
DEPARTAMENTO DE CIENCIA DA COMPUTA<;AO

Relatorio Tecnico

RT-MAC-9901

A Dynamic Software Certification an

Verification Procedure

Carlos Alberto de Bragan\:8 Pereira
Fabio Nakano

Julio MichaeJ Stem

mar~o de 1999

A Dynamic Software Certification an Verification Procedure

Carlos Alberto de Bragan~ Pereira, cpereira@ime.usp.br, Statistics Department,

Fabio Nakano, nakano@supremum.com, Supremum Assessoria e Consultoria,

Julio Michael Stern, jstern@ime.usp.br, Computer Science Department,

Institute of Mathematics and Statistics of the University of Sao Paulo

ABsTRAcr (ACCEPTED SCl'99 ISAS'99)

In Oct-14-1998 ordinance INDESP-104 established the federal software certification
and verification requirements for gaming machines in Brazil. The authors present the
rationale behind these criteria, whose basic principles can find applications in several
other software authentication applications.

Keywords: Software Authentication, Certification, Verification, Gaming, Law

Enforcement, Virtual Emulation, Simulation.

1. INTRODUCTION

The certification and validation methodology described in this paper has been the
Brazilian standard since Oct-14-1998, by ordinance INDESP-104. The adoption of this
standard nationally is the consequence of its successful adoption in the State of Sao
Paulo, since Jan-19-1996, by ordinance CAT-11. In these 4 years, the authors'
proposed standard proved to be reliable and enforceable, offering secure technical
guidelines for the young Brazilian gaming industry.

2. THE CERTIFICATION AND VERIFICATION PROBLEMS

The gaming regulatory and inspection authority, on behalf of the users, the
government and the industry itself, has to make sure that a machine behaves
according to the pertinent legislation and also according to the machine's own manual
and advertisement.

01

This responsibility can be divided in two tasks:
- Certification: Check if a specific machine, submitted to certification, is compliant.
- Verification: Check if a given example in the field, is a faithful copy of the specific
machine submitted to certification.

Different jurisdictions have established distinct certification and verification
methodologies. For the sake of comparison we briefly describe two paradigms:

- Nevada paradigm: The manufacturer has to deliver the source code of the machine,
compilation tools, dedicated chips' projects, as well as any emulation hardware
requested by the gaming authority. The certification procedure is based on a
comprehensive analysis of the software source code and the machine's hardware and
its special components' design. The basic verification procedure is based on indirect
static comparison by EPROM and hardware checksums and signatures. More
extensive tests can be carried out at the laboratory using hardware specific emulation
equipment.

- Glib paradigm: The manufacturer has to deliver a machine, its manuals, and little
additional information like software fragments. The certification is based on manual
tests at the lab, or statistical data collected from machines of the same model in the
field. The verification procedure is based mainly on EPROM static checksums and
payment records.

None of the paradigms above, nor several other variations adopted by many
jurisdictions, seemed appropriate for our use.

The Glib paradigm is flagrantly weak, for several reasons:
- Large prizes imply rare events, for which significant statistics may require huge

sample sizes [6] (we give some insights of the statistical difficulties of this
methodology in appendix 1).
- Even correct prize frequencies do not guarantee the absence of mechanisms to

induce or predict large prizes, what could be used to obtain illegal or unethical
benefits.
- Modem machines often have several processors, like CPU and sound and image

coprocessors, and custom proprietary VLSI chips large enough to contain a simple
processor (like an 8086) and some memory. In these circumstances static checksums
arc useful to check accidental EPROM damage, but hopelessly impotent against
intentional wrongdoing.

The Nevada paradigm is very sound and thorough, but poses other problems like:

02

- Many manufacturers are unwilling to so completely open their technology and
industrial secrets.
- The meticulous analysis of the software (a source code, maybe several thousands

lines long, sometimes written in an unfamiliar language) and its platfonn (an elaborate
hardware with exotic components) is a complex, laborious, expensive and time
consuming work.
- The absolute technological knowledge and control by the regulating authority

creates the risk of power abuse or misuse; an extremely dangerous situation for all
parts involved and the society at large.

3. VIRTUAL MACHINE DYNAMIC EMULATION

In ordinance INDESP-104, we adopted a novel dynamic certification and verification

methodology that, we hope, is better suited to the government and the gaming industry
needs, and more adapted to the fast evolving technology.

Our dynamic methodology is based on a small portable standalone ANSI-C program
emulating the game machine. Toe emulation program is called the Virtual Machine,
VM, and the game machine itself the Real Machine, RM.

