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A B S T R A C T 

In this work, we present the galaxy clustering measurements of the two DES lens galaxy samples: a magnitude-limited sample 
optimized for the measurement of cosmological parameters, MAGLIM , and a sample of luminous red galaxies selected with 

the REDMA GIC algorithm. MA GLIM / REDMA GIC sample contains o v er 10 million/2.5 million galaxies and is divided into six/five 
photometric redshift bins spanning the range z ∈ [0.20, 1.05]/ z ∈ [0.15, 0.90]. Both samples co v er 4143 de g 

2 o v er which we 
perform our analysis blind, measuring the angular correlation function with an S/N ∼ 63 for both samples. In a companion 

paper, these measurements of galaxy clustering are combined with the correlation functions of cosmic shear and g alaxy–g alaxy 

lensing of each sample to place cosmological constraints with a 3 × 2pt analysis. We conduct a thorough study of the mitigation 

of systematic effects caused by the spatially varying surv e y properties and we correct the measurements to remo v e artificial 
clustering signals. We employ several decontamination methods with different configurations to ensure the robustness of our 
corrections and to determine the systematic uncertainty that needs to be considered for the final cosmology analyses. We validate 
our fiducial methodology using lognormal mocks, showing that our decontamination procedure induces biases no greater than 

0.5 σ in the ( �m 

, b ) plane, where b is the galaxy bias. 

Key words: cosmological parameters – cosmology: observations – dark energy – large-scale structure of the Universe. 
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 I N T RO D U C T I O N  

he current Standard Model of Cosmology, � CDM, provides an 
xcellent fit to current observations, including distance measure- 
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ents to Type Ia supernovae (SN Ia; Riess et al. 1998 ; Perlmutter
t al. 1999 ), the cosmic microwave background (CMB) fluctuations 
Spergel et al. 2003 ; Planck Collaboration XI 2020 ), and the large-
cale structure of the Universe (Alam et al. 2017 ; Abbott et al.
019 ; Alam et al. 2021 ), with only six free parameters. In addition,
hotometric galaxy surv e ys, such as the Kilo-Degree Survey (KiDS,
e Jong et al. 2013 ), Hyper Suprime-Cam Subaru Strategic Program
HSC-SSP; Aihara et al. 2018 ) and the Dark Energy Surv e y (DES,
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he Dark Energy Surv e y Collaboration 2005 ) are now reaching
 level of sensitivity that competes and complements the precise
eterminations from CMB observatories. The comparison of the
easurements of the late Univ erse, pro vided by galaxy surv e ys,

nd the early Univ erse, pro vided by CMB measurements, allows
or powerful tests of the nature of cosmic acceleration and general
elativity. The precision that photometric surv e ys are able to reach
n the determination of cosmological parameters comes from the
ombination of dif ferent observ ables, mainly from weak lensing
nd clustering of galaxies, in the so-called 3 × 2pt analysis, whose
ethodology is described in DES Collaboration ( 2018a ), van Uitert

t al. ( 2018 ), Joudaki et al. ( 2018 ), Heymans et al. ( 2021 ), and Krause
t al. ( 2021 ) (and references therein). 

In this work, we present the clustering measurements of the
ens galaxy samples that enter in the DES Year 3 (Y3) 3 × 2pt
DES Collaboration et al. 2022 ) and the 2 × 2pt (Elvin-Poole
t al. 2021 ; P ande y et al. 2021 ; Porredon et al. 2021a ; Prat et al.
021 , in combination with the shear field or g alaxy–g alaxy lensing)
nalyses. The cosmological information is extracted from the large-
cale structure (LSS) measurements using the angular two-point
orrelation function that characterizes the spatial distribution of
alaxies in tomographic photometric redshift bins. Ho we ver, the
easurement of the angular correlation function is affected by

patially varying surv e y properties that must be taken into account
nd corrected to extract the full cosmological power of DES. These
ystematic effects come from the observing conditions and translate
nto changes in the selection function across the observed footprint
r with redshift. 
As photometric surv e ys hav e become more extended in area, both

he impact of these surv e y properties or observational effects, and
he diminishing statistical errors, have spurred the development of a
ariety of techniques to correct for them in clustering measurements.
lready in SDSS (Scranton et al. 2002 ; Myers et al. 2006 ) and
MASS (Maller et al. 2005 ), cross-correlations with different surv e y
roperties and masking were used to check for possible sources of
ystematic error, which were deemed to be insignificant given the
tatistical errors. Ross et al. ( 2011 ) compared several methodologies
masking, cross-correlation correction and computing weights for
he data) in SDSS-III. The cross-correlation correction method was
pplied to early DES data (DES-SV) in Crocce et al. ( 2016 ), and was
tudied by Elsner, Leistedt & Peiris ( 2016 ) (there called ‘template
ubtraction’) who derived its characteristic bias. The application
f weights have increasingly become a popular method, applied
or instance in BOSS (Ross et al. 2017 , 2020 ), eBOSS (Laurent
t al. 2017 ; Raichoor et al. 2021 ), DES-SV (Kwan et al. 2017 ,
omparing with the cross-correlation method), DES Y1 data (Elvin-
oole et al. 2018 ), and DESI targets (Kitanidis et al. 2020 ). Rather

han applying weights to the observed data, the inverse-weights
an be applied to the random sample used for correlation function
nalyses, as shown in Morrison & Hildebrandt ( 2015 ) and applied
o eBOSS data via a multilinear regression analysis in (Bautista
t al. 2018 ; Icaza-Lizaola et al. 2020 ). These approaches have been
efined in recent years as the importance of addressing these spatial
ystematics has grown (Vakili et al. 2020 ; Wagoner et al. 2021 ;
eaverdyck & Huterer 2021 ), including the development of machine

earning approaches using neural networks (NNs; Rezaie et al. 2020 )
r self-organizing maps (Johnston et al. 2021 ). Some approaches
ave operated only at the level of the power spectrum, including
ode projection methods (Rybicki & Press ( 1992 ) with examples

f applications and further developments shown in Leistedt et al.
 2013 ), Leistedt & Peiris ( 2014 ), Elsner et al. ( 2016 ), and Elsner,
eistedt & Peiris ( 2017 ). Weaverdyck & Huterer ( 2021 ) re vie wed
NRAS 511, 2665–2687 (2022) 
everal of the above techniques and sho wed ho w mode projection
ethods operating on the pseudo-power spectrum are related to
ultilinear regression methods, identifying residual biases in both

pproaches. 
We present the methods we apply to DES-Y3 data in order to
itigate these effects, the full set of validation tests we perform,

oth on data and on simulations, and its final implementation on the
ata. These corrections enable robust measurements of the clustering
mplitude of lens galaxies. The results of this analysis are used as
he clustering input for the full 3 × 2pt cosmological analysis in
ES-Y3 (DES Collaboration et al. 2022 ). 
This paper is organized as follows: In Section 2, we describe

he modeling of the galaxy clustering angular correlation function
sed throughout the Y3 analysis. In Section 3, we introduce the
3 data and the galaxy samples derived from it. In Section 4,
e present the description of different observing conditions and

heir representation. In Section 5, we present the methodology, with
pecial attention to the decontamination pipeline (Sections 5.3.1 and
.3.2). In Section 6, we show the galaxy clustering results after
pplying the correction methods. This correction is validated in
ection 7. In Section 8, we discuss the post-unblinding findings
bout the amplitude of the angular correlation functions in terms of
he considered surv e y properties. Finally, we present the conclusions
n Section 9. 

 M O D E L L I N G  

he observed projected galaxy density contrast δi 
obs ( ̂  n ) of galaxies in

omography bin i at position ˆ n can be written as 

i 
g , obs ( ̂  n ) = 

∫ 
d χ W 

i 
δ ( χ ) δ(3D) 

g ( ̂  n χ, χ ) 
︸ ︷︷ ︸ 

δi 
g , D ( ̂ n ) 

+ δi 
g, RSD ( ̂  n ) + δi 

g ,μ( ̂  n ) , (1) 

ith χ the comoving distance, W 

i 
δ = n i g ( z ) d z / d χ the normalized

election function of galaxies in tomographic bin i . Here the first
erm is the line-of-sight projection of the three-dimensional galaxy
ensity contrast, δ(3D) 

g ; the remaining terms are the contributions
rom linear redshift-space distortions (RSDs) and magnification ( μ),
hich are described in Krause et al. ( 2021 ). 
We model the galaxy density assuming a local, linear galaxy bias
odel (Fry & Gaztanaga 1993 ), where the galaxy and matter density
uctuations are related by δg ( x ) = b δm 

( x ), with density fluctuations
efined by δ ≡ ( n ( x ) − n̄ ) / ̄n . We model the linear galaxy bias to be
onstant across each tomographic bin, denoted as b i . The validity
f these assumptions to the accuracy of the Y3 3 × 2pt analysis
s demonstrated in Krause et al. ( 2021 ) (see section V.B.2 and
lso DeRose et al. 2021 , where it is determined that the redshift
volution of linear galaxy bias within redshift bins is negligible for
he clustering and g alaxy–g alaxy lensing combined analyses). 

The angular power spectrum consists of six different terms,
orresponding to auto- and cross-power spectra of galaxy density,
SD and magnification. For Y3, we use the exact (non-Limber)
omputation for angular clustering. For a quantitative analysis of
he impact of the Limber approximation on near-future data sets, see
ang et al. ( 2020 ). For example, the exact expression for the density–
ensity contribution to the angular clustering power spectrum is 

 

ij 
δg , D δg , D 

( � ) = 

2 

π

∫ 
d χ1 W 

i 
δ ( χ1 ) 

∫ 
d χ2 W 

j 
δ ( χ2 ) 

×
∫ 

d k 

k 
k 3 P gg ( k, χ1 , χ2 ) j � ( kχ1 ) j � ( kχ2 ) , (2) 
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ith j � ( k χ ) Bessel functions of order � and P gg ( k , z 1 , z 2 ) the 3D
alaxy power spectrum in real space. The full expressions including 
agnification and RSD are given in Fang et al. ( 2020 ). Schematically,

he integrand in equation (2) is split into the contribution from non-
inear evolution, for which unequal time contributions are negligible 
o that the Limber approximation is sufficient, and the linear- 
 volution po wer spectrum, for which time e volution factorizes. 1 

The angular correlation function is then given by 

 

i ( θ ) = 

∑ 

� 

2 � + 1 

4 π
P � ( cos θ ) C 

ii 
δg , obs δg , obs 

( � ) , (3) 

here P � are the Legendre polynomials. 
Throughout this paper, we use the COSMOSIS framework 2 (Zuntz 

t al. 2015 ) to compute correlation functions, and to infer cosmo-
ogical parameters. The evolution of linear density fluctuations is 
btained using the CAMB (Lewis & Bridle 2002 ) module 3 and then
onverted to a non-linear matter power spectrum P NL ( k ) using the
pdated HALOFIT recipe (Takahashi et al. 2012 ). Nevertheless, the 
aseline model used for this analysis assumes linear galaxy bias, so
he relation between galaxy and matter power spectra is given by P gg 

 b 2 P mm 

( k ) (see Krause et al. 2021 , for a more general expression
nd for the validation of this model). 

We model (and marginalize o v er) photometric redshift bias un- 
ertainties as an additive shift 
z i in the galaxy redshift distribution
 

i 
g ( z) for each redshift bin i : 

 

i 
g ( z) → n i g ( z − 
z i ) , (4) 

nd a stretch parameter to characterize the uncertainty on the width 
or some of the tomographic bins and samples: 

 

i 
g ( z) → n i g 

(
σ i 

z [ z − 〈 z〉 ] + 〈 z〉 ) . (5) 

The priors on the 
z i and σz i nuisance parameters are measured 
nd calibrated directly using the angular cross-correlation between 
he DES sample and a spectroscopic sample, as described in Cawthon 
t al. ( 2020 ). We use the same 
z i and σz i as in the Y3 3 × 2pt
nalysis for all tests of robustness of the parameter constraints, as
isted in Table 3 . 

 DATA  

he Dark Energy Surv e y collected imaging data with the Dark
nergy Camera (DECam; Flaugher et al. 2015 ) mounted on the 
lanco 4m telescope at the Cerro Tololo Inter-American Observatory 

CTIO) in Chile during six years, from 2013 to 2019. The observed
ky area covers ∼5000 deg 2 in five broad-band filters, grizY , covering
ear-infrared and visible w avelengths. This w ork uses data from
he the first 3 yr (from 2013 August to 2016 February), with
pproximately four o v erlapping e xposures o v er the full wide-field
rea, reaching a limiting magnitude of i ∼ 23.3 for signal-to-noise 
atio (S/N) = 10 point sources. The data were processed by the
ES Data Management system (Morganson et al. 2018 ) and, after 
 complex reduction and vetting procedure, compiled into object 
atalogues. The catalogue used here amounts to nearly 400 million 
ources (available publicly as Data Release 1 4 ; DES Collaboration 
018b ). We calculate additional metadata in the form of quality 
ags, surv e y flags, surv e y property (SP) maps, object classifiers, and
 https:// github.com/xfangcosmo/ FFTLog- and- beyond . 
 https:// bitbucket.org/ joezuntz/cosmosis . 
 http://camb.info . 
 https:// des.ncsa.illinois.edu/ releases/dr1 . 

