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ABSTRACT

In this work, we present the galaxy clustering measurements of the two DES lens galaxy samples: a magnitude-limited sample
optimized for the measurement of cosmological parameters, MAGLIM, and a sample of luminous red galaxies selected with
the REDMAGIC algorithm. MAGLIM/REDMAGIC sample contains over 10 million/2.5 million galaxies and is divided into six/five
photometric redshift bins spanning the range z € [0.20, 1.05]/z € [0.15, 0.90]. Both samples cover 4143 deg® over which we
perform our analysis blind, measuring the angular correlation function with an S/N ~ 63 for both samples. In a companion
paper, these measurements of galaxy clustering are combined with the correlation functions of cosmic shear and galaxy—galaxy
lensing of each sample to place cosmological constraints with a 3 x 2pt analysis. We conduct a thorough study of the mitigation
of systematic effects caused by the spatially varying survey properties and we correct the measurements to remove artificial
clustering signals. We employ several decontamination methods with different configurations to ensure the robustness of our
corrections and to determine the systematic uncertainty that needs to be considered for the final cosmology analyses. We validate
our fiducial methodology using lognormal mocks, showing that our decontamination procedure induces biases no greater than
0.50 in the (2, b) plane, where b is the galaxy bias.

Key words: cosmological parameters —cosmology: observations —dark energy —large-scale structure of the Universe.

ments to Type la supernovae (SN Ia; Riess et al. 1998; Perlmutter
1 INTRODUCTION et al. 1999), the cosmic microwave background (CMB) fluctuations
The current Standard Model of Cosmology, ACDM, provides an (Spergel et al. 2003; Planck Collaboration XI 2020), and the large-
excellent fit to current observations, including distance measure- scale structure of the Universe (Alam et al. 2017; Abbott et al.
2019; Alam et al. 2021), with only six free parameters. In addition,
photometric galaxy surveys, such as the Kilo-Degree Survey (KiDS,
de Jong et al. 2013), Hyper Suprime-Cam Subaru Strategic Program
(HSC-SSP; Aihara et al. 2018) and the Dark Energy Survey (DES,

*E-mail: rodriguez-monroy @ijclab.in2p3.fr (MR); nweaverd@umich.edu
(NW); elvin-poole.1 @osu.edu (JE)

© 2022 The Author(s)
Published by Oxford University Press on behalf of Royal Astronomical Society

Zz0z aunr go uo Jasn (oiq ‘Isul) 1q1S-eLouay -dSN Ag L¥¥9159/5992/2/1 L G/e101e/Selu/Wwod dno-olwapede//:sdjy woiy papeojumoq


http://orcid.org/0000-0001-6163-1058
http://orcid.org/0000-0001-9382-5199
http://orcid.org/0000-0002-9745-6228
http://orcid.org/0000-0003-3044-5150
mailto:rodriguez-monroy@ijclab.in2p3.fr
mailto:nweaverd@umich.edu
mailto:elvin-poole.1@osu.edu

2666  DES Collaboration

The Dark Energy Survey Collaboration 2005) are now reaching
a level of sensitivity that competes and complements the precise
determinations from CMB observatories. The comparison of the
measurements of the late Universe, provided by galaxy surveys,
and the early Universe, provided by CMB measurements, allows
for powerful tests of the nature of cosmic acceleration and general
relativity. The precision that photometric surveys are able to reach
in the determination of cosmological parameters comes from the
combination of different observables, mainly from weak lensing
and clustering of galaxies, in the so-called 3 x 2pt analysis, whose
methodology is described in DES Collaboration (2018a), van Uitert
etal. (2018), Joudaki et al. (2018), Heymans et al. (2021), and Krause
et al. (2021) (and references therein).

In this work, we present the clustering measurements of the
lens galaxy samples that enter in the DES Year 3 (Y3) 3 x 2pt
(DES Collaboration et al. 2022) and the 2 x 2pt (Elvin-Poole
et al. 2021; Pandey et al. 2021; Porredon et al. 2021a; Prat et al.
2021, in combination with the shear field or galaxy—galaxy lensing)
analyses. The cosmological information is extracted from the large-
scale structure (LSS) measurements using the angular two-point
correlation function that characterizes the spatial distribution of
galaxies in tomographic photometric redshift bins. However, the
measurement of the angular correlation function is affected by
spatially varying survey properties that must be taken into account
and corrected to extract the full cosmological power of DES. These
systematic effects come from the observing conditions and translate
into changes in the selection function across the observed footprint
or with redshift.

As photometric surveys have become more extended in area, both
the impact of these survey properties or observational effects, and
the diminishing statistical errors, have spurred the development of a
variety of techniques to correct for them in clustering measurements.
Already in SDSS (Scranton et al. 2002; Myers et al. 2006) and
2MASS (Maller et al. 2005), cross-correlations with different survey
properties and masking were used to check for possible sources of
systematic error, which were deemed to be insignificant given the
statistical errors. Ross et al. (2011) compared several methodologies
(masking, cross-correlation correction and computing weights for
the data) in SDSS-III. The cross-correlation correction method was
applied to early DES data (DES-SV) in Crocce et al. (2016), and was
studied by Elsner, Leistedt & Peiris (2016) (there called ‘template
subtraction’) who derived its characteristic bias. The application
of weights have increasingly become a popular method, applied
for instance in BOSS (Ross et al. 2017, 2020), eBOSS (Laurent
et al. 2017; Raichoor et al. 2021), DES-SV (Kwan et al. 2017,
comparing with the cross-correlation method), DES Y1 data (Elvin-
Poole et al. 2018), and DESI targets (Kitanidis et al. 2020). Rather
than applying weights to the observed data, the inverse-weights
can be applied to the random sample used for correlation function
analyses, as shown in Morrison & Hildebrandt (2015) and applied
to eBOSS data via a multilinear regression analysis in (Bautista
et al. 2018; Icaza-Lizaola et al. 2020). These approaches have been
refined in recent years as the importance of addressing these spatial
systematics has grown (Vakili et al. 2020; Wagoner et al. 2021;
Weaverdyck & Huterer 2021), including the development of machine
learning approaches using neural networks (NNs; Rezaie et al. 2020)
or self-organizing maps (Johnston et al. 2021). Some approaches
have operated only at the level of the power spectrum, including
mode projection methods (Rybicki & Press (1992) with examples
of applications and further developments shown in Leistedt et al.
(2013), Leistedt & Peiris (2014), Elsner et al. (2016), and Elsner,
Leistedt & Peiris (2017). Weaverdyck & Huterer (2021) reviewed
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several of the above techniques and showed how mode projection
methods operating on the pseudo-power spectrum are related to
multilinear regression methods, identifying residual biases in both
approaches.

We present the methods we apply to DES-Y3 data in order to
mitigate these effects, the full set of validation tests we perform,
both on data and on simulations, and its final implementation on the
data. These corrections enable robust measurements of the clustering
amplitude of lens galaxies. The results of this analysis are used as
the clustering input for the full 3 x 2pt cosmological analysis in
DES-Y3 (DES Collaboration et al. 2022).

This paper is organized as follows: In Section 2, we describe
the modeling of the galaxy clustering angular correlation function
used throughout the Y3 analysis. In Section 3, we introduce the
Y3 data and the galaxy samples derived from it. In Section 4,
we present the description of different observing conditions and
their representation. In Section 5, we present the methodology, with
special attention to the decontamination pipeline (Sections 5.3.1 and
5.3.2). In Section 6, we show the galaxy clustering results after
applying the correction methods. This correction is validated in
Section 7. In Section 8, we discuss the post-unblinding findings
about the amplitude of the angular correlation functions in terms of
the considered survey properties. Finally, we present the conclusions
in Section 9.

2 MODELLING

The observed projected galaxy density contrast 8¢,

tomography bin i at position 72 can be written as

(1) of galaxies in

84 obs(71) = / dx Wi GO 88 (R, x)+8y rsp@) + 8, (R), (1)

JQD(ﬁ)

with x the comoving distance, Wj = ny(z)dz/dy the normalized
selection function of galaxies in tomographic bin i. Here the first
term is the line-of-sight projection of the three-dimensional galaxy
density contrast, 8;3])); the remaining terms are the contributions
from linear redshift-space distortions (RSDs) and magnification (1),
which are described in Krause et al. (2021).

‘We model the galaxy density assuming a local, linear galaxy bias
model (Fry & Gaztanaga 1993), where the galaxy and matter density
fluctuations are related by 8,(x) = bd,(x), with density fluctuations
defined by § = (n(x) — 71)/i1. We model the linear galaxy bias to be
constant across each tomographic bin, denoted as b'. The validity
of these assumptions to the accuracy of the Y3 3 x 2pt analysis
is demonstrated in Krause et al. (2021) (see section V.B.2 and
also DeRose et al. 2021, where it is determined that the redshift
evolution of linear galaxy bias within redshift bins is negligible for
the clustering and galaxy—galaxy lensing combined analyses).

The angular power spectrum consists of six different terms,
corresponding to auto- and cross-power spectra of galaxy density,
RSD and magnification. For Y3, we use the exact (non-Limber)
computation for angular clustering. For a quantitative analysis of
the impact of the Limber approximation on near-future data sets, see
Fang et al. (2020). For example, the exact expression for the density—
density contribution to the angular clustering power spectrum is

' 2 ,. ,
Clhosan® = = [ witn [ e Wz

dk
x / TR Pl 0, ek, @
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with j,(ky) Bessel functions of order £ and Py, (k, z;, z2) the 3D
galaxy power spectrum in real space. The full expressions including
magnification and RSD are given in Fang et al. (2020). Schematically,
the integrand in equation (2) is split into the contribution from non-
linear evolution, for which unequal time contributions are negligible
so that the Limber approximation is sufficient, and the linear-
evolution power spectrum, for which time evolution factorizes.'
The angular correlation function is then given by

. 20+ 1 ’
w' (@) => 4+ Pi(cos)CYL s (0), 3)

- . 8g.0bs
where P, are the Legendre polynomials.

Throughout this paper, we use the COSMOSIS framework” (Zuntz
et al. 2015) to compute correlation functions, and to infer cosmo-
logical parameters. The evolution of linear density fluctuations is
obtained using the CAMB (Lewis & Bridle 2002) module® and then
converted to a non-linear matter power spectrum Py, (k) using the
updated HaLorIT recipe (Takahashi et al. 2012). Nevertheless, the
baseline model used for this analysis assumes linear galaxy bias, so
the relation between galaxy and matter power spectra is given by Py,
= b?Ppn(k) (see Krause et al. 2021, for a more general expression
and for the validation of this model).

We model (and marginalize over) photometric redshift bias un-
certainties as an additive shift Az’ in the galaxy redshift distribution
ny(z) for each redshift bin i:

ny(z) = ny(z — A7), 4)

and a stretch parameter to characterize the uncertainty on the width
for some of the tomographic bins and samples:

ny(z) = ny (0][z — ()] + (2) . ®)

The priors on the Az’ and oz’ nuisance parameters are measured
and calibrated directly using the angular cross-correlation between
the DES sample and a spectroscopic sample, as described in Cawthon
et al. (2020). We use the same Az’ and oz’ as in the Y3 3 x 2pt
analysis for all tests of robustness of the parameter constraints, as
listed in Table 3.