The basic requirements over the VM - RM set are:

1.1 The game must be clearly explained in the game machine manual.
1.2 Toe payoff statistical characteristics must comply with pertinent legislation.
1.3 Toe game payments table may be dependent on qualified external information
(like jackpots), but that information must be easily accessible to the player.
1.4 Unless otherwise stated and clearly specified. any "random choice" in the game

assumes a uniform distribution (equal chances).

2.1 The game events must be determined only by:
2.1. l Toe player choices or moves in the game.
2.1.2 A special function called the Random Number Generator (RNG).

2.1.3 Toe machine initial state.
2.2 The game events can not depend or be influenced by any action, signal or
information external to the current game, except the information specified at item 2.1.
2.3.1 The RNG shall be implemented in software, and be the only source of
"randomness" in a game.
2.3.2 Successive calls to the RNG function shall produce a uniform pseudo-random
sequence suited for general statistical simulation [1], [3), [7], [10).

03

3.1 The manufacturer must provide the following portable ANSI-C programs, well
written and documented, as ASCil files:
3.1.1 A portable function emulating of the RNG.
3.1.2 A portable emulation of the game. This program, the Virtual Machine (VM) will
take as inputs the player moves from a standard (ASCil) keyboard, and produce ASCil
text output describing the game subsequent events.
3.1.3 A synchronization function allowing the synchronization of the VM to any
given state of the RM.

4.1 The RM must be able to provide the necessary information for backward (delayed,
retroactive) synchronization showing, at the operator's command, the RNG seeds at
the beginning of the current period.
4.2 At the beginning of each period, the RM must Rerandomize the seeds.
Rerandomize the seeds means calling the RNG function a nondeterministic number of
times, based on hardware information (like the machine clock, a measure of elapsed
time between events, etc).
4.2.l The rerandomizations shall not compromise the statistical properties of the
RNG as defined in 3.1.1
4.3 A rerandomization shall start a new period at the RM power on, after displaying
the current period starting seeds, and at regular intervals between games.
4.3. l Even knowing the VM program, the information gathered observing the games
in a period shall make the determination of the period's starting seeds very unlikely.
4.3.2 The observation of a some consecutive periods shall provide significant
statistical evidence that the RM is a faithful implementation of the VM, [9].

4. A SIMPLE ExAMPLE

File bypogame.cpp in ULR www.ime.usp.br/-jstem , [11] illustrates the VM - RM set
behavior and interaction for an hypothetical game. Like .lllost manufacturers,
hipogame uses a linear congruence generator, in this case a well documented IMSL
RNG subroutine, [I], [4], [5), [12).

This RNG has a cycle length of order C = 21\30. At a rerandomization, hypogame calls
the RNG function K times, where K is the number of milliseconds remaining in the
current second, obtained from the machine's real time clock. Since K <= 1000 < 21\10
<< 21\30 = C, hipogame is likely to comply with requirement 4.2.1. Hypogame
rerandomizes every N=l0 games, and displays the last M=lO periods' starting seeds,
so making N*M=lOO games available at a time. Appropriately balanced value
attributions to constants C, K, M and N achieve requirements 4.3.1 and 4.3.2
compliance [9].

04

S. SOFI'WARE CERTIFICATION AND VERIFICATION PROCEDURES

The RM software certification is based on the VM, for the VM can be use.cl to study all
game properties, including statistical simulation of millions of games using the RNG
supplie.d by the manufacturer, and also simulations using other RNG functions.

The RNG and VM functions are usually very small programs and shall be well written
and documented. The virtual machine should not contain any special graphics or
sound effects of the real machine, for these are useless in the study of the machine
properties, and also not portable. Therefore a competent C programmer, that knows
nothing about the RM hardware, must be able to read and understand the source code,
and compile it in his-her favorite ANSI-C compiler.

These C functions are for exclusive use of the regulatory and inspection authorities,
although no great harm should result in the event of a security break. This is why it
should not be possible to use the VM to predict (foresee) the outcome of new games.
Hence, every time the RM displays the seeds that started the current period, it should
start a new period rerandomizing the current seeds.

If the RM offers the player advice for choosing his-her moves in the game, it has to be
implemented in the VM and will be used as default; otherwise we may write our own
code to simulate a user, with possibly sub-optimal moves. For displaying the seeds the
RM can use, for example, a special maintenance screen or provide software to get the
information at an RS-232 or ethemet port.

The VM and RNG properties to be analyzed are, among others:
- Conformity of the game to the rules stated at the real machine manual, and the
integrity of the information offered to the player.
- Statistical properties of the RNG and the game itself, like payment expected values
and higher moments, auto and cross correlation, etc ..
- Compliance of the game rules and statistical properties with the pertinent
legislation.

After the game properties are analyzed, we must verify that the virtual machine
actually emulates the real machine. This is done by sampling event sequences (like
cards or numbers drawn) in both machines. In order to be able to match those

sequences we have to:
1- Record a sequence of games in the RM, including the player's moves.
2- Access the RM starting period(s) seeds.
3- Enter the starting see.els and replay, at the VM, the recorded sequence.