5

s
s
a

hotometric redshifts to build the Y3 GOLD data set (Sevilla-Noarbe 
t al. 2021 ). 

From this catalogue, we build the different galaxy samples for LSS
tudies. For robustness, we decided to use two different types of lens
alaxies, MA GLIM and REDMA GIC , which are used as lens samples
or galaxy clustering and for combination with weak lensing for the
 × 2pt analysis. These two samples are described in the following
ubsections. 5 

.1 Y3 MAGLIM sample 

he main lens sample considered in this work, MAGLIM , is the result
f the optimization carried out in Porredon et al. ( 2021b ). The sample
s designed to maximize the cosmological constraining power of the 
ombined clustering and g alaxy–g alaxy lensing analysis (also known 
s 2 × 2pt) keeping the selection criterion as simple as possible. The
election cuts, based on the table columns from Sevilla-Noarbe et al.
 2021 ), are as follows: 

(i) flags foreground = 0 & flags footprint = 1 & bi-
and( flags badregions ,2) = 0 & bitand( flags gold ,126) = 0;

(ii) star-galaxy separation with EXTENDED CLASS MASH SOF 
 3; 
(iii) i < 4 · z phot + 18; 
(iv) i > 17.5; 

The first cut is a quality flag to remo v e badly measured objects
r objects with issues in the processing steps. It also remo v es
roblematic regions due to astrophysical foregrounds. The second cut 
emo v es stars from the galaxy sample. The faint magnitude cut in the
 band depends linearly on the photometric redshift, z phot , and selects
right galaxies. The photometric redshift estimator used for this 
ample is the Directional Neighbourhood Fitting ( DNF ; De Vicente,
 ́anchez & Sevilla-Noarbe 2016 ) algorithm (see also Porredon et al.
021a ), in particular its mean estimate using 80 nearest neighbours
n colour and magnitude space, by performing a hyperplane fit. The
righter magnitude cut remo v es residual stellar contamination from 

inary stars and other bright objects. 
The number and width of the redshift bins is studied in Porredon

t al. ( 2021b ), where they e v aluate the impact of this kind of choices
n the 2 × 2pt constraining power in wCDM (Fisher forecasts and
CMC sampling of the posterior distributions of �m 

, σ 8 , and w).
e split the sample into six tomographic lens bins, with bin edges

 phot = [0.20, 0.40, 0.55, 0.70, 0.85, 0.95, 1.05]. These edges have
een slightly modified with respect to Porredon et al. ( 2021b ) in
rder to impro v e the photometric redshift calibration (De Vicente
t al. 2016 ). We refer the reader to Porredon et al. ( 2021b ) for more
etails about the optimization of this sample and its comparison with
EDMAGIC and other flux-limited samples. The main properties of 

he sample are summarized at the top panel of Table 1 . 

.2 Y3 REDMAGIC sample 

he REDMAGIC algorithm selects luminous red galaxies (LRGs) 
ccording to the magnitude–colour–redshift relation of red sequence 
alaxy clusters, calibrated using an o v erlapping spectroscopic sam- 
le. This sample is defined by an input threshold luminosity L min 
 Moreo v er, from Y3 GOLD . we also define the BAO SAMPLE , a galaxy 
ample especially defined for studies on the baryonic acoustic oscillation 
cales (Carnero Rosell et al. 2021 ), which is not used here, but undergoes an 
nalogous treatment of its spatial systematics. 

MNRAS 511, 2665–2687 (2022) 
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Table 1. MAGLIM (top table) and REDMAGIC (bottom table) characterization 
parameters: number of galaxies, N g , and number density, 〈 n g 〉 , blind galaxy 
bias, b i , and scales excluded per redshift bin. 

Redshift bin N g 〈 n g 〉 b i θ > [arcmin] 

MAGLIM 

0.20 < z < 0.40 2236 462 0.150 1.5 33.88 
0.40 < z < 0.55 1599 487 0.107 1.8 24.35 
0.55 < z < 0.70 1627 408 0.109 1.8 17.41 
0.70 < z < 0.85 2175 171 0.146 1.9 14.49 
0.85 < z < 0.95 1583 679 0.106 2.3 12.88 
0.95 < z < 1.05 1494 243 0.100 2.3 12.06 

REDMAGIC 

0.15 < z < 0.35 330 243 0.022 1.7 39.23 
0.35 < z < 0.50 571 551 0.038 1.7 24.75 
0.50 < z < 0.65 872 611 0.059 1.7 19.66 
0.65 < z < 0.80 442 302 0.030 2.0 15.62 
0.80 < z < 0.90 377 329 0.025 2.0 12.40 

Notes . The number densities are in units of arcmin −2 and the scales excluded 
correspond to 8 Mpc h −1 for both samples, as described in Krause et al. 
( 2021 ). The blind galaxy bias values correspond to the fiducial values that 
were assumed to create the lognormal mocks used in this analysis, not the 
best-fitting values from 3 × 2pt. 
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nd constant co-moving density. The full REDMAGIC algorithm
s described in Rozo et al. ( 2016 ). REDMAGIC is the algorithm
sed for the fiducial clustering sample of the DES Y1 3 × 2pt
osmology analyses (DES Collaboration 2018a ; Elvin-Poole et al.
018 ), with some updates improving the redshift estimates and
election uniformity, besides the usage of new photometry from Y3
OLD . 
We define the Y3 REDMAGIC sample in five tomographic

ens bins, selected on the REDMAGIC redshift point estimate
uantity zredmagic . The bin edges used are z REDMAGIC =
0 . 15 , 0 . 35 , 0 . 50 , 0 . 65 , 0 . 80 , 0 . 90]. The first three bins use a lumi-
osity threshold of L min > 0.5 L ∗ and are known as the high density
r highdens sample. The last two redshift bins use a luminosity
hreshold of L min > 1.0 L ∗ and are known as the high luminosity or
ighlum sample. 
The REDMAGIC selection also includes the following cuts on

uantities from the Y3 GOLD catalogue and REDMAGIC calibration: 

(i) Remo v ed objects with FLAGS GOLD in 8 | 16 | 32 | 64. 
(ii) Star galaxy separation with EXTENDED CLASS MASH SOF
2. 
(iii) Cut on the red-sequence goodness of fit χ2 < χ2 

max ( z). 

The main properties of the sample are summarized in the bottom
art of Table 1 . See Sevilla-Noarbe et al. ( 2021 ) for further details
n these quantities. 

.3 Angular mask 

he total sky area covered by the Y3 GOLD catalogue footprint is
946 deg 2 . We then mask regions where astrophysical foregrounds
bright stars or large nearby galaxies) are present, or where there are
nown processing problems (‘bad regions’), reducing the total area
y 659 . 68 deg 2 (Sevilla-Noarbe et al. 2021 ). The angular mask is
efined as a HEALPIX 

6 (G ́orski et al. 2005 ) map of resolution N side 

 4096. Pixels with fractional coverage smaller than 80 per cent
 https://healpix.sourceforge.io . 

G
P
n

NRAS 511, 2665–2687 (2022) 
re remo v ed. In addition, we require homogeneous depth across
he footprint for both galaxy samples, removing too shallow or
ncomplete regions. As a summary, we use the following Y3 GOLD
nd REDMAGIC specific map quantities to define the final common
rea: 

(i) footprint = 1; 
(ii) foregrounds = 0; 
(iii) badregions ≤1; 
(iv) fracdet > 0.8; 
(v) depth i band ≥22.2; 
(vi) z MAX, highdens ≥0.65; 
(vii) z MAX, highlum 

≥0.95. 

here the depth for the i -band magnitude is obtained using the
OF photometry (detailed in Sevilla-Noarbe et al. 2021 ) (as used

n MAGLIM ) and the conditions on ZMAX are inherited from the
EDMAGIC redshift span. The z MAX quantity is the maximum redshift
t which a REDMAGIC galaxy can be detected with the luminosity
hreshold employed (0.5 L 

∗ for REDMAGIC highdens and 1.0 L 

∗ for
ighlum ), given the depth of the survey at that location. We only
emo v e pix els where z MAX is lower than the upper edge of the
edshift bin, so we have Z MAX, highdens < 0.65 and z MAX, highlum 

< 0.95
or this sample. Initially (well before unblinding), we considered an
pper redshift bin edge of 0.95, but this was reduced to 0.90 due to
oor co v erage in the spectroscopic sample employed for validation
Cawthon et al. 2020 ). Ho we ver, we decided to keep the definition
f the angular mask at Z MAX, highlum 

≥ 0.95 for compatibility with
ther parts of the DES Y3 analysis for which the angular mask was
lready fixed. This is also a more conserv ati ve cut, since it removes
ixels at the edge of the depth cut. The final analysed sky area is
143 deg 2 . 

 SURV EY  PROPERTIES  

.1 SP maps 

hrough their impact on the galaxy selection function, surv e y
roperties can modify the observed galaxy density field. In order
o correct these effects, we develop spatial templates for potential
ontaminants by creating HEALPIX sky maps of survey properties (‘SP
aps’), which we then use to characterize and remo v e contamination

rom the observed density fields (see Leistedt et al. 2016 , for the
etails of the original implementation of this mapping in DES).
ach pixel of a given SP map corresponds to a summary statistic

hat characterizes the distribution of values of the measured quantity
 v er multiple observations. Table 2 summarizes the surv e y properties
onsidered in this analysis along with the summary statistics used
o produce the SP maps. As foreground sources of contamination
e use a star map created with bright DES point sources, labeled

tellar dens (the star map from which the stellar density map is
ade, stars 1620 , has the cut 16 < i < 20), and the interstellar

xtinction map from Schlegel, Finkbeiner & Davis ( 1998 ), sfd98 . 7 

ore detailed information on the construction of these maps can be
ound in Sevilla-Noarbe et al. ( 2021 ). Hereafter, we will use SP map
o refer to SP and foreground maps generically. 
We hav e v erified that substituting the DES point sources map with the 
aia EDR3 star map (Gaia Collaboration 2020 ) and the sfd98 map with the 
lanck 2013 thermal dust emission map (Planck CollaborationVI 2014 ) has 
o significant impact on the results. 

https://healpix.sourceforge.io
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Table 2. Surv e y properties used for the systematics mitigation effort of the 
DES Y3 Key Project, along with their physical units and the statistics used 
to generate SP maps from the stacking of images. 

Quantity Units Statistics 

airmass ∅ WMEAN, MIN, MAX 

fwhm arcsec WMEAN, MIN, MAX 

fwhm fluxrad arcsec WMEAN, MIN, MAX 

exptime s SUM 

t eff ∅ WMEAN, MIN, MAX 

t eff exptime s SUM 

skybrite electrons/CCD pixel WMEAN 

skyvar (electron s/CCD pixel) 2 WMEAN, MIN, MAX 

skyvar sqrt electrons/CCD pixel WMEAN 

skyvar uncertainty electrons/ s × coadd pixel 
sigma mag zero mag QSUM 

fgcm gry mag WMEAN, MIN 

maglim mag 
sof depth mag 
magauto depth mag 
stars 1620 # stars 
stellar dens stars/ deg 2 

sfd98 mag 

Notes . As foreground sources of contamination, we use a DES bright stars 
map and the dust extinction map from Schlegel et al. ( 1998 ). We use both 
the raw number count of DES point sources, stars 1620 , and the density, 
stellar dens . We use an SP map for each statistic in each photometric band 
in { g , r , i , z } (with the exception of stars 1620 , stellar dens , and sfd98 ), 
resulting in 107 total SP maps. 
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.2 Reduced PCA map basis 

he Y1 analysis used 21 SP maps selected a priori. Ho we ver, a
educed set of SP maps is equi v alent to setting a hard prior of no
ontamination from those SP maps that are unused, so we should be
areful to not discard spatial templates that carry unique information 
bout potential systematics (Weaverdyck & Huterer 2021 ). For Y3 
e have initially increased the number of SP maps considered to 107.
y expanding the library of SP maps used for cleaning, we relax the

mplicit priors and adopt a more data-driven approach to cleaning 
bservational systematics from the clustering data. 
Many of the Y3 additional SP maps we use are alternative summary 

tatistics for characterizing the observed quantity, such as MIN and 
AX instead of the weighted mean (WMEAN), which results in a 

igh correlation between SP maps. We therefore create an orthogonal 
et of SP maps by using the principal components of the pixel
ovariance matrix across all 107 SP maps (standardized to zero mean 
nd unit variance) at N side = 4096. 8 This provides an orthornormal 
asis set of SP maps that can be ordered according to the total variance 
hey capture in the space spanned by the 107 SP maps. We will refer
o these principal component maps as PC maps to differentiate from
P maps in the standard (STD) basis, where each map represents a
ingle SP (e.g. exptime ). From this point forward, we will use ‘SP’
ap to more generically refer to maps that may be in either the PC

r STD basis. We retain the first 50 PC maps, which account for
98 per cent of the variance of the full 107 map basis. This allows
 We use this resolution because we wish to apply the correction to the data at 
he maximum resolution available. This is provided by DESDM (Morganson 
t al. 2018 ), which generates the SP maps at N side = 4096, which is a good 
ompromise between computational speed and needed resolution for this 
osmological analysis. We verify that the difference in the variance explained 
y A) the principal component maps at N side = 4096 and then degraded to 512 
nd B) the maps obtained after performing a PCA at N side = 512 is negligible. 

m
T  

d
c

9

s to capture the dominant features of the additional maps while
educing the risk of removing real LSS signal from overfitting (we
ote that we use PCA to decorrelate the STD maps and after that we
nd it convenient to reduce their number, so we employ this same
ormalism for this task). We test the impact of adjusting the number
f PC maps used in Section 8 and Appendix D, finding that the
ull set of 107 maps results in galaxy weights that o v ercorrect and
orrelate significantly with LSS. The fiducial set of maps employed 
o decontaminate the data are these first 50 PC maps, although we
ave also run validation tests with the STD maps, as we explain in
he next sections. 

