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Abstract

Based on the adjoint boundary value problem proposed decades ago by
Zulehner and Rohatschek [I], analytic and closed-form expressions for the
photophoretic forces exerted by arbitrary-shaped beams on homogeneous and
low-loss spherical particles is derived in both the free molecular and slip flow
regimes. To do so, the asymmetry vector for arbitrary-index particles is ex-
plicitly calculated by expanding the internal electromagnetic fields with the
aid of the generalized Lorenz-Mie theory (GLMT). The approach here pro-
posed is, to the best of the authors’ knowledge, the first systematic attempt
to incorporate the GLMT stricto sensu into the field of photophoresis and
might as well be extended, e.g. to spheroids and find important applica-
tions, among others, in optical trapping and manipulation of microparticles,
in geoengineering, particle levitation, optical trap displays and so on.

Keywords: Generalized Lorenz-Mie theory, Photophoresis

1. Introduction

The determination of radiometric or photophoretic forces (Fpy) is not
always an easy task. Because of that, the scientific community in the area
of photophoresis suffers from the lack of an analytical theory capable of
predicting such forces for light beams with arbitrary field profiles. In fact,
the 'standard’ solution procedure involves dealing simultaneously with the
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heat conduction equation and the Navier-Stokes equation with appropriate
boundary conditions on the particle surface. Such conditions are based on
physical grounds and dependent upon the Knudsen number Kn = ¢/a, where
¢ is the mean free path of molecules in the host fluid and a the radius of the
illuminated particle.

After solving this set of equations for quantities such as temperature
distribution in the particle and in the fluid, gas pressure and velocity fields,
and photophoretic velocities, photophoretic forces are then evaluated from
the stress tensor.

For plane waves and spherical particles with low losses, analytical solu-
tions exist for what is known as the asymmetry factor J; (and, consequently,
for F, since they are proportional to each other), in the slip-flow and free
molecular regimes. The formalism involves expansions of the electromagnetic
fields internal to the particle using the Mie theory [2]. Qualitatively, however,
it is known in advance that the resulting photophoretic forces will point either
parallel (positive photophoresis) or anti-parallel (negative photophoresis) to
the Poynting vector. For light beams with arbitrary spatial field profiles, we
find most of the times attempts to approximate or use numerical methods
[3l, 4L 5, [6].

Boundary conditions depend upon the Knudsen number Kn. For Kn >>
1 (free molecular regime), the particle is much smaller than the mean free
path ¢ of the gas and kinetic theory of gases applies. In 1967, using this
theory, Hidy and Brock found an expression for the photophoretic force
in this regime by assuming a solid, non-volatile and non-radiative homo-
geneous sphere [7]. Such an analysis was further improved by Tong in 1973,
who introduced the additional effect of radiation from the surface of a black
body caused by heating [§], and by subsequent works [2, 9] 10 11} 12]. For
Kn < 1 or Kn << 1 (slip-flow or continuous regime, respectively), the
particle is larger or much larger than ¢ and the mechanical transport of the
particle is given in terms of a continuous medium approach with appropriate
slip-flow boundary conditions, the photophoretic force being then a direct
consequence of thermal creep [13, 14]. In 1928, Hettner presented the first
expressions for Fpy in the continuous regime, assuming solid and non-volatile
homogeneous spheres [15]. Also, a few decades after Rosen and Orr proposed
an order of magnitude estimation for Fp;, [I6] based on specific expressions
for the temperature gradient at the surface of the particle previously deduced
by Rubinowicz [I7] and relying upon spheres illuminated only over a single
hemisphere (z < 0). In a notorious work, Yalamov, Kutukov and Shchukin
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carried out a systematic study of the theory of photophoretic movement for
volatile aerosols, considering the pressure on the particle surface caused by
the asymmetric evaporation of the substance from the sphere [I§]. Another
interesting work was also published by Reed in almost the same period [19],
who theoretically investigated photophoretic forces in the low Knudsen num-
ber regime for opaque particles, comparing his theoretical predictions with
the most recent experimental results so far available [8, 20]. The dependence
of the photophoretic force as a function of the size parameter was analyzed
numerically by Arnold and Lewittes [21] and analytically by Mackowski [2]
with the aid of the Mie theory for expressing the internal electric and mag-
netic fields. Studies involving photophoretic forces in the intermediate region
Kn < 1 and how two extreme cases Kn >> 1 and Kn << 1 link to each
other were initially carried out by Reed [19] and Mackowski [2]. In all pre-
vious works, as well as in the majority of publications to date, theoretical
analysis has been restricted to uniform plane wave illumination (see, for in-
stance, Refs. [14, 22, 23] for the period before 2013, to be complemented
by Refs. [24] 25 26] 27, 28] and references therein.). Very recently, pho-
tophoretic longitudinal and transverse asymmetry factors for dielectric and
magnetodieletric cylinders and aggregates, including reflection from planar
boudaries and corner spaces, have been investigated by Mitri, including in-
cidence by waves and light-sheets with arbitrary polarization and incidence
angle [29] 30} 31, 132].

