

A Dynamic Software Certification an Verification Procedure

Carlos Alberto de Braganca Pereira, cpereird@ime.usp.br, Statistics Department,
Fabio Nakano, nakano@supremum.com, Supremum Assessoria ¢ Consultoria,

Julio Michael Stern, jstern@ime.usp.br, Computer Science Department,
Institute of Mathematics and Statistics of the University of Sdo Paulo

ABSTRACT (ACCEPTED SCI’99 ISAS’99)

In Oct-14-1998 ordinance INDESP-104 established the federal software certification
and verification requirements for gaming machines in Brazil. The authors present the
rationale behind these criteria, whose basic principles can find applications in several
other software authentication applications.

Keywords: Software Authentication, Certification, Verification, Gaming, Law
Enforcement, Virtual Emulation, Simulation.

1. INTRODUCTION

The certification and validation methodology described in this paper has been the
Brazilian standard since Oct-14-1998, by ordinance INDESP-104. The adoption of this
standard nationally is the consequence of its successful adoption in the State of Sdo
Paulo, since Jan-19-1996, by ordinance CAT-11. In these 4 years, the authors’
proposed standard proved to be reliable and enforceable, offering secure technical
guidelines for the young Brazilian gaming industry.

2. THE CERTIFICATION AND VERIFICATION PROBLEMS

The gaming regulatory and inspection authority, on behalf of the users, the
government and the industry itself, has to make sure that a machine behaves
according to the pertinent legislation and also according to the machine's own manual
and advertisement.

01

This responsibility can be divided in two tasks:

- Certification: Check if a specific machine, submitted to certification, is compliant.

- Verification: Check if a given example in the field, is a faithful copy of the specific
machine submitted to certification.

Different jurisdictions have established distinct certification and verification
methodologies. For the sake of comparison we briefly describe two paradigms:

- Nevada paradigm: The manufacturer has to deliver the source code of the machine,

compilation tools, dedicated chips' projects, as well as any emulation hardware
requested by the gaming authority. The certification procedure is based on a
comprehensive analysis of the software source code and the machine's hardware and
its special components' design. The basic verification procedure is based on indirect
static comparison by EPROM and hardware checksums and signatures. More
extensive tests can be carried out at the laboratory using hardware specific emulation
equipment.

- Glib paradigm: The manufacturer has to deliver a machine, its manuals, and little
additional information like software fragments. The certification is based on manual
tests at the lab, or statistical data collected from machines of the same model in the
field. The verification procedure is based mainly on EPROM static checksums and
payment records.

None of the paradigms above, nor several other variations adopted by many
jurisdictions, seemed appropriate for our use.

The Glib paradigm is flagrantly weak, for several reasons:

- Large prizes imply rare events, for which significant statistics may require huge
sample sizes [6] (we give some insights of the statistical difficulties of this
methodology in appendix 1).

- Even correct prize frequencies do not guarantec the absence of mechanisms to
induce or predict large prizes, what could be used to obtain illegal or unethical
benefits.

- Modern machines often have several processors, like CPU and sound and image
coprocessors, and custom proprietary VLSI chips large enough to contain a simple
processor (like an 8086) and some memory. In these circumstances static checksums
are useful to check accidental EPROM damage, but hopelessly impotent against
intentional wrongdoing.

The Nevada paradigm is very sound and thorough, but poses other problems like:

02

- Many manufacturers are unwilling to so completely open their technology and
industrial secrets.

- The meticulous analysis of the software (a source code, maybe several thousands
lines long, sometimes written in an unfamiliar language) and its platform (an elaborate
hardware with exotic components) is a complex, laborious, expensive and time
consuming work.

- The absolute technological knowledge and control by the regulating authority
creates the risk of power abuse or misuse; an extremely dangerous situation for all
parts involved and the society at large.

3. VIRTUAL MACHINE DYNAMIC EMULATION

In ordinance INDESP-104, we adopted a novel dynamic certification and verification
methodology that, we hope, is better suited to the government and the gaming industry
needs, and more adapted to the fast evolving technology.

Our dynamic methodology is based on a small portable standalone ANSI-C program
emulating the game machine. The emulation program is called the Virtual Machine,
VM, and the game machine itself the Real Machine, RM.

The basic requirements over the VM - RM set are:

1.1 The game must be clearly explained in the game machine manual.

1.2 The payoff statistical characteristics must comply with pertinent legislation.

1.3 The game payments table may be dependent on qualified external information
(like jackpots), but that information must be easily accessible to the player.

