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We examine the self-consistency of the first-order formulation of the Yang-Mills theory. By comparing
the generating functional Z before and after integrating out the additional field Fa

μν, we derive a set of
structural identities that must be satisfied by the Green’s functions at all orders. These identities, which hold
in any dimension, are distinct from the usual Ward identities and are necessary for the internal consistency
of the first-order formalism. They relate the Green’s functions involving the fields Fa

μν, to Green’s functions
in the second-order formulation which contain the gluon strength tensor faμν. In particular, such identities
may provide a simple physical interpretation of the additional field Fa

μν.
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I. INTRODUCTION

The first-order formulation of gauge theories has a
simple form that involves only cubic interactions of the
gauge fields, which are momentum-independent. This
simplifies the computations of the quantum corrections
in the standard second-order gauge theories, which involve
momentum-dependent three-point as well as higher-point
vertices. It is well known that the first-order formulation
may be achieved by introducing, for example in the Yang-
Mills theory, an auxiliary field Fa

μν [1–9]. The correspond-
ing first-order Lagrangian density may be written as

L̃ ¼ 1

4
Fa
μνFμνa −

1

2
faμνFμνa ð1:1Þ

where faμν is the gluon field strength tensor

faμν ¼ ∂μAa
ν − ∂νAa

μ þ gfabcAb
μAc

ν: ð1:2Þ

Using the Euler-Lagrange equation in conjunction with the
above Lagrangian, one can see that, at the classical level,

Fa
μν ¼ faμν. From this it follows that L̃ ¼ −1=4faμνfaμν,

which corresponds to the usual second-order Lagrangian.
At the quantum level, the renormalization of the first-

order formalism has been previously studied from various
points of view [1–9]. In particular, the BRST renormaliza-
tion of this formulation has been addressed in [7,8]. The
BRST identities, which reflect the gauge invariance of the
theory, are suitable for a recursive proof of the renormaliz-
ability to all orders in perturbation theory [10–12].
In the present work, we examine different kinds of

identities, which are necessary for the consistency of the
first-order formulation. To this end, we introduce a source
jaμ for the gluon field Aa

μ and also a source Jaμν for the field
Fa
μν, and consider the generating functional Z½J; j� of

Green’s functions. We compare the functional dependence
of Z on the sources in the original first-order formalism
with that found after making a shift

Fa
μν → Fa

μν þ faμν − 2Jaμν ð1:3Þ

which enables us to integrate out the auxiliary field Fa
μν.

The equality of these functional forms leads to a set of
structural identities among the Green’s functions which
must be satisfied to all orders, in any dimension. These
show that in the first-order formalism, Green’s functions
containing only external gluon fields are the same as those
which occur in the second-order formulation. Furthermore,
these identities relate the Green’s functions with some
external Fa

μν fields to certain Green’s functions in the
second-order formalism that contain the gluon strength

*dgmckeo2@uwo.ca
†fbrandt@usp.br
‡jfrenkel@if.usp.br
§sergiomartinsfilho@usp.br

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 085013 (2020)

2470-0010=2020=101(8)=085013(13) 085013-1 Published by the American Physical Society

https://orcid.org/0000-0002-6152-4495
https://orcid.org/0000-0001-7873-7684
https://orcid.org/0000-0003-4195-2713
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.085013&domain=pdf&date_stamp=2020-04-24
https://doi.org/10.1103/PhysRevD.101.085013
https://doi.org/10.1103/PhysRevD.101.085013
https://doi.org/10.1103/PhysRevD.101.085013
https://doi.org/10.1103/PhysRevD.101.085013
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


tensor field faμν. Such Green’s functions involve composite
fields, in which the external legs are “pinched” at the same
spacetime point. As is well known, these lead to ultraviolet
(short-distance) singularities [13–15]. In our case, such
singularities play an important role. They are essential for
the cancellation of ultraviolet divergences arising from loop
diagrams, which is necessary for the implementation of the
structural identities. Proceeding in this way, one obtains, in
particular, the identity

h0jTFa
μνðxÞAb1

α1ðx1Þ � � �Abn
αnðxnÞj0i

¼ h0jTfaμνðxÞAb1
α1ðx1Þ � � �Abn

αnðxnÞj0i: ð1:4Þ

This may be interpreted as the quantum-mechanical gen-
eralization of the relation Fa

μν ¼ faμν obtained at the
classical level. Namely, the Green’s functions containing
one Fa

μν field and an arbitrary number of Yang-Mills fields
are equal to the Green’s functions involving a single gluon
field strength tensor faμν and an arbitrary number of Yang-
Mills fields.
In Sec. II we analyze the Lagrangian and the generating

functional ofGreen’s functions in the first-order formulation.
In Sec. III, we proceed to derive the result (1.4), which has
been explicitly verified up to one-loop order. In Sec. IV, we
study a basic structural identity satisfied by the Green’s
functions and examine the cancellations between the loop
ultraviolet divergences and the ultraviolet singularities aris-
ing from tree graphs involving composite fields.We present a
brief discussion of the results in Sec. V. Some details of the
relevant calculations are given in the Appendices.

