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VYACHESLAV FUTORNY AND VASYL USTIMENKO

ABSTRACT. Regular generalised polygons in particular are: semi-
planes; small world graphs, i.e. the diameter d < clog,_,(v),
where v is order and k is average degree; graphs that can be homo-
morphically mapped onto the ordinary polygons. The problem of
the existence of regular graphs satisfying these conditions with the
degree > k and the diameter > d for each pair k > 3and d > 3 is
addressed in the paper. This problem is positively solved via the
explicit construction. Generalised Schubert, cells are defined in the
spirit of Gelfand-Macpherson theorem for the Grassmanian. Con-
structed graph, induced on the generalised largest Schubert cells, is
isomorphic to the well-known Wenger’s graph. The interpretation
of Wenger graph in terms of affine Lie algebras allows to prove its
edge-transitivity.

1. INTRODUCTION

It is well known that the diameter of a k-regular graph (or graph
with the average degree k) of order v is at least log;_,(v) and that the
random k-regular graph has diameter close to this lower bound (see [2,
X]). Only several explicit constructions of families of k-regular graphs
with diameter close to log,_,(v) are known [2, X, sec.1], [13]. Most of
them have cycles C3 or C,.

The problem of constructing infinite families of given degree with
small diameter (i.e. with diameter at most clog,_,(v), ¢ > 1 is a
constant) with certain additional properties is far from trivial. This
problem has many remarkable applications in economics, natural sci-
ences, computer sciences and even in sociology. For instance, the ”small
world graph” of binary relation ”"two person shake their hands” on the
set of people in the world, has small diameter.

The restriction of this problem on the class of bipartite graphs has
additional motivations because such problem for random graphs bas
been studied by Klee, Larman and Wright, Harary and Robinson, Bol-
lobas and others (see the survey in [2, ¢ X, sec.5]).

One of the most important classes of small world bipartite graphs

with additional geometric properties is a class of regular generalised
1
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m-gon, i.e. regular tactical configurations of diameter m and girth
9m. For each parameter m, a regular generalised m-gon has degree
g+ 1 and order 2(1 + g+ -+ +¢™). Up to parameters as above all
known examples of regular generalised m-gons are geometries of finite
Shevalley group A;(q), Bz(g) and G2(g) for m = 3, 4 and 6, respectively
(see [6]). According to the famous Feit-Higman theorem regular thick
(i.e. degree > 3) generalised m-gons exist for m = 3,4 and 6 only. Thus
generalised Pentagon does not exist, in particular. Each generalised m-
gon has a homomorphism (retraction) onto the geometry of diheadral
group D,, which is ordinary m-gon.

We underline the following natural generalizations of regular gener-
alised polygons.

(i) The class of graphs with logarithmic diameter d < ¢ log,_;(v)
and logarithmic girth g > ¢z log,_,(v), where c,, c; are some constants.
Such graphs are important for communication networks. The problem
of existence of an infinite family of such graphs with constant degree k
has been solved explicitly by Margulis ([10], [11], [12]) and Lubotzky,
Phillips and Sarnak [9]. These graphs are not bipartite, they are Cayley
graphs of PSLy(p) (p is prime) introduced in [10] and investigated in
[9]. In this construction the diameter is bounded by 2log,_,(v)+2 and
the girth g ~ %log, ,(v). This construction supports the existence
of graphs with unbounded logarithmic diameter and logarithmic girth
> g of degree > k for each pair (k, g).

(ii) Other generalisation of generalised m-gon is a flag system with
the Coxeter metric of dihedral group D, (for the definition, see [4], [5]).
This class of combinatorial objects is very close to the generalised m-
gons. The examples of such systems different from generalised m-gons
are unknown.

(iii) Let us consider the class of regular semiplanes, which are bi-
partite small world graphs and can be epimorphically mapped onto
the ordinary polygons. These two conditions are not so restrictive as
existence of flag systems with Coxeter metrics. The existence of a ho-
momorphism onto the ordinary polygon allows to define naturally so
called Schubert cells and small Schubert cells on the vertex-set of the
graph.

The purpose of this paper is to prove the existence of graphs from
this class with the diameter > d and degree > k for each pair (d, k) via
explicit constructions. Our main result is the following statement.