1.4 Unless otherwise stated and clearly specified, any "random choice” in the game
assumes a uniform distribution (equal chances).

2.1 The game events must be determined only by:
2.1.1 The player choices or moves in the game.
2.1.2 A special function called the Random Number Generator (RNG).
2.1.3 The machine initial state.
2.2 The game events can not depend or be influenced by any action, signal or
information external to the current game, except the information specified at item 2.1.
2.3.1 The RNG shall be implemented in software, and be the only source of
"randomness” in a game.
2.3.2 Successive calls to the RNG function shall produce a uniform pseudo-random
sequence suited for general statistical simulation [1], 31, [7], [10].

03

3.1 The manufacturer must provide the following portable ANSI-C programs, well
written and documented, as ASCII files:

3.1.1 A portable function emulating of the RNG.

3.1.2 A portable emulation of the game. This program, the Virtual Machine (VM) will
take as inputs the player moves from a standard (ASCII) keyboard, and produce ASCII
text output describing the game subsequent events.

3.1.3 A synchronization function allowing the synchronization of the VM to any
given state of the RM.

4.1 The RM must be able to provide the necessary information for backward (delayed,
retroactive) synchronization showing, at the operator's command, the RNG seeds at
the beginning of the current period.

4.2 At the beginning of each period, the RM must Rerandomize the seeds.
Rerandomize the seeds means calling the RNG function a nondeterministic number of
times, based on hardware information (like the machine clock, a measure of elapsed
time between events, etc).

4.2.1 The rerandomizations shall not compromise the statistical properties of the
RNG as defined in 3.1.1

4.3 A rerandomization shall start a new period at the RM power on, after displaying
the current period starting seeds, and at regular intervals between games.

4.3.1 Even knowing the VM program, the information gathered observing the games
in a period shall make the determination of the period's starting seeds very unlikely.
432 The observation of a some consecutive periods shall provide significant
statistical evidence that the RM is a faithful implementation of the VM, [9].

4. A SIMPLE EXAMPLE

File hypogame.cpp in ULR www.ime.usp.br/~jstern , [11] illustrates the VM - RM set
behavior and interaction for an hypothetical game. Like most manufacturers,
hipogame uses a linear congruence generator, in this case a well documented IMSL
RNG subroutine, [1}, [4], [5], [12].

This RNG has a cycle length of order C = 2430. At a rerandomization, hypogame calls
the RNG function K times, where K is the number of milliseconds remaining in the
current second, obtained from the machine's real time clock. Since K <= 1000 < 2210
<< 2°30 = C, hipogame is likely to comply with requirement 4.2.1. Hypogame
rerandomizes every N=10 games, and displays the last M=10 periods' starting seeds,
so making N*M=100 games available at a time. Appropriately balanced value
attributions to constants C, K, M and N achieve requirements 4.3.1 and 4.3.2
compliance [9].

04

5. SOFTWARE CERTIFICATION AND VERIFICATION PROCEDURES

The RM software certification is based on the VM, for the VM can be used to study all
game properties, including statistical simulation of millions of games using the RNG
supplied by the manufacturer, and also simulations using other RNG functions.

The RNG and VM functions are usually very small programs and shall be well written
and documented. The virtual machine should not contain any special graphics or
sound effects of the real machine, for these are useless in the stdy of the machine
properties, and also not portable. Therefore a competent C programmer, that knows
nothing about the RM hardware, must be able to read and understand the source code,
and compile it in his-her favorite ANSI-C compiler.

These C functions are for exclusive use of the regulatory and inspection authorities,
although no great harm should result in the event of a security break. This is why it
should not be possible to use the VM to predict (foresee) the outcome of new games.
Hence, every time the RM displays the seeds that started the current period, it should
start a new period rerandomizing the current seeds.

If the RM offers the player advice for choosing his-her moves in the game, it has to be
implemented in the VM and will be used as default; otherwise we may write our own
code to simulate a user, with possibly sub-optimal moves. For displaying the seeds the
RM can use, for example, a special maintenance screen or provide software to get the
information at an RS-232 or ethernet port.

The VM and RNG properties to be analyzed are, among others:

- Conformity of the game to the rules stated at the real machine manual, and the
integrity of the information offered to the player.

- Statistical properties of the RNG and the game itself, like payment expected values
and higher moments, auto and cross correlation, etc..

- Compliance of the game rules and statistical properties with the pertinent
legislation.

After the game properties are analyzed, we must verify that the virtual machine
actually emulates the real machine. This is done by sampling event sequences (like
cards or numbers drawn) in both machines. In order to be able to match those
sequences we have to:

1- Record a sequence of games in the RM, including the player’s moves.