3 DATA

The Dark Energy Survey collected imaging data with the Dark
Energy Camera (DECam; Flaugher et al. 2015) mounted on the
Blanco 4m telescope at the Cerro Tololo Inter-American Observatory
(CTIO) in Chile during six years, from 2013 to 2019. The observed
sky area covers ~ 5000 deg? in five broad-band filters, grizY, covering
near-infrared and visible wavelengths. This work uses data from
the the first 3 yr (from 2013 August to 2016 February), with
approximately four overlapping exposures over the full wide-field
area, reaching a limiting magnitude of i ~ 23.3 for signal-to-noise
ratio (S/N) = 10 point sources. The data were processed by the
DES Data Management system (Morganson et al. 2018) and, after
a complex reduction and vetting procedure, compiled into object
catalogues. The catalogue used here amounts to nearly 400 million
sources (available publicly as Data Release 1*; DES Collaboration
2018b). We calculate additional metadata in the form of quality
flags, survey flags, survey property (SP) maps, object classifiers, and

Thttps://github.com/xfangcosmo/FFTLog-and-beyond.
Zhttps://bitbucket.org/joezuntz/cosmosis.
3http://camb.info.
“https://des.ncsa.illinois.edu/releases/dr1.
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photometric redshifts to build the Y3 GOLD data set (Sevilla-Noarbe
et al. 2021).

From this catalogue, we build the different galaxy samples for LSS
studies. For robustness, we decided to use two different types of lens
galaxies, MAGLIM and REDMAGIC, which are used as lens samples
for galaxy clustering and for combination with weak lensing for the
3 X 2pt analysis. These two samples are described in the following
subsections.’

3.1 Y3 MAGLIM sample

The main lens sample considered in this work, MAGLIM, is the result
of the optimization carried out in Porredon et al. (2021b). The sample
is designed to maximize the cosmological constraining power of the
combined clustering and galaxy—galaxy lensing analysis (also known
as 2 x 2pt) keeping the selection criterion as simple as possible. The
selection cuts, based on the table columns from Sevilla-Noarbe et al.
(2021), are as follows:

(1) flags_foreground=0 & flags_footprint=1 & bi-
tand(f lags_badregions,2)=0 & bitand(flags_gold,126)=0;

(i) star-galaxy separation with EXTENDED_CLASS_MASH_SOF

(iii) 1 < 4 - Zphot + 18;

(iv) i > 17.5;

The first cut is a quality flag to remove badly measured objects
or objects with issues in the processing steps. It also removes
problematic regions due to astrophysical foregrounds. The second cut
removes stars from the galaxy sample. The faint magnitude cut in the
i band depends linearly on the photometric redshift, zpho, and selects
bright galaxies. The photometric redshift estimator used for this
sample is the Directional Neighbourhood Fitting (DNF; De Vicente,
Séanchez & Sevilla-Noarbe 2016) algorithm (see also Porredon et al.
2021a), in particular its mean estimate using 80 nearest neighbours
in colour and magnitude space, by performing a hyperplane fit. The
brighter magnitude cut removes residual stellar contamination from
binary stars and other bright objects.

The number and width of the redshift bins is studied in Porredon
etal. (2021b), where they evaluate the impact of this kind of choices
on the 2 x 2pt constraining power in wCDM (Fisher forecasts and
MCMC sampling of the posterior distributions of Q,,, og, and w).
We split the sample into six tomographic lens bins, with bin edges
Zpnot = [0.20, 0.40, 0.55, 0.70, 0.85, 0.95, 1.05]. These edges have
been slightly modified with respect to Porredon et al. (2021b) in
order to improve the photometric redshift calibration (De Vicente
et al. 2016). We refer the reader to Porredon et al. (2021b) for more
details about the optimization of this sample and its comparison with
REDMAGIC and other flux-limited samples. The main properties of
the sample are summarized at the top panel of Table 1.

3.2 Y3 REDMAGIC sample

The REDMAGIC algorithm selects luminous red galaxies (LRGs)
according to the magnitude—colour—redshift relation of red sequence
galaxy clusters, calibrated using an overlapping spectroscopic sam-
ple. This sample is defined by an input threshold luminosity Ly,

SMoreover, from Y3 GOLD. we also define the BAO SAMPLE, a galaxy
sample especially defined for studies on the baryonic acoustic oscillation
scales (Carnero Rosell et al. 2021), which is not used here, but undergoes an
analogous treatment of its spatial systematics.

MNRAS 511, 2665-2687 (2022)
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Table 1. MAGLIM (top table) and REDMAGIC (bottom table) characterization
parameters: number of galaxies, Ny, and number density, (ng), blind galaxy
bias, b', and scales excluded per redshift bin.

Redshift bin N (ng) bt 0 > [arcmin]
MAGLIM
0.20 < z < 0.40 2236462 0.150 15 33.88
0.40 < z < 0.55 1599 487 0.107 1.8 24.35
0.55 <z <0.70 1627 408 0.109 1.8 17.41
0.70 < z < 0.85 2175171 0.146 1.9 14.49
0.85 <z <0.95 1583679 0.106 23 12.88
0.95 <z <1.05 1494243 0.100 23 12.06
REDMAGIC
0.15 <z <0.35 330243 0.022 1.7 39.23
0.35 <z < 0.50 571551 0.038 1.7 2475
0.50 < z < 0.65 872611 0.059 1.7 19.66
0.65 < z < 0.80 442302 0.030 2.0 15.62
0.80 < z < 0.90 377329 0.025 2.0 12.40

Notes. The number densities are in units of arcmin~2 and the scales excluded
correspond to 8 Mpc/h~! for both samples, as described in Krause et al.
(2021). The blind galaxy bias values correspond to the fiducial values that
were assumed to create the lognormal mocks used in this analysis, not the
best-fitting values from 3 x 2pt.

and constant co-moving density. The full REDMAGIC algorithm
is described in Rozo et al. (2016). REDMAGIC is the algorithm
used for the fiducial clustering sample of the DES Y1 3 x 2pt
cosmology analyses (DES Collaboration 2018a; Elvin-Poole et al.
2018), with some updates improving the redshift estimates and
selection uniformity, besides the usage of new photometry from Y3
GOLD.

We define the Y3 REDMAGIC sample in five tomographic
lens bins, selected on the REDMAGIC redshift point estimate
quantity zredmagic. The bin edges used are Zggpmacic =
[0.15, 0.35, 0.50, 0.65, 0.80, 0.90]. The first three bins use a lumi-
nosity threshold of Ly, > 0.5L, and are known as the high density
or highdens sample. The last two redshift bins use a luminosity
threshold of Ly, > 1.0L, and are known as the high luminosity or
highlum sample.

The REDMAGIC selection also includes the following cuts on
quantities from the Y3 GOLD catalogue and REDMAGIC calibration:

(i) Removed objects with FLAGS_GOLD in 8|16|32|64.

(ii) Star galaxy separation with EXTENDED_CLASS_MASH_SOF
>2.

(i) Cut on the red-sequence goodness of fit x% < x2,.(2)-

The main properties of the sample are summarized in the bottom
part of Table 1. See Sevilla-Noarbe et al. (2021) for further details
on these quantities.

3.3 Angular mask

The total sky area covered by the Y3 GOLD catalogue footprint is
4946 deg®. We then mask regions where astrophysical foregrounds
(bright stars or large nearby galaxies) are present, or where there are
known processing problems (‘bad regions’), reducing the total area
by 659.68 deg” (Sevilla-Noarbe et al. 2021). The angular mask is
defined as a HEALPIX® (Gérski et al. 2005) map of resolution Nyjge
= 4096. Pixels with fractional coverage smaller than 80 per cent

Ohttps://healpix.sourceforge.io.
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are removed. In addition, we require homogeneous depth across
the footprint for both galaxy samples, removing too shallow or
incomplete regions. As a summary, we use the following Y3 GOLD
and REDMAGIC specific map quantities to define the final common
area:

(i) footprint = 1;

(ii) foregrounds = 0;
(iii) badregions <1;

(iv) fracdet > 0.8;

(v) depth i band >22.2;
(Vi) ZMAX, highdens =>0.65;
(vii) ZmAX, hightum >0.95.

where the depth for the i-band magnitude is obtained using the
SOF photometry (detailed in Sevilla-Noarbe et al. 2021) (as used
in MAGLIM) and the conditions on ZMAX are inherited from the
REDMAGIC redshift span. The zyax quantity is the maximum redshift
at which a REDMAGIC galaxy can be detected with the luminosity
threshold employed (0.5L* for REDMAGIC highdens and 1.0L* for
highlum), given the depth of the survey at that location. We only
remove pixels where zyax is lower than the upper edge of the
redshift bin, so we have ZMAX, highdens < 0.65 and ZMAX, highlum < 0.95
for this sample. Initially (well before unblinding), we considered an
upper redshift bin edge of 0.95, but this was reduced to 0.90 due to
poor coverage in the spectroscopic sample employed for validation
(Cawthon et al. 2020). However, we decided to keep the definition
of the angular mask at Zyax, highum = 0.95 for compatibility with
other parts of the DES Y3 analysis for which the angular mask was
already fixed. This is also a more conservative cut, since it removes
pixels at the edge of the depth cut. The final analysed sky area is
4143 deg?.

4 SURVEY PROPERTIES

4.1 SP maps

Through their impact on the galaxy selection function, survey
properties can modify the observed galaxy density field. In order
to correct these effects, we develop spatial templates for potential
contaminants by creating HEALPIX sky maps of survey properties (‘SP
maps’), which we then use to characterize and remove contamination
from the observed density fields (see Leistedt et al. 2016, for the
details of the original implementation of this mapping in DES).
Each pixel of a given SP map corresponds to a summary statistic
that characterizes the distribution of values of the measured quantity
over multiple observations. Table 2 summarizes the survey properties
considered in this analysis along with the summary statistics used
to produce the SP maps. As foreground sources of contamination
we use a star map created with bright DES point sources, labeled
stellar_dens (the star map from which the stellar density map is
made, stars_1620, has the cut 16 < i < 20), and the interstellar
extinction map from Schlegel, Finkbeiner & Davis (1998), sfd98.”
More detailed information on the construction of these maps can be
found in Sevilla-Noarbe et al. (2021). Hereafter, we will use SP map
to refer to SP and foreground maps generically.

"We have verified that substituting the DES point sources map with the
Gaia EDR3 star map (Gaia Collaboration 2020) and the sfd98 map with the
Planck 2013 thermal dust emission map (Planck CollaborationVI 2014) has
no significant impact on the results.
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Table 2. Survey properties used for the systematics mitigation effort of the
DES Y3 Key Project, along with their physical units and the statistics used
to generate SP maps from the stacking of images.

Quantity Units Statistics
airmass [ WMEAN, MIN, MAX
fwhm arcsec WMEAN, MIN, MAX
Swhm_fluxrad arcsec WMEAN, MIN, MAX
exptime S SUM

teff [ WMEAN, MIN, MAX
t_eff_exptime S SUM

skybrite electrons/CCD pixel WMEAN
skyvar (electron s/CCD pixel)> ~ WMEAN, MIN, MAX
skyvar_sqrt electrons/CCD pixel WMEAN
skyvar_uncertainty  electrons/ s x coadd pixel

sigma_mag_zero mag QSUM
feem_gry mag WMEAN, MIN
maglim mag

sof-depth mag

magauto_depth mag

stars_1620 # stars

stellar_dens stars/deg?

sfd98 mag

Notes. As foreground sources of contamination, we use a DES bright stars
map and the dust extinction map from Schlegel et al. (1998). We use both
the raw number count of DES point sources, stars_1620, and the density,
stellar_dens. We use an SP map for each statistic in each photometric band
in {g, r, i, z} (with the exception of stars_1620, stellar_dens, and sfd98),
resulting in 107 total SP maps.