Theorem 1.1. For each integer m, m > 2, and any prime power g,
there exists a semiplane SPy,(q) of diametrer d, m < d < 2m —1, of
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order 2(1+g+...¢™ ') and degree g+1, which can be homomorphically
mapped onto the geometry of the dihedral group D,,.

Note that SP;(g) and SPy(g) are isomorphic to geometries of groups
A2(g) and B,(g), respectively. Semiplane property insures that the
girth of the graphs SP,,(g) is > 6. The Schubert geometry of SP,(g),
i.e the totality of all points and lines at maximal distance from standard
flag, turns out to be Wenger graph [14], which is useful for applications
in Computer Science.

Other example of important problems is the construction of small
world graphs of infinite degree and finite diameter which is greater or
equal than given integer k with the fast algorithm of finding the pass
between any two vertices.

Graphs SP,,(g) are defined via equations over F, written in terms of
field addition and multiplication. If we change F, onto general commu-
tative field K we will get graphs SP,,(K). If K is infinite then SP,,(K)
are infinite graphs of diameter > m such that we can find a pass of
length ¢, t < 2/m + 1 fast, i.e. with O(m?) arithmetic operations.

2. GRAPHS AND INCIDENCE SYSTEM

The missing definitions of graph-theoretical concepts which appears
in this paper can be found in [1] or [2]. All graphs we consider are
simple, i.e. undirected without loops and multiple edges. Let V (G) and
E(G) denote the set of vertices and the set of edges of G, respectively.
Then |V(G)| is called the order of G, and |E(G)] is called the size of
G. A path in G is called simple if all its vertices are distinct. When it
is convenient, we shall identify G with the corresponding anti-reflexive
binary relation on V(G), i.e. E(G) is a subset of V/(G) x V(G) and write
vGu for the adjacent vertices u and v (or neighbors). The sequence of
distinct vertices vg, vy,..., v, such that v;Gv;y; fori=1,...,t—11is
the pass in the graph. The length of a pass is a number of its edges.
The distance dist(u, v) between two vertices is the length of the shortest
pass between them. The diameter of the graph is the maximal distance
between two vertices u and v of the graph. Let C,, denote the cycle
of length m i.e. the sequence of distinct vertices vy, ..., v, such that
1;Gvi4, 1 =1,...,m —1 and v,Gv,. The girth of a graph G, denoted
by g = g(G), is the length of the shortest cycle in G. The degree of
vertex v is the number of its neighbors.

The incidence structure is the set V with partition sets P (points)
and L (lines) and symmetric binary relation I such that the incidence
of two elements implies that one of them is a point and another is a
line. We shall identify I with the simple graph of this incidence relation
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(bipartite graph). If number of neighbours of each element is finite and
depends only from its type (point or line), then the incidence structure
is a tactical configuration in the sense of Moore (see [6]). An incidence
structure is a semiplane if two distinct lines are intersecting not more
than in one point and two distinct points are incident not more than
one line. As it follows from the definition, graphs of the semiplane have
no cycles C3 and C;.

The graph is k-regular if each of its vertex has degree k, where k is
a constant.

Let us consider an incidence structure with point set P and line set
L, which are two copies of n-dimensional vector space over Fy. It will
be convenient for us to denote vectors from P as

x = () = (£1,0, 1,1, T2, 3,15+ - Tigly -+ - )

and vectors from L as

Y= [IJ] = [llo,x»ﬂl,l, V2,1, Y3, 1y - - <+ YiLls o ]

We say that point (z) is incident with the line [y] and we write it
xly or (z)I[y] if and only if the following condition are satisfied:

Yip — Til = Yi-1,1T10

where1=1,2,....

Let W(q) be the incidence graph of the structure I'(F,) = (P, L, I).
For each integer k > 2 let I'(, F,) = (P(k), L(k), I(k)) be the incidence
system, where P(k) and L(k) are the images of P and L under the
projection of these spaces on the first k -coordinates and binary relation
I(k) is defined by the first k& equations. Finally, let Wy(q) be the
incidence graph for I'(k, F,). This is exactly the graph which has been
defined by Wenger. Graph W(q) is a projective limit of Wy (q) when k
goes to infinity.

Let P, be the incidence graph of the incidence structure of points
(vertices) and lines (edges) of the ordinary m-gon.