 ANALYSI S  TO O L S  A N D  M E T H O D O L O G Y  

.1 Clustering estimator 

he analysis of the galaxy clustering is performed by measuring 
he angular two-point correlation function, w( θ ), in photometric 
edshift bins. In this analysis, we work with HEALPIX (G ́orski et al.
005 ) maps of the SPs and galaxy density from lognormal mock
atalogues. The decontamination methods generate HEALPIX weight 
aps as well. Weights are actually obtained for each SP pixel, so we

lso work with pix elized v ersions of our galaxy samples, and use a
ix el-based v ersion of the Landy–Szalay estimator (Landy & Szalay
993 ), following the notation of Crocce et al. ( 2016 ): 

ˆ  ( θ ) = 

N pix ∑ 

i= 1 

N pix ∑ 

j= 1 

( N i − N̄ ) × ( N j − N̄ ) 

N̄ 

2 
� i, j , (6) 

here N i is the galaxy number density in pixel i , N̄ is the mean galaxy
umber density o v er all pixels within the footprint, and � i, j is a top-
at function that is equal to 1 when pixels i and j are separated by an
ngle θ within the bin size 
θ . The fractional co v erage of each pix el
s taken into account in the calculation of N i and N̄ . These correlation
unctions are calculated using TREECORR 

9 (Jarvis, Bernstein & Jain 
004 ). We verify on the data that the difference between this pixel
ersion of the estimator at both N side = 4096 and 512 and that using
andom points is negligible for the angular scales we consider. 

.2 Lognormal mocks 

e rely on a set of lognormal mock realizations of the observed data
o e v aluate the significance of the correlation between data and SP
aps following the methodology of Elvin-Poole et al. ( 2018 ) and
avier, Abdalla & Joachimi ( 2016 ). For each of our galaxy samples,
e create a set of 1000 mocks that matches their mean galaxy
umber density and power spectrum. We generate full-sky mock 
atalogues at a HEALPIX resolution of N side = 512, corresponding 
o ∼0 . ◦11 pixels. We then apply the DES-Y3 angular mask. This
ngular resolution is small enough to be used for the scales employed
n the cosmology analysis. The usage of these mocks is co v ered
n Section 5.3.1. We also create sets of contaminated lognormal 
ocks that we later use to validate our decontamination methods. 
hese mocks incorporate the effect of SP maps observed on the
ata. Appendix A contains more details about their creation and 

ontamination. 

 ht tps://rmjarvis.git hub.io/TreeCor r . 
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https://rmjarvis.github.io/TreeCorr


2670 DES Collaboration 

5

T  

c  

a  

t  

a  

T  

c  

e  

2  

c  

(  

2  

L  

(
 

o  

a  

A  

v  

S  

fi  

w
 

r  

T  

d  

f  

S  

e
m  

a  

r  

w  

a  

t  

W  

c  

e  

S  

e  

s  

t  

f  

(  

s  

p  

b

5

I  

u  

a
 

g  

c  

o  

t  

e  

i

 

w
i  

i  

r  

o  

s  

t  

u  

d  

s  

m  

a

b  

o  

t  

F  

t  

fi  

c
 

u




 

r  

m  

o  

o  

s

S

w  

s  

o
 

t  

w

w

w  

fi  

a  

o  

f
 

1  

w  

T  

m  

h  

i  

a  

(

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/2/2665/6516441 by U
SP- R

eitoria-Sibi (inst. bio) user on 08 June 2022
.3 Correction methods 

he observed galaxy sample has contamination from observing
onditions and foregrounds, which modify the selection function
cross the surv e y footprint. Our goal is to correct these effects in
he lens galaxy samples. To do so, we create a set of weights to
pply to the galaxy samples, constructed from a list of SP maps.
he weighted sample is then used for measurements of w( θ ) and for
ombination with weak lensing measurements (DES Collaboration
t al. 2022 ; Elvin-Poole et al. 2021 ; P ande y et al. 2021 ; Porredon et al.
021a ). This approach has been successfully applied to the angular
orrelation function of the DES Year 1 clustering measurements
Elvin-Poole et al. 2018 ), as well as in SDSS-III (e.g. in Ross et al.
011 , 2017 ), eBOSS (Laurent et al. 2017 ; Bautista et al. 2018 ; Icaza-
izaola et al. 2020 ; Ross et al. 2020 ; Raichoor et al. 2021 ), and KiDS

Vakili et al. 2020 ). 
Most correction procedures can be interpreted as regression meth-

ds, with the true o v erdensity field corresponding to the residuals
fter regressing the observed density field against a set of SP maps.
dding SP maps is equi v alent to adding additional explanatory
ariables to the regression, which increases the chance of o v erfitting.
uch o v erfitting will reduce the magnitude of the inferred o v erdensity
eld (i.e. shrink the size of regression residuals), and thus overfitting
ill generically lead to a reduced clustering signal. 
There are several approaches to address this. One can a priori

estrict the number of SP maps to reduce the level of false correction.
his is equi v alent to asserting that there is no contamination from the
iscarded SP maps, which risks biasing the data from unaccounted-
or systematic effects. A second option is to clean with all of the
P maps and then debias the measured clustering based on an
stimate of the expected level of false correction (e.g. pseudo- C � 

ode projection; Elsner et al. 2016 , 2017 ; Alonso et al. 2019 ). This
pproach can be interpreted as a simultaneous ordinary least-squares
egression with a step to debias the po wer spectrum. Map-le vel
eights that may enter in the analysis of other observables, such

s g alaxy–g alaxy lensing, can be produced from this approach, but
hey will be overly aggressive if the number of SP maps is large.

agoner et al. ( 2021 ) extend this approach by incorporating the pixel
ovariance and using Markov chain Monte Carlo to include map-level
rror estimates, but this again becomes less feasible if the number of
P maps is too large. Finally, one can take an approach between these
xtremes, reducing the number of SP maps used for fitting, but doing
o in a data-driven manner. We apply two different methods that take
his third approach. They make different assumptions, but were both
ound to perform well in simulated tests in Weaverdyck & Huterer
 2021 ). The SP maps we run these two methods on is our fiducial
et of 50 PC maps that we introduced in Section 4. In addition, we
resent a third method that we use to test linearity assumptions made
y the other two. 

.3.1 Iterative Systematics Decontamination ( ISD ) 

n this subsection, we describe the fiducial correction method that we
se for DES Y3, called ISD . It is an extension of the methodology
pplied in Y1 (Elvin-Poole et al. 2018 ). 

ISD is organized as a pipeline that corrects the PC map (or any
eneric SP map) effects by means of an iterative process whose steps
an be summarized as (i) identify the most significant PC map, (ii)
btain a weight map from it, (iii) apply it to the data, and (iv) go back
o (i). The algorithm stops when there are no more maps with an
ffect larger than an a priori fixed threshold. Each step is described
n more detail in the following lines. 
NRAS 511, 2665–2687 (2022) 
To begin with, we degrade each PC map to N side = 512 and then
e compute the relation between their values and n o / 〈 n o 〉 , where n o 

s the observed density of galaxies at a given part of the sky and 〈 n o 〉
s the average density o v er the full footprint. In the following, we
efer to this as the 1D relation. To obtain the statistical significance
f the observed correlations, we bin the 1D relation into 10 equal-
ky areas for each PC map and estimate a covariance matrix for
he 1D relation bin means of that PC map using the set of 1000
ncontaminated mocks described in Section 5.2. Since the bins are
efined as equal area, the statistical error associated with each bin is
imilar and no one region dominates the fit. We use this covariance
atrix for determining the best-fitting parameters of a function to

pproximate the 1D relation, as well as to assess its goodness of fit. 
We fit the 1D relation to a linear function of the PC map values 

n o , i 

〈 n o 〉 = m × s i + c, (7) 

y minimizing χ2 , which we then denote χ2 
model . The index i runs

 v er the PC map bins. Similarly, we compute the goodness of fit for
he case where n o / 〈 n o 〉 is a constant function f ( s ) = 1 labelled χ2 

null .
inding that n o / 〈 n o 〉 fits well to this constant function is equi v alent

o finding that this particular PC has no impact on the galaxy density
eld. To calculate both χ2 definitions, we make use of the (10 × 10)
ovariance matrix obtained from the lognormal mocks. 

The degree of impact of a given PC map on the data is e v aluated
sing 

χ2 = χ2 
null − χ2 

model . (8) 

To decide whether this impact is statistically significant or not, we
un the exact same procedure described above on 1000 lognormal
ock realizations. In this way, we obtain the probability distribution

f 
χ2 . We define 
χ2 (68) as the value below which are 68 per cent
f the 
χ2 values from the mocks. Then, we consider an SP map
ignificant if 

 1D = 


χ2 


χ2 (68) 
> T 1D , (9) 

here T 1D is a significance threshold that is fixed beforehand. The
quare root of this quotient is proportional to the significance in terms
f σ . 
After identifying the most contaminating map, s i , the next step is

o obtain a weights map, w s , i , to correct its impact. We compute this
eights map as 

 s,i = 

1 

F ( s i ) 
, (10) 

here F ( s i ) is a linear function of s i with which its 1D relation is
tted. In general, this function depends on the nature of the SP map,
lthough the aim is to use functions as simple as possible to prevent
 v erfitting. In the case of PC maps, we find no significant deviations
rom linearity in the 1D relations (see Appendix E). 

After obtaining the weight map, the pipeline normalizes it to w̄ s =
. Then, it is applied to the data in such a way that N 

p 

gal → N 

p 

gal × w 

p 
s ,

here p is an index that runs o v er the footprint pixels at N side = 4096.
he process is repeated iteratively, identifying at each iteration the
ost significant PC map and correcting for it until all the PC maps

ave a significance lower than T 1D . At iteration i , the weights from
terations 1 to i have been applied. Fig. 1 shows the 1D relation of
 given PC map that has been identified as a significant contaminant
dots) and after correcting for it (triangles). 
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Figure 1. Example of how ISD works. We illustrate this by showing the 
observ ed pix el number density (relative to the mean o v er the full footprint) 
as a function of a PC map pixel v alue, e v aluated in 10 equal area bins. We 
refer to this as 1D relation. The method identifies the PC map pca 8 as the 
most significant one at iteration 0 (i.e. no weights have been applied yet) at 
the first redshift bin of MAGLIM . The corresponding 1D relation is depicted 
by the red triangles and the red line corresponds to their best-fitting linear 
function. After correcting for the contaminating template with weights (given 
by equation 10) at iteration 1, the impact of this PC map on the data is highly 
reduced. The blue points and their best-fitting linear function (blue line) show 

that the 1D relation is now compatible with no effect. 
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The weights associated to each significant PC map are incorpo- 
ated multiplicatively to the total weight map, w T , that is 

 T = 

f ∏ 

i= 1 

w s, i , (11) 

here i runs o v er the number of PC maps it is necessary to weight
or. w T is then the total weight map that contains the information
bout the individual contaminants. These are the weights we apply 
o the data to mitigate the contamination. This total weight map is
lso normalized so its mean value o v er the full footprint is 1. The
ipeline runs this procedure for each redshift bin independently. 