05

Any discrepancy between the sequences played at the virtual and the real machine
will be considered, by definition, a fraud! The VM and RNG functions must be
provided by the company licensing a machine in Brazil, who is liable for any fraud if
one is detected.

Field verifications are based on dynamic emulation tests as described in the last two
paragraphs, combined with static EPROM and hardware checksums and other
proprietary signatures. Toe inspection agents can use the VMs at a laptop computer
remotely connected to a secure server.

6. CoNCLUSIONS AND FuRTHER DEVELOPMENT

Toe methodology presented in this paper is now firmly established as the Brazilian
national standard for software certification and verification in the gaming industry. Its
adoption nationally was a consequence of a very successful 3 year·experience in the
State of Sio Paulo, with manufacturers form Australia, Brazil, Canada, China, Israel,
Japan, Spain, and the USA.

After some initial apprehension for so radically departing from the standards set at
other jurisdictions, most of the parts involved realized the several benefits of this novel
methodology. The law enforcement agents, as well as the operators, were specially
pleased with the possibility of performing extensive verification tests in loco, requiring
simple training and inexpensive equipment.

Most of the complains against the Brazilian standard came from operators trying to
use surplus equipment or no longer supported software. This unexpected side effect
turned out to be beneficial and in line with Brazilian trade laws prohibiting the import
of used equipment and software piracy.

We are currently further developing the cryptology and secure server technology of
the project, in a joint research effort of IME-USP - Instituto de Matem.itica e
Estatfstica da University of S!o Paulo, and LEARN-PUC-Rio - Laborat6rio de
Engenharia de Algoritmos da Pontiffcia Universidade Cat6lica do Rio de Janeiro.

ACKNOWLEDGMENTS

We are grateful for the support received from IME-USP - lnstituto de Matemitica e
Estatfstica da Universidade de Sio Paulo, CNPq - Conselho Nacional de

06

Desenvolvimento Cientffico e Tecnol6gico, F APESP - Fun~ao de Amparo a
Pesquisa do Estado de Sao Paulo, CAT-SF-SP - Coodena~ao da Administr~ao

Tributaria da Secretaria da Fa7.enda do Estado de Siio Paulo, and from INDESP -
Instituto Nacional de Desenvolvimento do Desporto.

We are also grateful to many people for their suggestions, ideas, critics, and support
including: Prof. R.Milidh1 of LEARN-PUC-Rio -Laborat6rio de Engenharia de
Algoritmos da Pontiffcia Universidade Cat6lica do Rio de Janeiro, Prof. J.Pissolato of
LAT-UNICAMP-Laborat6rio de Alta Tensao da Universidade Estadual de Campinas,
M.A.Robinson, of The State of Nevada Gaming Control Board -USA, M.Lowell, of
Aristocrat Inc. -Australia, I.Ignacio Cases of Sistemas de Televisi6n -Spain, A.Saffari,
of International Game Technology -USA, B.Bnmer, of Tekbilt Inc. -USA,
I.A.Morales Murga, of Recreativos Franco -Spain, and V.Espfudola, of NVC
Eletranica -Brazil. Finally we thank Prof. N.Callaos, of the International Institute of
Informatics and Systemics -USA, for inviting us to present this paper at the
International Conference on Information Systems Analysis and Synthesis - ISAS'99,
and the World Conference on Systemics, Cybernetics and Informatics - SCI'99.

REFERENCES

[l] P.Bratley, B.L.Fox, L.Scbrage. A Guide to Simulation. Springer-Verlag, 1987.
[2) M. DeGroot, Probability and Statistics, Addison Wesley 1986.
[3] G.S.Fishman. Monte Carlo Methods. Springer-Verlag, 1996.
[4] D.E. Knuth. The Art of Computer Programming, vol 2 - Seminumerical
Algorithms, Addison Wesley, 1996.
[5) P. L'Ecuyer. Efficient and Portable Combined Pseudo-Random Number

Generators. Commun. ACM, 1988.
[6] J.G. Leite, C.A.B. Pereira, F.W. Rodrigues. Waiting Time to Exaust Lottery

Numbers. Commun. in Statist. 22, pp. 301-310, 1993.
[7] P.A.W.Lewis, E.I.Orlav. Simulation Methodology. Wadsworth & Brooks Cole,

1989.
[8] C.A.B. Pereira, S. Wechsler. On the concept of P-Value. Brazilian Journal of

Probability and Statistics?, pp. 159-177, 1993.
[9] C.A.B. Pereira, I.M.Stem. Evidence and Credibility: A Full Bayesian
Significance Test. Submitted, 1999.
[10] B.D.Ripley. Stochastic Simulation. John Wiley, 1987.
[11] J.M. Stern. Web page, www.ime.usp.br/-jstem
[12] B.A. Wichmann I.D. Hill. An Efficient and Portable Pseudo-Random Number

Generator. Appl. Stat. 31, pp. 188-190, 1982.