II. THE LAGRANGIAN AND THE
GENERATING FUNCTIONAL

The complete Lagrangian density for the first-order
formulation in covariant gauges is

L¼ 1

4
Fa
μνFμνa −

1

2
faμνFμνa −

1

2ξ
ð∂μAμaÞ2 þ ð∂μη̄

aÞDμabηb;

ð2:1Þ

where ξ is a gauge fixing parameter, η̄a, ηb are ghost fields
and Dμ ab is the covariant derivative

Dμ ab ¼ δab∂μ − gfabcAμ c: ð2:2Þ

In addition, we will also introduce the external sources Jaμν
and jaμ as follows

Lsource ¼ JaμνFμν a þ jaμAμ a: ð2:3Þ

The normalized generating functional for Green’s functions
is given by

Z½J;j�¼
R
DηDη̄DFDAexpi½SþR

ddxðJaμνFμνaþjaμAμaÞ�R
DηDη̄DFDAexpiS

;

ð2:4Þ

where S ¼ R
ddxL. This equation is in a form suitable for

functional differentiation with respect to J and j, and
therefore for finding the Green’s functions.
If we were to set Jaμν ¼ 0 at the outset (so that we would

consider Green’s functions with only external fields Aa
μ)

and make the change of variable in the functional integral

Fa
μν → Fa

μν þ faμν ð2:5Þ

then we find that

Z½J ¼ 0; j� ¼ Z2½j�; ð2:6Þ

where Z2½j� is the generating functional for the second-
order theory, characterized by the Lagrangian density

L2 ¼ −
1

4
faμνfμνa −

1

2ξ
ð∂μAμ aÞ2 þ ð∂μη̄

aÞDμ abηb ð2:7Þ

together with the source term jaμAμ a. This establishes the
important property that the Green’s functions with only
external gluon fields are the same in both approaches.
We now consider using Z½J; j� with J ≠ 0 and examine

what changes occur in the first-order formalism when there
are external fields Fa

μν. To this end we make the shift (1.3) in
the numerator of (2.4) which leads, after integrating out the
F field, to the alternative form of the generating functional

Z0½J; j� ¼
R
DηDη̄DA exp i

R
ddxðL2 þ Jaμνfμνa − JaμνJμνa þ jaμAμ aÞR

DηDη̄DA exp i
R
ddxL2

: ð2:8Þ

This equals to Z2½j� in Eq. (2.6) if we set Jaμν ¼ 0. It is
worth noticing here the unusual dependence of Z0½J; j�
on Jaμν.
Comparing the forms (2.4) and (2.8) of the generating

functionals and differentiating these with respect to J and j,

leads to a set of structural identities among the Green’s
functions, which must be satisfied to all orders. In principle,
the Green’s functions obtained in this way should be
evaluated by using the Feynman rules appropriate to the
first-order formalism. However, since Green’s functions

MCKEON, BRANDT, FRENKEL, and MARTINS-FILHO PHYS. REV. D 101, 085013 (2020)

085013-2



with only external gluon fields are the same as those in the
second-order formulation, the Green’s functions obtained
via Eq. (2.8) are equal to the corresponding ones obtained
by using this formulation. Therefore, we see that such
structural identities may relate the Green’s functions
involving some F fields to certain Green’s functions in
the second-order formulation that contain gluon strength
tensor fields faμν. These identities hold in any dimensions,
both for the finite as well as for the ultraviolet divergent
parts of the Green’s functions.

III. DERIVATION OF RELATION (1.4)

Taking the functional differentiation of Eqs. (2.4) and
(2.8) with respect to J and j, and equating the results we
obtain, by setting J ¼ j ¼ 0, the equation

h0jTFa
μνðxÞAb

αðyÞj0i ¼ h0jTfaμνðxÞAb
αðyÞj0i: ð3:1Þ

Using the Feynman rules given in Appendix A one can
verify that this equation, which relates the propagators FA
and fA, is satisfied in the tree approximation. To one-loop
order, the divergent part of the left-hand side in momentum
space is [see Eq. (B39)]

Dð1Þ
FA

ab
μν;α ¼

CYMg2

16π2ϵ
δab

11 − 9ξ

12

1

k2
ðkμηνα − kνημαÞ; ð3:2Þ

where we have used dimensional regularization in d ¼
4 − 2ϵ dimensions. Our conventions are such that the
configuration space derivative ∂μ becomes in momentum
spaceþikwhere the momentum k is flowing into the vertex
with which it is associated.
Wemust now calculate the divergent part of the propagator

on the right-hand side of Eq. (3.1). One contribution to this
comes from the ∂μAa

ν − ∂νAa
μ part of faμν.With the help of the

Eq. (B36), this part yields in momentum space

CYMg2

16π2ϵ
δab

13 − 3ξ

6

1

k2
ðkμηνα − kνημαÞ: ð3:3Þ

The other contribution comes from the composite field
gfabcAb

μðxÞAc
νðxÞ which occurs in faμνðxÞ. Using Wick’s

theorem, one can verify that to order g2, such a term arises
from the Feynman diagrams shown in Fig. 1. The first graph
contains a tadpole, Fig. 1(a), which vanishes by using
dimensional regularization. The seconddiagramcorresponds

to a three-point tree Green’s function which has however two
coordinates “pinched” at the same spacetime point x. As
noted earlier, such a composite field leads to an ultraviolet
(short-distance) singularity (see also Appendix B). Using the
well known expression for the three-point gluon vertex, it is
straightforward to evaluate this contribution in momentum
space, which turns out to be [see Eq. (B42)]

−
CYMg2

16π2ϵ
δab

ξþ 5

4

1

k2
ðkμηνα − kνημαÞ: ð3:4Þ

Adding the contributions given in Eqs. (3.3) and (3.4), we
obtain a resultwhich agreeswith that given inEq. (3.2). Thus,
we have explicitly verified, to one-loop order, the validity of
the identity (3.1) for the UV divergent parts (in Appendix B
we show that this is valid for the full expression in d
dimensions). It is straightforward to generalize Eq. (3.1)
so as to include an arbitrary number of gluon fields, namely

h0jTFa
μνðxÞAb1

α1ðx1Þ � � �Abn
αnðxnÞj0i

¼ h0jTfaμνðxÞAb1
α1ðx1Þ � � �Abn

αnðxnÞj0i: ð3:5Þ
As we have mentioned, this relation may be interpreted as
being a quantum-mechanical extension of the relationFa

μν ¼
faμν which holds at the classical level.