4.2 Reduced PCA map basis

The Y1 analysis used 21 SP maps selected a priori. However, a
reduced set of SP maps is equivalent to setting a hard prior of no
contamination from those SP maps that are unused, so we should be
careful to not discard spatial templates that carry unique information
about potential systematics (Weaverdyck & Huterer 2021). For Y3
we have initially increased the number of SP maps considered to 107.
By expanding the library of SP maps used for cleaning, we relax the
implicit priors and adopt a more data-driven approach to cleaning
observational systematics from the clustering data.

Many of the Y3 additional SP maps we use are alternative summary
statistics for characterizing the observed quantity, such as MIN and
MAX instead of the weighted mean (WMEAN), which results in a
high correlation between SP maps. We therefore create an orthogonal
set of SP maps by using the principal components of the pixel
covariance matrix across all 107 SP maps (standardized to zero mean
and unit variance) at Ngg. = 4096.% This provides an orthornormal
basis set of SP maps that can be ordered according to the total variance
they capture in the space spanned by the 107 SP maps. We will refer
to these principal component maps as PC maps to differentiate from
SP maps in the standard (STD) basis, where each map represents a
single SP (e.g. exptime). From this point forward, we will use ‘SP’
map to more generically refer to maps that may be in either the PC
or STD basis. We retain the first 50 PC maps, which account for
~98 per cent of the variance of the full 107 map basis. This allows

8We use this resolution because we wish to apply the correction to the data at
the maximum resolution available. This is provided by DESDM (Morganson
et al. 2018), which generates the SP maps at Nsige = 4096, which is a good
compromise between computational speed and needed resolution for this
cosmological analysis. We verify that the difference in the variance explained
by A) the principal component maps at Ngige = 4096 and then degraded to 512
and B) the maps obtained after performing a PCA at Ngige = 512 is negligible.
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us to capture the dominant features of the additional maps while
reducing the risk of removing real LSS signal from overfitting (we
note that we use PCA to decorrelate the STD maps and after that we
find it convenient to reduce their number, so we employ this same
formalism for this task). We test the impact of adjusting the number
of PC maps used in Section 8 and Appendix D, finding that the
full set of 107 maps results in galaxy weights that overcorrect and
correlate significantly with LSS. The fiducial set of maps employed
to decontaminate the data are these first 50 PC maps, although we
have also run validation tests with the STD maps, as we explain in
the next sections.

5 ANALYSIS TOOLS AND METHODOLOGY

5.1 Clustering estimator

The analysis of the galaxy clustering is performed by measuring
the angular two-point correlation function, w(#), in photometric
redshift bins. In this analysis, we work with HEALPIX (Gérski et al.
2005) maps of the SPs and galaxy density from lognormal mock
catalogues. The decontamination methods generate HEALPIX weight
maps as well. Weights are actually obtained for each SP pixel, so we
also work with pixelized versions of our galaxy samples, and use a
pixel-based version of the Landy—Szalay estimator (Landy & Szalay
1993), following the notation of Crocce et al. (2016):

Npix Npix

N, —N)x (N; — N
o) =3 3 );_;2( 1=, . ©)

i=1 j=I

where N; is the galaxy number density in pixel i, N is the mean galaxy
number density over all pixels within the footprint, and ®; ; is a top-
hat function that is equal to 1 when pixels i and j are separated by an
angle 6 within the bin size A0. The fractional coverage of each pixel
is taken into account in the calculation of N; and N. These correlation
functions are calculated using TREECORR® (Jarvis, Bernstein & Jain
2004). We verify on the data that the difference between this pixel
version of the estimator at both Ngge = 4096 and 512 and that using
random points is negligible for the angular scales we consider.

5.2 Lognormal mocks

We rely on a set of lognormal mock realizations of the observed data
to evaluate the significance of the correlation between data and SP
maps following the methodology of Elvin-Poole et al. (2018) and
Xavier, Abdalla & Joachimi (2016). For each of our galaxy samples,
we create a set of 1000 mocks that matches their mean galaxy
number density and power spectrum. We generate full-sky mock
catalogues at a HEALPIX resolution of Ngg. = 512, corresponding
to ~0°11 pixels. We then apply the DES-Y3 angular mask. This
angular resolution is small enough to be used for the scales employed
in the cosmology analysis. The usage of these mocks is covered
in Section 5.3.1. We also create sets of contaminated lognormal
mocks that we later use to validate our decontamination methods.
These mocks incorporate the effect of SP maps observed on the
data. Appendix A contains more details about their creation and
contamination.

“https://rmjarvis.github.io/TreeCorr.
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5.3 Correction methods

The observed galaxy sample has contamination from observing
conditions and foregrounds, which modify the selection function
across the survey footprint. Our goal is to correct these effects in
the lens galaxy samples. To do so, we create a set of weights to
apply to the galaxy samples, constructed from a list of SP maps.
The weighted sample is then used for measurements of w(6) and for
combination with weak lensing measurements (DES Collaboration
etal. 2022; Elvin-Poole et al. 2021; Pandey et al. 2021; Porredon et al.
2021a). This approach has been successfully applied to the angular
correlation function of the DES Year 1 clustering measurements
(Elvin-Poole et al. 2018), as well as in SDSS-III (e.g. in Ross et al.
2011,2017),eBOSS (Laurent et al. 2017; Bautista et al. 2018; Icaza-
Lizaola et al. 2020; Ross et al. 2020; Raichoor et al. 2021), and KiDS
(Vakili et al. 2020).

Most correction procedures can be interpreted as regression meth-
ods, with the true overdensity field corresponding to the residuals
after regressing the observed density field against a set of SP maps.
Adding SP maps is equivalent to adding additional explanatory
variables to the regression, which increases the chance of overfitting.
Such overfitting will reduce the magnitude of the inferred overdensity
field (i.e. shrink the size of regression residuals), and thus overfitting
will generically lead to a reduced clustering signal.

There are several approaches to address this. One can a priori
restrict the number of SP maps to reduce the level of false correction.
This is equivalent to asserting that there is no contamination from the
discarded SP maps, which risks biasing the data from unaccounted-
for systematic effects. A second option is to clean with all of the
SP maps and then debias the measured clustering based on an
estimate of the expected level of false correction (e.g. pseudo-C;
mode projection; Elsner et al. 2016, 2017; Alonso et al. 2019). This
approach can be interpreted as a simultaneous ordinary least-squares
regression with a step to debias the power spectrum. Map-level
weights that may enter in the analysis of other observables, such
as galaxy—galaxy lensing, can be produced from this approach, but
they will be overly aggressive if the number of SP maps is large.
Wagoner et al. (2021) extend this approach by incorporating the pixel
covariance and using Markov chain Monte Carlo to include map-level
error estimates, but this again becomes less feasible if the number of
SP maps is too large. Finally, one can take an approach between these
extremes, reducing the number of SP maps used for fitting, but doing
so in a data-driven manner. We apply two different methods that take
this third approach. They make different assumptions, but were both
found to perform well in simulated tests in Weaverdyck & Huterer
(2021). The SP maps we run these two methods on is our fiducial
set of 50 PC maps that we introduced in Section 4. In addition, we
present a third method that we use to test linearity assumptions made
by the other two.

5.3.1 Iterative Systematics Decontamination (ISD)

In this subsection, we describe the fiducial correction method that we
use for DES Y3, called ISD. It is an extension of the methodology
applied in Y1 (Elvin-Poole et al. 2018).

ISD is organized as a pipeline that corrects the PC map (or any
generic SP map) effects by means of an iterative process whose steps
can be summarized as (i) identify the most significant PC map, (ii)
obtain a weight map from it, (iii) apply it to the data, and (iv) go back
to (i). The algorithm stops when there are no more maps with an
effect larger than an a priori fixed threshold. Each step is described
in more detail in the following lines.

MNRAS 511, 2665-2687 (2022)

To begin with, we degrade each PC map to Ngg¢e= 512 and then
we compute the relation between their values and n,/(n,), where n,
is the observed density of galaxies at a given part of the sky and (n,)
is the average density over the full footprint. In the following, we
refer to this as the 1D relation. To obtain the statistical significance
of the observed correlations, we bin the 1D relation into 10 equal-
sky areas for each PC map and estimate a covariance matrix for
the 1D relation bin means of that PC map using the set of 1000
uncontaminated mocks described in Section 5.2. Since the bins are
defined as equal area, the statistical error associated with each bin is
similar and no one region dominates the fit. We use this covariance
matrix for determining the best-fitting parameters of a function to
approximate the 1D relation, as well as to assess its goodness of fit.

We fit the 1D relation to a linear function of the PC map values

.:mxs,-—{—c, @)

by minimizing x2, which we then denote x2 .- The index i runs
over the PC map bins. Similarly, we compute the goodness of fit for
the case where n,/{n,) is a constant function f(s) = 1 labelled x2 .
Finding that n./(n,) fits well to this constant function is equivalent
to finding that this particular PC has no impact on the galaxy density
field. To calculate both x2 definitions, we make use of the (10 x 10)
covariance matrix obtained from the lognormal mocks.

The degree of impact of a given PC map on the data is evaluated
using

2 2 2
Ax* = Xnull — Xmodel* (®)

To decide whether this impact is statistically significant or not, we
run the exact same procedure described above on 1000 lognormal
mock realizations. In this way, we obtain the probability distribution
of Ayx?%. We define A x2(68) as the value below which are 68 per cent
of the Ax? values from the mocks. Then, we consider an SP map
significant if

Ax?

m > Tip, O]

Sip =
where T'p is a significance threshold that is fixed beforehand. The
square root of this quotient is proportional to the significance in terms
of o.

After identifying the most contaminating map, s;, the next step is
to obtain a weights map, w;_;, to correct its impact. We compute this
weights map as

1

BT FGy” (1o
where F(s;) is a linear function of s; with which its 1D relation is
fitted. In general, this function depends on the nature of the SP map,
although the aim is to use functions as simple as possible to prevent
overfitting. In the case of PC maps, we find no significant deviations
from linearity in the 1D relations (see Appendix E).

After obtaining the weight map, the pipeline normalizes it to w, =
1. Then, itis applied to the data in such a way that Ny, — Ng; x w?,
where p is an index that runs over the footprint pixels at Nyge = 4096.
The process is repeated iteratively, identifying at each iteration the
most significant PC map and correcting for it until all the PC maps
have a significance lower than 7jp. At iteration i, the weights from
iterations 1 to i have been applied. Fig. 1 shows the 1D relation of
a given PC map that has been identified as a significant contaminant
(dots) and after correcting for it (triangles).
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Figure 1. Example of how ISD works. We illustrate this by showing the
observed pixel number density (relative to the mean over the full footprint)
as a function of a PC map pixel value, evaluated in 10 equal area bins. We
refer to this as 1D relation. The method identifies the PC map pca8 as the
most significant one at iteration O (i.e. no weights have been applied yet) at
the first redshift bin of MAGLIM. The corresponding 1D relation is depicted
by the red triangles and the red line corresponds to their best-fitting linear
function. After correcting for the contaminating template with weights (given
by equation 10) at iteration 1, the impact of this PC map on the data is highly
reduced. The blue points and their best-fitting linear function (blue line) show
that the 1D relation is now compatible with no effect.

The weights associated to each significant PC map are incorpo-
rated multiplicatively to the total weight map, wr, that is

S
wr = [ ws.i. (11)
i=1

where i runs over the number of PC maps it is necessary to weight
for. wr is then the total weight map that contains the information
about the individual contaminants. These are the weights we apply
to the data to mitigate the contamination. This total weight map is
also normalized so its mean value over the full footprint is 1. The
pipeline runs this procedure for each redshift bin independently.