07

APPENDIX 1. STATISTICAL TEsTs OF COMPLIANCE

It could be suggested that standard statistical hypothesis test can be used to verify if a
machine performs its games accord to its manual. These tests are applied in a large
sample of results [6].

Usually, the null hypothesis, H, is the probability distribution described in the manual.
The procedure rejects H only if there occurs an event (the sample results) with low
probability under this hypothesis. If not, H is not rejected. There could be many other
null hypotheses that would not be rejected by the same sample. Many of them could be
hypotheses that would be against the player. (8].

Note that, contrary to standard procedures, one needs to control the error of second
kind, the probability of accept H when it is false. With so many possibilities of
alternative distributions, this control is not possible. If one could consider as null
hypothesis the set of all distributions that are against the players, rejecting such
hypothesis would guaranty the desired quality of the machine [2], [9] .

08

APPENDIX 2 • EXCERPTS OF IIlPOGAME.CPP

/* Hypogame
Compiler: BORLANDC v3.l or higher (this one was developed in BC4.52).
DOS large memory model Application.

*/
tinclude <dos.h>
tinclude <conio.h>
linclude <stdio.h>
#include <sys\timeb.h>
iinclude <math.h>
tinclude <stdlib.h>

/* To generate the real machine, _JUL macro must be defined and
VM must not.
To generate the virtual machine, _VM_ must be defined and _RM_
must not.
If both are defined or undefined there will be no compiling error
but the application will not work correctly.
Rename the application according to its purpose
ex.: VM.EXE if _V!L was defined and RM . EXE if _JUL was defined.*/

//ldefine _RM_ RealMachine
ldefine _VM_ VirtualMachine

ldefine Al 168071
tdefine A2 28361
tdefine M 21474836471
tdefine P 1277731

tdefine NUMCORES 4
colors. */
tdefine NUMMESMACOR 13
color.*/

/* Number of different

/* Number of balls of same

/* Balls in a hand. */ ldefine NUMSORTE
tdefine NUMBOLAS

5
(NUMCORES*NUMMBSMACOR) /* All balls in the game.*/

/* PRIZE codes*/
tdefine NADA O
ldefine DUQtJES 1
tdefine DOISDUQUES 2
ldefine TRINCA 3
ldefine TRINCAEDUPLA 4
ldefine CORES 5
ldefine SEQUENCIA 6
tdefine QUADRA 7
tdefine SBQCORES 8

long int seed;

/*nothing*/
/*pair*/
/* two pairs*/
/* three of a kind*/
I* full house * /
/*flush*/
/*straight*/
/*four*/
/* straight flush*/

/* semente do gerador de numeros aleatorios. */
/* RNG seed*/

09

int bola[NtlMBOLASJ; t• As bolas do jogo: cor•NtJMMESMACOR+numero. */
t• Array of balls in the game *I

int aorteada[NUMSORTE]; /* As bolas aorteadaa. */

int aelect[NUMSORTE];

/* Array of balls in a hand*/

/* aelecionada•l, nao selecionada=0. */
/* hold balls - hold=l, release=0 */

int ordenada[NUMSORTE): /* Bolll.8 sorteadas ordenadas, desprezando as
cores.*/

/* sorted balls color insensitive. */

int poaicao[NUMSORT!]; /* Posicao de cada bola - 0 .. NUMSORTB. */
/* position of each sorted ball*/

int cor[NUMCORESJ; /• Seleciona as bolas sorteadaa por cor. */
/• Array of counters of same color balls in the

hand*/

int repet[NUMKESMACORJ; /* Conta cartas de numeroa repetidoa. */
/* Array of counters of balls of same number*/

int ultimabola; /* Ulti111a bola da urna */
/* index of the last not in hand ball*/

char atrpremio[9)[32]= { •sorry, no prize•, •pair•, •two pairs•,
"Three of a kind•, "l"Ull House•, "Flush.",
•straight!", "Four!", •straight flush!!");

tifdef _RM_
long int laatseed[l0], lastgame[l0]:
long int countgames:
tendif

char codcores[4][4J•{"Bl","Gr•,•ey•,•Rd"};

long int Rand (void)
/* Gerador de numeroa aleatorios */
{

long int kl;
kl:zseed/P;
seedsAl*(seed-kl*P) - kl*A2;
if (seed<•0l) seed=seed+M;
return (seed) 1