.3.2 Elastic Net ( ENET ) 

e also generated sets of weights using the ENET method described 
n Weaverdyck & Huterer ( 2021 ) on the list of 50 PC maps. In this
ork, ENet has been used to perform robustness tests. Recall that the

SD method estimates contamination via a series of 1D regressions 
hat are used to construct a total weight map via equation (11).
n contrast, ENET estimates the amplitude of contamination for all 
C maps simultaneously, by maximizing the following log-posterior 
 v er α: 

( α) ∝ − 1 

2 N pix 
|| δobs − S α|| 2 2 − λ1 || α|| 1 − λ2 

2 
|| α|| 2 2 , (12) 

here αi is the contamination amplitude for PC map s i , S is a matrix
ith the pixelated PC maps as columns, 10 and 

obs ,j = 

f det, j N j ∑ N pix 
j ( f det, j N j ) /N pix 

− 1 , (13) 
0 In practice, we standardize PC maps to have mean 0 and unit standard 
eviation before computing equation (12). 

t
o  

f  

s  
here f det, j is the fraction of pixel j that is not masked. The first term
n equation (12) corresponds to the standard Gaussian likelihood 
hat is maximized for an ordinary least-squares regression. The 
egularizing terms act as components of a mixed, zero-centred prior 
n the elements of α. The mixture consists of a Laplace and Gaussian
istribution, with their precisions controlled by λ1 and λ2 . The 
aplace component is sharply peaked at zero, encouraging sparsity in 

he coefficients. We determine the values of λ1 and λ2 by minimizing 
he mean squared error of the predictions on held-out portions of the
ootprint via five-fold cross-validation. This allows the data to pick 
he precision and form of the prior based on predictive power. 

We use the scikit-learn (Pedregosa et al. 2011 ) implemen- 
ation of ElasticNetCV , with a hyperparameter space of λ1 /( λ1 

 λ2 ) ∈ { 0.1, 0.5, 0.9 } and 20 values of ( λ1 + λ2 ) spanning four
rders of magnitude (automatically determined from the input data). 
e degrade all maps to N side = 512, and compute equation (12)

sing a training mask that only includes pixels with f det ≥ 0.1
detection fraction from the Y3 GOLD STD maps that is inherited
y the PC maps). We performed many subsequent tests changing the
efinition of this training mask, with little observed impact on the
nal w( θ ). Using ENET on the STD maps we also extended S to

nclude quadratic terms of form s 2 i , and/or terms of form s i s stellardens ,
ut these showed decreased predictive power on held-out samples, 
uggesting that the risk of o v erfitting from these additional maps
ominates o v er additional contamination the y identify. 
The total weight map is computed (still at N side = 512) as 

 

ENET 
T = [ F ENET ( S ) ] 

−1 = (1 + S ̂  α) −1 . (14) 

The ISD and ENET methods make different assumptions and 
ake significantly different approaches to select important SP maps 
hile minimizing the impact of o v ercorrection. ENET ne glects the

o variance of pix els, as well as the differing clustering properties
f the SP maps, but it is less dependent on the basis of SP maps
han is ISD . It a v oids some of the difficulties the ISD method has
hen SP maps are highly correlated or contamination is distributed 
eakly across a combination of many maps, and hence missed by
D marginal projections. We therefore expect the ENET method to 
e a useful robustness test of the fiducial ISD method, and it is also
sed to estimate the systematic contribution to the w( θ ) covariance 
see Section 6). 

.3.3 Neural net weights (NN-weights) 

o e v aluate the robustness of the assumptions made and codes used
n producing galaxy-density weights, we created a third alternative 
rocess with different choices and independent code – in particular, 
bandoning the assumption that the mean galaxy density is a linear
r polynomial function of all SP maps. The basic principle remains
he same, namely that a function w( s ) of the vector s of SP values is
ound that maximizes the uniformity of the observed catalogue. In 
his case, ho we ver, the function is realized by an NN, in a manner
ery similar to that of Rezaie et al. ( 2020 ). 

In contrast to ISD and ENET , we apply this method on the STD
asis of maps. In addition, two important changes to the weighting
rocedure were made to a v oid ha ving the NN o v ertrain, in the sense
f absorbing true cosmological density fluctuations into the obser- 
ational density factor w. First, the input STD maps were limited
o those that should in principle fully describe the characteristics 
f the coadd images: the fwhm , skyvar uncertainty , exptime and
gcm gry e xposure-av eraged values for each of the griz bands, the
fd98 extinction estimate, and a gaia density estimate of local stellar
MNRAS 511, 2665–2687 (2022) 

art/stac104_f1.eps
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Figure 2. DES Y3 galaxy clustering results for MAGLIM (top panel) and REDMAGIC (bottom panel). The green points correspond to the angular correlation 
function of the ISD -PC < 50 weighted data, while the red points correspond to the uncorrected data. The solid black line shows the best-fitting theory prediction 
from the DES Y3 3 × 2pt � CDM results of each sample (DES Collaboration et al. 2022 ). Note that for MAGLIM , we also show the best fit from the analysis 
including all six redshift bins (dashed black line), although the fiducial 3 × 2pt cosmology results from this sample only include its first four bins. The shaded 
regions correspond to the scales that are excluded for cosmological constraints. 

d  

c  

c  

fi  

1  

t  

h  

‘  

o  

f
 

W  

w  

m

S

I  

t  

f  

r  

W  

S  

f
 

g

w  

m  

p  

1

T  

o

6

I  

a  

W  

s  

o  

d  

a  

t
 

t  

G  

t  

o  

d  

M  

b  

i  

f  

k  

g  

i  

t  

fi  

a  

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/2/2665/6516441 by U
SP- R

eitoria-Sibi (inst. bio) user on 08 June 2022
ensity constructed from Gaia EDR3 (Gaia Collaboration 2020 ). We
onfirm that weights constructed with these STD maps eliminate any
orrelation of galaxy density on airmass or depth , and additionally
nd that fgcm gry has no significant effect, so it is dropped, leaving
4 STD maps. The second major change to a v oid o v ertraining is
o institute N -fold cross-validation: the footprint is divided into
ealpixels at N side = 16, which are randomly divided into N distinct
folds’. The weights for each fold are determined by training the NN
n the other N − 1 folds, halting the training when the loss function
or the target fold stops improving. We use N = 3. 

The weights are created on a healpixelization at N side = 4096.
ith n i , f i , and w i being the galaxy counts, useful-area fraction, and
eight estimate for each healpix el, respectiv ely, the NN is trained to
inimize the binary cross-entropy : 

 ≡
∑ 

n i > 0 

log ̄n f i w i + 

∑ 

n i = 0 

log ( 1 − n̄ f i w i ) . (15) 

n a further departure from the standard weighting scheme, we take
he input vector s to be the logarithm of each input STD map (except
or sfd98 , which is already a logarithmic quantity), then linearly
escale each dimension to have its 1–99 percentile range span (0,1).

e mask the < 1 per cent of surv e y area for which any such rescaled
P has s i outside the range ( − 0.5, 1.5), knowing that the NN will
ail to train properly on rare values of STD maps. 

Using the KERAS software, 11 we define the weight function for a
iven galaxy bin as 

log w( s ) = α · s + N N ( s ) , (16) 

here α defines a nominal power-law relationship between the STD
aps and the expected galaxy density, and NN is a three-layer

erceptron describing deviations from pure power -law beha viour.
1 https://keras.io . 

1

C
m

NRAS 511, 2665–2687 (2022) 
he training of all folds for all redshift bins can be done o v ernight
n a single compute node. 

 RESULTS  

SD returns a list of maps with significant impact on galaxy clustering
nd that we need to weight for in each redshift bin of the samples.
e studied the impact of observing conditions at three different

ignificance threshold values, T 1D = 2 , 4 , 9. Increasing this thresh-
ld is equi v alent to relaxing the strictness of the decontamination,
ecreasing the number of significant SP maps. After testing for o v er
nd undercorrection on mocks, the fiducial choice of significance
hreshold is T 1D = 2 (see Sections 7 and 8 for more details). 

We find that, in general, both samples show a similar trend and
hey are more impacted by observing conditions at higher redshift.
enerally, more SP maps are significant for the MAGLIM sample

han for REDMAGIC . The measured angular 2pt correlation functions
n the weighted samples can be seen in Fig. 2 . The S/N 

12 of this
etection is ∼63 for both samples (using only the first four bins of
AGLIM ). The data have been corrected for systematic contamination
y applying the ISD -PC < 50 weights. After the correction, they are
n good agreement (green points) with the best-fitting cosmology
rom 3 × 2pt. The deviation in the first redshift bin for REDMAGIC is
nown to come from an inconsistency between clustering results and
 alaxy–g alaxy lensing in this sample. We defer the discussion of this
mportant result from the point of view of observational systematics
o Section 8. We note also that for MAGLIM we depict two best-
tting correlation functions: the best-fitting model from 3 × 2pt
nalysis using its six redshift bins (dashed black lines) and excluding
2 The signal-to-noise ratio is defined as S/N ≡ w data ( θ) C −1 w model ( θ) √ 

w model ( θ) C −1 w model ( θ) 
, where 

 is the w( θ ) part of the covariance matrix and w model ( θ ) is the best-fitting 
odel from 3 × 2pt. 

art/stac104_f2.eps
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Figure 3. Constraints on �m 

and galaxy bias before and after applying 
our weighting methodology to the data for the fourth redshift bin of 
MAGLIM (top panel) and the fifth bin of REDMAGIC (bottom panel). We 
focus on the redshift bins where the impact of the systematic effects 
is more rele v ant in w( θ ) (see Fig. 2 ). Red contours correspond to the 
uncorrected data, while blue contours correspond to the corrected data. 
The absence of correction strongly biases our estimations. We also show 

constraints for ISD -STD34 weighted data (orange contours). We obtain 
similar behaviours for the rest of the redshift bins of both samples. The 
goodness of fit for the no weights, ISD -PC < 50 and ISD -STD34, cases are 
65 . 23 / 30 ( p = 2 × 10 −4 ), 42 . 25 / 30 ( p = 0 . 07), and 38 . 73 / 30 ( p = 0 . 13) 
for MAGLIM and 156 . 05 / 42 ( p = 5 × 10 −15 ), 66 . 10 / 42 ( p = 0 . 01), and 
68 . 91 / 42 ( p = 0 . 01) for REDMAGIC , respectively. There is an improvement 
in the p -value from ∼0 . 02 (no weights applied case) to ∼10 per cent 
(weights applied case). These χ2 values correspond to galaxy clustering- 
only fits. 
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ts last two bins (solid black lines). The DES fiducial constraints
re obtained without the last two bins (shaded in grey in Fig. 2 ),
s explained in Porredon et al. ( 2021a ). The shaded regions in this
gure depict the scales excluded (see Table 1 ) from our data vectors.
hese regions are not used to obtain constraints on cosmological 
arameters. The uncorrected w( θ ) are shown as red crosses. We 
ote that the impact of systematic corrections is easily larger than 
he statistical uncertainty in the measurements, and are therefore 
ecessary for unbiased cosmological inference, as we will illustrate 
elow. These corrections are more important at higher redshift bins 
n both galaxy samples. For a comparison of this correction with 
espect to DES Y1 galaxy clustering, see Elvin-Poole et al. ( 2018 ). 

In Fig. 3 , we explicitly demonstrate the importance of our system-
tics correction by placing constraints on �m 

and the clustering biases 
 

i from the galaxy clustering correlation function alone. We do this
y fitting the theory model presented in Section 2 to the data using
OSMOSIS and the POLYCHORD sampling software (Handley, Hobson 
 Lasenby 2015a , b ). The covariance that we employ is given by

OSMOLIKE (Krause & Eifler 2017 ) and it includes the systematic 
ontributions that we introduce in Section 8.4. We again marginalize 
 v er shifts in the photometric redshift distributions and o v er their
idths. These nuisance parameters are sensitive to the clustering 

mplitude. For both samples, the rest of the cosmological parameters 
re fixed to their respective DES Y3 fiducial best-fitting cosmology 
note that for MAGLIM this only considers the first four redshift bins).
or this reason, this constraint on �m 

should not be taken as a true
onstraint, but this illustrates how the changes in the measured w( θ )
an impact cosmology constraints. The priors for these cosmological 
nd nuisance parameters are given in Table 3 . We obtain these
ontours for the unweighted and ISD -weighted data. As evidence 
f robustness of our choice of SP maps, we also show contours
or another configuration of ISD ( ISD -STD34), where only 34 STD
aps are considered (see Section 8.1 and appendix B of Carnero 
osell et al. ( 2021 ) for more details on this selection of SP maps).
he corrections for the two ISD configurations are equi v alent within

he statistical uncertainty. In Fig. 3 , we focus on the redshift bins
hat show the most prominent systematic shift in the w( θ ), namely
he fourth and the fifth bins of the MAGLIM and REDMAGIC samples,
espectiv ely. F or these bins, we find a difference in the mean of
he posteriors of �m 

from uncorrected (red contours) and corrected 
ata (blue contours) of 4.03 σ for MAGLIM and 6.79 σ for REDMAGIC ,
here σ is the standard deviation of the posterior distribution of this
arameter for the corrected data. Failing to correct for the systematic 
mpact of the SP maps would result in shifting the inferred galaxy
ias parameters to higher values while significantly lowering �m 

. 
he significance of these shifts is somewhat larger than that obtained 

rom the 3 × 2pt analysis, as we fix the rest of the cosmological
arameters (while still varying nuisance parameters) such that the 
ncertainty is reduced. Note that because of correlations between the 
alaxy bias parameters and �m 

, a given redshift bin with relatively 
ittle change in w( θ ) due to weighting (e.g. bin 3 of MAGLIM ) can
till have a significant shift in its inferred galaxy bias. 