5.3.2 Elastic Net (ENET)

We also generated sets of weights using the ENET method described
in Weaverdyck & Huterer (2021) on the list of 50 PC maps. In this
work, ENet has been used to perform robustness tests. Recall that the
ISD method estimates contamination via a series of 1D regressions
that are used to construct a total weight map via equation (11).
In contrast, ENET estimates the amplitude of contamination for all
PC maps simultaneously, by maximizing the following log-posterior
over o

7’(01)0<—;IISObs—Sallﬁ—/\lllalll—Qllallﬁs (12)
2Ny D 2

where «; is the contamination amplitude for PC map s;, S is a matrix
with the pixelated PC maps as columns,'® and

5 . SaejN;
obs,j — Npix

Zj (fdet.ij)/Npix

-1, (13)

10T practice, we standardize PC maps to have mean 0 and unit standard
deviation before computing equation (12).
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where fqe,  is the fraction of pixel j that is not masked. The first term
in equation (12) corresponds to the standard Gaussian likelihood
that is maximized for an ordinary least-squares regression. The
regularizing terms act as components of a mixed, zero-centred prior
on the elements of . The mixture consists of a Laplace and Gaussian
distribution, with their precisions controlled by A; and A,. The
Laplace component is sharply peaked at zero, encouraging sparsity in
the coefficients. We determine the values of A; and A, by minimizing
the mean squared error of the predictions on held-out portions of the
footprint via five-fold cross-validation. This allows the data to pick
the precision and form of the prior based on predictive power.

We use the scikit-learn (Pedregosa et al. 2011) implemen-
tation of ElasticNetCV, with a hyperparameter space of Ai/(A;
+ X2) € {0.1, 0.5, 0.9} and 20 values of (A; + Ay) spanning four
orders of magnitude (automatically determined from the input data).
We degrade all maps to Ngg¢e = 512, and compute equation (12)
using a training mask that only includes pixels with fz; > 0.1
(detection fraction from the Y3 GOLD STD maps that is inherited
by the PC maps). We performed many subsequent tests changing the
definition of this training mask, with little observed impact on the
final w(0). Using ENET on the STD maps we also extended S to
include quadratic terms of form sl.2, and/or terms of form s;Sgeliardenss
but these showed decreased predictive power on held-out samples,
suggesting that the risk of overfitting from these additional maps
dominates over additional contamination they identify.

The total weight map is computed (still at Ngqe = 512) as

Wit = [Fener($)]7 = (1 + S&) ™" (14)

The ISD and ENET methods make different assumptions and
take significantly different approaches to select important SP maps
while minimizing the impact of overcorrection. ENET neglects the
covariance of pixels, as well as the differing clustering properties
of the SP maps, but it is less dependent on the basis of SP maps
than is ISD. It avoids some of the difficulties the ISD method has
when SP maps are highly correlated or contamination is distributed
weakly across a combination of many maps, and hence missed by
1D marginal projections. We therefore expect the ENET method to
be a useful robustness test of the fiducial ISD method, and it is also
used to estimate the systematic contribution to the w(6) covariance
(see Section 6).

5.3.3 Neural net weights (NN-weights)

To evaluate the robustness of the assumptions made and codes used
in producing galaxy-density weights, we created a third alternative
process with different choices and independent code — in particular,
abandoning the assumption that the mean galaxy density is a linear
or polynomial function of all SP maps. The basic principle remains
the same, namely that a function w(s) of the vector s of SP values is
found that maximizes the uniformity of the observed catalogue. In
this case, however, the function is realized by an NN, in a manner
very similar to that of Rezaie et al. (2020).

In contrast to ISD and ENET, we apply this method on the STD
basis of maps. In addition, two important changes to the weighting
procedure were made to avoid having the NN overtrain, in the sense
of absorbing true cosmological density fluctuations into the obser-
vational density factor w. First, the input STD maps were limited
to those that should in principle fully describe the characteristics
of the coadd images: the fwhm, skyvar_uncertainty, exptime and
fecm_gry exposure-averaged values for each of the griz bands, the
sfd98 extinction estimate, and a gaia_density estimate of local stellar
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Figure 2. DES Y3 galaxy clustering results for MAGLIM (top panel) and REDMAGIC (bottom panel). The green points correspond to the angular correlation
function of the ISD-PC <50 weighted data, while the red points correspond to the uncorrected data. The solid black line shows the best-fitting theory prediction
from the DES Y3 3 x 2pt ACDM results of each sample (DES Collaboration et al. 2022). Note that for MAGLIM, we also show the best fit from the analysis
including all six redshift bins (dashed black line), although the fiducial 3 x 2pt cosmology results from this sample only include its first four bins. The shaded
regions correspond to the scales that are excluded for cosmological constraints.

density constructed from Gaia EDR3 (Gaia Collaboration 2020). We
confirm that weights constructed with these STD maps eliminate any
correlation of galaxy density on airmass or depth, and additionally
find that fgcm_gry has no significant effect, so it is dropped, leaving
14 STD maps. The second major change to avoid overtraining is
to institute N-fold cross-validation: the footprint is divided into
healpixels at Ngq. = 16, which are randomly divided into N distinct
‘folds’. The weights for each fold are determined by training the NN
on the other N — 1 folds, halting the training when the loss function
for the target fold stops improving. We use N = 3.

The weights are created on a healpixelization at Ngq. = 4096.
With n;, f;, and w; being the galaxy counts, useful-area fraction, and
weight estimate for each healpixel, respectively, the NN is trained to
minimize the binary cross-entropy :

S = Zlogﬁfiwi —I—Zlog(l —iifiw).

n;j=0

5)

n;>0

In a further departure from the standard weighting scheme, we take
the input vector s to be the logarithm of each input STD map (except
for sfd98, which is already a logarithmic quantity), then linearly
rescale each dimension to have its 1-99 percentile range span (0,1).
We mask the < 1 per cent of survey area for which any such rescaled
SP has s; outside the range (— 0.5, 1.5), knowing that the NN will
fail to train properly on rare values of STD maps.

Using the KERAS software,!! we define the weight function for a

given galaxy bin as
logw(s) = a-s + NN(s), (16)

where o defines a nominal power-law relationship between the STD
maps and the expected galaxy density, and NN is a three-layer
perceptron describing deviations from pure power-law behaviour.

Uhttps://keras.io.
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The training of all folds for all redshift bins can be done overnight
on a single compute node.

6 RESULTS

ISD returns a list of maps with significant impact on galaxy clustering
and that we need to weight for in each redshift bin of the samples.
We studied the impact of observing conditions at three different
significance threshold values, Tip = 2, 4, 9. Increasing this thresh-
old is equivalent to relaxing the strictness of the decontamination,
decreasing the number of significant SP maps. After testing for over
and undercorrection on mocks, the fiducial choice of significance
threshold is 7p = 2 (see Sections 7 and 8 for more details).

We find that, in general, both samples show a similar trend and
they are more impacted by observing conditions at higher redshift.
Generally, more SP maps are significant for the MAGLIM sample
than for REDMAGIC. The measured angular 2pt correlation functions
on the weighted samples can be seen in Fig. 2. The S/N'2 of this
detection is ~63 for both samples (using only the first four bins of
MAGLIM). The data have been corrected for systematic contamination
by applying the ISD-PC <50 weights. After the correction, they are
in good agreement (green points) with the best-fitting cosmology
from 3 x 2pt. The deviation in the first redshift bin for REDMAGIC is
known to come from an inconsistency between clustering results and
galaxy—galaxy lensing in this sample. We defer the discussion of this
important result from the point of view of observational systematics
to Section 8. We note also that for MAGLIM we depict two best-
fitting correlation functions: the best-fitting model from 3 x 2pt
analysis using its six redshift bins (dashed black lines) and excluding

Waata(©)C " winode1(9)
. . . +/ Wmodel (H)Cfl Wmodel (0) .
C is the w(0) part of the covariance matrix and wmodel(f) is the best-fitting

model from 3 x 2pt.

12The signal-to-noise ratio is defined as S/ N = , where
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its last two bins (solid black lines). The DES fiducial constraints
are obtained without the last two bins (shaded in grey in Fig. 2),
as explained in Porredon et al. (2021a). The shaded regions in this
figure depict the scales excluded (see Table 1) from our data vectors.
These regions are not used to obtain constraints on cosmological
parameters. The uncorrected w(@) are shown as red crosses. We
note that the impact of systematic corrections is easily larger than
the statistical uncertainty in the measurements, and are therefore
necessary for unbiased cosmological inference, as we will illustrate
below. These corrections are more important at higher redshift bins
in both galaxy samples. For a comparison of this correction with
respect to DES Y1 galaxy clustering, see Elvin-Poole et al. (2018).

In Fig. 3, we explicitly demonstrate the importance of our system-
atics correction by placing constraints on 2, and the clustering biases
b' from the galaxy clustering correlation function alone. We do this
by fitting the theory model presented in Section 2 to the data using
COSMOSIS and the porycHORD sampling software (Handley, Hobson
& Lasenby 2015a,b). The covariance that we employ is given by
COSMOLIKE (Krause & Eifler 2017) and it includes the systematic
contributions that we introduce in Section 8.4. We again marginalize
over shifts in the photometric redshift distributions and over their
widths. These nuisance parameters are sensitive to the clustering
amplitude. For both samples, the rest of the cosmological parameters
are fixed to their respective DES Y3 fiducial best-fitting cosmology
(note that for MAGLIM this only considers the first four redshift bins).
For this reason, this constraint on 2, should not be taken as a true
constraint, but this illustrates how the changes in the measured w(6)
can impact cosmology constraints. The priors for these cosmological
and nuisance parameters are given in Table 3. We obtain these
contours for the unweighted and ISD-weighted data. As evidence
of robustness of our choice of SP maps, we also show contours
for another configuration of ISD (ISD-STD34), where only 34 STD
maps are considered (see Section 8.1 and appendix B of Carnero
Rosell et al. (2021) for more details on this selection of SP maps).
The corrections for the two ISD configurations are equivalent within
the statistical uncertainty. In Fig. 3, we focus on the redshift bins
that show the most prominent systematic shift in the w(#), namely
the fourth and the fifth bins of the MAGLIM and REDMAGIC samples,
respectively. For these bins, we find a difference in the mean of
the posteriors of €2, from uncorrected (red contours) and corrected
data (blue contours) of 4.030 for MAGLIM and 6.79¢ for REDMAGIC,
where o is the standard deviation of the posterior distribution of this
parameter for the corrected data. Failing to correct for the systematic
impact of the SP maps would result in shifting the inferred galaxy
bias parameters to higher values while significantly lowering €2,.
The significance of these shifts is somewhat larger than that obtained
from the 3 x 2pt analysis, as we fix the rest of the cosmological
parameters (while still varying nuisance parameters) such that the
uncertainty is reduced. Note that because of correlations between the
galaxy bias parameters and 2y,, a given redshift bin with relatively
little change in w(#) due to weighting (e.g. bin 3 of MAGLIM) can
still have a significant shift in its inferred galaxy bias.