void aRand (long int newseed)
/* Sincronizador */
{

aeed=newseed;

void scramble (void)

l.0

/* inicializa o vetor (ou enche a urna) e mistura as bolas. */
/* scrambles the balls*/
{

inti, j, k, aux;
/* inicializa o vetor */
for (k=O;k<NUMBOLAS;k++) bola[kl=k;
ultimobola=NUMBOLAS-l;
for (k•O;k<3000: k++) {

i=(int) (Rand()&Ox7PPP)INUMBOLAS;
j=(int) (R.and()&Ox7PPP)INUMBOLAS;
aux=bola(i);
bola(il=bola[j];
bola[j]=aux;

void clearselection (void)
/* libera todas as bolas. */
{

inti;
for (i=O;i<NUMSORTE;i++l select[i]=O;

void getballs (int select[])
/* sorteia as bolas que nao foram selecionadas, logo
ate' NUMSORTE bolas da urna - remove as bolas da urna. */
{

inti, pos;
for (i=O;i<NUMSORTE;i++)

}

if (select[il==Ol {
pos=(int) (Rand()&Ox7FFF)lultimabola;
sorteada[iJ=bola[posJ;
bola(pos)=bola[ultimabola);
ultimabola--;

void showballs (int linha)
/* mostra as bolas sorteadas na linha da tela */
{

inti, passo;
passo=80/NUMSORTE;
gotoxy (1, linha);
clreol();
for (i=O;i<NOMSORTE;i++) {

gotoxy(passo*i+l, linha);
textcolor ((sorteada[i]/NUMMESMACOR)+9);

• cprintf ("12d•, sorteada[i]\NUMMESMACOR);

void showhold (int linhal
/* Mostra a sugestao - bolas retidaa na cartela */

11

inti, paaso,
passo=80/NUMSORTE;
gotoxy (1, linha);
clreol(.);
for (i•O;i<NUMSORTE;i++) {

if (select[i)) {
gotoxy(passo*i+l, linha);
textcolor ((aorteada[i]/NUMMESMACOR)+9);
cprintf (•xx•);

void showrema.inindballs (int linha)
/* Mostra as bolas que ficaram na urna na linha da tela. */
{

int 1;
textcolor(WHITE);
window (l, linha, 80, linha+4);
cprintf (•orna: \n • I ;
for (i•O;i<=ultimabola;i++l {

textcolor ((bola [i] /NUMMESMACOR) +9) ;
cprintf (0 12d •, bola(i)tNUMMESMACOR);

}

textcolor(WHXTB);
cprintf ("\n\r•tld••, seed);
window (1, 1, 80, 25);

int prize (int select())
/* Reconhece o premio, retornando seu codigo. */
{ .

inti, j, aux, paux, codpremio;
int nquadras,

ntrincas,
nduques,
sequencia,
cores;

nquadraa•O; ntrincas•O; nduques=O; sequencia=O; cores•O; codpremio=O;

/* conta bolas sorteadas de mesma cor -
counts balls of same color*/

for (i•O;i<NUMCORES;i++) cor[i)=O;
for (i•O;i<NUMSORTE;i++I cor(aorteada(i]/NUMMESMACOR]++;
for (i=O;i<NUMCORES;i++) (

if (cor(iJ••NUMSORTE) cores•l; /* todas as bolas de meSWl cor. */

/* conta bolas sorteadas de mesmo numero
counts ball• of same nmnber. */

for (i=O;i<NUMMESMACOR;i++) repet[i)=O;

12

for (i•O;i<NtJMSORTE;i++) repet[sorteada[i)INOMMESMACOR)++;
for (i•O;i<NIJMMESMACOR;i++) {

if (repet[i]:E2) (

}

nduques++;
for (j=O;j<NUMSORTE;j++)

if ((sorteada[j]INUMMESMACOR)z=i)
select[j]~l; 1• sugestao */

if (repet[il==3) (
ntrincas++;

}

for (j•O;j<NUMSORTE;j++)
if ((sorteada(j]INUMMESMACOR)=•i)

select[j]=l; t• sugestao */

if (repet[i]:=4) {
nquadras++;
for (j=O;j<NUMSORTE;j++)

if ((sorteada[j)INOMMESMACOR)~=i)
select(j)=l; J• augestao •1

/* ordena bolas desprezando as cores.
sorts the balls by number. */

for (i•O;i<NUMSORTE;i++) {
ordenada[iJ~sorteada[i]INUMMESMACOR;
posicao[i]=i;

/* bubble sort*/
for (i=O;i<NUMSORTE-l;i++) {

for (j=NUMSORTE-l;j>i;j--)
aux=ordenada(j];
paux=posicao[j];
if (aux<ordenada[j-1]) {

ordenada[j]=ordenada[j-1);
ordenada[j-lJ=aux;
posicao[j)cposicao[j-1];
posicao[j-l]=paux;

