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SCHUBERT CELLS 

VYACHESLAV FUTORNY AND VASYL USTIMENKO 

ABSTRACT. Regular generalised polygons in particular are: semi­
planes; small world graphs, i.e. the diameter d ~ clogi,_1 (v), 
where v is order and k is average degree; graphs that can be homo­
morphically mapped onto the ordinary polygons. The problem of 
the existence of regular graphs satisfying these conditions with the 
degree ~ k and the diameter ~ d for each pair k ~ 3 and d ~ 3 is 
addressed in the paper. This problem is positively solved via the 
explicit construction. Generalised Schubert cells are defined in the 
spirit of Gelfand-Macpherson theorem for the Grassmanian. Con­
structed graph, induced on the generalised largest Schubert cells, is 
isomorphic to the well-known Wenger's graph. The interpretation 
of Wenger graph in terms of affine Lie algebras allows to prove its 
edge-transitivity. 

1. INTRODUCTION 

It is well known that the diameter of a k-regular graph (or graph 
with the average degree k) of order vis at least logk_1(v) and that the 
random k-regular graph has diameter close to this lower bound (see [2, 
X]). Only several explicit constructions of families of k-regular graphs 
with diameter close to logk_1(v) are known [2, X, sec.I], [13]. Most of 
them have cycles C3 or C4. 

The problem of constructing infinite families of given degree with 
small diameter (i.e. with diameter at most clogk_1(v), c ~ 1 is a 
constant) with certain additional properties is far from trivial. This 
problem has many remarkable applications in economics, natural sci­
ences, computer sciences and even in sociology. For instance, the "small 
world graph" of binary relation "two person shake their hands" on the 
set of people in the world, has small diameter. 

The restriction of this problem on the class of bipartite graphs has 
additional motivations because such problem for random graphs has 
been studied by Klee, Larman and Wright, Harary and Robinson, Bol­
lobas and others (see the survey in (2, c X, sec.5]). 

One of the most important classes of small world bipartite graphs 
with additional geometric properties is a class of regular generalised 
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m-gon, i.e. regular tactical configurations of diameter m and girth 

2m. For each parameter m, a regular generalised m-gon· has degree 

q + 1 and order 2(1 + q + • • • + qm). Up to parameters as above all 

known examples of regular generalised m-gons are geometries of finite 

Shevalley group A2(q), B2(q) and G2{q) form= 3, 4 and 6, respectively 

(see [6]). According to the famous Feit-Higman theorem regular thick 

(i.e. degree ~ 3) generalised m-gons exist form = 3, 4 and 6 only. Thus 

generalised Pentagon does not exist, in particular. Each generalised m­

gon has a homomorphism · (retraction) onto the geometry of diheadral 

group Dm, which is ordinary m-gon. 
We underline the follown:ig natural generalizations of regular gener­

alised polygons. 
(i) The class of graphs with logarithmic diameter d ~ cilogk-l(v) 

and logarithmic girth g ~ C2 logk-I (v), where c1, c2 are some constants. 

Such graphs are import~t for communication networks. The problem 

of existence of an infinite family of such graphs with constant degree k 
has been solved explicitly by Margulis ([10], [11], [12]) and Lubotzky, 
Phillips and Sarnak (9]. These graphs are not bipartite, they are Cayley 

graphs of PS~(p) (pis prime} introduced in [10] and investigated in 

[9]. In this construction the diameter is bounded by 2 logk-t ( v} + 2 and 

the girth g ~ ! logk-t (v). This construction supports the existence 

of graphs with unbounded logarithmic diameter and logarithmic girth 

~ g of degree ~ k for each pair (k, g). 
(ii) Other generalisation of generalised m-gon is a flag system with 

the Coxeter metric of dihedral group Dm (for the definition, see [4], [5]}. 

This class of combinatorial objects is very close to the generalised m­

gons. The examples of such systems different from generalised m-gons 

are unknown. 
(iii) Let us consider the class of regular semiplanes, which are bi­

partite small world graphs and can be epimorpbically mapped onto 

the ordinary polygons. These two conditions a.re not so restrictive as 

existence of flag systems with Coxeter metrics. The existence of a ho­

momorphism onto the ordinary polygon allows to define naturally so 

called Schubert cells and small Schubert cells on the vertex-set of the 
graph. 

The purpose of this paper is to prove the existence of graphs from 

this class with the diameter~ d and degree? k for each pair {d, k) via 
explicit constructions. Our main result is the following statement. 