7 WEIGHTS VALIDATION

We validate our methodology on simulated catalogues to ensure
that no biases are induced. We use unaltered lognormal mocks and
also mocks that are artificially contaminated by our SP maps (see
Appendix A for details on how we apply this contamination). We
contaminate these mocks by applying the inverse of the weights
determined from the data using ENET on the full list of 107
STD maps. Decontamination, however, is performed using weights
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Figure 3. Constraints on Q2 and galaxy bias before and after applying
our weighting methodology to the data for the fourth redshift bin of
MAGLIM (top panel) and the fifth bin of REDMAGIC (bottom panel). We
focus on the redshift bins where the impact of the systematic effects
is more relevant in w(f) (see Fig. 2). Red contours correspond to the
uncorrected data, while blue contours correspond to the corrected data.
The absence of correction strongly biases our estimations. We also show
constraints for ISD-STD34 weighted data (orange contours). We obtain
similar behaviours for the rest of the redshift bins of both samples. The
goodness of fit for the no weights, ISD-PC<50 and ISD-STD34, cases are
65.23/30(p =2 x 107%), 42.25/30(p = 0.07), and 38.73/30(p = 0.13)
for MAGLIM and 156.05/42(p =5 x 10~15), 66.10/42(p = 0.01), and
68.91/42 (p = 0.01) for REDMAGIC, respectively. There is an improvement
in the p-value from ~0.02 (no weights applied case) to ~ 10 per cent
(weights applied case). These x> values correspond to galaxy clustering-
only fits.
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Table 3. List of prior values used to constrain 2, and the
sample galaxy biases b per redshift bin.

Redshift biy Az o
MAGLIM
0.20 <z <0.40 (—0.009,0.007) (0.975,0.062)
0.40 <z <0.55 (—0.035,0.011) (1.306,0.093)
0.55 <z<0.70 (—0.005,0.006) (0.87,0.054)
0.70 <z < 0.85 (—0.007,0.006) (0.918,0.051)
0.85<z2<095 (0.002, 0.007) (1.08,0.067)
095 <z < 1.05 (0.002, 0.008) (0.845,0.073)
REDMAGIC
0.15 <z <0.35 (0.006,0.004) Fixed to 1
0.35 <z<0.50 (0.001,0.003) Fixed to 1
0.50 <z < 0.65 (0.006,0.004) Fixed to 1
0.65 <z <0.80 (—0.002,0.005) Fixed to 1
0.80 <z <0.90 (—0.007,0.010) (1.23,0.054)
Both samples

Qm b

All redshifts [0.1,0.9] [0.8,3.0]

Notes. The other cosmological parameters have been fixed to
the fit values in the 3 x 2pt analysis as described in the text.
Square brackets denote a flat prior, while parentheses denote a
Gaussian prior of the form N (i, o). The shift Az and stretch
o, parameters are defined in equations (4) and (5). In some
cases, the latter is not marginalized over (fixed). The redshift
priors were determined in Cawthon et al. (2020).

determined by ISD-PC<50. This procedure adds an additional layer
of protection: if we contaminate mocks with the weights from one
method and decontaminate by the same method, the test is only
checking sensitivity to forms of contamination to which we a priori
know the method is sensitive to. Generating an equally plausible
realization of contamination from an alternative method adds the
benefit of potentially revealing blind spots in the method that is being
validated. In Appendix B, we also perform a sanity check to confirm
that we recover unbiased w(f) measurements at all angular scales
under idealized circumstances, that is, contaminating and correcting
for the exact same set of SP maps.

We calculate Wge.(6) and wy,(0) as the mean correlation function
of 400 decontaminated and 400 uncontaminated mocks, respectively.
Since the lognormal mocks are generated at Ngg¢e = 512, which
corresponds to separation angles of ~6.9 arcmin between pixels, we
compute the correlation functions at the 14 fiducial angular scales
that are larger than this limit. Then we estimate the impact of the
different biases (see next two Sections) on w(6) by means of the true
mean in uncontaminated mocks, Wy,c(0):

Xz = (wdec(e) - wunc(e))T X C71 X (wdec(g) - wunc(g))- (17)

The covariance matrix, C, is the galaxy clustering part of the
analytical covariance given by COSMOLIKE, and it is also used for the
clustering part of the 3 x 2pt cosmological analysis. If we find that
any bias causes a change in the joint fit to all redshift bins according
to the definition above, equivalent to x> > 3, then we marginalize
over this bias in our final analysis. This threshold was chosen such
that the impact on x> would be a small compared to the expected
width of the x? distribution of the w(6) data vector. As we detail in
Section 8.4, we marginalize over biases by modifying the covariance
matrix to account for these sources of systematic uncertainty. The
fiducial covariance matrix for DES Y3 3 x 2pt analysis includes
these systematic terms.
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Figure 4. False correction bias, wa, 2 ias(@), for MAGLIM (top panel) and
REDMAGIC (bottom panel) relative to the w(f) error from the unaltered
COSMOLIKE covariance diagonal elements. Negative values are indicative of
overcorrection. Both samples show negligible levels of overcorrection, weak
dependence with the angular scale and at most ~ 20 per cent of the statistical
error. The values depicted here have been calculated with significance
threshold 7'1p = 2. Empty dots correspond to the angular scales not considered
for each redshift bin of the samples.

7.1 False correction test

Since we consider a large number of SP maps in this analysis,
chance correlations between the data and some of these maps
could arise, even after reducing our number of SP maps. This is
more important when using a strict significance threshold. These
purely random correlations could cause overcorrections, therefore
biasing the measured value of w(#) and the inferred cosmological
parameters. To characterize this effect, we run ISD with 7)p =2 on a
set of 400 uncontaminated mocks and then we obtain their correlation

functions, wggg ;- The false correction bias is defined as
1 400 400
i @) = 105 | 22 wali®) = D wane (0) |, (18)

i=1 j=1

where wyy, ; are the correlation functions measured on the unaltered
uncontaminated mocks.

In general, the effect of removing the systematic effects is to
diminish the amplitude of w(0). Thus, a negative value of this
estimator indicates overcorrection. In Fig. 4, we show the results
of w/P . (@)/o for Typ = 2, where o is the diagonal of the

unmodified covariance matrix. We find a very marginal indication of
overcorrection, always well below the statistical error. We also note
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Figure 5. Mean angular correlation function, w(#), from raw uncontami- Figure 6. Residual systematic bias, er_ 12, ias(6), for MAGLIM (top panel) and

nated lognormal mocks (black lines) and decontaminated uncontaminated
mocks (blue lines) for MAGLIM (top panel) and REDMAGIC (bottom panel)
at their lowest redshift bins. The shaded region corresponds to the scales
excluded at this redshift. In this redshift bin there is ~20 per cent of false
correction with respect to the statistical error due to chance correlations
between PC maps and mocks. The error bars correspond to the diagonal of
the covariance matrix with systematic terms added.

that this ratio has small angular dependence, as can be seen in Fig. 5,
which compares the mean true w(f) (black line) with the mean of
the decontaminated correlation functions (blue line). Therefore, we
do not consider any contribution from the false correction bias to
the final covariance matrix. The small impact of this effect on the
cosmological parameters is highlighted in Section 7.3. Nevertheless,
we note that the error bars shown in Fig. 5 correspond to the diagonal
of the covariance matrix that has been modified to account for
systematic uncertainties, as it is explained in Section 8.4.

7.2 Residual systematic test

Here we demonstrate that ISD effectively recovers the true corre-
lation function from a contaminated sample. We can then verify if
our approach (with T1p = 2) meets the requirements for the Y3
cosmology analysis or whether it is necessary to account for any bias
due to uncorrected contamination.

We define the residual systematic bias as

400 400

Z w({el(l:), 1(9) - Z wunc.j(e) ) (19)

i=1 j=1

wzlg?bias(g) = m

REDMAGIC (bottom panel) relative to the w(0) error from the unaltered COS-
MOLIKE covariance diagonal. The empty dots represent the scales excluded at
each bin. Both samples show similar trends: The highest redshift bins present
lower biases, while the lowest ones show important levels of undercorrection
at the smallest scales. On the other hand, the largest scales are recovered
nearly unbiased. Since the x? of the total residual bias in all bins is higher
than 3, we add a systematic term to the covariance matrix to marginalize over
this effect.

where the wjgg ; are the correlation functions measured on mocks
that have had systematic contamination added and then have been
decontaminated using ISD.

Because we are interested in the level of residual systematics
that are insufficiently captured by the weighting method, we use the
alternative method ENET with all 107 maps in the standard basis
to generate an aggressive level of contamination. We observe that
both ISD-PC107 and ENET-STD107 significantly overcorrect at the
lowest redshift bins of both galaxy samples (see Section 8), so when
using the corresponding weights to contaminate the mocks we are
introducing excessive contamination. Therefore, we expect some
degree of undercorrection when later running ISD with a subset of
PC maps such as with ISD-PC<50. Furthermore, by using ENET
to estimate the contamination instead of ISD, the contaminated
mocks will include possible contamination modes to which ENET
is sensitive but to which ISD may not be.

In Fig. 6, we show the results for this bias with respect to the
diagonal of the unaltered analytical errors. While the highest redshift
bins of both MAGLIM and REDMAGIC present moderate levels of
overcorrection, the lowest redshift bins of the two samples show
a trend to under-correct at the small angular scales, but still above
the scales we exclude. As already mentioned, we expect some level
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Figure 7. Mean angular correlation function, w(#), from uncontaminated
mocks (black line) and from decontaminated mocks (blue line) for MAGLIM
(top panel) and REDMAGIC (bottom panel). The red line corresponds to the
mean of the mocks with contamination added from ENET, and the shaded
regions represent the scales not used for cosmological constraints. While ISD
recovers a nearly unbiased clustering at the largest angular scales, there is an
important bias at the smallest ones. For this reason, this effect is marginalized
over by adding it a systematic contribution to the error budget. The error bars
shown take into account this contribution.

of undercorrection due to the aggressive contamination imprinted on
the mocks. Even under this consideration, these bins cause the x?
of the joint fit to exceed our limit, so we incorporate this bias as a
systematic contribution to our covariance matrix. This is covered in
Section 8.4. In Fig. 7, we depict the mean recovered clustering (blue
lines) compared to the true clustering (black lines). We also show the
mean contaminated correlation function (red lines). It can be seen
that ISD performs a nearly unbiased decontamination at the largest
angular scales. The error bars in this figure include the systematic
terms added to the covariance (see Section 8.4 for a comparison of
the error bars with and without the systematic contributions).

7.3 Impact on parameter estimation

Finally, as an additional evidence of robustness we check the impact
of the decontamination procedure on the estimation of cosmological
parameters. We use as data vectors (i) the mean correlation function
over 400 uncontaminated mocks, (ii) the mean correlation function
biased by our overcorrection estimate (Section 7.1), and (iii) the
mean correlation function biased as by the residual systematic
uncertainty estimate (Section 7.2). To test the influence of these
analysis modifications on cosmology, we recalculate the constraints
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on the parameters 2, and b’, marginalizing as before over redshift-
bin centroid positions and widths of the redshift distributions. We use
the same priors from Table 3 and the rest of the parameters are fixed
to the values used to generate the mocks. The results that we obtain
are shown in Fig. 8. It can be seen that the recovered contours from
the false correction bias case (run on uncontaminated mocks) are in
good agreement with those from the reference case, demonstrating
that biases from overcorrection in inferred cosmological parameters
are negligible. The contours corresponding to the residual systematic
bias (run on ENET contaminated mocks) show a small level of un-
dercorrection that is translated to slightly higher galaxy bias values,
though this mismatch is also within the statistical uncertainties given
by our analytical covariance. This covariance includes a systematic
uncertainty correction that is explained in Section 8.4. In Table 4, we
present the difference in the Q,, and 5" mean posteriors in units of &
from uncontaminated mock contours. We note that all differences are
smaller than 0.5¢ . It must be taken into account that, since the rest of
the cosmological parameters are fixed, the 1o contours are smaller
than for any of the final DES cosmology analyses, making this test
more stringent. We found that the mean w(6) of the lognormal mocks
is slightly shifted to lower amplitudes from the theory prediction with
the same input values. This causes some shifting of the contours as
well, but we have verified that this does not affect our conclusions
from the decontamination methodology.