The inclusion of arbitrary-shaped beams in photophoresis problems with
spheres will certainly lead us to work within the formalism of the gener-
alized Lorenz-Mie theory (GLMT) [33]. In the GLMT strictu senso, the
incident, scattered and internal fields are expanded over a set of orthogo-
nal spherical wave functions, the coefficients of such expansions - the beam
shape coefficients (BSCs) - carrying all the information regarding the spatial
field distribution of the incident wave. Because any solution to Maxwell’s
equations can be described within this context, we expect that any general
theory on photophoresis for light-scattering by arbitrary-shaped beams and
homogeneous spheres must inevitably incorporate GLMT into its mathemat-
ical foundations. In this path, Ambrosio has recently been able to extend
the analysis beyond plane waves and dielectric particles, first by introducing
arbitrary-index spheres in the case of plane wave illumination [34] and then
by considering photophoretic forces exerted by on-axis axisymmetric beams
[35], subsequently extended to higher-order Bessel beams by Wang et al. [36].

As stated by Fuchs [37] (also quoted in Ref. [14]), “The main difficulty
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in calculating the radiometric force on a particle is the determination of the
temperature gradient in the particle itself.”. Lamb’s general solution, usually
applied for plane wave illumination, might not be of much help beyond it
[38, 39].

This paper deals with analytic and closed-form solutions to the pho-
tophoretic forces in both slip-flow and free molecular regimes with the aid of
the GLMT. It incorporates into the theory of photophoresis, for the first time
in the literature to the best of the author’s knowledge, shaped beams beyond
plane waves and arbitrarily located with respect to an opaque, non-radiative,
non-volatile spherical scatterer. To do so, the method of the Adjoint Bound-
ary Value Problem (ABVP) to the heat conduction equation proposed a
few decades ago by Zulehner and Rohatschek [I] is here invoked in order
to resolve for a vector generalization of J; called the asymmetry vector rg,
thus allowing us to solve for the photophoretic forces without the need for
explicitly finding the temperature distribution within the particle itself. Ex-
pressions for both longitudinal and transverse components of r,s exerted on
arbitrary-index micro-spheres are then derived in terms of the BSCs, a fea-
ture which makes the present theory valid for any incident wave field in any
optical regime (Rayleigh, Mie or geometric).

Section [2| presents a brief review on the method of calculation of Fy, for
spherical particles and plane waves, including the main aspects of the ABVP
to be adopted in the subsequent sections. Section [3| concerns the derivation
of r,s for arbitrary beams with the aid of the GLMT, using the approach
proposed by Zulehner and Rohatschek, for which Fpj, o< ras. Here, both heat
transfer from the particle and absorption of radiation within the fluid are
neglected, and particles are restricted to non-volatile (solid) homogeneous
spheres. Finally, conclusions are presented in Sec. []

2. Photophoresis for uniform plane wave illumination

2.1. The ’‘standard’ procedure based on Lamb’s general solution

Let us consider a homogeneous micro-particle of radius a and constant
thermal conductivity k,. The gas density, pressure and temperature distri-
bution are represented by pg4, p, and T}, respectively.

The ’standard’ procedure based on Lamb’s general solution to the heat
conduction equation [38,[39] says that in order to determine the photophoretic
velocity and, consequently, the photophoretic force Fyy, the temperature dis-
tribution T within and on the surface of the sphere must be determined. For
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2 _ Pop (V6014 i
ViaIi=5 "\ T ar )
9 1
Vv = —Vp,,
Mg
V-v=0.

Kn < 1, ie. in the slip-flow regime, for example, the following set of equa-
tions must be solved

(1a)

(1b)

(1c)

(1d)

Equations and are the heat conduction equations for 7T, and
Ty, respectively. The function Q(r, 0, ¢) is known as the heat source function
(HSF) and depends on the internal field intensity distribution. Navier-Stokes
equations are given by and , where v = v,7 + vgf + v, is the fluid
velocity vector according to a spherical coordinate system (r,6, ) whose

origin coincides with the center of the sphere.

The differential equations in Eq. must satisfy the following boundary

conditions:

T, —T,

oT,

9 0r

T,
= Ctéﬁ,

or

oT,
or’

— k.

r=a,

r=a,

T, =T, r — 00,

0

Vg = Cpl {TE

= cmﬁagr -+

(2)+1%

csng 0T,

pgToa 00’

csng 0T,

pgToa 00

r=a,

(2a)
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In and , 14 is the viscosity and k, the thermal conductivity of the
gas, ¢, ¢, and ¢y are constants calculated from the kinetic theory of gases
with values 2.18, 1.14 and 1.17, respectively [40], and ¢, is the specific heat
at constant pressure. The elements of the stress tensor & are designated by
Tij.

