k)
AA - 2% 122 uv
(1= E)(E+T) + d(E(5E 4 26) — 19) — 4E(E+5) + 16
= ( )( ) ( ( ) ) ( ) 92111CYM5¢117 (kzrl/w - k;tkv) (BIO)
8(d—-1)
which is in agreement with the well-known result in d ch)  _ g2
dimensions (see Eq. (A.12) of [14] and the comment on the 1 R ’ (B12b)
missing factor of i on page 81). Using (B7) we obtain the Cfb) = _%2 (d-1)g1'" — C(13b>
following UV pole part (¢*I'' ~ ig?/(167%¢))
(3¢) K 11
P = kg
(d-1)
(2nd)ab o .CYMg2 13 -3¢ ab (1.2 _ o s (BIZC)
HAA uv (k) =1 167[26 6 9 (k Um kﬂkl/> + s C(ZSC) — 11_292111 _ C§3C)

(B11)

which is in agreement with the well-known result (see
Egs. (A.19) and (A.21) of [14]).

b. A; self-energy in the first-order formalism

Let us now consider the Ay self-energy in the first-order
formalism. The one-loop diagrams are shown in Fig. 3.
Using the Feynman rules given in the Appendix A and
considering that we have the same covariant structure as in
Eq. (B1), Egs. (B2) can be solved, with = (3a), (3b) and
(3c), yielding following results

a 2(d—
o =S A0 - + e -2

2" . (Bl2a)
(

A)
[N
S

=

I
>~

d-2)F1" -

where we have used Egs. (B6).

As we can see the transversality condition is also satisfied
in the first-order formalism. Indeed, Eqs. (B12a), (B12b)
and (B12¢), imply that €5 + 5 + ¢ = —(cP*'+
P + ). From the sum ¢ 4 P 4 P we
obtain the following result for the Aj self-energy in the
first-order formalism

Lst)ab 3a)ab 3b)ab 3c)ab
HI(LXAI)/UJ (k) = H.ELA )m/ (k) + HI(LXA );w (k) + H1(4A>Ill/ (k)
(d-2)[d(1-¢&) +&-3]

— QIllC 5ab k2
4(d— 1) g YM ( ’7;w

— kﬂkv)
(B13)
which is different from the result in the second-order

formalism, given by Eq. (B10). Using (B7) we obtain the
following result for the UV pole
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q
a,af
k
P
(a)
q
a,af b,
k
p
(b

b, pv

a,pu b,af

p
©

FIG. 4. One-loop contributions to the self-energies with external F fields in the first-order formalism (¢ = p + k and k in an inward
external momentum). The relevant Feynman rules are given in Egs. (Al).

:lCYMgl 3¢

ab _
167%¢ 6 5( k) +

U

(B14)

Of course there is no contradiction with the general con-
clusions of Sec. II, which asserts that the two formalisms
should have the same Green’s functions containing only
external Ay fields; the 1PI functions are not necessarily the
same in both formalisms. On the other hand, as we will see
bellow from Eq. (B26), the propagator for the Ay field is the
same in both formalisms.

c. Iy, self-energy

A complete tensor basis for the diagram in Fig. 4(a) can
be formed using the two tensors introduced in Eqgs. (A2)
and (A3), since these are the most general tensors with four
indices and having the required symmetry. Similarly to
Eq. (B1) we can write

a a 1
= Cymd | CY 1y, + CS)

4a)ab
HE‘"F)aﬁ,;w(k) k2

La/},;,w (k) .

(B15)

Proceeding similarly as in the case of Eq. (B2), we
contract the Eq. (B15) with 7,,, .5 and L, a/,(k) and solve

the system of equations for CEM and C (as in the
previous calculations, this is a very stralghtforward and
well defined computer algebra procedure), yielding the
following results

4a
CE ) _ 4 i

. 16
—pa-a@ gm0

Using (B7) (notice that Cg‘”) does not have a pole 1/¢), we
obtain the following result for the UV pole