IV. A BASIC STRUCTURAL IDENTITY

Applying δ2=δJaμνðxÞδJbαβðyÞ to Eqs. (2.4) and (2.8) and
equating the results, leads to

h0jTFa
μνðxÞFb

αβðyÞj0i
¼ 2iδabIμν;αβδ4ðx − yÞ þ h0jTfaμνðxÞfbαβðyÞj0i; ð4:1Þ

where Iμν;αβ is given by Eq. (A2). As we have explained
following Eq. (2.8), the above equation relates the propa-
gators h0jTFa

μνðxÞFb
αβðyÞj0i calculated in the first-order

formalism to the Green’s functions h0jTfaμνðxÞfbαβðyÞj0i
computed in the second-order formalism. We now will
examine the perturbative expansion of each side of
Eq. (4.1). It is easy to verify that this equation is satisfied
at the tree level. To one-loop order, using the Feynman rules
given in Appendix A, one can show [see Eq. (B24)] that the
graphs that contribute to the left side (see Fig. 4) yield in
momentum space the pole term

FIG. 1. Tadpole (a) and “pinched” contributions (b) from h0jTfacdAc
μðxÞAd

νðxÞAb
αðyÞj0i.
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Dð1Þ
FF

ab
μν;αβ ¼ i

CYMg2

16π2ϵ
δab

�
−ðξþ 1ÞIμν;αβ

þ
�
2

3
þ 2ξ

�
1

k2
Lμν;αβðkÞ

�
þ � � � ; ð4:2Þ

where Lμν;αβðkÞ is given by Eq. (A3) and we use dimen-
sional regularization in 4 − 2ϵ dimensions.
The computation of the right-hand side of Eq. (4.1) is

somewhat more involved at order g2, where we encounter
contributions from three sources. The first one, which
corresponds to h0jTð∂μAa

ν−∂νAa
μÞðxÞð∂αAb

β−∂βAb
αÞðyÞj0i

comes from one-loop graphs shown in Fig. 2. This yields in
momentum space the pole term [see Eq. (B32)]

i
CYMg2

16π2ϵ
δab

3ξ − 13

3

1

k2
Lμν;αβðkÞ: ð4:3Þ

The other contributions arise from the composite fields
which occur in the Green’s functions gfbcdh0jTð∂μAa

ν−
∂νAa

μÞAc
αAd

βj0i, gfacdh0jTAc
μAd

νð∂αAb
β − ∂βAb

αÞj0i and

g2facdfbc
0d0 h0jTAc

μAd
νAc0

α Ad0
β j0i. Since the tadpole graphs

vanish when using dimensional regularization, the only
Feynman diagrams which contribute to these Green’s
functions are shown in Figs. 5(a)–5(c) respectively.
These yield, in momentum space, the following pole terms
[see Eqs. (B44) and (B46)]

i
g2CYM

16π2ϵ
δabðξþ 5Þ 1

k2
Lμν;αβðkÞ ð4:4Þ

and

−i
g2CYM

16π2ϵ
δabðξþ 1ÞIμν;αβ: ð4:5Þ

There is an aspect of the contributions from Fig. 5 that is
worth pointing out. The divergent terms given respectively
by Eqs. (4.4) and (4.5), come from “pinching” at the same
spacetime point the legs of what would otherwise be a tree
diagram. Explicit calculation of such diagrams once the
external legs are “pinched,” gives rise to short distance
(ultraviolet) singularities as ϵ → 0 when using dimensional
regularization. Adding the contributions coming from
Eqs. (4.3), (4.4) and (4.5) leads to the result (4.2), thereby
verifying the pole part of the identity (4.1) to order g2 (in
Appendix B we show that this is valid for the full
expression in d dimensions).

V. DISCUSSION

We have studied certain consistency conditions for the
first-order formulation of the Yang-Mills theory. To this
end, we examined the forms of the generating functionals
of Green’s functions ZðJ; jÞ, before and after integrating
out the additional field Fa

μν. Differentiations of these forms
with respect to Jaμν and jaμ yield a set of structural identities

which are complementary but distinct from the usual Ward
identities. Such identities lead to connections between the
Green’s functions involving the field Fa

μν and the Green’s
functions in the second-order formulation that contain the
gluon strength tensor faμν. An interesting outcome of these
relations is a quantum-mechanical extension of the classical
result Fa

μν ¼ faμν, which provides a simple interpretation of
the field Fa

μν.
The structural identities hold for the complete Green’s

functions, in any dimensions and to all orders. We have
explicitly verified such identities to one loop-order, for the
ultraviolet divergent parts. These require subtle cancella-
tions between the ultraviolet divergences coming from loop
graphs and the short-distance singularities induced by the
composite fields present in the gluon strength tensor faμν.
These results provide a simpler computation of the expect-
ation values of time-ordered products of operators contain-
ing the composite gluon strength tensor faμν, in terms of
those involving the local field Fa

μν.
It is known that the renormalizability of the first-order

formulation requires, as well as a scaling of the Fa
μν field,

also a mixing with the gluon strength tensor field faμν

Fa
μν → Z1=2

F Fa
μν þ ZFffaμν ð5:1Þ

where ZFf is a counterterm which is equal to
ð1 − 3ξÞg2CYM=192π2ϵ, at one-loop order [7]. Hence,
one may also expect a scaling and mixing of sources of
the form

jaμ → Z1=2
j jaμ þ zDνabJbμν ð5:2Þ

which is admissible on dimensional, Lorentz and charge-
conjugation symmetry grounds. Yet, our explicit one-loop
calculations show that z ¼ 0. This result may be under-
stood by noting that the last term in Eq. (5.2) could induce
corrections which would violate the Eq. (4.1). Thus we
infer that, to all orders, the structural identities forbid a
mixing between the sources jaμ and Jaμν.
Finally, we remark that the first-order formalism is also

useful in quantum gravity, where it allows us to replace an
infinite number of complicated multiple graviton couplings
by a finite number of simple cubic vertices [5,6]. In this
theory, one would similarly get corresponding structural
identities, which ensure the internal consistency of such a
formulation. This is an interesting issue which deserves
further study.
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APPENDIX A: FEYNMAN RULES