For details involving the solution of the set of equations in the free molec-
ular regime, including its appropriate boundary conditions, see e.g. Refs.
[2, 18]. Analytic solutions of (1) and (2|) have been found when (i) the HSF
has azimuthal symmetry [that is, Q(r, 8, ¢) = Q(r, 0)], which happens to be
the case for unpolarized plane wave illumination), and (ii) when convection
terms of the r.h.s. of are neglected, which means that T, obeys a Laplace
equation. For axisymmetric flow, it is easy to infer that v, = 0 and one can
shown that for +z-propagating light, Fp,,, = F2.

The standard method for solving the set of equations and relies
upon expansions of Ty, v and p, in terms of spherical wave functions. For the
axisymmetric plane wave case and using spherical coordinates, the general
solutions to the thermodynamics [(La)) and (1b)] and hydrodynamics [(Ld)
and ] equations can be obtained with the aid of Lamb’s general solutions
[38, 39] under the following form [2]:

B =Y A+ G Q)P (), (3a)
S DR, (), (30)
0= o () P (11 (30)
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- Z f&n (C) Pé (M) ) (3d>

Py = Z Jon (Q) P (1) (3e)

where P™(z) are the associated Legendre functions [P%(z) = P,(x)] accord-
ing to Robin’s notation [41] adopted in the GLMT convention. The constants
A, and D,,, as well as the r-dependent functions ¢ = r/a, fin, fon and fp,,
are calculated after the imposition of the boundary conditions (2)), see [2].
The function G, (¢) depends on the HSF Q(r, #) according to

1 1
1
Gn(C) == [C” =" [ g (t,0) P, (cos ) d (cos ) dt
e o]
¢ 1 (4)
+ ¢~ [ n+2 [ g (t,0) P, (cos0) d (cos 8) dt |,
[

with g(r,0) = a?Q(r,0)/ksTy. After some algebra, one finds an expression
for Fppn [2, 9] 19]:

47rcsng]AaJ1 1 .
poksTo  (L+ 3eml/a) (1 + 2¢,0]a + 2k, [ky)

where J; is the asymmetry factor

Fon = (5)

Ji (x, M) —?mspmspz// = ,u 3 udpdt. (6)

In , I, = |E0| /2nq is the intensity of the incident wave, Ej its electric
field strength and 7y the intrinsic impedance of the gas. The size parameter
of the particle is defined as * = (27/A)a = ka and M = nsp imsg, is its
complex refractive index with uy, = ¢/ = po and ey, = € — i€’ its perme-
ability (o is the permeability of free space) and permittiwty, respectively.
Parameters relative to the external medium carry a subscript 'r’ (e.g., a rel-
ative permittivity e, , = €. —i€’). Finally, B(r,0) = |Eq(r, 0)|*/| Eo| is the
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dimensionless radiative intensity distribution function [2], source strength
[42] or normalized source functions [3], with E;, the electric field inside the
sphere.

The double integral in @ can be evaluated explicitly for the case of
a plane wave illumination using the Mie theory for scattering by dielectric
particles. By expanding the internal fields into a sum of spherical wave
functions, Mackowski [2] found an expression for .J; which, in terms of the
standard time harmonic factor exp(+iwt) used in the GLMT [33], can be
written as:

615p,M s " *
Jl (l’, M) |Mp| x3p Z { Cn+1Can+1 + dn-l—lann)
=1
n(n+2) 2n +1
dpird’ —c,d!
{ ni 1 (Gt dnady) + (g 1) cdn] O

(7)

where the Mie coefficients ¢,, and d,, for internal fields and dielectric particles
are [33]:

M@ @) -4 @) @)
"7 & (@) 0, (M) — ME, () g (Ma)’
M2 [g, () ¥ (@) = €, (2) 6 (2) sh)
6 o] vt (V1) & 1) (T

Also, R, and §,, are functions of x and M according to the following
relations (correcting for a typo in Eq. (61) of Ref. [2]),

(8a)

d, =

R, = / o (M) *dp = 2 [Mw”ﬁn(?ﬁz))w‘ (Mz)] (9)
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Sp = /m/)ii (Mp) oy, (Mp) dp

0

) ‘W{‘” (M M)+ M|t (M) (10)
_ (M+2(n+1)%w>> Rn+<2n+1>M*Rn+1}.