Theorem 1.1. For each integer m, m ? 2, and any prime power q, 
there exists a semiplane SPm(q) of diametrer d, m ~ d $ 2m - 1, of 
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order 2(1+q+ ... qm-l) and degree q+l, which can be homomorphic.ally 
mappe,d onto the geometry of the dihe,dral group Dm. 

Note that SP3 (q) and SP4(q) are isomorphic to geometrie,s of groups 
A2(q) and B2(q), respectively. Semiplane property insures that the 
girth of the graphs SPm(q) is ~ 6. The Schubert geometry of SPm(q), 
i.e the totality of all points and lines at maximal distance from standard 
flag, turns out to be Wenger graph [14], which is useful for applications 
in Computer Science. 

Other example of important problems is the construction of small 
world graphs of infinite degree and finite diameter which is greater or 
equal than given integer k with the fast algorithm of finding the pass 
between any two vertices. 

Graphs SPm(q) are defined via equations over Fq written in terms of 
field addition and multiplication. If we change Fq onto general commu­
tative field K we will get graphs SPm(K). If K is infinite then SPm(K) 
are infinite graphs of diameter ~ m such that we can find a pass of 
length t, t ~ 2m + 1 fast, i.e. with O(m2) arithmetic operations. 

2. GRAPHS AND INCIDENCE SYSTEM 

The missing definitions of graph-theoretical concepts which appears 
in this paper can be found in (1] or [2]. All graphs we consider are 
simple, i.e. undirected without loops and multiple edges. Let V(G) and 
E(G) denote the set of vertices and the set of edges of G, respectively. 
Then IV(G)I is called the order of G, and IE(G)l is called the size of 
G. A path in G is called simple if all its vertices are distinct. When it 
is convenient, we shall identify G with the corresponding anti-reflexive 
binary relation on V(G), i.e. E(G) is a subset of V(G) x V(G) and write 
vGu for the adjacent vertices u and v ( or neighbors). The sequence of 
distinct vertices v0 , v1 , ••• , Vi, such that v;GVi+i for i = 1, ... , t - 1 is 
the pass in the graph. The length of a pass is a number of its edges. 
The distance dist( u, v) between two vertices is the length of the shortest 
pass between them. The diameter of the graph is the maximal distance 
between two vertices u and v of the graph. Let Cm denote the cycle 
of length m i.e. the sequence of distinct vertices v0 , ••• , Vm such that 
v;GVi+i, i = 1, ... , m -1 and vmGv1. The girth of a graph G, denoted 
by g = g(G), is the length of the shortest cycle in G. The degree of 
vertex v is the number of its neighbors. 

The incidence structure is the set V with partition sets P (points) 
and L (lines) and symmetric binary relation I such that the incidence 
of two elements implies that one of them is a point and another is a 
line. We shall identify I with the simple graph of this incidence relation 



4 VYACHESLAV FUTORNY AND VASYL USTIMENKO 

(bipartite graph). If number of neighbours of each element is finite and 

depends only from its type (point or line), then the incidence structure 

is a tactical configuration in the sense of Moore (see [6]). An incidence 

structure is a semiplane if two distinct lines are intersecting not more 

than in one point and two distinct points are incident not more than 

one line. As it follows from the definition, graphs of the semiplane have 

no cycles C3 and C4. 
The graph is k-regular if each of its vertex baa degree k; where k is 

a constant. . 

Let us consider an incidence structure with point set P and line set 

L, which are two copies of n-dimensional vector space over Fq. It will 

be convenient for us to denote vectors from P as 

and vectors from L 88 

Y = [y] = [Yo,1, 711,1, Y2,1, Ya,1,. • •. Y;,1,.,. ]. 

We say that point (x) is incident with the line [y] and we write it 

xly or (x)I[y] if and only if the following condition are satisfied: 

where i = 1,2, .... 
Let W(q) be the incidence graph of the structure r(Fq) = (P, L, I). 

For each integer k ~ 2 let r(l, Fq) = (P(k), L(k), I(k)) be the incidence 

system, where P(k) and L(k) are the images of P and L under the 

projection of these spaces on the first k -coordinates and binary relation 

/(k) is defined by the first k equations. Fin11.lly, let W1i:(q) be the 

incidence graph for r(k, F9). This is exactly the graph which has been 

defined by Wenger. Graph W(q) is a projective limit of Wt(q) when k 
goes to infinity. 

Let Pm be the incidence graph of the incidence structure of points 

(vertices) and lines (edges) of the ordinary m-gon. 