 W E I G H T S  VA LIDATION  

e validate our methodology on simulated catalogues to ensure 
hat no biases are induced. We use unaltered lognormal mocks and 
lso mocks that are artificially contaminated by our SP maps (see 
ppendix A for details on how we apply this contamination). We 

ontaminate these mocks by applying the inverse of the weights 
etermined from the data using ENET on the full list of 107
TD maps. Decontamination, ho we ver, is performed using weights 
MNRAS 511, 2665–2687 (2022) 
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Table 3. List of prior values used to constrain �m 

and the 
sample galaxy biases b i per redshift bin. 

Redshift bi y 
z σz 

MAGLIM 

0.20 < z < 0.40 ( − 0 .009,0.007) (0 .975,0.062) 
0.40 < z < 0.55 ( − 0 .035,0.011) (1 .306,0.093) 
0.55 < z < 0.70 ( − 0 .005,0.006) (0 .87,0.054) 
0.70 < z < 0.85 ( − 0 .007,0.006) (0 .918,0.051) 
0.85 < z < 0.95 (0 .002, 0.007) (1 .08,0.067) 
0.95 < z < 1.05 (0 .002, 0.008) (0 .845,0.073) 

REDMAGIC 

0.15 < z < 0.35 (0 .006,0.004) Fixed to 1 
0.35 < z < 0.50 (0 .001,0.003) Fixed to 1 
0.50 < z < 0.65 (0 .006,0.004) Fixed to 1 
0.65 < z < 0.80 ( − 0 .002,0.005) Fixed to 1 
0.80 < z < 0.90 ( − 0 .007,0.010) (1 .23,0.054) 

Both samples 
�m 

b i 

All redshifts [0.1,0.9] [0.8,3.0] 

Notes . The other cosmological parameters have been fixed to 
the fit values in the 3 × 2pt analysis as described in the text. 
Square brackets denote a flat prior, while parentheses denote a 
Gaussian prior of the form N ( μ, σ ). The shift 
 z and stretch 
σ z parameters are defined in equations (4) and (5). In some 
cases, the latter is not marginalized o v er (fix ed). The redshift 
priors were determined in Cawthon et al. ( 2020 ). 
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Figure 4. False correction bias, w 

T 1D 
f. c . bias ( θ ), for MAGLIM (top panel) and 

REDMAGIC (bottom panel) relative to the w( θ ) error from the unaltered 
COSMOLIKE co variance diagonal elements. Ne gativ e values are indicative of 
o v ercorrection. Both samples show ne gligible lev els of o v ercorrection, weak 
dependence with the angular scale and at most ∼20 per cent of the statistical 
error. The values depicted here have been calculated with significance 
threshold T 1D = 2. Empty dots correspond to the angular scales not considered 
for each redshift bin of the samples. 
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etermined by ISD -PC < 50. This procedure adds an additional layer
f protection: if we contaminate mocks with the weights from one
ethod and decontaminate by the same method, the test is only

hecking sensitivity to forms of contamination to which we a priori
now the method is sensitive to. Generating an equally plausible
ealization of contamination from an alternative method adds the
enefit of potentially revealing blind spots in the method that is being
alidated. In Appendix B, we also perform a sanity check to confirm
hat we reco v er unbiased w( θ ) measurements at all angular scales
nder idealized circumstances, that is, contaminating and correcting
or the exact same set of SP maps. 

We calculate w̄ dec ( θ ) and w̄ unc ( θ ) as the mean correlation function
f 400 decontaminated and 400 uncontaminated mocks, respectively.
ince the lognormal mocks are generated at N side = 512, which
orresponds to separation angles of ∼6.9 arcmin between pixels, we
ompute the correlation functions at the 14 fiducial angular scales
hat are larger than this limit. Then we estimate the impact of the
ifferent biases (see next two Sections) on w( θ ) by means of the true
ean in uncontaminated mocks, w̄ unc ( θ ): 

2 = ( ̄w dec ( θ ) − w̄ unc ( θ )) � × C 

−1 × ( ̄w dec ( θ ) − w̄ unc ( θ )) . (17) 

he covariance matrix, C , is the galaxy clustering part of the
nalytical cov ariance gi ven by COSMOLIKE , and it is also used for the
lustering part of the 3 × 2pt cosmological analysis. If we find that
ny bias causes a change in the joint fit to all redshift bins according
o the definition abo v e, equi v alent to χ2 > 3, then we marginalize
 v er this bias in our final analysis. This threshold was chosen such
hat the impact on χ2 would be a small compared to the expected
idth of the χ2 distribution of the w( θ ) data vector. As we detail in
ection 8.4, we marginalize o v er biases by modifying the covariance
atrix to account for these sources of systematic uncertainty. The
ducial covariance matrix for DES Y3 3 × 2pt analysis includes

hese systematic terms. 
NRAS 511, 2665–2687 (2022) 
.1 False correction test 

ince we consider a large number of SP maps in this analysis,
hance correlations between the data and some of these maps
ould arise, even after reducing our number of SP maps. This is
ore important when using a strict significance threshold. These

urely random correlations could cause o v ercorrections, therefore
iasing the measured value of w( θ ) and the inferred cosmological
arameters. To characterize this effect, we run ISD with T 1D = 2 on a
et of 400 uncontaminated mocks and then we obtain their correlation
unctions, w 

T 1D 
dec , i . The false correction bias is defined as 

 

T 1D 
f. c . bias ( θ ) = 

1 

400 

⎛ 

⎝ 

400 ∑ 

i= 1 

w 

T 1D 
dec , i ( θ ) −

400 ∑ 

j= 1 

w unc , j ( θ ) 

⎞ 

⎠ , (18) 

here w unc , j are the correlation functions measured on the unaltered
ncontaminated mocks. 
In general, the effect of removing the systematic effects is to

iminish the amplitude of w( θ ). Thus, a ne gativ e value of this
stimator indicates o v ercorrection. In Fig. 4 , we show the results
f w 

T 1D 
f. c . bias ( θ ) /σ for T 1D = 2, where σ is the diagonal of the

nmodified covariance matrix. We find a very marginal indication of
 v ercorrection, al w ays well below the statistical error. We also note
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Figure 5. Mean angular correlation function, w( θ ), from raw uncontami- 
nated lognormal mocks (black lines) and decontaminated uncontaminated 
mocks (blue lines) for MAGLIM (top panel) and REDMAGIC (bottom panel) 
at their lowest redshift bins. The shaded region corresponds to the scales 
excluded at this redshift. In this redshift bin there is ∼20 per cent of false 
correction with respect to the statistical error due to chance correlations 
between PC maps and mocks. The error bars correspond to the diagonal of 
the covariance matrix with systematic terms added. 
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Figure 6. Residual systematic bias, w 

T 1D 
r. s . bias ( θ ), for MAGLIM (top panel) and 

REDMAGIC (bottom panel) relative to the w( θ ) error from the unaltered COS- 
MOLIKE covariance diagonal. The empty dots represent the scales excluded at 
each bin. Both samples show similar trends: The highest redshift bins present 
lower biases, while the lowest ones show important levels of undercorrection 
at the smallest scales. On the other hand, the largest scales are reco v ered 
nearly unbiased. Since the χ2 of the total residual bias in all bins is higher 
than 3, we add a systematic term to the covariance matrix to marginalize o v er 
this effect. 
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hat this ratio has small angular dependence, as can be seen in Fig. 5 ,
hich compares the mean true w( θ ) (black line) with the mean of

he decontaminated correlation functions (blue line). Therefore, we 
o not consider any contribution from the false correction bias to 
he final covariance matrix. The small impact of this effect on the
osmological parameters is highlighted in Section 7.3. Nevertheless, 
e note that the error bars shown in Fig. 5 correspond to the diagonal
f the covariance matrix that has been modified to account for
ystematic uncertainties, as it is explained in Section 8.4. 

.2 Residual systematic test 

ere we demonstrate that ISD ef fecti v ely reco v ers the true corre-
ation function from a contaminated sample. We can then verify if
ur approach (with T 1D = 2) meets the requirements for the Y3
osmology analysis or whether it is necessary to account for any bias
ue to uncorrected contamination. 
We define the residual systematic bias as 

 

T 1D 
r. s . bias ( θ ) = 

1 

400 

⎛ 

⎝ 

400 ∑ 

i= 1 

w 

T 1D 
dec , i ( θ ) −

400 ∑ 

j= 1 

w unc , j ( θ ) 

⎞ 

⎠ , (19) 
here the w 

T 1D 
dec , i are the correlation functions measured on mocks 

hat have had systematic contamination added and then have been 
econtaminated using ISD . 
Because we are interested in the level of residual systematics 

hat are insufficiently captured by the weighting method, we use the
lternative method ENET with all 107 maps in the standard basis
o generate an aggressive level of contamination. We observe that 
oth ISD -PC107 and ENET -STD107 significantly o v ercorrect at the
owest redshift bins of both galaxy samples (see Section 8), so when
sing the corresponding weights to contaminate the mocks we are 
ntroducing e xcessiv e contamination. Therefore, we e xpect some 
egree of undercorrection when later running ISD with a subset of
C maps such as with ISD -PC < 50. Furthermore, by using ENET

o estimate the contamination instead of ISD , the contaminated 
ocks will include possible contamination modes to which ENET 

s sensitive but to which ISD may not be. 
In Fig. 6 , we show the results for this bias with respect to the

iagonal of the unaltered analytical errors. While the highest redshift 
ins of both MAGLIM and REDMAGIC present moderate levels of 
 v ercorrection, the lowest redshift bins of the two samples show
 trend to under-correct at the small angular scales, but still abo v e
he scales we exclude. As already mentioned, we expect some level
MNRAS 511, 2665–2687 (2022) 
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Figure 7. Mean angular correlation function, w( θ ), from uncontaminated 
mocks (black line) and from decontaminated mocks (blue line) for MAGLIM 

(top panel) and REDMAGIC (bottom panel). The red line corresponds to the 
mean of the mocks with contamination added from ENET, and the shaded 
regions represent the scales not used for cosmological constraints. While ISD 

reco v ers a nearly unbiased clustering at the largest angular scales, there is an 
important bias at the smallest ones. For this reason, this effect is marginalized 
o v er by adding it a systematic contribution to the error budget. The error bars 
shown take into account this contribution. 
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f undercorrection due to the aggressive contamination imprinted on
he mocks. Even under this consideration, these bins cause the χ2 

f the joint fit to exceed our limit, so we incorporate this bias as a
ystematic contribution to our covariance matrix. This is co v ered in
ection 8.4. In Fig. 7 , we depict the mean reco v ered clustering (blue

ines) compared to the true clustering (black lines). We also show the
ean contaminated correlation function (red lines). It can be seen

hat ISD performs a nearly unbiased decontamination at the largest
ngular scales. The error bars in this figure include the systematic
erms added to the covariance (see Section 8.4 for a comparison of
he error bars with and without the systematic contributions). 