Cymg* E+1

(4a)ab i
l67%e 4

HFF (l[i,;w(k) =

6“”],,ﬂﬂb+~~. (B17)

d. FA and AF self-energies

Finally let us consider the mixed self-energies in
Figs. 4(b) and 4(c). In this case, there is just one tensor
with three indices and the required symmetry. For instance,
in the case of the diagram in Fig. 4(b), the result can be
expressed as follows

(4b)ab

My s (k) = c) Cym&“? (kong, (B18)

- k/inay ) .
Contracting both sides with the Lorentz structure on the
right hand side and performing the integrals with the help of
(B6), we obtain

Cl4h) :é[d(l —& 13— 1PN, (B19)

Using (B7) we obtain the following result for the UV pole

(4b)ab _Cymy” 63
HFA a/},ﬂ(k) - 167[26 b T (err/ﬁ/d - kﬁr]a/t)' (BZO)
Proceeding similarly, we obtain
4c ab 4b)ab
T () = =T 0 (k). (B21)

2. Propagators
a. The FF propagator

Using the results for the self-energies, the propagator for
the F7}, field can be expressed as follows

085013-9



MCKEON, BRANDT, FRENKEL, and MARTINS-FILHO

PHYS. REV. D 101, 085013 (2020)

(Iyab _ ~(0)ac (Lst)cdpa ~(0) d. (0)ac (4a)cdpo.Ad 1~ (0) db
DFFm/,a/)’ - DFA/w,pHAAS ! DAF/I.aﬁ + DFF/w./)o-HFI? ’ DFFM,(I/)’
(0)ac (4b)cdpo.y +(0)db (0)ac (4c)cdp.yd ~(0) db
+ DFF/ID./)JHFA DAFy,a/J + DFAMD,/JHAF DFF}/(S.aﬁ‘ (B22)

From the properties of the tensors L,, 4, (K,1,q — k,1,,) as well as the identity 1, ,; one can show that the last two terms in

Eq. (B22) vanish [see Eqgs. (A4), (A5) and (A6)]. Using the results for IT|."
Eqgs. (B13) and (B15) a straightforward calculation yields

P and Hf;)cmﬂ 0 given respectively in

1) ab . dd(E—-1)—-¢+4+7] -8
D;"I)?/w,aﬁ = gzlllcYM5 b _(5 + I)I/w,aﬂ =+ [ ( ) 2 ] L/w,aﬂ<k) . (B23)
2(d-1)k
Using (B7) we obtain the following UV pole part
1)ab .CYM92 ” 2 1
DI(V}W,aﬂ =1 167%¢ o b{_(é + l)luv,aﬂ + (g + 25) pL;w.aﬂ(k) T (B24)
b. The AA propagator
The one-loop correction to the Aj; propagator can be calculated from
1)ab 0)ac(1st)cdap ~(0)db 0)ac 4a)cdap.yd ~(0)db 0)ac 4b)cdap, 0)db 0)ac~(4c)cda,yd ~(0)db
D,E\/Z/w = D/(Afzyan/(é\At) D/(4A)ﬁy + D/(ﬂlﬁ)“y,aﬂH;F) ’ D;Uiy&.y + D,&;ﬂ,aﬁH;‘A) yD/(4A>y1./ + D/(‘LA);mH,E\F) ! D;“;Zy&.y‘
(B25)
Using the results for Hﬁ&ﬂmaﬂ , Hfﬁ)cmﬁ e Hg: JedaPT and 1'15‘4;)“10['7‘S given respectively in Egs. (B13), (B15), (B18) and

(B21), a straightforward calculation yields

l)ab

(
Dy, =
Adny 8(d—1)

It is immediately clear that Eq. (B26) is the same as
the propagator for the Aj field in the second-order

formalism which can be obtained by simply compu-

ting Dﬂzznﬂdwaﬁ Dﬂzz, where Hﬁ;’d)"daﬂ is given by

Eq. (B10) [using the transversality, it is easy to see that this
will just produce a factor (—1/k*) times the self-energy in
Eq. (B10)]. This is an explicit special example of the
general result, pointed out in Sec. II, according to which the
two formalisms give the same Green’s functions containing
only external Aj fields, for any choice of the gauge
parameter and dimension d. Using (B7) in Eq. (B11),
we obtain the following UV pole part

ab . Cymg® 3¢ - 135ab <@ _ kﬂkv> e,

AAuv — l ]677:26' 6 k2 k4 (B27)