Fork~ 1 and m ~ l define a family F(k, m) of incidence structures 

satisfying the axioms (Al)-(A6) below. 
(Al) F(k, m) is a family of small world graphs; · 

(A2) Each 'YE F(k, m) is a k-regular tactical configuration; 
(A3) 'Y E F(k, m) is a semiplane; 
(A4) For ea.ch 7 E F(k, m) there is a homomorphism ef, : 7 ➔ Pm 

and monomorphism Tl: Pm ➔ 'Y such that ef,011 is the identity map and 
q(Pm) is the set of fixed points of '7 o ef,; 



SMALL WORLD SEMIPLANES WITH GENERALISED SCHUBERT CELLS 5 

(A5) there is a flag {p, l} E Pm such that dist(u, 71(p)) = dist(u, 17(p)} 
and dist(u, 71(1)) = dist(u, 11(1)) if and only if cp(u) = cp(v); 

The axioms (A4) and (A5) alow us to define the generoli8ed Schubert 
cells in the following way: vertices u and v are in the same cell if and 
only if ¢,( u) = </J( v) ( or distances from u and v to the elements of stan­
dard flag {p, l} are the same). We can also consider generali8ed small 
Schubert cells: u and v are in the same cell if dist( u, x) = dist( v, x) 
for each x E 17(Pm). Last equivalence relation is defined in the spirit of 
Gelfand-Mac Pherson theorem for the Grassmanian (7]. 

In the next section we construct explicitly a family of graphs satis­
fying the axioms A(l) - A(5). 

3. MAIN CONSTRUCTION 

Let us consider the dihedral group Dm and its geometry. The Coxeter 
group Dm is defined as group with generators a and b and generic 
relations (ab)m = e, a2 = e and b2 = e. The order of Dm is 2m. The 
point set and the line set for the geometry Dm is the totality of cosets 
Dm : (a) and Dm : (b), respectively. Two classes a and fJ are incident 
al fJ if and only if Ja n .Bl = 0 It is ea.sy to see that the geometry is 
just the incidence structure Pm of vertices (points) and edges (lines) of 
theordinary m-gon. 

The totality of mirror symmetries (reflections) of ordinary m-gon 
is the set of elements with odd length with respect to the irreducible 
decomposition into letters of the alphabet { a, b}. It contains the words 
a, b, aba, bab, ... , and the longest element is ( ab Ya = (baY b, 2r + 1 = 
2[m/2]. 

Let l(a), a E (Dm: (a))U(Dm: (b)) be the length of the coset a, i. e. 
the minimal length of the irreducible representation for representatives 
of a. Let A be the totality of all reflections of the Coxeter group Dm- To 
each element a E r(Dm) we construct the set A(a) = {w E AJl(wa) ~ 
l(a)}. and the vector space V(a) = (F9)6.(al = {J : A(a) ➔ Fq}. We 
can consider such a vector space as a subspace of F9 6. consisting of 
elements satisfying condition f (x) = 0 for x E A - A(cr). The natural 
basis of F9 ~ is the totality of er, where e,.(r) = 1 and e,.(r') = 0, r :f. r'. 
Let us use "double index notation" for the basis elements: e11 = e1,o, 
eb = eo,1, ecba. = e2,1, ew = e3,1, ... , e,.b[m/•la = fm-2,1· 

We can tum F9 a into an alternating linear algebra with the multi­
plication*, such that e1,o * eo,1 = e1,1, e1,o.t;,1 = t!i+1,1, i = 1, ... , m-3 
and product of other basis elements is zero. Note that this operation 
is not associative. In fact it is a Lie bracket (see the last section of the 
paper). 
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Let us consider now the following new incidence structure on the 

set I'(Dn) of elements (a, x), a E r(Dn) (element of ordinary n-gon), 

x E Fq, We shall assume that ( a, x) is a point if and only if a is a point 

of ordinary n-gon. Two pairs (a, x) and (/3, y) are incident (relation J') 
if and only if the following two conditions hold 

(i) al f3 within geometry of ordinary m-gon 

(ii) X - Yb(o)M(,8) = X * Y· 

The graph of the incidence relation I' will be denoted as SPm(q). 
We can identify elements of kind (a, 0), where O(x) = 0 for each 

x E ~ with the elements of i'. Thus we have a natural embedding TJ of 

r into f. Let us use the term standard flag for (a), (b). 

Proposition 3.1. The degree of each element of i' is q + 1. The 
diameter off is bounded by 2m- l. The map</>: f' ➔ r, </>(a,x) = o:, 
is the homomorphism onto the geometry of ordinary m-gon, the map 

TJ : r ➔ f is monomorphism, t/> o TJ is an identity map and 11(r) is the 
set ,?I fixed elements of 1/ o </J. 