.3 Impact on parameter estimation 

inally, as an additional evidence of robustness we check the impact
f the decontamination procedure on the estimation of cosmological
arameters. We use as data vectors (i) the mean correlation function
 v er 400 uncontaminated mocks, (ii) the mean correlation function
iased by our o v ercorrection estimate (Section 7.1), and (iii) the
ean correlation function biased as by the residual systematic

ncertainty estimate (Section 7.2). To test the influence of these
nalysis modifications on cosmology, we recalculate the constraints
NRAS 511, 2665–2687 (2022) 
n the parameters �m 

and b i , marginalizing as before o v er redshift-
in centroid positions and widths of the redshift distributions. We use
he same priors from Table 3 and the rest of the parameters are fixed
o the values used to generate the mocks. The results that we obtain
re shown in Fig. 8 . It can be seen that the reco v ered contours from
he false correction bias case (run on uncontaminated mocks) are in
ood agreement with those from the reference case, demonstrating
hat biases from o v ercorrection in inferred cosmological parameters
re negligible. The contours corresponding to the residual systematic
ias (run on ENET contaminated mocks) show a small level of un-
ercorrection that is translated to slightly higher galaxy bias values,
hough this mismatch is also within the statistical uncertainties given
y our analytical covariance. This covariance includes a systematic
ncertainty correction that is explained in Section 8.4. In Table 4 , we
resent the difference in the �m 

and b i mean posteriors in units of σ
rom uncontaminated mock contours. We note that all differences are
maller than 0.5 σ . It must be taken into account that, since the rest of
he cosmological parameters are fixed, the 1 σ contours are smaller
han for any of the final DES cosmology analyses, making this test

ore stringent. We found that the mean w( θ ) of the lognormal mocks
s slightly shifted to lower amplitudes from the theory prediction with
he same input values. This causes some shifting of the contours as
ell, b ut we ha v e v erified that this does not affect our conclusions

rom the decontamination methodology. 

 POST-UNBLI NDI NG  I NVESTI GATI ONS  O F  

H E  I M PAC T  O F  OBSERVATI ONA L  

YSTEMATICS  O N  w ( θ ) 

he DES 3 × 2pt analysis combines the correlation functions
rom galaxy clustering, w( θ ), galaxy–galaxy lensing (for short, gg-
ensing), γ t ( θ ), and cosmic-shear, ξ±( θ ), in order to impro v e the
ndividual constraining powers of each probe and to break degen-
racies in some cosmological parameters. In addition, since each
f these 2pt functions is potentially affected by different systematic
f fects, it allo ws for consistency checks comparing dif ferent results.
he consideration of two different lens galaxy samples for w( θ )
nd γ t ( θ ) allows us to further assess the robustness of the whole
osmology analysis. The cosmology analysis is performed blindly,
hat is, we only look at the cosmology results once a set of pre-
efined criteria are fulfilled, as is described in DES Collaboration
t al. ( 2022 ). During the unblinding process of REDMAGIC we found
hat this sample passed all the consistency tests we had a priori
ecided were required for unblinding. Ho we ver, after unblinding, we
dentified a potential inconsistency between the amplitudes of galaxy
lustering and gg-lensing: Either the former has an anomalously
igh amplitude or the latter has an anomalously low one. This
nconsistency is explored in detail in Pandey et al. ( 2021 ). 

Observational systematics from surv e y properties tend to increase
he amplitude of w( θ ) and so one possible explanation is that the
lustering amplitude is anomalously high due to the decontamination
rocedure failing to fully capture all contamination in the data. Thus,
he true underlying galaxy correlation function in the data would not
e correctly reco v ered. This led us to perform a variety of additional
ests as we describe below. It was during these tests when some of
he methods described in Sections 4 and 5 were incorporated, such
s the change in SP map basis (both expanding the number of SP
aps and decorrelating them) and the robustness checks using ENET

nd the neural net. Ultimately, we found that the difference between
alaxy clustering and lensing observables in REDMAGIC remained
obust to different choices in the decontamination procedure. We
lso applied these additional tests to the MAGLIM sample before it
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Figure 8. Constraints in the �m − b i parameter space at fixed σ 8 from the mean w( θ ) of uncontaminated mocks (black contours) and from decontaminated 
mocks according to the false correction bias (violet contours) and to the residual systematic bias (blue contours). MAGLIM is shown in the left-hand panel and 
REDMAGIC in the right-hand one. It can be seen how both the false correction bias and the residual systematic bias lead to small shifts from the reference mocks 
relative to the error given by the COSMOLIKE analytical covariance, which includes the systematic uncertainty contributions. We only show contours for the first 
redshift bins of the two galaxy samples in this figure, but we verify that the shifts at the other bins are smaller or smaller. Because σ 8 and other cosmological 
parameters are fixed in this test, the posterior is smaller than from any of the DES final cosmological analyses that use the w( θ ) data. 

Table 4. Relative difference in the �m 

and b i mean of the posteriors for the 
two tests on decontaminated mocks in units of σ . 

Parameter False correction bias Residual systematic bias 

MAGLIM 

�m 

0 .36 0 .08 
b 1 − 0 .09 0 .43 
b 2 − 0 .06 0 .40 
b 3 − 0 .25 0 .12 
b 4 0 .05 0 .16 
b 5 − 0 .15 − 0 .02 
b 6 − 0 .06 − 0 .04 

REDMAGIC 

�m 

0 .39 0 .31 
b 1 − 0 .29 0 .50 
b 2 − 0 .33 0 .11 
b 3 − 0 .30 0 .27 
b 4 − 0 .32 − 0 .35 
b 5 − 0 .19 − 0 .21 

Notes . All values are below half a σ . Note that the posteriors in this test are 
much smaller than in any of the final DES cosmology analyses because all 
the other parameters are fixed. 
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as unblinded. In contrast to our results with the REDMAGIC sample, 
nce we unblinded the MAGLIM sample we found that its lensing and
lustering signals were consistent with one another. For this reason, 
AGLIM is the fiducial choice for our cosmological constraints (DES 

ollaboration et al. 2022 ). The fiducial MAGLIM cosmology results 
se only the first four redshift bins, as the two highest redshift bins
ave inconsistent results, while adding little constraining power. 
orredon et al. ( 2021a ) investigates these results in detail. 
.1 ISD and ENET at the STD map basis 

efore unblinding, ISD weights were obtained from a selection of 
TD maps performed by setting a limit for the Pearson’s correlation
oefficient between them. This selection gave 34 representative STD 

aps that were used to obtain weights with ISD ( ISD -STD34). More
etails on this selection can be found in appendix B of Carnero Rosell
t al. ( 2021 ). To check whether the clustering-lensing inconsistency
ound in REDMAGIC was caused by an STD map not selected in the
TD34 set, we ran ISD on the full list of STD maps, and verified that
erived weights did not significantly impact the resulting clustering 
ignal. In Fig. 9 , we show the correlation functions at the first bin of
EDMAGIC obtained for these two configurations of ISD with STD 

aps. 
We also checked the subtle possibility of a combination of STD
aps leading to a large systematic contribution despite no single map

eing individually significant. For this reason, we ran ENET -STD107 
n REDMAGIC , which simultaneously fits to all template maps, finding
 significant decrease of ∼1 σ in the amplitude of the correlation
unction in the first three redshift bins. This moti v ated further
nvestigation to determine whether there could be significant residual 
ontamination in the form of low-significance linear combinations 
f STD maps that eluded the initial decontamination procedure. We 
ound that decorrelating the STD maps via PCA before running the
SD method and using the 107 components resulted in much better
greement between ISD and ENET , which moti v ated the change to
he PC basis that has been used for the results presented in this paper
see ISD -PC107 in Fig. 9 ). We also found that there are no significant
hanges when running ENET on the PC basis of maps (this method
s less basis-dependent, since it performs a simultaneous fit to all

aps). 
MNRAS 511, 2665–2687 (2022) 
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Figure 9. Comparison of the clustering amplitude reco v ered from several 
methods and configurations for the first redshift bin of REDMAGIC . All methods 
agree within the statistical uncertainty given by the analytical covariance. The 
solid red line corresponds to the unweighted data and the dashed purple line 
corresponds to the ISD -PC107 configuration. The difference between this 
configuration and the rest of methods is consistent with the o v ercorrection 
observed on contaminated mocks (see Fig. 10 ). The solid and dashed black 
lines are the best-fitting cosmology from cosmic-shear and gg-lensing only 
and from the 3 × 2pt analysis, respectively. The grey shaded region represents 
the scales that are not used for cosmological analysis. None of the various 
configurations produce values of w( θ ) approaching the best-fitting prediction 
from cosmic-shear and gg-lensing. 
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Figure 10. Effect of considering different numbers of PC maps on the two- 
point angular correlation function: weights obtained from 107 PC maps 
cause o v ercorrection on w( θ ) (magenta line). This o v ercorrection ranges 
from ∼0.5 σ to 1 σ and is most prominent at large angular scales. This 
o v ercorrection can explain most of the difference in clustering between ISD - 
PC < 50 and ISD -PC107 observed in Fig. 9 . On the other hand, weights 
obtained from the first 50 PC maps yield a clustering amplitude (blue line) 
that is in good agreement with the mean w( θ ) from uncontaminated mocks 
(black line), especially at the largest scales. The difference between the 
amplitudes from uncontaminated and ISD -PC < 50 decontaminated mocks 
is included as a systematic contribution to the covariance (error bars in this 
figure already include that term). The red line corresponds to the ENET - 
STD107 contaminated mocks. 
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.2 ISD and ENET in the PC map basis 

e e v aluated the impact of the ISD -PC107 weights on both un-
ontaminated and ENET contaminated mocks, similar to the tests
rom Sections 7.1 and 7.2. These tests revealed a significant level
f o v ercorrection when using the full list of PC maps with ISD ,
specially when e v aluated on contaminated mocks, indicating that
rue LSS fluctuations were being remo v ed in the decontamination
rocess. This effect can be seen in Fig. 10 . We observed a similar
 v ercorrection effect on MAGLIM with these ISD settings. The
 v ercorrection is most prominent in lower redshift bins where the
ntrinsic clustering signal is larger, losing significance at higher
edshift for both samples. 

These results suggest that there is a higher likelihood of chance
orrelation in the PC107 basis than in the STD107 basis. We also
ound that PC107 weights obtained from the data showed significant
orrelations with DES κ maps (see Appendix D for details). We
herefore conclude that using all 107 principal components results
n removing not only actual systematic contamination from the data,
ut also cosmological signal, causing a lower w( θ ) amplitude. 

We therefore applied a cut-off to the number of PC maps to be
sed. To select this cut-off, we required that the weight map resulting
rom running ISD with the set of the first n PC maps should not induce
 significant o v ercorrection on contaminated mocks (as we observed
ith ISD -PC107 weights), while still removing the contamination

hat was applied using ENET -STD107. We found that n = 50 principal
omponent maps meets this requirement. The impact of the ISD -
C < 50 weights on contaminated mocks and finally on the data can
e seen in Figs 10 (blue line) and 9 , respectively. Then, we calculated
NET -PC < 50 weights as well, finding good agreement between the

wo methods with this configuration (see Fig. 9 ). Our adoption of
his configuration was further supported by the desire to have a
omparatively small number of maps to a v oid o v ercorrection, as
ith the 107 PC maps, while still preserving most of the variance
resent in the full set of 107 STD maps. We point the reader to
NRAS 511, 2665–2687 (2022) 
ppendix D for more details on the selection of this cut-off. We found
hat the difference between w( θ ) functions given by ISD -PC < 50 and
NET -PC < 50 yields a χ2 for the joint fit to all redshift bins smaller

han 3. Nevertheless, we found some map configurations for the two
ethods that yield χ2 > 3. Thus, in order to be conserv ati ve, we

onsider this difference as an additional systematic uncertainty to be
arginalized o v er, similar to the difference between uncontaminated

nd decontaminated mocks from Section 7.2. 
For these reasons, we used ISD -PC < 50 as the fiducial correction
ethod, as described in the previous sections of this paper. In Fig. 9 ,
e summarize the clustering amplitudes obtained from each of the
ethods and configurations described in the first redshift bin of

EDMAGIC . None of the methods produce a w( θ ) consistent with
he best-fitting prediction from cosmic-shear and gg-lensing (solid
lack line). For reference, the dashed grey line shows the best-fitting
rediction from the combined 3 × 2pt analysis. 
The tests conducted to determine this cut-off were focused on the

rst redshift bin of REDMAGIC , but we verified that the impact of this
hoice on the rest of the bins is similar , although milder , since the
 v ercorrection observ ed at higher bins is less significant. We also ran
hese tests on MAGLIM , obtaining similar conclusions for the same
ut-off. 

.3 Tests with neural net weights 

s noted in Section 8.3, we developed an independent, non-linear
orrection method using NNs. This was applied post-unblinding to
est the robustness of the weights, in particular to the assumption of
inearity between galaxy number density and the systematic maps.
f there is excess clustering due to non-linear functions of the STD
aps, then we expect it to be captured by the NN-weights. Because

f the significant time required to run the method, we did not
ubject it to the full extent of validation tests on contaminated and
ncontaminated mocks as we did for the ISD and ENET methods.
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o we ver, as Fig. 9 shows, the changes to w( θ ) are small when using
he NN-weights, suggesting that residual non-linear contamination 
rom the existing set of STD maps is not driving a spuriously high
stimate of w( θ ). 