For k > 1 and m > 1 define a family F(k, m) of incidence structures
satisfying the axioms (A1)-(A6) below.

(A1) F(k,m) is a family of small world graphs;

(A2) Each v € F(k,m) is a k-regular tactical configuration;

(A3) v € F(k,m) is a semiplane;

(A4) For each v € F(k,m) there is a homomorphism ¢ : v = P,
and monomorphism 7 : P,, ~+ v such that ¢ o7 is the identity map and
1(Ppn) is the set of fixed points of n o ¢;
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(A5) there is a flag {p, !} € P, such that dist(u, n(p)) = dist(u,n(p))
and dist(u,n(l)) = dist(u,n(l)) if and only if ¢(u) = ¢(v);

The axioms (A4) and (A5) alow us to define the generalised Schubert
cells in the following way: vertices u and v are in the same cell if and
only if ¢(u) = ¢(v) (or distances from u and v to the elements of stan-
dard flag {p,l} are the same). We can also consider generalised small
Schubert cells: u and v are in the same cell if dist(u,z) = dist(v, )
for each z € n(P,). Last equivalence relation is defined in the spirit of
Gelfand-Mac Pherson theorem for the Grassmanian [7}.

In the next section we construct explicitly a family of graphs satis-
fying the axioms A(1) — A(5).

3. MAIN CONSTRUCTION

Let us consider the dihedral group D,, and its geometry. The Coxeter
group Dy, is defined as group with generators a and b and generic
relations (ab)™ = e, a? = ¢ and b* = e. The order of D,, is 2m. The
point set and the line set for the geometry Dy, is the totality of cosets
Dy, : (a) and Dy, : (b), respectively. Two classes o and § are incident
alf if and only if [N B| = 0 It is easy to see that the geometry is
just the incidence structure Py, of vertices (points) and edges (lines) of
theordinary m-gon.

The totality of mirror symmetries (reflections) of ordinary m-gon
is the set of elements with odd length with respect to the irreducible
decomposition into letters of the alphabet {a, b}. It contains the words
a,b,aba, bab, ..., and the longest element is (ab)"a = (ba)™, 2r + 1 =
2[m/2].

Let l(a), @ € (Dm : (a))U(Dp, : (b)) be the length of the coset o, i. €.
the minimal length of the irreducible representation for representatives
of a. Let A be the totality of all reflections of the Coxeter group D,,. To
each element a € I'(Dy,) we construct the set A(a) = {w € Ajl(wa) <
l{a)}. and the vector space V(a) = (F;)2@® = {f : A(a) - F,}. We
can consider such a vector space as a subspace of F,® consisting of
elements satisfying condition f(z) =0 for z € A — A(a). The natural
basis of F,* is the totality of e,, where e,(r) = 1 and e (r)=0,r# 1.
Let us use "double index notation” for the basis elements: e, = €10,

€b = €p,1, €aba = €2,1, €hab = €3,1, .+« Eyplm/2l; = €pm_2,1-
We can turn FqA into an alternating linear algebra with the multi-
plication *, such that e; g% €91 = €1, €1,0¢€i1 = €ip11,8=1,...,m—3

and product of other basis elements is zero. Note that this operation
is not associative. In fact it is a Lie bracket (see the last section of the
paper).
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Let us consider now the following new incidence structure on the
set T'(Dy) of elements (@, x), a € I'(Dy) (element of ordinary n-gon),
x € Fj, We shall assume that (o, x) is a point if and only if c is a point
of ordinary n-gon. Two pairs (e, x) and (8, y) are incident (relation I')
if and only if the following two conditions hold

(i) alB within geometry of ordinary m-gon

(i) x — yla@na@) =X *Y-

The graph of the incidence relation I’ will be denoted as SPn(q).

We can identify elements of kind (c,0), where 0(z) = 0 for each
z € A with the elements of I'. Thus we have a natural embedding 5 of
T into I'. Let us use the term standard flag for (a), (b).

Proposition 3.1. The degree of each element of T is ¢ + 1. The
diameter of I is bounded by 2m —1. The map ¢:T = T, ¢(a,T) = a,
is the homomorphism onto the geometry of ordinary m-gon, the map
n:T— ' is monomorphism, ¢ o 1) is an identity map and n(T') is the
set of fized elements of no ¢.