In —, n(x) and &, (x) are Ricatti-Bessel functions, with a prime in-
dicating a differentiation with respect to the argument [33]. Generalizations
of have been recently developed by Ambrosio for arbitrary refractive
index spheres under plane wave illumination [34] and for on-axis axisym-
metric beams (Gaussian and zero-order circularly symmetric Bessel beams)
[35], with an extension to higher-order circularly symmetric Bessel beams by
Wang et al. [36]. To the best of the author’s knowledge, despite experimental
advances, the only other work that attempts to analytically calculate F;, for
arbitrary-shaped beams is the one presented by Desyatnikov et al. in 2009 [0]
for low-loss aerosol particles manipulated via photophoretic forces using vor-
tex beams (Laguerre-Gauss LGy, beam). In their approach, approximations
are proposed based on the size of the particle with respect to the diffraction
length [ and assuming that the sphere is always placed along the optical
axis (z axis). Theoretical results are shown to be in good agreement with
experiments.

2.2. The ABVP method and the asymmetry vector

In 1994, Zulehner and Rohatschek [I] presented a method for calculating
F, for non-spherical particles based on an equivalent problem to the heat
conduction equation. The analysis was separated according to the slip-flow
or free molecular regime, which means that for each regime certain boundary
conditions must be met.

In this method, F;, is expressed directly in terms of the HSF after ap-
plying Green’s second identity to obtain an adjoint boundary value problem
starting from the non-homogeneous heat conduction equation . In the
process, a weight function w(r) is introduced (r = xz+yy+ 22 is the position
vector) whose form depends on the geometry of the particle.
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For the free molecular regime, a general linear boundary condition is

assumed for ((1b)):

oT,
~k 5 = A+ B, (11)

where 0/0n denotes the normal derivative with respect to the surface of the
particle, A = —hT, and B = h, with h being the molecular heat transfer
coefficient and given by h = ap,v/21; for monatomic and h = 3ap,v/47T; for
diatomic gases, where « is the thermal accommodation coefficient and v is
the mean speed of gas molecules. In view of that, for Kn >> 1 [1],

Fu = ~C [ Q) w(r)av. (12)

where C' = ap, /4T, and V, is the volume of the arbitrary-shaped particle.
In the case of a spherical particle, w(r) = r/(Ba + k) and reduces to

C
Fon = —m/rQ (r)dv. (13)
Vo

Similarly, in the slip-flow regime with boundary condition given by ,
one has [1]:

3¢,
PgTOa2 (kg + k)

F — / rQ (r)dV. (14)

Vb

It is seen from and that, instead of a scalar asymmetry factor
Ji, one can now speak in terms of an asymmetry vector, rus [1, [5] which, for
our purposes and differing slightly from previous works, is here defined as:

re = / rQ (r) dV. (15)

Vo

3. Photophoretic forces for arbitrary-shaped beams in the GLMT

Equations and can be written in a more compact form:

th = _OKnra57 (16>

10
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where Ck, = C/(Ba + k) for Kn >> 1 and 3¢} /[psToa” (kg + k)] for
Kn < 1. As is clear from ({ . knowledge of r,q for a given HSF or, in
other words, for a given electromagnetic field distribution inside the sphere
completely determines (except for a constant factor) the photophoretic force
in both the slip-flow and free molecular regimes. Equation shall be
explicitly solved first for dielectric (or non-magnetic) particles having only
electric losses. Then, we extend the calculations to incorporate scatterers
having an arbitrary index of refraction, which encompasses magnetic, mag-
netodielectric, negative index scatterers and so on, for which both electric
and magnetic losses can be present.

3.1. Dielectric/non-magnetic particles

For dielectric or non-magnetic particles in general, the HSF Q(r, 0, ¢) can
be written in terms of the electric field intensity as [34]:

1
Q(r,0,p) = §O'|E (r,Q,gp)]z = ke I\B (1,0, ¢) . (17)

In , 0 = weper is the electric conductivity of the sphere (e, is the
permittivity of the host fluid), I, = |Eo|?/2n, is the intensity of the wave,
N being the intrinsic impedance of the fluid. In addition, B (r,60,¢) =
|Ein (7,0, 0)?/|Eo|? is the dimensionless radiative intensity distribution func-
tion [2] (also called source strength [42] or normalized source function [3])

The determination of Fy, starts with the replacement of (17]) into
and substituting [Eiy|*/Ey considering the electric field components prov1ded
by the GLMT formalism [33] (see also [43, 44] and references therein), which
may be rewritten as:

Er > = AT n S 3
7= 2 2 ()T et D) p o) k(g 2') Pl (cos0) €7+, (18a)
n=1 p=—n
Ly _ 1 fz< )" EnS engh ol (kspr) 7 (cos 6)
EO kspr = = n, TM 14

(18b)

11
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2= (i) End peagh gty (kgpr) w (cos 6
Ey  kgr e (—1) {pc gn,TM¢n ( pr> T (cosd)