8 POST-UNBLINDING INVESTIGATIONS OF
THE IMPACT OF OBSERVATIONAL
SYSTEMATICS ON w(f)

The DES 3 x 2pt analysis combines the correlation functions
from galaxy clustering, w(0), galaxy—galaxy lensing (for short, gg-
lensing), y,(0), and cosmic-shear, £,(0), in order to improve the
individual constraining powers of each probe and to break degen-
eracies in some cosmological parameters. In addition, since each
of these 2pt functions is potentially affected by different systematic
effects, it allows for consistency checks comparing different results.
The consideration of two different lens galaxy samples for w(0)
and y,(0) allows us to further assess the robustness of the whole
cosmology analysis. The cosmology analysis is performed blindly,
that is, we only look at the cosmology results once a set of pre-
defined criteria are fulfilled, as is described in DES Collaboration
et al. (2022). During the unblinding process of REDMAGIC we found
that this sample passed all the consistency tests we had a priori
decided were required for unblinding. However, after unblinding, we
identified a potential inconsistency between the amplitudes of galaxy
clustering and gg-lensing: Either the former has an anomalously
high amplitude or the latter has an anomalously low one. This
inconsistency is explored in detail in Pandey et al. (2021).
Observational systematics from survey properties tend to increase
the amplitude of w(f) and so one possible explanation is that the
clustering amplitude is anomalously high due to the decontamination
procedure failing to fully capture all contamination in the data. Thus,
the true underlying galaxy correlation function in the data would not
be correctly recovered. This led us to perform a variety of additional
tests as we describe below. It was during these tests when some of
the methods described in Sections 4 and 5 were incorporated, such
as the change in SP map basis (both expanding the number of SP
maps and decorrelating them) and the robustness checks using ENET
and the neural net. Ultimately, we found that the difference between
galaxy clustering and lensing observables in REDMAGIC remained
robust to different choices in the decontamination procedure. We
also applied these additional tests to the MAGLIM sample before it
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Figure 8. Constraints in the €,, — b’ parameter space at fixed o'g from the mean w(#) of uncontaminated mocks (black contours) and from decontaminated
mocks according to the false correction bias (violet contours) and to the residual systematic bias (blue contours). MAGLIM is shown in the left-hand panel and
REDMAGIC in the right-hand one. It can be seen how both the false correction bias and the residual systematic bias lead to small shifts from the reference mocks
relative to the error given by the COSMOLIKE analytical covariance, which includes the systematic uncertainty contributions. We only show contours for the first
redshift bins of the two galaxy samples in this figure, but we verify that the shifts at the other bins are smaller or smaller. Because og and other cosmological
parameters are fixed in this test, the posterior is smaller than from any of the DES final cosmological analyses that use the w(0) data.

Table 4. Relative difference in the Q,, and b’ mean of the posteriors for the
two tests on decontaminated mocks in units of 0.

Parameter False correction bias Residual systematic bias
MAGLIM
Qm 0.36 0.08
b! —0.09 0.43
b* —0.06 0.40
b’ —025 0.12
bt 0.05 0.16
v —-0.15 —0.02
bs —0.06 —0.04
REDMAGIC
Qm 0.39 0.31
b —0.29 0.50
b? —0.33 0.11
b’ —0.30 0.27
b* -032 —0.35
v —0.19 —0.21

Notes. All values are below half a o. Note that the posteriors in this test are
much smaller than in any of the final DES cosmology analyses because all
the other parameters are fixed.

was unblinded. In contrast to our results with the REDMAGIC sample,
once we unblinded the MAGLIM sample we found that its lensing and
clustering signals were consistent with one another. For this reason,
MAGLIM is the fiducial choice for our cosmological constraints (DES
Collaboration et al. 2022). The fiducial MAGLIM cosmology results
use only the first four redshift bins, as the two highest redshift bins
gave inconsistent results, while adding little constraining power.
Porredon et al. (2021a) investigates these results in detail.

8.1 ISD and ENET at the STD map basis

Before unblinding, ISD weights were obtained from a selection of
STD maps performed by setting a limit for the Pearson’s correlation
coefficient between them. This selection gave 34 representative STD
maps that were used to obtain weights with ISD (ISD-STD34). More
details on this selection can be found in appendix B of Carnero Rosell
et al. (2021). To check whether the clustering-lensing inconsistency
found in REDMAGIC was caused by an STD map not selected in the
STD34 set, we ran ISD on the full list of STD maps, and verified that
derived weights did not significantly impact the resulting clustering
signal. In Fig. 9, we show the correlation functions at the first bin of
REDMAGIC obtained for these two configurations of ISD with STD
maps.

We also checked the subtle possibility of a combination of STD
maps leading to a large systematic contribution despite no single map
being individually significant. For this reason, we ran ENET-STD107
on REDMAGIC, which simultaneously fits to all template maps, finding
a significant decrease of ~1o in the amplitude of the correlation
function in the first three redshift bins. This motivated further
investigation to determine whether there could be significant residual
contamination in the form of low-significance linear combinations
of STD maps that eluded the initial decontamination procedure. We
found that decorrelating the STD maps via PCA before running the
ISD method and using the 107 components resulted in much better
agreement between ISD and ENET, which motivated the change to
the PC basis that has been used for the results presented in this paper
(see ISD-PC107 in Fig. 9). We also found that there are no significant
changes when running ENET on the PC basis of maps (this method
is less basis-dependent, since it performs a simultaneous fit to all
maps).
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Figure 9. Comparison of the clustering amplitude recovered from several
methods and configurations for the first redshift bin of REDMAGIC. All methods
agree within the statistical uncertainty given by the analytical covariance. The
solid red line corresponds to the unweighted data and the dashed purple line
corresponds to the ISD-PC107 configuration. The difference between this
configuration and the rest of methods is consistent with the overcorrection
observed on contaminated mocks (see Fig. 10). The solid and dashed black
lines are the best-fitting cosmology from cosmic-shear and gg-lensing only
and from the 3 x 2pt analysis, respectively. The grey shaded region represents
the scales that are not used for cosmological analysis. None of the various
configurations produce values of w(6) approaching the best-fitting prediction
from cosmic-shear and gg-lensing.

8.2 ISD and ENET in the PC map basis

We evaluated the impact of the ISD-PC107 weights on both un-
contaminated and ENET contaminated mocks, similar to the tests
from Sections 7.1 and 7.2. These tests revealed a significant level
of overcorrection when using the full list of PC maps with ISD,
especially when evaluated on contaminated mocks, indicating that
true LSS fluctuations were being removed in the decontamination
process. This effect can be seen in Fig. 10. We observed a similar
overcorrection effect on MAGLIM with these ISD settings. The
overcorrection is most prominent in lower redshift bins where the
intrinsic clustering signal is larger, losing significance at higher
redshift for both samples.

These results suggest that there is a higher likelihood of chance
correlation in the PC107 basis than in the STD107 basis. We also
found that PC107 weights obtained from the data showed significant
correlations with DES « maps (see Appendix D for details). We
therefore conclude that using all 107 principal components results
in removing not only actual systematic contamination from the data,
but also cosmological signal, causing a lower w(#) amplitude.

We therefore applied a cut-off to the number of PC maps to be
used. To select this cut-off, we required that the weight map resulting
from running ISD with the set of the first 7# PC maps should not induce
a significant overcorrection on contaminated mocks (as we observed
with ISD-PC107 weights), while still removing the contamination
that was applied using ENET-STD107. We found that n = 50 principal
component maps meets this requirement. The impact of the ISD-
PC<50 weights on contaminated mocks and finally on the data can
be seen in Figs 10 (blue line) and 9, respectively. Then, we calculated
ENET-PC <50 weights as well, finding good agreement between the
two methods with this configuration (see Fig. 9). Our adoption of
this configuration was further supported by the desire to have a
comparatively small number of maps to avoid overcorrection, as
with the 107 PC maps, while still preserving most of the variance
present in the full set of 107 STD maps. We point the reader to
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Figure 10. Effect of considering different numbers of PC maps on the two-
point angular correlation function: weights obtained from 107 PC maps
cause overcorrection on w(f) (magenta line). This overcorrection ranges
from ~0.50 to lo and is most prominent at large angular scales. This
overcorrection can explain most of the difference in clustering between ISD-
PC<50 and ISD-PC107 observed in Fig. 9. On the other hand, weights
obtained from the first 50 PC maps yield a clustering amplitude (blue line)
that is in good agreement with the mean w(#) from uncontaminated mocks
(black line), especially at the largest scales. The difference between the
amplitudes from uncontaminated and ISD-PC<50 decontaminated mocks
is included as a systematic contribution to the covariance (error bars in this
figure already include that term). The red line corresponds to the ENET-
STD107 contaminated mocks.

Appendix D for more details on the selection of this cut-off. We found
that the difference between w(0) functions given by ISD-PC <50 and
ENET-PC <50 yields a x? for the joint fit to all redshift bins smaller
than 3. Nevertheless, we found some map configurations for the two
methods that yield x> > 3. Thus, in order to be conservative, we
consider this difference as an additional systematic uncertainty to be
marginalized over, similar to the difference between uncontaminated
and decontaminated mocks from Section 7.2.

For these reasons, we used ISD-PC <50 as the fiducial correction
method, as described in the previous sections of this paper. In Fig. 9,
we summarize the clustering amplitudes obtained from each of the
methods and configurations described in the first redshift bin of
REDMAGIC. None of the methods produce a w(@) consistent with
the best-fitting prediction from cosmic-shear and gg-lensing (solid
black line). For reference, the dashed grey line shows the best-fitting
prediction from the combined 3 x 2pt analysis.

The tests conducted to determine this cut-off were focused on the
first redshift bin of REDMAGIC, but we verified that the impact of this
choice on the rest of the bins is similar, although milder, since the
overcorrection observed at higher bins is less significant. We also ran
these tests on MAGLIM, obtaining similar conclusions for the same
cut-off.

8.3 Tests with neural net weights

As noted in Section 8.3, we developed an independent, non-linear
correction method using NNs. This was applied post-unblinding to
test the robustness of the weights, in particular to the assumption of
linearity between galaxy number density and the systematic maps.
If there is excess clustering due to non-linear functions of the STD
maps, then we expect it to be captured by the NN-weights. Because
of the significant time required to run the method, we did not
subject it to the full extent of validation tests on contaminated and
uncontaminated mocks as we did for the ISD and ENET methods.
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However, as Fig. 9 shows, the changes to w(6) are small when using
the NN-weights, suggesting that residual non-linear contamination
from the existing set of STD maps is not driving a spuriously high
estimate of w(6).

8.4 Modifications to the covariance matrix

In this analysis, we consider the systematic uncertainty in the
correction method from two sources: from the choice of correction
method, and the bias measured in contaminated mocks (as mentioned
in Section 7.2). As noted in the previous section, the NN-weights
method did not undergo the extensive validation process that the ISD
and ENET weights did. For this reason, we focused on the systematic
uncertainty associated to the differences between ISD-PC<50 and
ENET-PC<50.

The two systematics considered are each analytically marginalized
over through an additional term in the w(f) covariance matrix
following the methodology of Bridle et al. (2002) summarized here.
If one takes an arbitrary data vector y that is biased by an additive
systematic effect s,

Y =y+ As, (20)

where A is the amplitude of the systematic error. If the amplitude
A has a Gaussian prior of zero-mean and width o4 (which can
be determined by external constraints), the parameter A can be
analytically marginalized over in the covariance matrix of y with

Cov(y’, y') = Cov(y, y) + oss”. (21)

In this analysis, we model the impact of the systematic uncertainty
in the correction as

w'(0) = w(O) + A1 Amenoa(®) + Agw/ P, (6), (22)

where Awemoa(@) is the difference between the ISD and ENET
methods, both using the PC<50 basis of maps as shown in Fig. 11;
er_ Pias(0) is the residual systematic bias measured on lognormal
mocks in Section 7.2, and A; and A, are two arbitrary amplitudes
that describe the size of the systematic error in the correction.