.4 Modifications to the co v ariance matrix 

n this analysis, we consider the systematic uncertainty in the 
orrection method from two sources: from the choice of correction 
ethod, and the bias measured in contaminated mocks (as mentioned 

n Section 7.2). As noted in the previous section, the NN-weights 
ethod did not undergo the e xtensiv e validation process that the ISD

nd ENET weights did. For this reason, we focused on the systematic
ncertainty associated to the differences between ISD -PC < 50 and 
NET -PC < 50. 
The two systematics considered are each analytically marginalized 

 v er through an additional term in the w( θ ) covariance matrix
ollowing the methodology of Bridle et al. ( 2002 ) summarized here.
f one takes an arbitrary data vector y that is biased by an additive
ystematic effect s , 

y ′ = y + A s , (20) 

here A is the amplitude of the systematic error. If the amplitude
 has a Gaussian prior of zero-mean and width σ A (which can 
e determined by external constraints), the parameter A can be 
nalytically marginalized o v er in the covariance matrix of y with 

ov ( y ′ , y ′ ) = Cov ( y , y ) + σ 2 
A s s 

T . (21) 

n this analysis, we model the impact of the systematic uncertainty 
n the correction as 

 

′ ( θ ) = w( θ ) + A 1 
w method ( θ ) + A 2 w 

T 1D 
r. s . bias ( θ ) , (22) 

here 
w method ( θ ) is the difference between the ISD and ENET

ethods, both using the PC < 50 basis of maps as shown in Fig. 11 ;
 

T 1D 
r. s . bias ( θ ) is the residual systematic bias measured on lognormal 
ocks in Section 7.2, and A 1 and A 2 are two arbitrary amplitudes

hat describe the size of the systematic error in the correction. 
We analytically marginalize o v er these terms assuming a unit 

aussian as the prior on the amplitudes A 1 and A 2 such that the
easured systematic size is a 1 σ deviation from the prior centre, and

he systematic can mo v e w( θ ) in either direction. The final additional
ovariance term is 

 Cov ( w 

′ , w 

′ ) = 
 w method 
 w method 
T + w 

T 1D 
r. s . bias w 

T 1D 
r. s . bias 

T 
. (23) 

he method difference term 
w method ( θ ) is measured on real data
nd therefore contains the same noise as the w( θ ) data vector
eing used for cosmological inference. To a v oid adding this noise
o the covariance term, we fit a flexible polynomial to the two
( θ ) measurements described in Appendix C. 
w method ( θ ) is the

ifference between these two polynomial fits. 
The mock bias term w 

T 1D 
r. s . bias ( θ ) is averaged over 400 mocks so is

 smooth function of θ and does not require any additional fitting. 
he impact of the additional covariance terms is shown in the error
ars of Fig. 11 . The systematic contribution to each tomographic 
in is treated as independent so the covariance between bins is not
odified. 

.5 Tests with B ALR OG 

ALROG (Suchyta et al. 2016 ; Everett et al. 2022 ) is a software
ackage that beds f ak e objects in real images in order to accurately
haracterize measurement effects. 
BALROG simulated galaxies are created using real objects from the 
ES deep fields (Hartley et al. 2021 ), which can be considered as

pproximations to noiseless astrophysical sources due to the depth 
f the images they come from with respect to the wide field imaging.
hese objects have been measured using the same instrument and 
lters as the Y3 data set. This collection is sampled and injected into

he individual single epoch images, which are then processed and 
oadded again with the same Y3 DES Data Management pipeline. 
herefore their detectability is subject to the same conditions as 

he real galaxies from the Y3 wide field surv e y, as the y inherit the
ackground and noise properties of the real images. 

BALROG is a useful tool to make independent consistency tests 
f the decontamination methods: while the galaxy samples trace 
he actual large-scale structure, the BALROG samples are formed by 
alaxies that are artificially injected on a uniform grid, that is, they
re non-LSS distributed. What both real and BALROG samples have in
ommon is the impact of systematics. Therefore, any correlation be- 
ween the two after applying the weights would mean the presence of
 common systematic. For this reason, we used the cross-correlation 
f REDMAGIC and MAGLIM with their associated BALROG samples to 
est for the presence of an extraneous signal that would indicate
 pending, unknown systematic that is not being corrected by the
pplied weights. These results are presented in Fig. 12 . The cross-
orrelations are calculated in ∼1000 deg 2 (available area of the 
ALROG samples). We find that the cross-correlation with the weights 
pplied is consistent with zero signal within the statistical errors. 
hese errors are computed with jackknife re-sampling using 100 
atches for MAGLIM and 50 for REDMAGIC . Ho we ver, the signal
tself is small but non-zero, growing in magnitude towards larger 
cales. We note that, due to its lower number density, the points for
EDMAGIC are noisier than those for MAGLIM . The reduced χ2 for
 constant cross-correlation of 0 are 0.46, 0.96, 1.25, 3.60, 1.18 for
EDMAGIC and 1.13, 0.71, 0.78, 0.94, 0.65, 0.69 for MAGLIM . The
elative strength of the cross-correlation signal with respect to the 
uto-correlation signal can be seen in the bottom rows of each panel.
n general, it is at or below 5 per cent for the five lowest angular bins
t all redshift bins, and it is lower than 10 per cent for scales smaller
han ∼30 arcmin. This relati ve strength gi ves us an indication of the
ize of a systematic effect that could be still unaccounted for. Even
f the REDMAGIC results are noisy, those for MAGLIM do not show a
lear indication of uncorrected effects from imaging systematics. 

.6 Summary of findings 

e performed a series of tests post-unblinding to determine if the
bserv ed inconsistenc y between the galaxy clustering and gg-lensing 
ignals in REDMAGIC is due to residual systematic contamination of 
he galaxy clustering signal. In particular , we in vestigated whether
xpanding the set of SP maps, adjusting the contamination model, 
r changing a variety of methodological choices for the decontami- 
ation procedure resulted in a significantly different inferred galaxy 
lustering signal. We largely performed these tests at the level of
( θ ), without further looking at the impact of these decisions on

osmological parameters. The following list is a summary of the 
btained results: 

(i) Expanding the list of 34 to all 107 STD maps has negligible
mpact on the resulting amplitude of w( θ ) using the fiducial ISD
econtamination procedure. We thus conclude that the discrepancy 
s not due to residual contamination from one of the previously-
iscarded STD maps. 
MNRAS 511, 2665–2687 (2022) 
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Figure 11. Method difference term 
w method ( θ ) in real data for MAGLIM (top row) and REDMAGIC (bottom row). The methods compared are ISD -PC < 50 and 
ENET -PC < 50 (red line). The light blue error bands correspond to the diagonal of the covariance with the additional systematic terms included, while the yellow 

ones correspond to the original analytical covariance. 

Figure 12. Cross-correlation between REDMAGIC (top panel) and MAGLIM (bottom panel) samples selected in data and produced with BALROG . The cross- 
correlations are shown in the top row of each panel, before weighting (red line) and after weighting (purple line) by SP maps effects, compared to the data w( θ ) 
(blue points). The error bars have been obtained by jackknife re-sampling. The bottom row of each panel shows the relative difference (in per cent) between 
the cross-correlation signal and the auto-correlation one. A non-zero cross-correlation between the data samples and BALROG samples (which are injected and 
non-LSS distributed), would imply a pending, unknown systematic in the images, which would not have been corrected for. We see that the cross-correlation is 
zero within statistical errors. In general, all differences are compatible with zero and well below the statistical errors showing no clear evidence of uncorrected 
effects from imaging systematics, though we note that the points for REDMAGIC are noisier due to its lower number density. 
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(ii) We performed a principle component analysis of the 107 STD
aps and used the principle components as an orthonormal basis

or the decontamination procedure, i.e. ran ISD -PC107. We found
ood agreement with ENET -STD107 (and ENET -PC107), resulting
n a reduction of the w( θ ) amplitude. This was most pronounced in
he first redshift bin of REDMAGIC , with a decrease in w( θ ) of ∼1 σ . 

(iii) We observed a significant overcorrection of w( θ ) when
omputing ISD -PC107 weights from contaminated mocks. For this
eason, we applied a cut-off to the number of PC maps, limiting
NRAS 511, 2665–2687 (2022) 
t to the 50 PC maps with the highest S/N. We found that the
esultant ISD -PC < 50 weights produce little o v ercorrection and we
dd a systematic contribution to our error budget corresponding to
he difference between ISD -PC < 50 and ENET -PC < 50. We also
dd a systematic contribution for the undercorrection observed on
ontaminated mocks using only the first 50 PC maps assuming the
rue contamination corresponds to the estimate of ENET -STD107. 

(iv) We implemented a non-linear decontamination procedure
sing an NN, which also used different choices for the mask and
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ase set of STD maps. This resulted in differences in w( θ ) that
ere much smaller than the observed discrepancy between galaxy 

lustering and gg-lensing. 
(v) We cross-correlated both REDMAGIC and MAGLIM with their 

orresponding BALROG samples and we found no clear evidence of 
ncorrected contamination of known systematic templates common 
o both types of samples. 

We note that the ISD -STD34 weights passed an e xtensiv e battery
f validation tests, described in Section 7. However, after our findings 
nd comparisons between ENET and ISD, we decided to use the ISD -
C < 50 weights in the fiducial analysis. 
Given these findings, we conclude that the anomalous high 

lustering amplitude of REDMAGIC sample is unlikely to be due to 
ncorrected contamination coming from any of our known templates 
or from a linear combination of them. Because the clustering 
emains high when using higher order STD maps with ENET (after
ccounting for false correction bias) as well as using the neural net,
e are unable to identify non-linear contamination from our SP maps 

s the cause (see Appendix E for additional tests). We performed a
umber of further exploratory tests such as more aggressive masking, 
ncluding based on the leverage statistic (cf. Weaverdyck & Huterer 
021 ) and found w( θ ) to be robust to these choices. Applying our
ducial decontamination procedure to MAGLIM does not show the 
ame discrepancy between probes as does REDMAGIC . 

 C O N C L U S I O N S  

e measure the angular two-point correlation of DES Y3 lens galax- 
es, and study the impact of systematic errors on these measurements. 

e use two lens samples: MAGLIM , a magnitude-limited sample 
ith enhanced number density and reliable photometric redshifts 

Porredon et al. 2021b ), and REDMAGIC , a sample of luminous red
alaxies (LRGs) selected by the algorithm described in Rozo et al. 
 2016 ), which also provides high-quality photometric redshifts. We 
xtend the methodology employed in DES Y1 (Elvin-Poole et al. 
018 ), both for correcting the data and to ensure its robustness. A
ore thorough set of SP maps is used and we employ them directly

nd through the application of principal components analysis to the 
ap set. Additionally, a new weight estimation method is used in 

arallel ( ENET ; Weaverdyck & Huterer 2021 ) and a cross-check of
inearity assumptions is made with an NN framework based on recent 
iterature (Rezaie et al. 2020 ). These steps help us to a v oid possible
lind spots in our validation methodology. 
Our findings are as follows: 

(i) The updated DES Y1 methodology, dubbed ISD , is able to suc-
essfully remo v e systematic contamination, as sho wn by v alidation
ests on lognormal mocks (Figs 5 and 7 ) and data. 

(ii) The ENET method is a viable alternative correction method to 
SD . We e v aluate se veral configurations and demonstrate that both
ethods are in agreement within statistical precision. To be sure that 

ny residual difference is taken into account, we include a systematic 
ncertainty in the covariance matrix as the difference between the 
wo results. This uncertainty is included in the final covariance that 
s used for cosmological constraints, after checking that it does not 
ias our results. 
(iii) The decontamination procedure does not produce a significant 

ias in w( θ ) or in the �m 

− b i parameter space. 
(iv) We find that surv e y properties hav e a significant impact on

he reco v ered galaxy clustering signal, particularly at high redshifts,
s compared to REDMAGIC Y1 results (Elvin-Poole et al. 2018 ). This
ontamination is corrected by applying the ISD method together 
ith a principal component analysis of our surv e y sroperty maps.
he same methodology is applied to both samples. 
(v) We find an inconsistent clustering amplitude for the REDMAGIC 

ample when combined with other 2pt lensing probes. We study 
t from the point of view of the impact of SP maps, considering
ifferent methods, such as ISD and ENET , and different numbers,
ypes and bases of SP maps. We find agreement between the weighted
orrelation functions yielded by each method within our errors. We 
lso investigate weights from an NN weighting scheme. All our tests
onfirm that our systematics corrections are robust and the template 
aps used in this analysis do not explain the REDMAGIC internal

nconsistency. 