/* premia sequencias - straight*/
if ((ordenada[OJ••(ordenada[l]-l))&&(ordenada[ll=~(ordenada(2J-1))&&

(ordenada[2J==(ordenada[3]-l))&&(ordenada(3J==(ordenada[4)-1))) {
aequencia=l;
for (i=O;i<NUMSORTE;i++) select[i)=l; /* sugestao */

/* duques - pair*/
if (nduques==l) codpremio=DUQUES;
/* dois duques two pairs*/
if (nduques==2) codpremio=DOISDUQUES;
/* trinca - three of a kind*/
if (ntrincas==l) codpremio•TRINCA;
/* trinca e dupla - full*/

13 .

if ((ntrincas••l)&&(nduques=•l)) codpremioQTRINCAEDUPLA;
/* todas de mesma cor - flush*/
if (core•) codpremioaCORES;
/* sequencia de numeros - straight*/
if (seQUencia) codpremio=SEQUENCIA;
/* quadra - four*/
if (nquadras) codpremio•QUADRA;
/* sequencia de cores - straight flush*/
if (sequencia&&corea) codpremio=SBQCORES;

return (codpremio);

void showlabel (int x, int y)
{

gotoxy(x, y);
textcolor (0x8D);
cprintf (•===•••2=~=~z•===-~=a••-~=z2a•);
gotoxy(x, y+l);

fifdef _RM_
cprintf (• This is the Real Machine•);

tendif
tifdef _VM_

cprintf ("This is the Virtual Machine.\n");
tendif

gotoxy(x, y+2);

void main (void)
(

int codpremio;
char c;

tifdef _RM_
inti, currentindex, showedseeda;
FILE *fpOut;
struct timeb t;
ftime (&t);
aeed=t.time;
for (i•l000;i>t.millitm;i--) Rand();
countgames=0;
currentindex=0;
showed.aeeds=O;
for (i•0;i<l0;i++) laatseed(i)=O; lastgame(il•0; }
fpOut•fopen ("fotoa.txt•, •wt•);
if (I fpOut) {

}

tendif

perror ("fotos.txt");
exit (0);

tifdef _VM_
long semente;
/* Sincronizacao */

14

printf ("Type the seed to synchronize RM and VM.\n");
scanf ("lld", &semente);
sRand(semente);

tendif

c='\0';

/* Jogo - Game*/
while (c!•27) {

tifdef _RM_

tendif

if (c==9) {
gotoxy (1,15);
for (i=0;i<l0;i++)

print£ ("s[lld]= lld\n•, lastgame[il, lastseed[i));
print£ ("Press a key to continue. ');
while (!kbhit());
csgetch();
showedseeds=l;

/* Rerandomize based on internal clock. */
if (((countgamesll0)==0>II (showedseeds)J {

£time (&tJ;
for (i=l000;i>t.millitm;i--) Rand();
lastseed[currentindex]=seed;
lastgame[currentindexJ=countgames;
currentindex++;
currentindexl=l0;
showedseeds=0;

countgames++;

clrscr(J;
scramble () ;
clearselection();

// showrema.inindballs(2);
showlabel (40, 20);
getballs(select);
showballs (10);
codpremio=prize(select);
showhold (11) ;

tifdef _RM_
£print£ (fpOut, "1st hand\n");
for (is0;i<NUMSORTE;i++) {

fprintf (fpOut, •1s102d •

}
fputc ('\n', fpOut);
for (i=0;i<NUMSORTE;i++) {

codcores[sorteada[i)/13],
sorteada[i)U3);

£print£ (fpOUt, • Id • select[i]);

fputc (• \n', fpOut);
tendif

cs'\0';
while (cl=' ') {

15

gotoxy (1, 1);
clreol ();

tifdef JU(_
printf ("1 •. 5= toggle hold, space• continue, t~= show

seeds.\n");
tend.if
tifdef _VM_

print£ ("1 .. 5 to toggle hold, space to continue.\n");
tendif

c=getch();
switch (c) {

case 'l':
if (select[0)) select[0J•0;
el•e ■elect[0J•l;
break;

case '2':
if (•elect(l)) select[l]m0;
else select[lJ•1;
break;

case '3':
if (select[2]) ••lect[2J•0;
else select[2J=l;
break;

case '4':
if (select(3)) select[3Jm0;
else aelect[3]•1;
break;

case '5':
if (select[4]) select[4]=0;
else select[4l•l;
break;

)
showhold[ll);