(18¢)

spk ;
+ (,u P > dng? 1ptn (kspr) 7'7|1p‘ (cosf) pe'™?.
phisp ’

257 In (18), ksp = Mk, E, = (2n+ 1)/[n(n + 1)], 7(cos @) = dP*(cos 0)/db
28 and m'(cosf) = PM(cosf)/sinf are generalized Legendre functions. The
»o coefficients gy and g’y are the beam shape coefficients (BSCs) for TM
0 and TE modes, respectively. The BSCs contain all the information regarding
21 the spatial field distribution of the incident beam relative to the plane wave.
262 Computing |[Eiy|* from and replacing the resulting HSF from (|17))
3 in , one finds the following expression for r,:

4

21

=3

"

o =TI (000 + 9,5 + 9., (19)
264 Where
2r ™ a
9, = 22///3(7",9,@) 73 sin® 0 cos pdrdfdp, (20a)
000
265
2r ™ a
g, = QE///BO”,Q,QD) 73 sin” 0 sin pdrdfdeyp, (20b)
a
000
266
2r ™ a
g, = QE///B(T,G, ©) 13 cos O sin Odrdfdep. (20c)
a
00 0

267 The integrals with respect to the azimuth angle ¢ in (20 can be easily
xs evaluated. It can be shown from that they are of the form

2
/67:(]7_‘1) CcoS Spdgp =TT (6p,q+1 -+ 5q,p+1) ) (21&)
0
269
2w
/ei(p—Q) Sln Spdgp — Z’]T (6p7q+1 - 6q7p+]_) ) (21b>

0

12
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2w

/ei(pq)dgo = 2764, (21c)
0
on where 0; ; is the Kronecker delta. Imposing on , we get the double

o2 integrals:
= // (r,0) r® sin® Odrdd, (22a)

= 2// (r,0) r* sin® Odrdb, (22b)

273

274

= 22//Bz (r,0) r* cos 0 sin Odrdfdy, (22¢)
0
s where
5
_ J
B{LL‘}_ZB{J;}’ (23)
j=1
Y Yy
a6 With
B! S D (=DM 204 1) (2 + 1) cacfnt]
{ v } ’ksp‘ " =1 =1
Yy

(24a)

!
: Lx +1
" [Z gngTMgl TMquHlqu' =+ Z In, TMgf¥MP‘p|P|p |

q=—l p=—n
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In Egs. ) and (26)), U,,(kspr) = U, the same being valid for the func-
tions Pm(cos 0) (Cos 9) and 7" (cosf), where we omitted the arguments.
The #-integrals in (]22a|) and (|22b|) related to B, and B, are of the form:

o1 = / Pt B/ sin? 6de,

0

T

Gpo = / PP sin? 6de,

Gys = / [T\q+1|7-l|q‘ +q(qg+1) 7T7|'Lq+1|ﬂ-l|q|i| sin® 0d#,
/ Ipl |p+ | +p(p+1)xk Ip| l|p+1‘] sin? 0d#,

o5 = / rlrtily Iql +(g+1) \Q+1|7-l|q‘] sin® @d#,
0

Yo6 = [(p + 1) TPt +p7Tlfl7'z‘p+ll] sinc* 0,

and, for B, in (22d),
Gy 7 = / PP PP cos 0 sin 66,

0

™

Jos =/ [Tﬂf'ﬁlm + p?nl Pl lp‘] cos 0 sin 6d0,
0
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(27b)

(27¢)

(27d)

(27e)

(271)

(28a)

(28b)
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299

300

301

302

303

304

305

306

307

308

309

™

Gy = / [ Pl \P| + Pl |p|] cos  sin 6d6. (28¢)

)

0

Some of the integrals in and can be found in Ref. [45], and oth-
ers in the Appendix section of Ref. [33], the remaining ones being calculated
from combinations of some of the integrals presented in the first aforemen-
tioned reference using several recurrence relations for the associated Legendre
polynomials and their derivatives. For convenience, we list them in the Ap-
pendix with the appropriate notation. In using Ref. [45] we have introduced
a multiplicative factor (—1)™ to ensure the usual Robin’s definition of the
associated Legendre polynomials adopted the GLMT [33].

Substituting in and making use of with the corresponding
integrals whose solutions are given in (A.7)-(A.9), changing dummy
variables and after some pages of calculations, one gets an expression for 4,
in terms solely of integrals over r:

[e.9]

g, =—>= Z Z Im {Cncn+lgn,TMgn+1,TM

a|kSP| n=1 m=-—n

[ I (n+1+m|) W (Mp) ¢n+1(MP)dp

kgl? (. —|m])! p

1 1 (n+1+ |m| /
+ = (Mp) ., (Mp) pd
Ear1p ot ) O P e (o) oy
2
. 1 g (29)
ik B(nt 1) (n = [m))! +19n, TEIn+1,TE

< [ 03 (M) s Mp) pdp
0

pspk\" 1 2n+1 (n+m
( P ) — ( m))! CndngnTMgnTE

K202 (n+1)* (n —m])!