The following Feynman rules for the first-order Yang-
Mills theory can be readily obtained from the Lagrangian
density in Eq. (2.1) (for details, see Ref. [5])

ðA1aÞ

ðA1bÞ

ðA1cÞ

ðA1dÞ

ðA1eÞ

ðA1fÞ

ðA1gÞ

where the quanta of the Aa
μ and Fa

μν fields are represented
respectively by the wavy and the continuous lines. Here, the
tensors Iμν;αβ and Lμν;αβðpÞ are given in momentum
space by

Iμν;αβ ¼
1

2
ðημαηνβ − ηναημβÞ ðA2Þ

and

Lμν;αβðpÞ ¼
1

2
ðpμpαηνβ þ pνpβημα − pνpαημβ − pμpβηναÞ:

ðA3Þ

It is also convenient to denote the free propagators
in Eqs. (A1a), (A1b), (A1c) and (A1d) respectively as

Dð0Þ
FF

ab
μν;αβðpÞ, Dð0Þ

AA
ab
μνðpÞ, Dð0Þ

AF
ab
μ;αβðpÞ and Dð0Þ

FA
ab
αβ;μðpÞ.

Note that the tensors (A2) and (A3) satisfy

pρIμν;αρ ¼ pρ 1

p2
Lμν;αρðpÞ ¼

1

2
ðημαpν − ηναpμÞ ðA4Þ

which imply that the F-propagator in (A1) satisfies the
transversality condition

pμDð0Þ
FF

ab
μν;αβðpÞ ¼ 0: ðA5Þ

Also, the identities

Iμν;λρ
1

p2
Lλρ

αβðpÞ¼
1

p2
Lμν;λρðpÞ

1

p2
Lλρ

αβðpÞ¼
1

p2
Lμν;αβðpÞ

ðA6Þ

(Lμν;αβðpÞ=p2 is idempotent) imply that the F-propagator
satisfies the relation

Lμν;λρðpÞDð0Þ
FF

λρ ab
αβðpÞ ¼ 0: ðA7Þ

For completeness, let us also display the well-known
Feynman rules obtained from the second-order formalism
Lagrangian given by Eq. (2.7). The propagators for the Aa

μ

and the ghost fields, as well as the ghost vertex, are the
same as in Eqs. (A1b), (A1f) and (A1g). But now, instead of
the single momentum independent vertex, given by (A1e),
as well as the mixed propagator in Eq. (A1c), we have the
following cubic and quartic vertices
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ðA8aÞ

ðA8bÞ

with all momenta flowing inwards.
The identities (3.1) and (4.1) can be verified at the lowest

order, in the momentum space, using the free propagators
introduced in the Feynman rules above. The tree level
momentum space version of Eq. (3.1)

Dð0Þ
FA

ab
λσ;ν ¼ ipλD

ð0Þ
AA

ab
σν − ipσD

ð0Þ
AA

ab
λν ðA9Þ

is verified using Eqs. (A1d) and (A1b) (note that the
momentum space expression of the bilinears like
ð∂AðxÞ � � �AðxÞÞ is ipÃðpÞ � � � Ãð−pÞ).
Similarly, the momentum space form of Eq. (4.1) can be

written as

Dð0Þ
FF

ab
μν;αβ ¼ 2iδabIμν;αβ þ pμpαD

ð0Þ
AA

ab
νβ − pμpβD

ð0Þ
AA

ab
να

− pνpαD
ð0Þ
AA

ab
μβ þ pνpβD

ð0Þ
AA

ab
μα; ðA10Þ

which can be readily verified using the Eqs. (A1a)
and (A1b).

APPENDIX B: ONE-LOOP RESULTS

1. Self-energies

a. The general method and the Aa
μ self-energy

in the second-order formalism

Let us first consider all the possible self-energy diagrams
that can be computed using the Feynman rules presented in
Appendix A. As is well known, these basic 1PI diagrams
are the basic building blocks that contribute to the identities
like the ones given by Eqs. (3.1) and (4.1).
The diagrams which contribute to the well known result

for A field self-energy, in the second-order formalism, are
shown in Fig. 2 (diagrams in Figs. 2(a), 2(c) and 4(c) have a
combinatorial factor 1=2; there is a minus sign for the ghost
loop diagrams). Figure 3 show the contributions to the A
field self-energy in the first-order formalism. Our basic

approach for the computation of all the self-energies will be
based on tensor decompositions. In the case of Figs. 2 and
3, all the diagrams will have, after the loop momentum
integration, the following covariant tensor structure

ΠIab
μνðkÞ ¼ CYMδ

ab

�
CI
1ημν þ CI

2

kμkν
k2

�
;

I ¼ ð2aÞ; ð2bÞ; ð2cÞ ðB1Þ
(we are using famnfbmn ¼ CYMδ

ab).
The coefficients CI

i can be obtained solving the follow-
ing system of two algebraic equations

�
ημνΠI

μνðkÞ ¼dCI
1þCI

2

kμkνΠI
μνðkÞ ¼k2CI

1þk2CI
2

; I¼ð2aÞ;ð2bÞandð2cÞ;

ðB2Þ

where we have introduced ΠI
μνðkÞ (without the color

indices) such that ΠIab
μνðkÞ ¼ CYMδ

abΠI
μνðkÞ.