2- Access the RM starting period(s) seeds.

3- Enter the starting seeds and replay, at the VM, the recorded sequence.

05

Any discrepancy between the sequences played at the virtual and the real machine
will be considered, by definition, a fraud! The VM and RNG functions must be
provided by the company licensing a machine in Brazil, who is liable for any fraud if
one is detected.

Field verifications are based on dynamic emulation tests as described in the last two
paragraphs, combined with static EPROM and hardware checksums and other
proprietary signatures. The inspection agents can use the VMs at a laptop computer
remotely connected to a secure server.

6. CONCLUSIONS AND FURTHER DEVELOPMENT

The methodology presented in this paper is now firmly established as the Brazilian
national standard for software certification and verification in the gaming industry. Its
adoption nationally was a consequence of a very successful 3 year experience in the
State of S&o Paulo, with manufacturers form Australia, Brazil, Canada, China, Israel,
Japan, Spain, and the USA.

After some initial apprehension for so radically departing from the standards set at
other jurisdictions, most of the parts involved realized the several benefits of this novel
methodology. The law enforcement agents, as well as the operators, were specially
pleased with the possibility of performing extensive verification tests in loco, requiring
simple training and inexpensive equipment.

Most of the complains against the Brazilian standard came from operators trying to
use surplus equipment or no longer supported software. This unexpected side effect
turned out to be beneficial and in line with Brazilian trade laws prohibiting the import
of used equipment and software piracy.

We are currently further developing the cryptology and secure server technology of
the project, in a joint research effort of IME-USP - Instituto de Matemitica e

Estatfstica da University of S3o Paulo, and LEARN-PUC-Rio - Laboratério de
Engenharia de Algoritmos da Pontiffcia Universidade Cat6lica do Rio de Janeiro.

ACKNOWLEDGMENTS

We are grateful for the support received from IME-USP - Instituto de Matem4tica e
Estatfstica da Universidade de S3o Paulo, CNPq - Conselho Nacional de

06

Desenvolvimento Cientifico e Tecnolégico, FAPESP - Fundagio de Amparo 2
Pesquisa do Estado de S#o Paulo, CAT-SF-SP - Coodenagio da Administragio
Tributdria da Secretaria da Fazenda do Estado de Sdo Paulo, and from INDESP -
Instituto Nacional de Desenvolvimento do Desporto.

We are also grateful to many people for their suggestions, ideas, critics, and support
including: Prof. R.Milidid of LEARN-PUC-Rio -Laboratério de Engenharia de
Algoritmos da Pontificia Universidade Cat6lica do Rio de Janeiro, Prof. J.Pissolato of
LAT-UNICAMP -Laboratério de Alta Tensdo da Universidade Estadual de Campinas,
M.A.Robinson, of The State of Nevada Gaming Control Board -USA, M.Lowell, of
Aristocrat Inc. -Australia, J.Ignacio Cases of Sistemas de Televisi6n -Spain, A.Saffari,
of International Game Technology -USA, B.Bruner, of Tekbilt Inc. -USA,
J.AMorales Murga, of Recreativos Franco -Spain, and V.Espfndola, of NVC
Eletrdnica -Brazil. Finally we thank Prof. N.Callaos, of the International Institute of
Informatics and Systemics -USA, for inviting us to present this paper at the
International Conference on Information Systems Analysis and Synthesis - ISAS’99,
and the World Conference on Systemics, Cybernetics and Informatics - SCI’99.

REFERENCES

[1] P.Bratley, B.L.Fox, L.Schrage. A Guide to Simulation. Springer-Verlag, 1987.
[2] M. DeGroot, Probability and Statistics, Addison Wesley 1986.

[3] G.S.Fishman. Monte Carlo Methods. Springer-Verlag, 1996.

(4] D.E. Knuth. The Art of Computer Programming, vol 2 - Seminumerical
Algorithms, Addison Wesley, 1996.

[5] P. L'Ecuyer. Efficient and Portable Combined Pseudo-Random Number
Generators. Commun. ACM, 1988.

(6]).G. Leite, C.A.B. Pereira, F.W. Rodrigues. Waiting Time to Exaust Lottery
Numbers. Commun. in Statist. 22, pp. 301-310, 1993.

[7] P.A.W.Lewis, E.J.Orlav. Simulation Methodology. Wadsworth & Brooks Cole,
1989.