/@b (Mp) v Mp)pdp}
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sw where p = kr. For Z, and Z,, the expressions are more complicated. Setting
n(Mp) = 1, with p = kr, they can be put into the form

1= 1) h

312 With

47 Im - o * m+lx m
g% . } :W { Re } Z { + Z Cn0n+19nf§/{ In+1,T™
sp

n=1 m=0
Y

(n+m+1)! me (0t m+2)
X m Z c, Cn+1gn+1 TMgn,TMW
F Z CrCn+19n, T I, Iy — | m| + 1)!

m=—n—1

(31a)

me (0 m|)!
+ Z c Cn+1gn+1 TMgnTMW

i w;wn+1 ¢ 7pn—i-l d
X(]/(kjsp|2p + ( +1)2p> P,

n+1
Im m+1x ,m
gz i } ’k | |,7r‘ { }Z { + Zd dn+1gn,¥1}3 9n+1,TE
sp

Y

313

(n+m+ *d me (0t m+2)
(31b)
ite (e m| 1)
T Z A 0T O vw )

m=—n—1

M} [ tadnsn L pdp,

* m-+1 m*
+ Z d,d n+1gn+1TEgnTE( — m])! k2 (n+1)

m=—-n
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314

dir Im )| e 2n+1
g3 = e *cnd:;
{ x } l<;2|l<:sp|2 { Re }; [n(n+1)]2n’"

Y

(n—m—1)!

n m ek m melsy (M 1)!
{ > (o gnie £ glangn ') g

m=0

~1
- Z In, RA% = gn,TMgn,'}_]%} ) VY @/J Y, pdp.

—n (n \Wﬂ

(31c)

315 Now, the following relations are invoked [2]:

/s /e n -+ 1 2 % n —|— 1
@Dn 1/17/1+1 == wnd]n _ ( 5 )2 wnwn+1 + wn-‘rld}n—i-lv (32&)
(M

316 n —"_ 1

Yt = —Pntn + — ¢n¢ (32b)

3

-

7 Replacing in and after reintroducmg the definitions of R,, and
s S, given in @ and , we arrive at the final expressions for 9, 9, and J.:

87TCL3 Im o
g{ y }:_ \M|2x3{ Re }Z
Y

3

-

1
An (S;: Lo RnH)

n=1 M
(33a)
1
+B$(S-Hj;3)+mm&,
319
16ma® Sl n4+1 )
| M|z Zm_Z < 7
o (33b)

n+1
M
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20 where the coefficients GI' (G = A, B,C, D, E,| F) are given as

n—1

CnC n n n 1\
(n—|—1)2 2 nt19 ™Y +1TM( — _1)'

n+m+ 2)!
+ g:g c;cnﬂngerg?TEl,TMﬁ
. (34a)
S e (n+|m|+1)!
n n+1 n,TMIn+1, TM( . |m| + 1>|

m=—n—1

-1
(n+ |m|)!
_ Z c;cnﬂg:f%MgZTll»TMm ’

m=—n

321

|7]T 1 (n +m + 1)!
Bm S L d d m—+1 mx
"t 1) E n+19n, TEIn+1, TE( —m — 1)
e ma1  (mAm42)!
+ E dpdni19y TEgn—:_l TET (; — )]
(34b)

Z dndyy gt gn, TE (n — | + 1)!

N me mi1 (04 |m])!
- Z dpdny19y TEgnJ:_llTEW ’

m=—n

m=—n—1

322

2 1
cm ZLQU:CndZ
[ (n+1)]

X { Z (gmtmnte £ Inrsdnte ) (n—m—1)! (34c)
m=0

1
il m metn (0 M)
- Z <9n¥§49nTEiQn,TM9n,¥}}: ) (n—m)! [’

323
* m* m
2 CnCn+19n, TMYn+1,TM
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325

3

N

6

3

¥

7

328

329

330

331

332

333

334

335

336

337

338

339

340

RS T e T
Fn =maj,. [TL (n + 1)]2 Cndngn,TMgn,TE (TL . |m|)' : (34f>

Inserting and back into for r,s and then using the result in
(16) provides us with an analytic and closed-form expression for F;, in both
the slip-flow and free molecular regimes.

3.2. Arbitrary-index particles

So far, only non-magnetic or dielectric particles have been considered. It
is, however, possible to extend the analysis developed in the previous section
in order to incorporate particles possessing magnetic responses and losses as
well, or even metamaterial spheres, using the GLMT.