We analytically marginalize over these terms assuming a unit
Gaussian as the prior on the amplitudes A; and A, such that the
measured systematic size is a 1o deviation from the prior centre, and
the systematic can move w(6) in either direction. The final additional
covariance term is

N T Tip np T
ACOV(W , W ) = AwmethodAwmethod + W, s bias Wr.s. bias - (23)

The method difference term Awpemod(€) is measured on real data
and therefore contains the same noise as the w(f) data vector
being used for cosmological inference. To avoid adding this noise
to the covariance term, we fit a flexible polynomial to the two
w(f) measurements described in Appendix C. AWmemoda(6) is the
difference between these two polynomial fits.

The mock bias term w, >, (0) is averaged over 400 mocks so is
a smooth function of 6 and does not require any additional fitting.
The impact of the additional covariance terms is shown in the error
bars of Fig. 11. The systematic contribution to each tomographic
bin is treated as independent so the covariance between bins is not
modified.

8.5 Tests with BALROG

BALROG (Suchyta et al. 2016; Everett et al. 2022) is a software
package that beds fake objects in real images in order to accurately
characterize measurement effects.
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BALROG simulated galaxies are created using real objects from the
DES deep fields (Hartley et al. 2021), which can be considered as
approximations to noiseless astrophysical sources due to the depth
of the images they come from with respect to the wide field imaging.
These objects have been measured using the same instrument and
filters as the Y3 data set. This collection is sampled and injected into
the individual single epoch images, which are then processed and
coadded again with the same Y3 DES Data Management pipeline.
Therefore their detectability is subject to the same conditions as
the real galaxies from the Y3 wide field survey, as they inherit the
background and noise properties of the real images.

BALROG 1is a useful tool to make independent consistency tests
of the decontamination methods: while the galaxy samples trace
the actual large-scale structure, the BALROG samples are formed by
galaxies that are artificially injected on a uniform grid, that is, they
are non-LSS distributed. What both real and BALROG samples have in
common is the impact of systematics. Therefore, any correlation be-
tween the two after applying the weights would mean the presence of
a common systematic. For this reason, we used the cross-correlation
of REDMAGIC and MAGLIM with their associated BALROG samples to
test for the presence of an extraneous signal that would indicate
a pending, unknown systematic that is not being corrected by the
applied weights. These results are presented in Fig. 12. The cross-
correlations are calculated in ~1000deg? (available area of the
BALROG samples). We find that the cross-correlation with the weights
applied is consistent with zero signal within the statistical errors.
These errors are computed with jackknife re-sampling using 100
patches for MAGLIM and 50 for REDMAGIC. However, the signal
itself is small but non-zero, growing in magnitude towards larger
scales. We note that, due to its lower number density, the points for
REDMAGIC are noisier than those for MAGLIM. The reduced y? for
a constant cross-correlation of 0 are 0.46, 0.96, 1.25, 3.60, 1.18 for
REDMAGIC and 1.13, 0.71, 0.78, 0.94, 0.65, 0.69 for MAGLIM. The
relative strength of the cross-correlation signal with respect to the
auto-correlation signal can be seen in the bottom rows of each panel.
In general, it is at or below 5 per cent for the five lowest angular bins
at all redshift bins, and it is lower than 10 per cent for scales smaller
than ~30 arcmin. This relative strength gives us an indication of the
size of a systematic effect that could be still unaccounted for. Even
if the REDMAGIC results are noisy, those for MAGLIM do not show a
clear indication of uncorrected effects from imaging systematics.

8.6 Summary of findings

We performed a series of tests post-unblinding to determine if the
observed inconsistency between the galaxy clustering and gg-lensing
signals in REDMAGIC is due to residual systematic contamination of
the galaxy clustering signal. In particular, we investigated whether
expanding the set of SP maps, adjusting the contamination model,
or changing a variety of methodological choices for the decontami-
nation procedure resulted in a significantly different inferred galaxy
clustering signal. We largely performed these tests at the level of
w(#), without further looking at the impact of these decisions on
cosmological parameters. The following list is a summary of the
obtained results:

(1) Expanding the list of 34 to all 107 STD maps has negligible
impact on the resulting amplitude of w(6) using the fiducial ISD
decontamination procedure. We thus conclude that the discrepancy
is not due to residual contamination from one of the previously-
discarded STD maps.
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Figure 11. Method difference term Awmethod(6) in real data for MAGLIM (top row) and REDMAGIC (bottom row). The methods compared are ISD-PC <50 and
ENET-PC <50 (red line). The light blue error bands correspond to the diagonal of the covariance with the additional systematic terms included, while the yellow

ones correspond to the original analytical covariance.
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Figure 12. Cross-correlation between REDMAGIC (top panel) and MAGLIM (bottom panel) samples selected in data and produced with BALROG. The cross-
correlations are shown in the top row of each panel, before weighting (red line) and after weighting (purple line) by SP maps effects, compared to the data w(8)
(blue points). The error bars have been obtained by jackknife re-sampling. The bottom row of each panel shows the relative difference (in per cent) between
the cross-correlation signal and the auto-correlation one. A non-zero cross-correlation between the data samples and BALROG samples (which are injected and
non-LSS distributed), would imply a pending, unknown systematic in the images, which would not have been corrected for. We see that the cross-correlation is
zero within statistical errors. In general, all differences are compatible with zero and well below the statistical errors showing no clear evidence of uncorrected
effects from imaging systematics, though we note that the points for REDMAGIC are noisier due to its lower number density.

(i1) We performed a principle component analysis of the 107 STD
maps and used the principle components as an orthonormal basis
for the decontamination procedure, i.e. ran ISD-PC107. We found
good agreement with ENET-STD107 (and ENET-PC107), resulting
in a reduction of the w(@) amplitude. This was most pronounced in
the first redshift bin of REDMAGIC, with a decrease in w(6) of ~1o.

(iii) We observed a significant overcorrection of w(f) when
computing ISD-PC107 weights from contaminated mocks. For this
reason, we applied a cut-off to the number of PC maps, limiting

MNRAS 511, 2665-2687 (2022)

it to the 50 PC maps with the highest S/N. We found that the
resultant ISD-PC <50 weights produce little overcorrection and we
add a systematic contribution to our error budget corresponding to
the difference between ISD-PC<50 and ENET-PC<50. We also
add a systematic contribution for the undercorrection observed on
contaminated mocks using only the first 50 PC maps assuming the
true contamination corresponds to the estimate of ENET-STD107.
(iv) We implemented a non-linear decontamination procedure
using an NN, which also used different choices for the mask and
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base set of STD maps. This resulted in differences in w(f) that
were much smaller than the observed discrepancy between galaxy
clustering and gg-lensing.

(v) We cross-correlated both REDMAGIC and MAGLIM with their
corresponding BALROG samples and we found no clear evidence of
uncorrected contamination of known systematic templates common
to both types of samples.

We note that the ISD-STD34 weights passed an extensive battery
of validation tests, described in Section 7. However, after our findings
and comparisons between ENET and ISD, we decided to use the ISD-
PC <50 weights in the fiducial analysis.

Given these findings, we conclude that the anomalous high
clustering amplitude of REDMAGIC sample is unlikely to be due to
uncorrected contamination coming from any of our known templates
nor from a linear combination of them. Because the clustering
remains high when using higher order STD maps with ENET (after
accounting for false correction bias) as well as using the neural net,
we are unable to identify non-linear contamination from our SP maps
as the cause (see Appendix E for additional tests). We performed a
number of further exploratory tests such as more aggressive masking,
including based on the leverage statistic (cf. Weaverdyck & Huterer
2021) and found w(6) to be robust to these choices. Applying our
fiducial decontamination procedure to MAGLIM does not show the
same discrepancy between probes as does REDMAGIC.

9 CONCLUSIONS

We measure the angular two-point correlation of DES Y3 lens galax-
ies, and study the impact of systematic errors on these measurements.
We use two lens samples: MAGLIM, a magnitude-limited sample
with enhanced number density and reliable photometric redshifts
(Porredon et al. 2021b), and REDMAGIC, a sample of luminous red
galaxies (LRGs) selected by the algorithm described in Rozo et al.
(2016), which also provides high-quality photometric redshifts. We
extend the methodology employed in DES Y1 (Elvin-Poole et al.
2018), both for correcting the data and to ensure its robustness. A
more thorough set of SP maps is used and we employ them directly
and through the application of principal components analysis to the
map set. Additionally, a new weight estimation method is used in
parallel (ENET; Weaverdyck & Huterer 2021) and a cross-check of
linearity assumptions is made with an NN framework based on recent
literature (Rezaie et al. 2020). These steps help us to avoid possible
blind spots in our validation methodology.
Our findings are as follows:

(1) The updated DES Y1 methodology, dubbed ISD, is able to suc-
cessfully remove systematic contamination, as shown by validation
tests on lognormal mocks (Figs 5 and 7) and data.

(ii) The ENET method is a viable alternative correction method to
ISD. We evaluate several configurations and demonstrate that both
methods are in agreement within statistical precision. To be sure that
any residual difference is taken into account, we include a systematic
uncertainty in the covariance matrix as the difference between the
two results. This uncertainty is included in the final covariance that
is used for cosmological constraints, after checking that it does not
bias our results.

(iii) The decontamination procedure does not produce a significant
bias in w(#) or in the £, — b’ parameter space.

(iv) We find that survey properties have a significant impact on
the recovered galaxy clustering signal, particularly at high redshifts,
as compared to REDMAGIC Y1 results (Elvin-Poole et al. 2018). This
contamination is corrected by applying the ISD method together
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with a principal component analysis of our survey sroperty maps.
The same methodology is applied to both samples.

(v) We find an inconsistent clustering amplitude for the REDMAGIC
sample when combined with other 2pt lensing probes. We study
it from the point of view of the impact of SP maps, considering
different methods, such as ISD and ENET, and different numbers,
types and bases of SP maps. We find agreement between the weighted
correlation functions yielded by each method within our errors. We
also investigate weights from an NN weighting scheme. All our tests
confirm that our systematics corrections are robust and the template
maps used in this analysis do not explain the REDMAGIC internal
inconsistency.

The results presented in this work have been optimized to be used
for their combination with galaxy—galaxy lensing (Elvin-Poole et al.
2021; Pandey et al. 2021; Prat et al. 2021; Porredon et al. 2021a) and
cosmic-shear (Amon et al. 2022; Secco et al. 2022) measurements
to obtain the 3 x 2pt cosmological results from the DES Year 3 data
(DES Collaboration et al. 2022), and constitutes one of the basic
pillars for this measurement.