[8] C.A.B. Pereira, S. Wechsler. On the concept of P-Value. Brazilian Journal of
Probability and Statistics 7, pp. 159-177, 1993. ‘

[9] C.A.B. Pereira, J.M.Stern. Evidence and Credibility: A Full Bayesian
Significance Test. Submitted, 1999.

[10] B.D.Ripley. Stochastic Simulation. John Wiley, 1987.

[11] J.M. Stern. Web page, www.ime.usp.br/~jstern

[12] B.A. Wichmann LD. Hill. An Efficient and Portable Pseudo-Random Number
Generator. Appl. Stat. 31, pp. 188-190, 1982.

07

APPENDIX 1. STATISTICAL TESTS OF COMPLIANCE

It could be suggested that standard statistical hypothesis test can be used to verify if a
machine performs its games accord to its manual. These tests are applied in a large
sample of resuits [6].

Usually, the null hypothesis, H, is the probability distribution described in the manual.
The procedure rejects H only if there occurs an event (the sample results) with low
probability under this hypothesis. If not, H is not rejected. There could be many other
null hypotheses that would not be rejected by the same sample. Many of them could be
hypotheses that would be against the player, [8].

Note that, contrary to standard procedures, one needs to control the error of second
kind, the probability of accept H when it is false. With so many possibilities of
alternative distributions, this control is not possible. If one could consider as null
hypothesis the set of all distributions that are against the players, rejecting such
hypothesis would guaranty the desired quality of the machine [2], [9] .

08

APPENDIX 2 - EXCERPTS OF HIPOGAME.CPP

/* Hypogame
Compiler: BORLANDC v3.1 or higher (this one was developed in BC4.52).
DOS large memory model Application.

*/

#include <dos.h>

#include <conio.h>

#include <stdio.h>

#include <sys\timeb.h>

#include <math.h>

#include <stdlib.h>

/* To generate the real machine, _RM_ macro must be defined and
VM must not.
To generate the virtual machine, _VM_ must be defined and _RM_
must not.
If both are defined or undefined there will be no compiling error
but the application will not work correctly.
Rename the application according to its purpose
ex.: VM.EXE if _VM_ was defined and RM.EXE if _RM_ was defined.*/

//#define _RM_ RealMachine
#define _VM_ VirtualMachine

#define Al 168071
$define A2 28361
#define M 21474836471
#define P 1277731

#define NUMCORES 4 /* Number of different
colors. */

#define NUMMESMACOR 13 /* Number of balls of same
color.*/

#define NUMSORTE 5 /* Balls in a hand. */
#define NUMBOLAS {(NUMCORES *NUMMESMACOR) /* All balls in the game. */

/* PRIZE codes */

#define NADA 0 /* nothing */

#define DUQUES 1 /* pair */

#define DOISDUQUES 2 /* two pairs */

#define TRINCA 3 /* three of a kind */

#$define TRINCAEDUPLA 4 /* full house */

#define CORES S /* £lush */

#define SEQUENCIA [/* straight */

#define QUADRA 7 /* four */

$define SEQCORES 8 /* straight flush */

long int seed; /* semente do gerador de numeros aleatorios. */

/* RNG seed */

09

int bola[NUMBOLAS] ; /* As bolas do jogo: cor*NUMMESMACOR+numero. */
/* Array of balls in the game */

int sorteada[NUMSORTE]; /* As bolas sorteadas. */
/* Array of balls in a hand */

int select [NUMSORTE]; /* selecionadasl, nao selecionada=0., */
/* hold balls - hold=l, release=0 */

int ordenada[NUMSORTE]; /* Bolas sorteadas ordenadas, desprezando as
cores.*/
/* sorted balls color insensitive. */

int posicao[NUMSORTE]; /* Posicao de cada bola - 0..NUMSORTE. */
/* position of each sorted ball */

int cor[NUMCORES]: /* Seleciona as bolas sorteadas por cor. */
/* Array of counters of same color balls in the
hand */

int repet [NUMMESMACOR]; /* Conta cartas de numeros repetidos. */
/* Array of counters of balls of same number */

int ultimabola; /* Ultima bola da urna */
/* index of the last not in hand ball */

char strpremio[9])[32]= { “Sorry, no prize®, "pair’, "two pairs",
"Three of a kind", "Full House®, °Flush.°®,
"Straight!®, *Four!®, ®Straight flush!!*};

#ifdef _RM_

long int lastseed[10], lastgame[10];

long int countgames;

#endif

char codcores([4][4]=("Bl*, “Gr*, "Cy", "R3d"};

long int Rand (void)
/* Gerador de numeros aleatorios */
{
long int kl1;
kl=seed/P;
seed=Al* (seed-k1*P) - k1*A2;
if (seed<=01) seed=seed+M;
return (seed);
}

void sRand (long int newseed)
/* Sincronizador */
{

}

seed=newseed;

void scramble (void)

10

/* inicializa o vetor (ou enche a urna) e mistura as bolas.