Proof. The definition of the incidence relation for r implies that q, is 

an epimorphism. Let {a,/) be the vertex off. The element a has 

two neighbors o:1 and 02 in the polygon. Without loss of generality 

we may assume that l(a1) < l(a2). It is clear that ~(a1) C A(a2) 
and, as it follows from the definition of the incidence, there is a unique 

neighbour u of (a, I) such that ef>(u) = a. In fact, it is (ai, /l~(a1)), 

For the neighbour of ( a, f) of kind a 2 we have two different cases: if · 

l(a2) > l(a1), then A{a2) includes A(a1) and IA(a2) \ ~(a1)l = 1 
and we have q-neighbours of kind (a, g), such that Yla, = f Let 

l(a2) = l(a), i.e. the cosets a2 and a have maximal length. Then 

IA{a2)I = IA(a)I = m-1 and IA(a)nA(a)I = m-2. As it follows from 
the definition of the incidence relation, the neighbour of kind ( a2, g) is 

uniquely determined by g(w), where {w} = A{o2) \ (A(o2) n A(a)). 
Thus we have exactly q options there. It means that the degree of each 
vertex off' has degree q + 1. 

Let V and u be the vertices of r, their minimal distance to some ele­

ment of the standard Hag is restricted by m-1. If v and u are elements 

of the same type then the shortest walks from them to elements of the 

standard flag have same last element. Thus dist( u, v) = 2m - 2. ff 
these elements are of different type then we can combine the shortest 

walk from the first element, edge of the standard flag and reverse for 

the shortest walk from the second element to the standard flag. It 

means that the dist(u, v) $ 2m - l. 
D 
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Proposition 3.2. The graph SPm(q) is a semiplane. 

Proof. We have to prove that the common neighbourhood for two dis­
tinct vertices u and v of the same type (both points or both lines) con­
tains at most one element. Let us consider the case ,j,(u) =/:- q,(v). With­
out loss of generality we may assume that A(,j,(u)) contains A(q,(v)) 
and write u as (o, /). There is a unique common neighbour fJ of q,(u) 
and ,j,(v) and A(.B) is a subset of A(o). It means that the only possible 
option for the common neighbour is (.B, /la(p))- In fact, the condition 
of the existence of the unique common neighbour is v = ( q,( v), /a(,J,(..v))). 

Let fJ be one of two common neighbours for o in the pentagon. We 
can write u and v as (o, / 1) and (o, '2), respectively. Then a possible 
common neighbour of u and v can be written as (fJ,g). Consider the 
following cases: 

(i) If l(fJ) > l(a) then A({J) contains A(o) and Ii = '2 = YIA(a)• 
Thus u = v and we get a contradiction in this case. 

(ii) Let l(.B) < la, then possible neighbours have form (fJ, filA(a))­
The condition of the existence of common neighbour for u and v is 
fi(x) = h(x) for x EA. Then the unique neighbour of u and v exist 
in the case fi(x) = h(x) for x E A(/3). Notice that ft(r) =/:- '2(r) for 
the single root r in A(o) \ A(fJ). 

{iii) Let l(fJ) = l(o:) and g(r') = x for r' =I- ~(o:). The values ft and 
'2 are the following tuples (ar, a1,1, .. - llm-2,1) and (br, bu, ... , bm-2,1), 
where r is a simple root different from r'. Let e(r) = 1 for r = (1, 0) 
and e(r) = 0 for r = (0, 1). If Or =/:- br then possible x is uniquely 
defined from the system of two equations 

a1,1 ~ X1,1 = e(r)arx, b1,1 - x1,1 = e(r)brx. 

Notice that in this case a1,1 =/:- b1,1 and there is no neighbour w with 
l( ,j,( w)) = m - 1. Let 0r = br then from the incidence equations we are 
getting ft = h which contradicts to u =/:- v. 

Thus u and v have at most one common neighbour. 
D 

Proposition 3.3. The Schubert substructure off' = SPm(q) is well 
defined. It is isomorphic to the Wenger graph Wm-1(q). 

Proof. Let us consider point p and lines l of f' with the property 
l(,j,(p)) = m - 1, l(cj,(l)) = m - 1 and pll. Then distances from p 
and l to the nearest vertex from the standard flag equal m - 1. Thus 
the generalised largest Schubert cells are well-defined. Let p =(a,!), 
l = (.B,g), f and g are defined by tuples (a1,o,a1,1,---,llm-2,1) and 
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(bo,1, b1,1, ... , bm-2,1). Then incidence condition of I' implies 

'1i+1,1 - bi+1,1 = a1,obi,1, i = 0, 1, ... , m - 3. . 