}
lifdef JUL

fprintf (fpOut, "Hold\n");
for (i=0;i<NOMSORTE;i++) {

fprintf (fpOut, • Id • select(i]);
}
fputc ('\n', fpOut);

lendif
getballs(aelect);
showballs(12);
clear■election ();
codpremioaprize(aelect);
showhold(l3);

• if def JU(_
fprintf (fpOut, "2nd hand\n");
for (i=0;i<NUMSORTE;i++) {

fprintf (fpOut, '1■102d •

}
fputc ('\n', fpOut);

codc:ores(sorteada(i)/13],
sorteada[i]\13);

16

fendif

for (i=O;i<NtJMSORTB;i++) {
fprintf (fpOut, • %d •, select[i]);

}
fputc ('\n', fpOut);
fprintf (fpOut, "\n%s\n\n•, strpremio[codpremio]);

print£ ("\n%s\n", strpremio[codpremio]);
gotoxy (1, 1);
print£ ("ESC to end, any other key to continue.\n");
while (!kbhit());
c=getch();

}

lifdef _RM__
fclose (fpOut);

#endif
}

•

17

RELATORIOS TECNICOS

DEPAllTAMENTO DE CliNCIA DA COMPUTAC,\O
lllltituto de MataMtica e Eltalfstica da USP

A listapm CCllltelldo 01 relat6rioe t6cnicoe antaimes a 1996 podcri ar:r c:oosaltada OD IDlicitada A Ser:zmria do
l)epmtammto, peS9Ufl)mente, por c:arta OU e-mail(IIIIIC@ime.111p.br).

Daniela V. Carbopn and F1'Yio 8. Corr& da Silva
FACTS. ANNOTA.TIONS, ARGUMENIS AND REASONING
RT-MAC-9601, jan,eiro de 1996, 22 pp.

Kmu.oOkuda
REDCJC1.O DE DEPENDAlvcIA. P.ARCW. E REDur;.,l.O DE DEPENDtNc!A. GKNERALO.ADA.
RT-MAC-9602, fevereiro de 1996, 20 pp .

.Juni<r Bamn, F.dwmd R. Daugherty and Nina Sumiko Tmnila
A.l.n'OM411C PROGRAMMINJ OF BINARY MORPHOLOGICAL MA.CHINES BT DINGN OF STA.TISTIC4LL1
OPTIMAL OPEMTORS IN 11lE CONI1IXI' OFCOMPUl'A.TIONAL LEARNING 111EORY.
RT-MAC-9603, llw:il de 1996., 48 pp.

.Junicr Bamn e Ouillmno Pablo Salas
SET OPERA.TIONS ON CLOSED INTERY~ AND THEIR.&PUCAilONS TO 11IEA.UTOMA.TIC
PROGRAMMINIG OFMMA.Qf'S
RT-MAC-9604, amt de 199S, 66 pp.

KunioOkuda
CTa8 SHRINKING B1 DEPENDE!K::B REDUCTION
RT-MAC-9605, maio de 1996, 25 pp.

Julio Stem, Fabio Nakano e Marcelo Laun:tto
REAL.· REALA.1TRIBUl'E UIARNING FOR STRA1'1!GIC MARKET OPERATION
RT-MAC-9606, agosto de 1996., 16 pp.

M,itua&dla-
SISTEMAS OPERACIONAIS DISTRIBuiDos: CONCEIJ'OS, EXEMPLOS E 7END2M:JAs
RT-MAC-9607,agostode 1996, 120pp.

HM Yong Kim
CONS'mlx;:.1O RAPIDA.B A.mt".l!M11CADE OPERADORI!.S MORFOLOGICOS E EF1CJENTES PELA.
&RENDIZ4.GEM COMPUl'A.CIONAL
RT-MAC-9608, oalubro de 1996, 19 pp.

Mmelo Finga-
NOTES ON COMPLBX COMBINATORS AND STR.rx:TURAI.L1 -FREE 111EOREM PROYIMJ
RT-MAC-9609, da.anlG 1996, 28 pp.

Carlos F.duanlo Fc:rreira, Flmo Kadi Mi.yazawa e Yoshiko Wakabayashi (eds)
ANAIS DA. I OFlC.INA NA.CIONALEM PROBU!MAS DE COR11I B EMPA.COTAMIINTO
RT-MAC-9610, dezemmo de 1996, 6S pp.

Cadul Edumdo Fmr:ira, C. C. de Sooa e Ymbiko Wakabayashi
REARRAMlEMENT OF DNA JiHA.GMENIS: A BRANCH-AND-CUT ALGORl11/M
RT-MAC-9701,,imro de 1997, 24 pp.

Mm:cloFinJ!er
NOTES ON 11lE LOGICAL RECONSI'R.UCTION OF TEMPORAL DAT~
RT-MAC-9702, Dl8l\'O de 1997, 36 pp.