Proof. The definition of the incidence relation for I' implies that ¢ is
an epimorphism. Let (a, f) be the vertex of I'. The element o has
two neighbors a; and a in the polygon. Without loss of generality
we may assume that [(ay) < l(ag). It is clear that A(a;) C A(az)
and, as it follows from the definition of the incidence, there is a unique
neighbour u of (a, f) such that ¢(u) = a. In fact, it is (a1, flaga))-
For the neighbour of (o, f) of kind o, we have two different cases: if
l{os) > (o), then A(ap) includes A(ey) and |A(az) \ Aar)] =1
and we have g-neighbours of kind («, g), such that gla, = f. Let
(o) = l(a), i.e. the cosets a; and o have maximal length. Then
|A(02)] = JA(@)| = m—1 and |A(a)NA(a)| = m—2. Asit follows from
the definition of the incidence relation, the neighbour of kind (ox, g) is
uniquely determined by g(w), where {w} = A(az) \ (A(az) N A(e)).
Thus we have exactly ¢ options there. It means that the degree of each
vertex of I' has degree ¢ +1.

Let v and u be the vertices of I, their minimal distance to some ele-
ment of the standard flag is restricted by m—1. If v and u are elements
of the same type then the shortest walks from them to elements of the
standard flag have same last element. Thus dist(u,v) = 2m — 2. If
these elements are of different type then we can combine the shortest
walk from the first element, edge of the standard flag and reverse for
the shortest walk from the second element to the standard flag. It
means that the dist(u,v) < 2m — 1.

O



SMALL WORLD SEMIPLANES WITH GENERALISED SCHUBERT CELLS 7
Proposition 3.2. The graph SFP,(q) is a semiplane.

Proof. We have to prove that the common neighbourhood for two dis-
tinct vertices u and v of the same type (both points or both lines) con-
tains at most one element. Let us consider the case ¢(u) # ¢(v). With-
out loss of generality we may assume that A(¢(u)) contains A(¢(v))
and write u as (a, f). There is a unique common neighbour 8 of ¢(u)
and ¢(v) and A(B) is a subset of A(c). It means that the only possible
option for the common neighbour is (8, f|a(s)). In fact, the condition
of the existence of the unique common neighbour is v = (#(v), fa((w)))-

Let B be one of two common neighbours for « in the pentagon. We
can write u and v as (a, f;) and (a, fo), respectively. Then a possible
common neighbour of « and v can be written as (8, g). Consider the
following cases:

(i) If I(B) > l(a) then A(B) contains A(a) and fi = fo = gla(e)-
Thus © = v and we get a contradiction in this case.

(ii) Let !(8) < lo, then possible neighbours have form (8, fi]a(a))-
The condition of the existence of common neighbour for u and v is
fi(x) = fa(z) for z € A. Then the unique neighbour of » and v exist
in the case fi(z) = fa(x) for z € A(B). Notice that fi(r) # fo(r) for
the single root r in A(a) \ A(B).

(iii) Let {(8) = l(a) and g(r') = « for 1’ # A(a). The values f; and
fa are the following tuples (a,,a1,1,...Gm—2,1) and (br,d11,...,bm-23),
where r is a simple root different from . Let e(r) = 1 for r = (1,0)
and e(r) = 0 for r = (0,1). If a, # b, then possible z is uniquely
defined from the system of two equations

ap; — .'14'1,1 = e(r)a.,.x, bl,l — T = e(r)b,.:v.

Notice that in this case a;; # by and there is no neighbour w with
l(¢(w)) = m—1. Let a, = b, then from the incidence equations we are
getting f; = f, which contradicts to u # v.

Thus v and v have at most one common neighbour.

O

Proposition 3.3. The Schubert substructure of I = SPn(q) is well
defined. It is isomorphic to the Wenger graph Wp_1(q).

Proof. Let us consider point p and lines [ of I' with the property
(o) = m -1, I(¢(!)) = m — 1 and pll. Then distances from p
and [ to the nearest vertex from the standard flag equal m — 1. Thus
the generalised largest Schubert cells are well-defined. Le t p = (¢, f),
Il = (B,9), f and g are defined by tuples (ai0,01,1,...,0m-2,) and



8 VYACHESLAV FUTORNY AND VASYL USTIMENKO

(Bo1,b1.1, - - -, bn—2,1). Then incidence condition of T' implies
01,0 — iy = 10051, =0,1,...,m-3.
These are the equations that define the Wenger graph. O

Propositions 3.1-3.3 imply immediately Theorem 1.1 and show that
the family of graphs SP,,(g) satisfies to the axioms A(1) — A(5).