Using the Feynman rules given in Appendix A, the scalar
integrals on the left-hand side of the Eqs. (B2) will have the
following form

Z
ddp
ð2πÞd s

Iðp; q; kÞ; ðB3Þ

where q ¼ pþ k; p is the loop momentum, k is the external
momentum and sIðp; q; kÞ are scalar functions ofp · k,q · k,
p · q, p2, q2 and k2. Upon using the following relations

p · k ¼ ðq2 − p2 − k2Þ=2; ðB4aÞ
q · k ¼ ðq2 þ k2 − p2Þ=2; ðB4bÞ

p · q ¼ ðp2 þ q2 − k2Þ=2; ðB4cÞ
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the scalars sIðp; q; kÞ can be reduced to combinations of
powers ofp2 and q2. As a result, the integrals in Eq. (B3) can
all be expressed in terms of combinations of the following
simple integrals

Ilm ≡
Z

ddp
ð2πÞd

1

ðp2Þlðq2Þm

¼ idþ1
ðk2Þd=2−l−m
ð4πÞd=2

Γðlþm − d=2Þ
ΓðlÞΓðmÞ

×
Γðd=2 − lÞΓðd=2 −mÞ

Γðd − l −mÞ ; ðB5Þ

where powers l > 1 andm > 1may only arise from the terms
proportional to 1 − ξ in the gluon propagator [see Eq. (A1b)].
The only nonvanishing (i.e., nontadpole) integrals are

I11 ¼ idþ1
ðk2Þd=2−2
2dπd=2

Γð2 − d
2
ÞΓðd

2
− 1Þ2

Γðd − 2Þ ðB6aÞ

I12 ¼ I21 ¼ ð3 − dÞ
k2

I11 ðB6bÞ

I22 ¼ ð3 − dÞð6 − dÞ
k4

I11: ðB6cÞ

FIG. 2. One-loop contributions to the gauge field self-energy in the second-order formalism (q ¼ pþ k and k in an inward external
momentum). There is a combinatorial 1=2 factor associated with diagrams (a) and (c) and a minus sign associated with the ghost-loop
diagram in (b). The relevant Feynman rules are given in Eqs. (A1b), (A1f), (A1g), (A8a) and (A8b).

FIG. 3. One-loop contributions to the gauge field self-energy in the first-order formalism (q ¼ pþ k and k in an inward external
momentum). The relevant Feynman rules are given in Eqs. (A1).
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In d ¼ 4 − 2ϵ dimensions, 1=ϵ ultraviolet pole part of the
basic integral I11 is given by

I11 ¼ i
16π2ϵ

: ðB7Þ

Implementing the above-described procedure as a
straightforward computer algebra code, we readily obtain
the following results

8<
:
Cð2aÞ
1 ¼−k2ðd2ðξ−1Þðξþ7Þþdð19−ξð5ξþ26ÞÞþ4ξðξþ5Þ−14Þ

8ðd−1Þ g2I11

Cð2aÞ
2 ¼−Cð2aÞ

1 −k2
4
g2I11

;

ðB8aÞ

8<
:

Cð2bÞ
1 ¼ k2

4ðd−1Þ g
2I11

Cð2bÞ
2 ¼ k2

4
g2I11 − Cð2bÞ

1

; ðB8bÞ

Cð2cÞ
1 ¼ Cð2cÞ

2 ¼ 0; ðB8cÞ

where we have used the formulas in Eqs. (B6).
Equation (B8c) follows from the tadpole nature of the

diagram in Fig. 2(c) which vanishes when one uses
dimensional regularization. Notice that Eqs. (B8a), (B8b)

and (B8c) imply that Cð2aÞ
2 þ Cð2bÞ

2 þ Cð2cÞ
2 ¼ −ðCð2aÞ

1 þ
Cð2bÞ
1 þ Cð2cÞ

1 Þ, so that the self-energy will be transverse.

The sum Cð2aÞ
1 þ Cð2bÞ

1 þ Cð2cÞ
1 gives the following result

d2ð1 − ξÞðξþ 7Þ þ dðξð5ξþ 26Þ − 19Þ − 4ξðξþ 5Þ þ 16

8ðd − 1Þ g2I11k2: ðB9Þ

Therefore, the final result for the Aa
μ field self-energy in the second-order formalism is given by

Πð2ndÞ
AA

ab
μνðkÞ ¼ Πð2aÞab

μνðkÞ þ Πð2bÞab
μνðkÞ þ Πð2cÞab

μνðkÞ

¼ d2ð1 − ξÞðξþ 7Þ þ dðξð5ξþ 26Þ − 19Þ − 4ξðξþ 5Þ þ 16

8ðd − 1Þ g2I11CYMδ
abðk2ημν − kμkνÞ ðB10Þ

which is in agreement with the well-known result in d
dimensions (see Eq. (A.12) of [14] and the comment on the
missing factor of i on page 81). Using (B7) we obtain the
following UV pole part (g2I11 ≈ ig2=ð16π2ϵÞ)

Πð2ndÞ
AA

ab
μνðkÞ ¼ i

CYMg2

16π2ϵ

13 − 3ξ

6
δabðk2ημν − kμkνÞ þ � � � ;

ðB11Þ

which is in agreement with the well-known result (see
Eqs. (A.19) and (A.21) of [14]).

b. Aa
μ self-energy in the first-order formalism

Let us now consider the Aa
μ self-energy in the first-order

formalism. The one-loop diagrams are shown in Fig. 3.
Using the Feynman rules given in the Appendix A and
considering that we have the same covariant structure as in
Eq. (B1), Eqs. (B2) can be solved, with I ¼ ð3aÞ, (3b) and
(3c), yielding following results

8<
:

Cð3aÞ
1 ¼ k2ðd−2Þ

4ðd−1Þ ½dð1 − ξÞ þ ξ − 2�g2I11

Cð3aÞ
2 ¼ k2

4
ðd − 2Þg2I11 − Cð3aÞ

1

; ðB12aÞ

8<
:

Cð3bÞ
1 ¼ − k2

4
g2I11

Cð3bÞ
2 ¼ − k2

4
ðd − 1Þg2I11 − Cð3bÞ

1

; ðB12bÞ

8<
:

Cð3cÞ
1 ¼ k2

4ðd−1Þ g
2I11

Cð3cÞ
2 ¼ k2

4
g2I11 − Cð3cÞ

1

; ðB12cÞ

where we have used Eqs. (B6).
As we can see the transversality condition is also satisfied

in the first-order formalism. Indeed, Eqs. (B12a), (B12b)

and (B12c), imply that Cð3aÞ
2 þ Cð3bÞ

2 þ Cð3cÞ
2 ¼ −ðCð3aÞ

1 þ
Cð3bÞ
1 þ Cð3cÞ

1 Þ. From the sum Cð3aÞ
1 þ Cð3bÞ

1 þ Cð3cÞ
1 we

obtain the following result for the Aa
μ self-energy in the

first-order formalism

Πð1stÞ
AA

ab
μνðkÞ ¼ Πð3aÞ

AA
ab
μνðkÞ þ Πð3bÞ

AA
ab
μνðkÞ þ Πð3cÞ

AA
ab
μνðkÞ

¼ ðd − 2Þ½dð1 − ξÞ þ ξ − 3�
4ðd − 1Þ g2I11CYMδ

abðk2ημν − kμkνÞ

ðB13Þ

which is different from the result in the second-order
formalism, given by Eq. (B10). Using (B7) we obtain the
following result for the UV pole
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Πð1stÞ
AA

ab
μνðkÞ ¼ i

CYMg2

16π2ϵ

1 − 3ξ

6
δabðk2ημν − kμkνÞ þ � � � :

ðB14Þ

Of course there is no contradiction with the general con-
clusions of Sec. II, which asserts that the two formalisms
should have the same Green’s functions containing only
external Aa

μ fields; the 1PI functions are not necessarily the
same in both formalisms. On the other hand, as we will see
bellow from Eq. (B26), the propagator for the Aa

μ field is the
same in both formalisms.

c. Fa
μν self-energy

A complete tensor basis for the diagram in Fig. 4(a) can
be formed using the two tensors introduced in Eqs. (A2)
and (A3), since these are the most general tensors with four
indices and having the required symmetry. Similarly to
Eq. (B1) we can write

Πð4aÞ
FF

ab
αβ;μνðkÞ ¼ CYMδ

ab

�
Cð4aÞ
1 Iαβ;μν þ Cð4aÞ

2

1

k2
Lαβ;μνðkÞ

�
:

ðB15Þ

Proceeding similarly as in the case of Eq. (B2), we
contract the Eq. (B15) with Iμν;αβ and Lμν;αβðkÞ and solve

the system of equations for Cð4cÞ
1 and Cð4cÞ

2 (as in the
previous calculations, this is a very straightforward and
well defined computer algebra procedure), yielding the
following results

8<
:

Cð4aÞ
1 ¼ ξþ1

4
g2I11

Cð4aÞ
2 ¼ − 1

16
ðd − 4Þðξ2 − 1Þg2I11

: ðB16Þ

Using (B7) (notice that Cð4aÞ
2 does not have a pole 1=ϵ), we

obtain the following result for the UV pole

Πð4aÞ
FF

ab
αβ;μνðkÞ ¼ i

CYMg2

16π2ϵ

ξþ 1

4
δabIαβ;μν þ � � � : ðB17Þ

d. FA and AF self-energies

Finally let us consider the mixed self-energies in
Figs. 4(b) and 4(c). In this case, there is just one tensor
with three indices and the required symmetry. For instance,
in the case of the diagram in Fig. 4(b), the result can be
expressed as follows

Πð4bÞ
FA

ab
αβ;μðkÞ ¼ Cð4bÞCYMδ

abðkαηβμ − kβηαμÞ: ðB18Þ

Contracting both sides with the Lorentz structure on the
right hand side and performing the integrals with the help of
(B6), we obtain

Cð4bÞ ¼ i
8
½dð1 − ξÞ þ 3ξ − 1�g2I11: ðB19Þ

Using (B7) we obtain the following result for the UV pole

Πð4bÞ
FA

ab
αβ;μðkÞ ¼

CYMg2

16π2ϵ
δab

ξ − 3

8
ðkαηβμ − kβηαμÞ: ðB20Þ

Proceeding similarly, we obtain

Πð4cÞ
AF

ab
μ;αβðkÞ ¼ −Πð4bÞ

FA
ab
αβ;μðkÞ: ðB21Þ

2. Propagators

a. The FF propagator

Using the results for the self-energies, the propagator for
the Fa

μν field can be expressed as follows

FIG. 4. One-loop contributions to the self-energies with external F fields in the first-order formalism (q ¼ pþ k and k in an inward
external momentum). The relevant Feynman rules are given in Eqs. (A1).
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Dð1Þ
FF

ab
μν;αβ ¼ Dð0Þ

FA
ac
μν;ρΠ

ð1stÞ
AA

cdρλDð0Þ
AF

db
λ;αβ þDð0Þ

FF
ac
μν;ρσΠ

ð4aÞ
FF

cdρσ;λδDð0Þ
FF

db
λδ;αβ

þDð0Þ
FF

ac
μν;ρσΠ

ð4bÞ
FA

cdρσ;γDð0Þ
AF

db
γ;αβ þDð0Þ

FA
ac
μν;ρΠ

ð4cÞ
AF

cdρ;γδDð0Þ
FF

db
γδ;αβ: ðB22Þ

From the properties of the tensors Lμν;αβ, ðkμηνα − kνημαÞ as well as the identity Iμν;αβ one can show that the last two terms in

Eq. (B22) vanish [see Eqs. (A4), (A5) and (A6)]. Using the results for Πð1stÞ
AA

cdαβ and Πð4aÞ
FF

cdαβ;γδ given respectively in
Eqs. (B13) and (B15) a straightforward calculation yields