The procedure is similar to that presented by the author for on-axis ax-
isymmetric beams in Ref. [35]. First, remember that the HSF Q (r,0, ) is
related to the energy which is dissipated within the particle and that, when
magnetic losses are presented, it is given as [3]

Q(r6,9) = 5 Re[V - (i (r,0,¢) x Hiy (n6.0))] . (39)

where Hy (1,0, ¢) is the magnetic field distribution inside the particle which,
according to the GLMT, reads as

H @<=, .n U (ko) i
_o = Z Z (—1) i (2n+1) d”gfL,TEkQ—TZQ)PT‘Lp' (cos @) e™?, (36a)
n=1 p=—n sp
& — 1 i an: (—z’)"+1 EnR dng? ) (kspr) TPl (cos )
Hy  kogr &= =, n, TEVn (RspT") Ty

(36b)
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342

343

344

345

346

347

348

349

350

351

352

353

354

355

n

H - . /
Fj B Z Z (=) E"{pdngﬁ,TE@Dn (kpr) P! (cos 0)

n=1p=-—n

. (36¢)
AN )
- (—“Sp ) end? enrtn (k) 7 (c05.0) }
pksp

For an arbitrary-index particle having a complex permeability ps, = ¢ —
iy, we introduce the vector identity V- (ExH") = (VXE)-H* —E-(V xH")
and use Maxwell’s equations to write V x E and V x H" in terms of H and
E*, respectively. From , one then obtains:

1 : -
Q(r,0,0) = —3 Re [—zwusp]Hint|2 + zwesp|Eint]2}
1
=5 Re [w,u”|Hint\2 + we"|Eim|2]

1
=3 Re [WﬂmN/,|Hint|2 + W€m€;~/|Eint|2} :

T

Extracting multiplicative factors of |Hy|* and |Eo|?, using the relation
Ey = Hy/no [33] and the definition of I, (= |Eo|*/2no), can be recast
under the form [34]:

Q (T’ (9’ 90) = (J_m) ]ABm <T7 97 90) + (Uenm) ])\Be (T‘, 07 @)

m

(37)
= kp, I\By, (1,0, @) + ke I, B, (1,0, @),

where 0, = wpnp! and o, = weyel are the electric and magnetic conduc-
tivities of the particle. In (37)), the source strength B, (r, 6, ¢) coincides with
the one appearing in , as expected for electric losses. A magnetic source
strength B,, (r,0,¢) in indicates that radiation is absorbed in the par-
ticle due to magnetic losses. Equation for r,s is now replaced by a more
general expression in which the electric term of is complemented by a
similar magnetic term:

" "

~ ~ n €, N ~ n
Tos = %]A [Yom® + Iy my + 9. m2] + 5],\ [y e + 9y 9+ 9, 2], (38)
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357
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359

360

361

362

363

364

365

366

367

368

369

where 9,., 9, and 9., are exactly those calculated previously for a non-
magnetic particle and given in . As for 9, 9y and 9, ,,, they can
be found using the magnetic field expansions in and following the steps

that lead to .

There is, however, a clever way to calculate such integrals without re-
doing all the calculations. Just as done in Refs. [34, [35], it is based on the
observation that and are dual to each other, so that they are related
according to the following replacements:

Cn — dy,

d, = —cy,

=t (39)
gZ,TM - gZ,TE’
QZ,TE - QZ,TM»

with 1, = (uspk/pksp). Instead of (8)), ¢, and d,, for arbitrary-index particles
are now given by (see Egs. (3.90) and (3.91) of Ref. [33]):

o = Mp G (@) Y (2) — & (2) ¥ (2)]
b & (2) ¥, (M) — M, (), (M)
M? & () ¥y, (z) — &, (2) ¥ (2)]
. 40b
ME, (&) i, (M) — 106, (2) b (M) o
Therefore, application of in and gives us for the magnetic
contribution to the asymmetry vector:

8ra’ Im >
oy i L 2

(40a)

d, =

—m 1
A (S;: + KRM)

n=1 M
Yy, m (41a)
—=m 1 —m
16ma® n+1
gzm = Im —Rn
"M ;mz_n (s )
(41D)
. 1 o
+ B, ( S, +n;/; R ) +iF, Sy |,
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377

378

379

380

381

382

383

384

385

386

387

388

389

390

A =n,|7°By, (42a)
B, =|n,|?A, (42b)
C, =%/ (), (42c)
D, =|m|Ey, (424)
E, =|n|7°Dy, (42e)
Fl=—n* ()" (42f)

For +z-propagating on-axis z-polarized axisymmetric beams, for which
(see, for instance, Eq. (6.3) of Ref. [33]):

1 _ -1 _Z'l = —4 —1 _ gn (43>
In1M = Inom = Wn1E = “WhTE = T2

{QZfTM = QZ,LTE =0, |m| #1
where g,, are known as the special BSCs, one infers that Fp,,, = F},12 and that
r,s can be written in terms of J; as first deduced for arbitrary-index particles
by Ambrosio in Ref. [35].