4. SCHUBERT TRANSITIVITY

Let us consider the affine Kac-Moody Lie algebra L = A4, over the
field K defined via 2 x 2 symmetric extended Cartan matrix (ay;) with
a1 = agz = 2 and a;p = —2 see [8]. It has a Cartan decomposition
L-®@H®L*, where H and H®L* are the Cartan and the Borel algebras
respectively. The algebra Lt is a direct sum of one dimensional root
subalgebras corresponding to positive roots. The set of positive roots
in the standard basis of simple roots a; and a; can be written as tuples
(i+1,1), (4,1), (¢,4+1),i§ =0,1,.... Let < be the lexicographical order
on the set of positive roots. Let e, be the basic element from the root
subalgebra L,. We choose a basis of L such that [ea,eg] = eqqp if
a < f and a + § is a root, and identify the elements of L with the
tuples in this basis.

For each positive root o and I € K we consider the automorphism
ta(l) = exp(ad(le,)) of the infinite dimensional Lie algebra L+. This
automorphism can change infinitely many components of the vector
from L*, but the close formulae for the i-th component of t,(I)(z),
z € L*, is the polynomial expression in variables z,...z;.

Let us consider the direct sum L(c) of Lg such that 8 < a@. Then
t,(1) acts naturally on L(a). Let U and U(a) be the groups generated
by t.(I) where e, € L* and e, € L(a), respectively. Then U an U(a)
act regularly, i.e. transitively with a trivial point stabilizer, on the
vector spaces L and L(q), respectively.

Consider the subalgebra P of L generated by elements e,, and eg,
where 8 = a; + ay. Then P is a direct sum of L,, where r = (¢ + 1,1)
and (3,7). Let P(a) = PN L(a), where e, € P. Groups U(P) =<
tr()|ler € P > and UP(a) = U(P)NU(a) act regularly on P and P,,
respectively. We will write any root a = I8 + o, corresponding to a
root subspace from P as (I,1). We will also restrict the order < on this
set of roots: (I,1) < (I',1) if and only if I < V.

The following statement is immediate corollary from the definitions.
Proposition 4.1. The Lie algebra (Ff, ), which defines the graphs

SPn(q), is isomorphic to L(a) for a = (m — 2,1), considered as a Lie
algebra over the ground field F,.
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Next statement is equivalent to the flag transitivity of the Schubert
substructure (Schubert transitivity) for the semiplane SP,(g).

Theorem 4.2. Wenger graph Wy, (q) is edge transitive.

Proof. Consider first the case of charF, > m. Let a* be the dual root
for o = (1,0). Then o* is a basis element of the Cartan subalgebra
H. The multiplication rule in H & L* for a is [o*,e] = 2e,, where
r# (0,1) and [0*,e0,] = 0.

Let us consider the external derivation 8* which is "dual” to § =
(0,1): 8%, er] = B°(r)er, where 8*(i,1) = i and consider the the subal-
gebra L =< o, §*, L* >. We shall identify points (21,9, Z1,15- - - y Zm-1,1)
and lines {yo1, 1,1, - - - s Ym—1,1] With the elements

m—1
~ *
r=a + E ;-’Emei,x + T1.0€1,0
i=1
and

1 m-1
§j=p"+3 > e,
i=0
respecively.

We can rewrite the incidence condition of Wenger graph in the form
[Z,9] = 0. Elements u = t,(I) preserve the Lie bracket and the group
UP(a), @ = (m—1,1) acts regularly on the set of pairs (%, ) such that
[#,§] = 0 according to the rule: & — £*|(z+_1o,), § = §*|@+-L10)-
Thus Wenger graph is an edge transitive for p = char(Fy) > m.

We can write close formula for each transformation ¢,(l) acting on
PUL in the form z, = 2.+ fr(T1,0,- -, 2 )y Ur = Yr = Gr(W005- -+, Yr')s
7" < r, which preserve the incedence relation for the case of small
characteristic as well.

These transformation generate the group which acts regularly on the
vertices of Wenger graph.

a
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