These are the equations that define the Wenger graph. D 

Propositions 3.1-3.3 imply immediately Theorem 1.1 and show that 
the family of graphs SPm(q) satisfies to the axioms A(l) - A(5). 

4. SCHUBERT TRANSITIVITY 

Let us consider the affine Kac-Moody Lie algebra L = Ai over the 
field K defined via 2 x 2 symmetric extended Cartan matrix ('1i;) with 
au = an = 2 and a12 = -2 see [8]. It has a Cartan decomposition 
L -ff)H ff)L +, where H and H ffiL + are the Cartan and the Borel algebras 
respectively. The algebra L + is a direct sum of one dimensional root 
subalgebras corresponding to positive roots. The set of positive roots 
in the standard basis of simple roots o 1 and o 2 can be written as tuples 
(i+l, i), (i, i), (i, i+l), i = 0, 1, .... Let< be the lexicographical order 
on the set of positive roots. Let e,. be the basic element from the root 
subalgebra La, We choose a basis of L such that fea, etl] = ea+/J if 
o < f) and o + f) is a root, and identify the elements of L with the 
tuples in this basis. 

For each positive root a and l E K we consider the automorphism 
ta(l) = exp(ad(lea)) of the infinite dimensional Lie algebra£+. This 
automorphism can change infinitely many components of the vector 
from £+, but the close formulae for the i-th component of t0 (l)(x), 
x E L +, is the polynomial expression in variables xi, . .. Xi. 

Let us consider the direct sum L(a) of Lp such that /3 $ o. Then 
tr(l) acts naturally on L(a). Let U and U(a) be the groups generated 
by tr(l) where er E £+ and e,. E L(o), respectively. Then U an U(a) 
act regularly, i.e. transitively with a trivial point stabilizer, on the 
vector spaces Land L(o), respectively. 

Consider the subalgebra P of L generated by elements ea
1 

and etl, 
where /3 = a1 + 02. Then Pis a direct sum of Lr, where r = (i + 1, i) 
and (i, i). Let P(a) = P n L(a), where ea E f. Groups U(P) =< 
tr(l)le,. E P > and UP(a) = U(P) n U(a) act regularly on P and Pa, 
respectively. We will write any root a = l/3 + o 1 corresponding to a 
root subspace from Pas (l, 1). We will also restrict the order< on this 
set of roots: (l, 1) < (l', 1) if and only if l < l'. 

The following statement is immediate corollary from the definitions. 

Proposition 4.1. The Lie algebra (Ff,•), which defines the graphs 
SPm(q), is isomorphic to L(a) for a= (m - 2, 1}, cons~red as a Lie 
algebra over the ground field Fq. 
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Next statement is equivalent to the flag transitivity of the Schubert 
substructure (Schubert transitivity) for the semiplane SPm(q). 

Theorem 4.2. Wenger graph Wm(q) is edge transitive. 

Proof. Consider first the case of charFq ~ m. Let a• be the dual root 
for a = (I, 0). Then a• is a basis element of the Cartan subalgebra 
H. The multiplication rule in H EB L + for a is [a•, e,.] = 2e,., where 
r ~ (0, 1) and [a•, eo,1] = 0. 

Let us consider the external derivation {3* which is "dual" to f3 = 
(0, I}: [/3",e,.] = /3*(r)e,., where f3*(i, I)= i and consider the the subal­
gebra L =< a*, /3*, L + >. We shall identify points (x1,o, x1,1, ... , Xm-1,i) 
and lines [Yo,1, Y1,1, ... , Ym-1,1] with the elements 

and 

respecively. 
We can rewrite the incidence condition of Wenger graph in the form 

[x, ii] = 0. Elements u = t,.(l) preserve the Lie bracket and the group 
UP(a), a= {m-1, 1) acts regularly on the set of pairs (x,jj) such that 
[x, y] = 0 according to the rule: X ➔ xul(L+-Lo,1), jj ➔ 1iul(L+-L1,o)· 

Thus Wenger graph is an edge transitive for p = char(F9) ~ m. 
We can write close formula for each transformation tQ(l) acting on 

PUL in the form Xr ➔ x,.+ J,.(xi,o, ... , Xr• ), Yr ➔ Yr = Ur(Yo,1, ... , Yr'), 
r' < r, which preserve the incedence relation for the case of small 
characteristic as well. 

These transformation generate the group which acts regularly on the 
vertices of Wenger graph. 

D 
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