Dð1Þ
FF

ab
μν;αβ ¼ g2I11CYMδ

ab

�
−ðξþ 1ÞIμν;αβ þ

d½dðξ − 1Þ − ξþ 7� − 8

2ðd − 1Þk2 Lμν;αβðkÞ
�
: ðB23Þ

Using (B7) we obtain the following UV pole part

Dð1Þ
FF

ab
μν;αβ ¼ i

CYMg2

16π2ϵ
δab

�
−ðξþ 1ÞIμν;αβ þ

�
2

3
þ 2ξ

�
1

k2
Lμν;αβðkÞ

�
þ � � � : ðB24Þ

b. The AA propagator

The one-loop correction to the Aa
μ propagator can be calculated from

Dð1Þ
AA

ab
μν ¼ Dð0Þ

AA
ac
μαΠ

ð1stÞ
AA

cdαβDð0Þ
AA

db
βν þDð0Þ

AF
ac
μ;αβΠ

ð4aÞ
FF

cdαβ;γδDð0Þ
FA

db
γδ;ν þDð0Þ

AF
ac
μ;αβΠ

ð4bÞ
FA

cdαβ;γDð0Þ
AA

db
γν þDð0Þ

AA
ac
μαΠ

ð4cÞ
AF

cdα;γδDð0Þ
FA

db
γδ;ν:

ðB25Þ

Using the results for Πð1stÞ
AA

cdαβ, Πð4aÞ
FF

cdαβ;γδ, Πð4bÞ
FA

cdαβ;γ and Πð4cÞ
AF

cdα;γδ given respectively in Eqs. (B13), (B15), (B18) and
(B21), a straightforward calculation yields

Dð1Þ
AA

ab
μν ¼ −

d2ð1 − ξÞðξþ 7Þ þ dðξð5ξþ 26Þ − 19Þ − 4ξðξþ 5Þ þ 16

8ðd − 1Þ g2I11CYMδ
ab

�
ημν
k2

−
kμkν
k4

�
: ðB26Þ

It is immediately clear that Eq. (B26) is the same as
the propagator for the Aa

μ field in the second-order
formalism which can be obtained by simply compu-

ting Dð0Þ
AA

ac
μαΠ

ð2ndÞ
AA

cdαβDð0Þ
AA

db
βμ, where Πð2ndÞ

AA
cdαβ is given by

Eq. (B10) [using the transversality, it is easy to see that this
will just produce a factor ð−1=k4Þ times the self-energy in
Eq. (B10)]. This is an explicit special example of the
general result, pointed out in Sec. II, according to which the
two formalisms give the same Green’s functions containing
only external Aa

μ fields, for any choice of the gauge
parameter and dimension d. Using (B7) in Eq. (B11),
we obtain the following UV pole part

Dð1Þ
AA

ab
μν ¼ i

CYMg2

16π2ϵ

3ξ − 13

6
δab

�
ημν
k2

−
kμkν
k4

�
þ � � � : ðB27Þ

Using the result for the Aa
μ propagator in Eq. (B26), we

can now compute the quantity

h0jTð∂μAa
ν − ∂νAa

μÞðxÞð∂αAb
β − ∂βAb

αÞðyÞj0i; ðB28Þ

which is part of the contribution to the right-hand side of
Eq. (4.1). The corresponding expression in momentum
space (∂μ → ikμ for the first momentum and ∂μ → −ikμ for
the second momentum) is given by

kμkαD
ð1Þ
AA

ab
νβ − kμkβD

ð1Þ
AA

ab
να − kνkαD

ð1Þ
AA

ab
μβ þ kνkβD

ð1Þ
AA

ab
μα;

ðB29Þ

where we are using that the Aa
μ propagator is the same in

both formalisms. Using Eq. (B26) we obtain

−
d2ð1 − ξÞðξþ 7Þ þ dðξð5ξþ 26Þ − 19Þ − 4ξðξþ 5Þ þ 16

8ðd − 1Þ g2I11CYMδ
ab 1

k2
ðkμkαηνβ þ kνkβημα − kνkαημβ − kμkβηναÞ

ðB30Þ
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(notice that terms like kαkβkμkν vanish due to the antisymmetry). Using Eq. (A3), this can be written as

d2ðξ − 1Þðξþ 7Þ − dðξð5ξþ 26Þ þ 19Þ þ 4ξðξþ 5Þ − 16

4ðd − 1Þ g2I11CYMδ
ab 1

k2
Lμν;αβðkÞ; ðB31Þ

which has the following UV pole

i
CYMg2

16π2ϵ
δab

3ξ − 13

3

1

k2
Lμν;αβðkÞ: ðB32Þ

The Aa
μ propagator in Eq. (B26) can also be used to

compute the quantity

h0jTð∂μAa
ν − ∂νAa

μÞðxÞAb
αðyÞj0i; ðB33Þ

that appears on the right-hand side to the identity in
Eq. (3.1). In momentum space, (∂μ → ikμ) this becomes

ikμD
ð1Þ
AA

ab
να − ikνD

ð1Þ
AA

ab
μα: ðB34Þ

Using Eq. (B26), we obtain

i
d2ðξ − 1Þðξþ 7Þ − dðξð5ξþ 26Þ − 19Þ þ 4ξðξþ 5Þ − 16

8ðd − 1Þ
× g2I11CYMδ

ab 1

k2
ðkμηνα − kνημαÞ; ðB35Þ

which has the following UV pole part

CYMg2

16π2ϵ

13 − 3ξ

6

1

k2
ðkμηνα − kνημαÞ þ � � � : ðB36Þ

c. The FA and AF propagators

The one-loop contribution to the FA propagator is given
by

Dð1Þ
FA

ab
μν;α ¼ Dð0Þ

FF
ac
μν;ρσΠ

ð4aÞ
FF

cdρσ;λδDð0Þ
FA

db
λδ;α

þDð0Þ
FF

ac
μν;ρσΠ

ð4bÞ
FA

cdρσ;γDð0Þ
AA

db
γ;α

þDð0Þ
FA

ac
μν;ρΠ

ð1stÞ
AA

cdρλDð0Þ
AA

db
λ;α

þDð0Þ
FA

ac
μν;ρΠ

ð4cÞ
AF

cdρ;γδDð0Þ
FA

db
γδ;α: ðB37Þ

Using the results form the self-energies and the free
propagators, the first two terms in Eq. (B37) vanish [see
Eqs. (A4), (A5) and (A6)] and the sum of the last two terms
yields