L P(1=8)(E+T) + d(E(5¢ +26) = 19) —4E(E +5) + 16

Jl(l_5)(§+7)+d(§<5§+26)_19)_4€(§+5)+16 2711 ab(nﬂl’ kyky>

8(d—1)

Using the result for the Aj propagator in Eq. (B26), we
can now compute the quantity

(07(9,A¢ — 0,A5)(x)(0.Af — 0pA5) (v)[0),  (B28)

which is part of the contribution to the right-hand side of
Eq. (4.1). The corresponding expression in momentum
space (0, — ik, for the first momentum and 9, — —ik, for
the second momentum) is given by
1)ab 1)ab 1)ab 1)ab
k ko D1ty — kkyD\Ay — k kDY + K, kDS 00
(B29)

where we are using that the Aj propagator is the same in
both formalisms. Using Eq. (B26) we obtain

1
9211 : CYMéab p (kukarluﬂ + kukﬂrlﬂa - kukar]uﬁ - kﬂkﬂnva)

(B30)
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(notice that terms like k,k;zk,k, vanish due to the antisymmetry). Using Eq. (A3), this can be written as

d?(E=1)(E+T) — d(E(5E +26) + 19) +4E(E+5) — 16

4(d-1)

which has the following UV pole

C 3¢-131
i YMgzaab é

167%¢ 3 K (B32)

L;w,aﬁ(k)'

The Aj propagator in Eq. (B26) can also be used to
compute the quantity

(0T (9,A7 = 0,A%)(x)AG()|0). (B33)

that appears on the right-hand side to the identity in
Eq. (3.1). In momentum space, (0, — ik,) this becomes

ik, D\ — ik, D\, (B34)

Using Eq. (B26), we obtain

idz(é— D(E+T)—d(E(5E+26) —19) +4E(E+5) - 16

8(d—1)
1
X 9211 : CYMéab p (kﬂrlua - ky"/m)’ (B35)
which has the following UV pole part
CYMgz 13— 3§ 1
— (k —k cee B36
167[26 6 kz ( [4’11./(1 v”]ﬂa) + ( )

c. The FA and AF propagators

The one-loop contribution to the F'A propagator is given
by

()ab _ (0)ac (4a)cdpo.id 1~(0)db
FAuv,ao — DFF,uz/,po'HFF DFAM,(I

(0)ac (4b)cdpo.,y 1+(0)db
+ DFF/w./mHFA DAAy,a

D

0) (1s1) (0)db
+ DE’AZE./)IIAAv DAAﬂ.a

0 4c)cdp,yd ~(0)db
+ DE"/)\zLC/pHEXI?) n Ds"/zyé,a'

cdpl

(B37)

Using the results form the self-energies and the free
propagators, the first two terms in Eq. (B37) vanish [see
Egs. (A4), (A5) and (A6)] and the sum of the last two terms
yields

1
QZIHCYM5abPLMDﬂﬂ(k)’ (B31)
[
piab _ [d2d=7)(E-1) +55-7]
FAuv,a — l —
4(d-1)

1

X g2111CYM5ab ') (kﬂnua - kl/l/lﬂa)' (B38)

k2
Using (B7) we obtain the following UV divergent result

a C 2 111-9
et = S g 11129
HY, 167°¢ k 12

kunﬂa) +oee
(B39)

(k/l Mva —

Proceeding similarly, we obtain the following result for
the AF propagator

D(l)ab

_ (1)ab
AFauv — -D

FAuv,a (B40)

3. Pinched diagrams

Let us first consider the diagram in Fig. (1b). This arises
from the nonlinear part (0|7 f?A¢(x)Ad(x)A5(y)|0) of
(0|Tf4,(x)A5(y)|0) [the linear part has been taken into
account in Eq. (B33), which has the momentum space
result given in Eq. (B35)]. Since this contribution involves
the product of two fields at the same space-time point x, in
the momentum space they become loop like diagrams,
containing one cubic vertex, given by (A8a), and two
propagators given by (Alb). As we can see in Fig. 6, the
momentum structure is similar to the one shown in the
graph of Fig 4(b) but with no vertex on the left and
replacing the AF internal line by a AA line. Also, there is a
free propagator on the right side. Therefore, the corre-
sponding expression in momentum space have the same
tensor structure as in Eq. (Ald). Proceeding as in Sec. 1 d,
we find