The results presented in this work have been optimized to be used
or their combination with g alaxy–g alaxy lensing (Elvin-Poole et al.
021 ; P ande y et al. 2021 ; Prat et al. 2021 ; Porredon et al. 2021a ) and
osmic-shear (Amon et al. 2022 ; Secco et al. 2022 ) measurements
o obtain the 3 × 2pt cosmological results from the DES Year 3 data
DES Collaboration et al. 2022 ), and constitutes one of the basic
illars for this measurement. 
This work highlights the importance of adequate validation and 

ross-checking of this highly rele v ant step in the estimation of galaxy
lustering, and builds upon several developments within the DES 

roject and in the literature. For Y6, given the rapid developments
n the field, we plan to approach the problem from the beginning
ith a variety of methodologies in mind, possibly considering 
ultiregression approaches or assessing the feasibility of using a 
ider BALROG sample, making it part of the pipeline from the start
ow that the algorithm is fully developed. This will be coupled with
ossibly a multitiered unblinding approach with additional steps to 
e able to make decisions on investigating unusual results in internal
onsistency tests at different stages of the process. Additional work 
n parallel on the Y3 samples and SP maps will shed some light
n possible details that the Y6 methodology will have to address,
uch as understanding the o v ercorrection produced by some maps or
ssues with the galaxy samples. 
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ATA  AVA ILA BILITY  

he main product of this work is the maps of correcting weights
pplied to the galaxy clustering measurements of the DES Y3 lens
alaxy samples. These weights are part of the data vectors that will
e made available as part of the DES Y3 coordinated release at https:
/ des.ncsa.illinois.edu/ releases following publication of the DES Y3
osmology Results papers ( https://www.darkenergysurvey.org/des
 year- 3- cosmology- results- papers/). The COSMOSIS software (Zuntz
t al. 2015 ) is available at https:// bitbucket.org/ joezuntz/cosmosis/
iki/Home and the TREECORR package (Jarvis et al. 2004 ) can be

ound at ht tps://rmjarvis.git hub.io/TreeCor r . 
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PPEN D IX  A :  L O G N O R M A L  M O C K S  

he mocks used for the systematic analysis are 2D lognormal fields
enerated at a gi ven po wer spectrum. We start by using CAMB (Lewis,
hallinor & Lasenby 2000 ; Howlett et al. 2012 ) to obtain a matter
ower spectrum and project into a galaxy clustering angular power 
pectrum, C 

gg 

i ( l), following the theory modelling described in Krause 
t al. ( 2021 ). To produce this power spectrum, we assume our
ducial cosmology and fix the galaxy bias for each redshift bin 

o the values from the blind bias analysis (Table 1 ). Then, we use
his power spectrum to generate a Gaussian random field of δg for
ach mock realization on a HEALPIX map (G ́orski et al. 2005 ) using
he HEALPY package (Zonca et al. 2019 ). We then apply a lognormal
ransformation to the field following the methodology of Xavier et al. 
 2016 ). This uses a skewness parameter that was derived in Friedrich
t al. ( 2021 ). We then transform the lognormal δg field to a galaxy
umber counts field, N gal , using the observed number count, N̄ o , from
he galaxy sample we want to reproduce and the relation: 

 gal = N̄ o × (1 + δg ) . (A1) 

e apply the angular mask to the full-sky realizations. In this way,
he covariance matrices built from these mocks incorporate the same 

ask effects as the real data. In order to add shot noise, we finally
oisson sample the N gal field. 
igure A1. 1D relations for 400 MAGLIM ENET contaminated lognormal 
ocks (shaded black lines) compared with the data (red line). The top panel 

hows the 1D relations with the pca 0 map at the fourth redshift bin of this 
ample, whereas the bottom panel shows the 1D relations with skybrite in the 
 band. The contamination observed on the data is well reproduced by these 
ocks. The error bars are obtained from the uncontaminated mocks used to 

alculate the 1D significance. 
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nr
As we mention in Section 7, we also create a set of lognormal
ocks contaminated by surv e y properties systematics, so we can

ook for biases introduced by ISD and check their impact on the
easurements. We imprint contamination on the lognormal mocks 

y multiplying the galaxy number counts field by the inverse of the
eight map derived from the data, which is 

 

p 

gal , mock → N 

p 

gal , mock ×
1 

w 

p 
. (A2) 

his step is applied before Poisson sampling the galaxy field. We
roduce a set of 400 contaminated lognormal mocks following 
his procedure using weights derived from ENET -STD107, as is 
entioned in Section 7. We check that the 1D relations of these
ocks reproduce in shape and amplitude those observed on the data.
n example of this can be seen in Fig. A1 . 

PPENDI X  B:  I NTERNA L  CONSI STENCY  

ESTS:  ESTI MATOR  BI AS  TEST  

n addition to the tests described in Section 7, we perform an internal
onsistency test that seeks to confirm no bias in w( θ ) is introduced
y ISD under idealized circumstances. For this test, we contaminate 
nd correct for the same list of SP maps, demonstrating the Landy–
zalay estimator can reco v er a negligibly biased signal. Since the
ocus of this test is the w( θ ) estimator itself when applied to weighted
igure B1. Estimator bias for MAGLIM (top panel) and REDMAGIC (bottom 

anel). The ne gativ e values are due to small level of o v ercorrection. Empty 
ots correspond to the scales excluded for each redshift bin. As can be seen, 
e find no evidence of bias in w( θ ) introduced by the ISD methodology and 

he Landy–Szalay estimator under idealized circumstances at any angular 
cale nor any redshift bin of both galaxy samples. 
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Figure C1. Polynomial fits to w( θ ) data used in estimating the systematic 
terms in the w( θ ) covariance in Section 8.4. The first and third panels show 

the fit residuals to the fiducial w( θ ) measurements for each sample. The 
second and fourth panels show the difference between the polynomial fits of 
the two correction methods considered in these terms, ISD and ENET , both 
with the first 50 principle component template maps. The bold points are the 
data included by the scale cuts and included in the fit and χ2 calculations. 
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ata, independent of the origin of these weights, we conduct it using
eights from a preliminary run of ISD on the standard SP maps,
ith the same threshold that we use to obtain the weights from

he data, T 1D = 2. To get the magnitude of this potential bias, we
efined 

 est. bias ( θ ) = 

1 

N 

⎛ 

⎝ 

N ∑ 

i= n 

w dec , i −
N ∑ 

j= 1 

w unc , j 

⎞ 

⎠ ( θ ) , (B1) 

here w unc , i are the correlation functions from uncontaminated
ocks, and w dec , i are those from decontaminated mocks and
 = 1000 mock realizations. Fig. B1 showcases the values of
 est. bias ( θ ). As it can be seen, we see no indication of estimator
ias for both lens samples at every redshift bin. This demon-
trates that the combination of our weighting methodology with
he Landy–Szalay estimator for w( θ ) does not induce any bias
n our measurements when the list of contaminating SP maps is
nown. 

PPENDIX  C :  P O LY N O M I A L  FITS  F O R  

 w method ( θ ) 

he additional covariance term described in Section 8.4 depends on
he difference between w( θ ) measured with two different systematics
orrection methods, 
w method ( θ ). As 
w method ( θ ) is measured on real
ata, it contains the same noise as the w( θ ) data vector being used for
osmological inference. To a v oid adding this noise to the covariance
erm, we fit a flexible polynomial to the two w( θ ) measurements in
he form 

 polyfit ( θ ) = 

+ 3 ∑ 

i=−3 

B i θ
i , (C1) 

here B i are the coefficients to be fitted. The best-fitting polynomials
re shown in Fig. C1 . We find this polynomial to be a good fit to
he data, and the difference between measured correlation functions
atches the difference in fitted polynomials well. 
NRAS 511, 2665–2687 (2022) 
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PPEN D IX  D :  PRINCIPA L  C O M P O N E N T  MAPS  

UT- OFF  

n Section 8, we describe a set of systematics weights using only
he first 50 principle component maps labelled ISD -PC < 50, which
re used as the fiducial weights in the cosmology analysis. In this
ppendix, we provide some further justification for this choice. 
In order to test for the correlation of real large-scale structure with

he weight maps, we cross-correlate the convergence, κ , maps from 

effrey et al. ( 2021 ) with the weight maps obtained using different
ethods, ISD -STD34, ISD -PC107, and ISD -PC < 50. We correlate
ith the convergence map for the third tomographic source bin due 

o the large o v erlap between its lensing kernel and the lens sample. In
he absence of systematics in the κ maps, we do not expect there to
e correlations between the SP or weight maps and the convergence 
aps. We show these correlations in Fig. D2 for the five REDMAGIC

omographic bins (the error bars are estimated using jackknife 
ethodology using 150 patches). We find that while ISD run on 

nly the 34 representative STD maps does not correlate with the 
onvergence maps, we obtain a large correlation with the weight maps 
igure D1. Clustering amplitude at the first redshift bin of REDMAGIC 

or several PC cut-offs, ISD -PC < n . The solid red line corresponds to the 
nweighted data and the dashed magenta one to the weights obtained from 

SD -PC107, which lead to o v ercorrection. It can be seen how around n = 50 
he w( θ ) amplitudes converge. 
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sing all the PC maps, pointing to potential leakage of cosmological
tructure in these weights, either from chance correlation or real 
arge-scale structure leaking into the high PC maps. These cross- 
orrelations are calculated with the weight maps at N side = 4096
nd κ at N side = 1024, so small-scale noise correlations are ruled
ut (moreo v er, the cross-correlations hav e been e v aluated at coarser
esolutions, finding similar results). 

To mitigate any correlation with real large-scale structure, we 
estrict the weight estimation to use only the first n PC maps. First
f all, to ensure that all dominant features of the SP maps are taken
nto account, we look at the amount of variance captured up to each
omponent. This is shown on Fig. D3 . Based on this, we use n = 50 as
 starting point. PC maps up to this component explain ∼98 per cent
f the total variance and we consider that it represents a balance
etween including too many maps, resulting in o v ercorrection, and
iscarding too many of them, so we risk not accounting for enough
ontaminants. Then, we obtain the ISD -PC < 50 weights and we
bserve that these weights cause no significant o v ercorrection on con- 
aminated mocks, as explained in Section 8. After this, we verify that
he ISD -PC < 50 weights show negligible levels of cross-correlation
ith κ , similar to those from ISD -STD34. Moreo v er, the reco v ered

orrelation function from these weights is in excellent agreement 
ith that from ISD -STD34 weights, as it is shown on Fig. 9 . 
In order to make the rejection of PC maps that could be causing

he o v ercorrection as specific as possible, we cross-correlate κ

irectly with the maps that contribute to the o v ercorrecting ISD -
C107 weights (according to the multiplicative way of ISD to 
ake weights). Ho we v er, we do not identify an y individual map

r family of maps clearly causing the excess correlation. In general,
he PC maps that have the highest κ correlation are the highest
rincipal components (which have the smallest contribution to the 
otal variance of the STD maps). Given this, we decide to test
emoving all PC maps above a given component. We test multiple cut- 
ffs with PC < n , evaluating their clustering amplitudes, as it is shown
n Fig. D1 . We find that the clustering amplitudes yielded by the ISD -
C < n weights with n between 20 and 60 converge to similar values,
hile for higher n , it jumps abruptly to lower amplitudes. This result,

ogether with the large amount of variance contained up to PC < 50
nd the impossibility of flagging a specific set of PC maps among
he highest components as the culprit ones of the o v ercorrection,

oti v ates the choice of n = 50 as our final cut-off. 
MNRAS 511, 2665–2687 (2022) 
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Figure D2. Cross-correlation of weight maps from different configurations of ISD with the convergence field, κ . The error bars are calculated using jackknife 
with 150 patches. It can be seen how the ISD -PC107 weights cross-correlate significantly with κ , while the weights from the other two configurations do not. 
This suggests that the high PC template maps may correlate with LSS. An off-set has been added to the x -axis points for better visualization. 

Figure D3. Variance of each PC map (blue line) and per cent of accumulated variance (orange line). For the principal component map, 49 the accumulated 
variance is ∼98 per cent , so the remaining maps are compatible with noise. 
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n order to look for non-linear contamination still present on the data
fter applying weights, we e v aluate the distribution of χ2 

null v alues
rom the 1D relations of the ISD -PC < 50 weighted data. This kind
f contamination could be undetected when using a linear model,
igure E1. χ2 
null distributions (blue histograms) for the ISD -PC < 50 weighted RED

iven the good agreement between both distributions, we find no clear evidence o
imilar results for MAGLIM sample. 
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s ISD does, and would result on high χ2 
null values. In Fig. E1 , we

ho w the v alues obtained for REDMAGIC . The distributions obtained
or each redshift bin are not significantly different from a χ2 with
0 degrees of freedom (number of 1D bins used). We obtain similar
esults for the MAGLIM sample. Therefore, we find no clear evidence
f the presence of non-linear contamination in our weighted data that
ould have been unaccounted for. 
MAGIC sample compared with a χ2 with 10 degrees of freedom (black lines). 
f deviations from linearity in the 1D relations of the weighted data. We find 
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