Dð1Þ
FA

ab
μν;α ¼ i

½dð2d − 7Þðξ − 1Þ þ 5ξ − 7�
4ðd − 1Þ

× g2I11CYMδ
ab 1

k2
ðkμηνα − kνημαÞ: ðB38Þ

Using (B7) we obtain the following UV divergent result

Dð1Þ
FA

ab
μν;α ¼

CYMg2

16π2ϵ
δab

1

k2
11 − 9ξ

12
ðkμηνα − kνημαÞ þ � � � :

ðB39Þ

Proceeding similarly, we obtain the following result for
the AF propagator

Dð1Þ
AF

ab
α;μν ¼ −Dð1Þ

FA
ab
μν;α ðB40Þ

3. Pinched diagrams

Let us first consider the diagram in Fig. (1b). This arises
from the nonlinear part h0jTfacdAc

μðxÞAd
νðxÞAb

αðyÞj0i of
h0jTfaμνðxÞAb

αðyÞj0i [the linear part has been taken into
account in Eq. (B33), which has the momentum space
result given in Eq. (B35)]. Since this contribution involves
the product of two fields at the same space-time point x, in
the momentum space they become loop like diagrams,
containing one cubic vertex, given by (A8a), and two
propagators given by (A1b). As we can see in Fig. 6, the
momentum structure is similar to the one shown in the
graph of Fig 4(b) but with no vertex on the left and
replacing the AF internal line by a AA line. Also, there is a
free propagator on the right side. Therefore, the corre-
sponding expression in momentum space have the same
tensor structure as in Eq. (A1d). Proceeding as in Sec. 1 d,
we find

i
8
½dð1 − ξÞðξþ 3Þ þ 2ξð2ξþ 5Þ − 2�

× g2I11CYMδ
ab 1

k2
ðkμηνα − kνημαÞ ðB41Þ

which has the following UV pole part

−
CYMg2

16π2ϵ
δab

ξþ 5

4

1

k2
ðkμηνα − kνημαÞ þ…: ðB42Þ

Adding the results in Eqs. (B41) and (B35), we obtain
(B38), which confirms the identity (3.1) to one loop order.
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Figure 5(b) shows the contributions from h0jTfacdAc
μðxÞ×

Ad
νðxÞð∂αAb

βðyÞ − ∂βAb
αðyÞÞj0i which arises from the non-

linear parts of h0jTfaμνðxÞfbαβðyÞj0i [the linear part was
considered in Eq. (B28), which has the momentum space
result given in Eq. (B31)]. Similarly to the previous calcu-
lation of the graphs in Fig. 1(b), the products of fields at the
same space-time point x give rise to loop integrals. As
shown in Fig. 6(a), the momentum space expression is a
one-loop diagram similar to the contribution from 1(b),
but in this case the basic graph is contracted with

gfacd½ð−ikαÞDð0Þ
AA

eb
γβðkÞ − α ↔ β�. Since the corresponding

expressions in momentum space have the same tensor
structure as the FF-propagator, we can proceed as in
Sec. B 1 c. Using the same tensor basis formed with the
tensors in Eqs. (A2) and (A3) we obtain for the sum of the
contributions from Figs. 1(a) and 1(b) the following result

g2I11CYMδ
ab

�
1

2
dð1 − ξÞðξþ 3Þ þ ξð2ξþ 5Þ − 1

�

×
1

k2
Lμν;αβðkÞ; ðB43Þ

which has the following UV pole

i
g2CYM

16π2ϵ
δabðξþ 5ÞLμν;αβðkÞ þ � � � : ðB44Þ

Finally, we have the contribution from h0jTfacdAc
μðxÞ×

Ad
νðxÞfbegAe

αðyÞAg
βðyÞj0i in h0jTfaμνðxÞfbαβðyÞj0i which is

shown in Fig. 5(c) (there is also an identical contribution
obtained by interchanging the two x points). Similarly to
the previous cases, there is a momentum space expression
with a single loop associated with this contribution. As
before, the loop is associated with the pinch of the

propagators at the same space-time point. However, in this
case we have pinches at both sides so that there is no
interaction vertex. The corresponding loop diagram is
shown in Fig. 6(b). In terms of the tensors Iμν;αβ and
Lμν;αβðkÞ, we obtain the following result for the loop integral

g2I11CYMδ
ab

�
−ðξþ 1ÞIμν;αβ þ

1

4
ðd − 4Þðξ2 − 1Þ

×
1

k2
Lμν;αβðkÞ

�
ðB45Þ

which has the following UV pole

−i
g2CYM

16π2
δabðξþ 1ÞIμν;αβ: ðB46Þ

Adding the Eqs. (B31), (B43) and (B45), a straightfor-
ward algebra shows that the result is the same as (B23), so
that the identity (4.1) is verified to one-loop order (of
course this remains true for the UV pole part).

FIG. 6. The two basic momentum space graphs associated with
Figs. 1(b) and (5). The momentum space expressions associated
with 1(b) and 5(b) are obtained upon contracting (a) with

gfacdDð0Þ
AA

eb
γαð−kÞ and gfacd½ð−ikαÞDð0Þ

AA
eb
γβð−kÞ − α ↔ β� respec-

tively. The momentum space expression associated with 5(c) is
obtained upon contracting (b) with g2facdfbcd.

FIG. 5. “Pinched” contributions from h0jTð∂μAa
νðxÞ − ∂νAa

μðxÞÞfbcdAc
αðyÞAd

βðyÞj0i, h0jTfacdAc
μðxÞAd

νðxÞð∂αAb
βðyÞ − ∂βAb

αðyÞÞj0i (a
and b) and h0jTfacdAc

μðxÞAd
νðxÞfbegAe

αðyÞAg
βðyÞj0i (c). There is a second diagram identical to (c) which can be obtained by

interchanging the x points. The graphs in (d) vanish upon using dimensional regularization in momentum space.
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