This work highlights the importance of adequate validation and
cross-checking of this highly relevant step in the estimation of galaxy
clustering, and builds upon several developments within the DES
project and in the literature. For Y6, given the rapid developments
in the field, we plan to approach the problem from the beginning
with a variety of methodologies in mind, possibly considering
multiregression approaches or assessing the feasibility of using a
wider BALROG sample, making it part of the pipeline from the start
now that the algorithm is fully developed. This will be coupled with
possibly a multitiered unblinding approach with additional steps to
be able to make decisions on investigating unusual results in internal
consistency tests at different stages of the process. Additional work
in parallel on the Y3 samples and SP maps will shed some light
on possible details that the Y6 methodology will have to address,
such as understanding the overcorrection produced by some maps or
issues with the galaxy samples.
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DATA AVAILABILITY

The main product of this work is the maps of correcting weights
applied to the galaxy clustering measurements of the DES Y3 lens
galaxy samples. These weights are part of the data vectors that will
be made available as part of the DES Y3 coordinated release at https:
//des.ncsa.illinois.edu/releases following publication of the DES Y3
Cosmology Results papers (https://www.darkenergysurvey.org/des
-year-3-cosmology-results-papers/). The COSMOSIS software (Zuntz
et al. 2015) is available at https://bitbucket.org/joezuntz/cosmosis/
wiki/Home and the TREECORR package (Jarvis et al. 2004) can be
found at https://rmjarvis.github.io/TreeCorr.
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APPENDIX A: LOGNORMAL MOCKS

The mocks used for the systematic analysis are 2D lognormal fields
generated at a given power spectrum. We start by using cams (Lewis,
Challinor & Lasenby 2000; Howlett et al. 2012) to obtain a matter
power spectrum and project into a galaxy clustering angular power
spectrum, C#4(1), following the theory modelling described in Krause
et al. (2021). To produce this power spectrum, we assume our
fiducial cosmology and fix the galaxy bias for each redshift bin
to the values from the blind bias analysis (Table 1). Then, we use
this power spectrum to generate a Gaussian random field of 8, for
each mock realization on a HEALPIX map (Gdrski et al. 2005) using
the HEALPY package (Zonca et al. 2019). We then apply a lognormal
transformation to the field following the methodology of Xavier et al.
(2016). This uses a skewness parameter that was derived in Friedrich
et al. (2021). We then transform the lognormal §, field to a galaxy
number counts field, Ny, using the observed number count, N,, from
the galaxy sample we want to reproduce and the relation:

Neat = Ny x (1 + 8,). (A1)

We apply the angular mask to the full-sky realizations. In this way,
the covariance matrices built from these mocks incorporate the same
mask effects as the real data. In order to add shot noise, we finally
Poisson sample the N, field.

MagLim, z = 0.70 - 0.85

1.04{ — ENET contaminated mocks
—— MagLim

-6 -4 -2 0 2 4 6
pcal
MagLim, z = 0.70 - 0.85
—— ENET contaminated mocks
1.04 —— MagLim

L =
o o
=~

ngaf/(nga.')
-
8

900 1000 1100 1200 1300 1400

skybriter

Figure Al. 1D relations for 400 MAGLIM ENET contaminated lognormal
mocks (shaded black lines) compared with the data (red line). The top panel
shows the 1D relations with the pca0 map at the fourth redshift bin of this
sample, whereas the bottom panel shows the 1D relations with skybrite in the
r band. The contamination observed on the data is well reproduced by these
mocks. The error bars are obtained from the uncontaminated mocks used to
calculate the 1D significance.
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As we mention in Section 7, we also create a set of lognormal
mocks contaminated by survey properties systematics, so we can
look for biases introduced by ISD and check their impact on the
measurements. We imprint contamination on the lognormal mocks
by multiplying the galaxy number counts field by the inverse of the
weight map derived from the data, which is

N? —~ N? « L (A2)
gal, mock .

gal, mock wP
This step is applied before Poisson sampling the galaxy field. We
produce a set of 400 contaminated lognormal mocks following
this procedure using weights derived from ENET-STD107, as is
mentioned in Section 7. We check that the 1D relations of these
mocks reproduce in shape and amplitude those observed on the data.
An example of this can be seen in Fig. Al.

APPENDIX B: INTERNAL CONSISTENCY
TESTS: ESTIMATOR BIAS TEST

In addition to the tests described in Section 7, we perform an internal
consistency test that seeks to confirm no bias in w(6) is introduced
by ISD under idealized circumstances. For this test, we contaminate
and correct for the same list of SP maps, demonstrating the Landy—
Szalay estimator can recover a negligibly biased signal. Since the
focus of this test is the w(6) estimator itself when applied to weighted
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Figure B1. Estimator bias for MAGLIM (top panel) and REDMAGIC (bottom
panel). The negative values are due to small level of overcorrection. Empty
dots correspond to the scales excluded for each redshift bin. As can be seen,
we find no evidence of bias in w(#) introduced by the ISD methodology and
the Landy—Szalay estimator under idealized circumstances at any angular
scale nor any redshift bin of both galaxy samples.
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data, independent of the origin of these weights, we conduct it using
weights from a preliminary run of ISD on the standard SP maps,
with the same threshold that we use to obtain the weights from
the data, Tp = 2. To get the magnitude of this potential bias, we
defined

1 N N
West. bias(e) = N Z Wdec,i — Z Wune, j (9)7 (B])
i=n j=1

where wy,; are the correlation functions from uncontaminated
mocks, and wge. ; are those from decontaminated mocks and
N = 1000 mock realizations. Fig. B1 showcases the values of
West. bias(€). As it can be seen, we see no indication of estimator
bias for both lens samples at every redshift bin. This demon-
strates that the combination of our weighting methodology with
the Landy—Szalay estimator for w(f) does not induce any bias
on our measurements when the list of contaminating SP maps is
known.

APPENDIX C: POLYNOMIAL FITS FOR
AWpethoa(d)

The additional covariance term described in Section 8.4 depends on
the difference between w(#) measured with two different systematics
correction methods, Aw method(6). AS AW pemod(0) is measured on real
data, it contains the same noise as the w(#) data vector being used for
cosmological inference. To avoid adding this noise to the covariance
term, we fit a flexible polynomial to the two w(#) measurements in
the form
+3
Wpoly(0) = > Bi6', Cn
i=—3

where B; are the coefficients to be fitted. The best-fitting polynomials
are shown in Fig. C1. We find this polynomial to be a good fit to
the data, and the difference between measured correlation functions
matches the difference in fitted polynomials well.
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Figure C1. Polynomial fits to w(0) data used in estimating the systematic
terms in the w(0) covariance in Section 8.4. The first and third panels show
the fit residuals to the fiducial w(f) measurements for each sample. The
second and fourth panels show the difference between the polynomial fits of
the two correction methods considered in these terms, ISD and ENET, both
with the first 50 principle component template maps. The bold points are the
data included by the scale cuts and included in the fit and x> calculations.
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APPENDIX D: PRINCIPAL COMPONENT MAPS
CUT-OFF

In Section 8, we describe a set of systematics weights using only
the first 50 principle component maps labelled ISD-PC <50, which
are used as the fiducial weights in the cosmology analysis. In this
Appendix, we provide some further justification for this choice.

In order to test for the correlation of real large-scale structure with
the weight maps, we cross-correlate the convergence, «, maps from
Jeffrey et al. (2021) with the weight maps obtained using different
methods, ISD-STD34, ISD-PC107, and ISD-PC<50. We correlate
with the convergence map for the third tomographic source bin due
to the large overlap between its lensing kernel and the lens sample. In
the absence of systematics in the k maps, we do not expect there to
be correlations between the SP or weight maps and the convergence
maps. We show these correlations in Fig. D2 for the five REDMAGIC
tomographic bins (the error bars are estimated using jackknife
methodology using 150 patches). We find that while ISD run on
only the 34 representative STD maps does not correlate with the
convergence maps, we obtain a large correlation with the weight maps

1.8 ~— no weights
-+ 1SD-PC<20

ISD-PC<40
1.6{ --=- |SD-PC<50
~-+- ISD-PC<60

1SD-PC<70
1.4 —-=- |SD-PC<80
————— ISD-PC107

redMaGicC, z-bin 1

it

e

-
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\

0.8
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@[arcmin]

Figure D1. Clustering amplitude at the first redshift bin of REDMAGIC
for several PC cut-offs, ISD-PC<n. The solid red line corresponds to the
unweighted data and the dashed magenta one to the weights obtained from
ISD-PC107, which lead to overcorrection. It can be seen how around n = 50
the w(@) amplitudes converge.
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using all the PC maps, pointing to potential leakage of cosmological
structure in these weights, either from chance correlation or real
large-scale structure leaking into the high PC maps. These cross-
correlations are calculated with the weight maps at Ngg = 4096
and k at Ngq. = 1024, so small-scale noise correlations are ruled
out (moreover, the cross-correlations have been evaluated at coarser
resolutions, finding similar results).

To mitigate any correlation with real large-scale structure, we
restrict the weight estimation to use only the first n PC maps. First
of all, to ensure that all dominant features of the SP maps are taken
into account, we look at the amount of variance captured up to each
component. This is shown on Fig. D3. Based on this, we use n =50 as
a starting point. PC maps up to this component explain ~98 per cent
of the total variance and we consider that it represents a balance
between including too many maps, resulting in overcorrection, and
discarding too many of them, so we risk not accounting for enough
contaminants. Then, we obtain the ISD-PC<50 weights and we
observe that these weights cause no significant overcorrection on con-
taminated mocks, as explained in Section 8. After this, we verity that
the ISD-PC <50 weights show negligible levels of cross-correlation
with «, similar to those from ISD-STD34. Moreover, the recovered
correlation function from these weights is in excellent agreement
with that from ISD-STD34 weights, as it is shown on Fig. 9.

In order to make the rejection of PC maps that could be causing
the overcorrection as specific as possible, we cross-correlate «
directly with the maps that contribute to the overcorrecting ISD-
PC107 weights (according to the multiplicative way of ISD to
make weights). However, we do not identify any individual map
or family of maps clearly causing the excess correlation. In general,
the PC maps that have the highest « correlation are the highest
principal components (which have the smallest contribution to the
total variance of the STD maps). Given this, we decide to test
removing all PC maps above a given component. We test multiple cut-
offs with PC<n, evaluating their clustering amplitudes, as it is shown
in Fig. D1. We find that the clustering amplitudes yielded by the ISD-
PC<n weights with n between 20 and 60 converge to similar values,
while for higher n, it jumps abruptly to lower amplitudes. This result,
together with the large amount of variance contained up to PC<50
and the impossibility of flagging a specific set of PC maps among
the highest components as the culprit ones of the overcorrection,
motivates the choice of n = 50 as our final cut-off.
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Figure D2. Cross-correlation of weight maps from different configurations of ISD with the convergence field, «. The error bars are calculated using jackknife
with 150 patches. It can be seen how the ISD-PC107 weights cross-correlate significantly with «, while the weights from the other two configurations do not.
This suggests that the high PC template maps may correlate with LSS. An off-set has been added to the x-axis points for better visualization.
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Figure D3. Variance of each PC map (blue line) and per cent of accumulated variance (orange line). For the principal component map, 49 the accumulated
variance is ~98 per cent, so the remaining maps are compatible with noise.

as ISD does, and would result on high x2, values. In Fig. E1, we
show the values obtained for REDMAGIC. The distributions obtained
for each redshift bin are not significantly different from a x? with
10 degrees of freedom (number of 1D bins used). We obtain similar

APPENDIX E: NON-LINEAR CONTAMINATION
WITH ISD

In order to look for non-linear contamination still present on the data

after applying weights, we evaluate the distribution of x2,, values
from the 1D relations of the ISD-PC<50 weighted data. This kind
of contamination could be undetected when using a linear model,

results for the MAGLIM sample. Therefore, we find no clear evidence
of the presence of non-linear contamination in our weighted data that
could have been unaccounted for.

Redmagic
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Figure E1. X;%un distributions (blue histograms) for the ISD-PC <50 weighted REDMAGIC sample compared with a x2 with 10 degrees of freedom (black lines).
Given the good agreement between both distributions, we find no clear evidence of deviations from linearity in the 1D relations of the weighted data. We find

similar results for MAGLIM sample.
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