Lld(1 - £)(E+3) + 26026 +5) 2]

8
1
X 9211 : CYMéab P (kurlua - kun/m) (B41)
which has the following UV pole part
Cym¢g* ., E+51
————0"—=(k —k B42
1671’26 4 kz( ﬂ']ua b']/wc) + ( )

Adding the results in Egs. (B41) and (B35), we obtain
(B38), which confirms the identity (3.1) to one loop order.
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(N W W v
Yy
(a)

SN :
S

©

FIG. 5. “Pinched” contributions from (0|7'(0,A{ (x)
and b) and (0|Tf*IAS(x)Ad(x)fP9A4(y)A

— 0,45 (x)) frelAG(v)A
/%(y)\O) (c). There is a second diagram identical to (c) which can be obtained by

~~ Y
x
(b)

(d

5(0)10). (OIT A (x) A () (0.A5(¥) — DpAq(¥))[0) (a

interchanging the x points. The graphs in (d) vanish upon using dimensional regularization in momentum space.

Figure 5(b) shows the contributions from (0|7 f*“4A (x) x
AY(x)(9,A5(y) = 9pA4(y))|0) which arises from the non-
linear parts of (0|Tf,(x)f0,(y)|0) [the linear part was
considered in Eq. (B28), which has the momentum space
result given in Eq. (B31)]. Similarly to the previous calcu-
lation of the graphs in Fig. 1(b), the products of fields at the
same space-time point x give rise to loop integrals. As
shown in Fig. 6(a), the momentum space expression is a
one-loop diagram similar to the contribution from 1(b),
but in this case the basic graph is contracted with

af“d[(~ik,) AA7/3(k) —a <> f]. Since the corresponding
expressions in momentum space have the same tensor
structure as the FF-propagator, we can proceed as in
Sec. B 1c. Using the same tensor basis formed with the
tensors in Egs. (A2) and (A3) we obtain for the sum of the
contributions from Figs. 1(a) and 1(b) the following result

P11 O |Sd(1 = (6 +3) + 626 +5) ~ 1

1
X pl‘uv,aﬂ(k)’ (B43)
which has the following UV pole
9 CYM ab
T 6 (E+5)Lyyap(k) +---. (B44)

Finally, we have the contribution from (0|7 f*¢A¢(x)x
AL(x) FP9AG()AY()I0) in (01T F2,(x)2(»)]0) which is
shown in Fig. 5(c) (there is also an identical contribution
obtained by interchanging the two x points). Similarly to
the previous cases, there is a momentum space expression
with a single loop associated with this contribution. As
before, the loop is associated with the pinch of the

q q
i . c’#ffm\c’a
b

v,d 4.8

P P
@ ®)

FIG. 6. The two basic momentum space graphs associated with
Figs. 1(b) and (5). The momentum space expressions associated
with 1(b) and 5(b) are obtained upon contracting (a) with

f“‘dDAAm(—k) and gf*d](—ik )Dﬂyﬁ( —k) — a < f] respec-
tively. The momentum space expression associated with 5(c) is
obtained upon contracting (b) with g2 facd fbed,

propagators at the same space-time point. However, in this
case we have pinches at both sides so that there is no
interaction vertex. The corresponding loop diagram is
shown in Fig. 6(b). In terms of the tensors 7, ,; and
L, o5(k), we obtain the following result for the loop integral

(d=4)(&-1)

1
gzl“CYM(S“” |:_(§ + 1)1;411,(1/} + Z

1
X pLﬂb,aﬂ(k):| (B45)
which has the following UV pole
.5 Cym 4,
—i 16‘@”5 P(E+ 1)y ap- (B46)

Adding the Egs. (B31), (B43) and (B45), a straightfor-
ward algebra shows that the result is the same as (B23), so
that the identity (4.1) is verified to one-loop order (of
course this remains true for the UV pole part).
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