Flavio s. cmea da Silva, Wambcrto w. v~ e Dl'rid RobcrtloD
COOPERA..110N BETWEEN CNOWUIDGE BASED ffSTEMS
RT-MAC-9703,abrilde 1997, !Rpp.

Jllllior Bamn, Gaald JeanFraocil 8-, Robato de A1aar Lotufu, Roberto Hinda .Junicr
MMACH: A MATHEMA1'1C.AL MORPHOLOGY TOQUJQX RJR 11lE J:HOROS SYSTFM
RT-MAC-9704, maio de 1997, 67 pp.

Julio Micbac1 Stan e Cibele Dundc:r
POKJ'FOUOS EFTCIENI'ES lNCLUlNDO OP<;OES
RT-MAC-9705, maio de 1997, 29 pp .

.Junioc Bam:ra e R.ouldo Fmnio Hashimoto
COMPACT REPRESENIA.110N OF W-OPERA1'0RS
RT-MAC-9706,julhode 1997, 13pp.

Dilma M Silva e Mutns F.lllllcr
CXJNFIGURA<;AO DlNAMICA. DE SISl1!MAS
RT-MAC-9707, agosto de 1997, 35 pp

Kmji Koyama C Rooto TtJllda
AN AUGMENTF.D FAMIU OF CKIPTOGJW>JHC PARJTT CIRCUTIS
RT-MAC-9708, lldallm> de 1997, 15 pp

Rauto Taada e I<qc Nabhma Jr.
LINEARA.ND DJii'IiERENILfL CRrPTA.NALTSJS OF FEA.L-N WI11l SWA.PPIMJ
RT-MAC-9709, IIChmbro de 1997, 16pp

FIAvio S. Cerna da Silft e Y- M. Micbelacci
MAKING OF AN INTEU1GENT 1UI'ORIM3 SrsTEM (OR MEI'HODOLOGICAL ISSUES OF A.RTIF7ClAL
lNTHillGKIK:E RESEARCH BT EXA.Ml'l.E)
RT-MAC-9710, OUlllbro de 1997, 16 pp.

Man:elo Finga
COMPCnlNG LIST COMBINA.TORSOLl.mONS RJR S1RCA:TURAL EQUA.17ONS
RT-MAC-9711, ou1Dbro de 1997, 22 pp.

Maria An&ela G,qel mi E.M.R.odriguel
11lE F-F.A.CIVR PROBLF.M
RT-MAC-9712. de:!Jemlro de 1997, 22 pp.

Pmy R. .Jamca, Mmlwl .Endlt:r, Mario-Claude Gauclcl
DI!YFLOPMKNI OF AN Kl'OMIC-BROA.DCAST PRUTOCOL USING LOTOS
RT-MAC-9713, dmmbm de 1997, 27 pp.

Carlct F.duardo Fem:ira and Marko Lopn:
.A. BRA.NCH-A.ND-CUI ALGORITHM FOR .A. J'EHK1B ROUTD,U PROBLEM W/I'B CAP.A.OTT A.ND 11ME
CONST.RAINl'S
RT-MAC-9714, dmmbm de 1997, 20 pp.

Naali Kabayaci
..4 HIERARCH1 FOR 11IE RECOGNll.ABU! M-SUBSETS
RT-MAC-9715, dezcmhro de 1997, 47 pp.

Fla"rio Soma correa da Siha e Daniela Vmconcdoe Cmbogim
..4 TWO-SORTED INIERPRBTATION FOR ANNOTA'JED l.lXJIC
RT-MAC-9801, maeiro dc 1998, 17pp.

FJA-rio Soma Cm& da Silw, Wambcrto Wcba V-1os, 1aume.AguaU, David RobertlaD eAm CriatiDa V. de
Melo.
WHY ONTOI.lXJIES ARE NOT ENOUGH FOR KNOWUIDGE SHARING
RT-MAC-9802, outumo de 1998, IS pp.

1. C.de Pina e J. Soma
ON 11IE INTEQEJI. CONE OF 11IE BASES OF A MA.TROID
RT-MAC-9803, ~ cle 1998, 16pp.

IC. Okuda and S. W.Scag
REV1Sl7'IMJ HAMILTON/AM DECOMPOSJTION OF11IE HYPERCUBE
RT-MAC-9804, dezcmhro 1998, 17pp.

Mlubs Endler
AGENTES MO"YEIS: UM 1VIORJAL
RT-MAC-980S, dezembro 1998, 19pp.

Cmloe Alberto de ~ Percm, Fabio Nabno e 1ulio Mirhac1 Stan
A DTNAMIC SOFTWARE CKKl1FIC/I.TlON AN J'ERIFICA710N PROCEDURE
RT-MAC-9901 , MAR.CO 1999, 21pp.