In addition, when the axisymmetric beam is a 42z propagating, x-polarized
uniform plane wave, g, = exp(ikzo) [33], that is, the special BSCs are simple
phase factors. In this case, and reveals that such BSCs appears in
the force expressions under the form | gn|2 = 1. For arbitrary-index particles,
such conditions allow us to recover Egs. (9), (11) and (12) of Ref. [34] for
plane wave incidence on arbitrary-index spherical particles.

It is also possible to extend the analysis and calculation of the asymmetry
vector in order to incorporate concentric or multilayered spheres [46], or even
geometries other than spherical, e.g., spheroidal particles [47], in particular
by using the GLMT for spheroids [48] or cylindrical absorbers [49].
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4. Conclusions

This work has proposed a theoretical framework within which photophoretic
forces can be calculated for on- or off-axis arbitrary-shaped beams. The anal-
ysis is valid for both the free molecular and slip-flow regimes, for which parti-
cles are much smaller or much larger than the mean free path of gas molecules
in the host medium, respectively. Incidentally, the continuum regime is also
contemplated since it is a limiting case of the slip-flow regime of very small
Knudsen numbers.

The analytic and closed-form expression for the asymmetry vector, be-
sides involving an intricate dependence on the electromagnetic properties
of the spherical micro-particle, incorporates arbitrary shaped beams with
the help of the generalized Lorenz-Mie theory. It is now an easy and a
computationally-efficient task to compute photophoretic forces for any light
beam of interest, since everything that is required to know about it is em-
bedded in the values of the beam shape coefficients, which can be easily
calculated for a large number of laser beams of practical usage.

Several applications can benefit from this approach in the optical and in-
frared domains, including optical tweezers systems for trapping and manipu-
lation of particles, atmospheric problems with suspended aerosols, transport
mechanisms in combustion environments, particle levitation, optical trap dis-
plays for creating three-dimensional images in space, and so on.
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Appendix A.

In this Appendix, the solutions to the integrals (27) and (28| are listed.
Forp>0orq >0 (p<0orq<0), the integrals (27) carry a superscript
7_'_7 (7_7).
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421

422

423

424

425

For the integrals in (27)):

gr - 2(n—q) (n+q+1)!(5
LT n+1)2n+3) (n—gq)!
2(l+q+2) (I+q+1)!

TR @18 (g m

g - _ 2 (n—|—|q|+1)!5
P12 1) (2n+3) (n— g + DI
2 (L +la!
n,l+1,

TRF D@13 (=)

g - _ 2(n+p+2) (n+p+1)!5
27 2n+1)2n+3) (n—p)!
2(l—p) (I+p+1)!

(20+1)(20+3) (I—p)! Oni+1;

927 2n 4+ 1) (2n+ 3) (n — [p])! "
2 (I + |p| + 1)!

C@24+1) (20 +3) (I —[p|+ 1)1 Y

. 2n(n+2) (n+q~|—1)!5
3 n+1)2n+3) (n—q—1 "
A(1+2) (I+q+2)

@+ (21+3) (I—q)! MY

2n(n+2) (n+|q|+1)!
(2n+1) (2n +3) (n —|q| + 1)!
20004+2)  (I+q))!
(20 +1)(20+3) (I — |q])!

g9,3 =

5l,n+1

6n,l+1a
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431

4

@
R

433

434

while for (28)):

+
0.4

0.4

g@?

Jo,s

2n(n+2) (ntp+2)
(2n+1)(2n+3) (n—p)!
200+2) (+p+1)
@+1) @2 +3)(—p—1)!

5l,n+1

6n7l+17

__ (42 (ntlp])!,
(2n+1)(2n+3) (n — |p|)! In+1
21 (l—|—2) (l_|_‘p’_|_1)!

- 20+ 1) (20 +3) (I —|p| + 1)! n,l+15

+ 2 (n+q+1)
9.5 5l,n7
2n+1(n—q-1)!
- = 2 (n+lq])!
g05 ' Lns
7 2n+1(n — |q])
2 (n+p+1)
gf = .
P (- p— 1
g —_ 2 (n+pl)
9,6 l,n
’ 2n+1 (n— ’p|)|
2 (n+ |p| +1)!
T 6l,n+1
2n+1)(2n+3) (n—|p|)!
n 2 (L+p + 1)
(20+1)(20+3) (I—|p])! nl+15

_ 2n (n + 2) (n+\p|-|-1)!5
2n+1)2n+3) (n—|p|)! In+1
2l(l—|—2) (l+|p‘+1)!

(20+1)(204+3) (I—|p|)! On 41,

_ 2 (n+p)! l
2n +1(n— [p)t™™"

9o,9
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