/* scrambles the balls */

{
int i, 3, k, aux;
/* inicializa o vetor */
for (k=0;k<NUMBOLAS;k++) bolal(k]=k;
ultimabola=NUMBOLAS-1;
for (k=0;:;k<3000;: k++) {
i=(int) (Rand()&0x7FFF)3%NUMBOLAS;
j={(int) (Rand()&0x7FFF)SNUMBOLAS;
aux=bolafil;
bola[i]l=bolaf{j}:
bola{j]=aux;
}
}

void clearselection (void)
/* libera todas as bolas. */
{
int i;
for (i=0;i<NUMSORTE;i++) select[i}=0;
}

void getballs (int select[])
/* sorteia as bolas que nao foram selecionadas, logo
ate' NUMSORTE bolas da urna - remove as bolas da urna. */
{
int i, pos;
for (i=0;i<NUMSORTE;i++) {
if (select[i}==0) {
pos=(int) (Rand()&0x7FFF)%ultimabola;
sorteada[il=bola(pos];
bola[pos)=bolafultimabolal;
ultimabola--;

}

void showballs (int linha)
/* mostra as bolas sorteadas na linha da tela */
{

int i, passo;

passo=80/NUMSORTE;
gotoxy (1, linha);
clreol();

for (i=0;i<NUMSORTE:i++) {
gotoxy (passo*i+l, linha):;
textcolor ((sorteada(i)/NUMMESMACOR)+9);
cprintf (*%$2d", sorteada[i]$NUMMESMACOR);

}

void showhold (int linha)
/* Mostra a sugestao - bolas retidas na cartela */

*/

i1

int i, passo;
passo=80/NUMSORTE;
gotoxy (1, linha);
clreol{();
for (i=0;i<NUMSORTE;i++) {
if (selectii]) {
gotoxy (passo*i+l, linha);
textcolor ((sorteada{i)/NUMMESMACOR)+9);
cprintf (*XX");

}

void showremainindballs (int linha)
/* Mostra as bolas que ficaram na urna na linha da tela. */
{
int i;
textcolor (WHITE) ;
window (1, linha, 80, linha+4);
cprintf (°*Urna:\n*"};
for (i=0;i<=ultimabola;i++) {
textcolor ((bola[i]/NUMMESMACOR)+$9);
cprintf ("%2d4 *, bola[i)SNUMMESMACOR);
}
textcolor (WHITE) ;
cprintf ("\n\r=%ld=", seed);
window (1, 1, 80, 25);
}

int prize (int select({})
/* Reconhece o premio, retornandoc seu codigo. */
{
int i, j, aux, paux, codpremio;
int nquadras,
ntrincas,
nduques,
sequencia,
cores;

nquadras=0; ntrincas=0; nduques=0; sequencia=0; cores=0; codpremio=0;

/* conta bolas sorteadas de mesma cor -
counts balls of same color */
for (i=0;i<NUMCORES;i++) cor([i}=0;
for (i=0;i<NUMSORTE;i++) cor{sorteada (i) /NUMMESMACOR] ++;
for (i=0;i<NUMCORES;i++) {
if (cor[i]==NUMSORTE) cores=1l; /* todas as bolas da mesma cor. */
}

/* conta bolas sorteadas de mesmo numero
counts balls of same number. */
for (i=0;i<NUMMESMACOR;i++) repet[i]=0;

for (i=0;i<NUMSORTE;i++) repet[sorteada[i}SNUMMESMACOR]++;
for (i=0;i<NUMMESMACOR;i++) {
if (repet[i)==2) (
nduques++;
for (j=0;j<NUMSORTE; j++}
if ((sorteada{j]$NUMMESMACOR)==i)
select[jl=1; /* sugestao */

1
if (repet{i]==3) {
ntrincas++;
for (j=0;J<NUMSORTE;j++)
if ((sorteada(j]ENUMMESMACOR)==1)
select[jl=1; /* sugestao */
}
if (repet[i]l==4) (
nquadras++;
for (3j=0;j<NUMSORTE;j++)
if ((sorteada(j)%NUMMESMACOR)==1i)
select(jl=1; /* sugestao */
}

}

/* ordena bolas desprezando as cores.
sorts the balls by number. */
for (i=0;i<NUMSORTE;i++) {
ordenada(i)=sorteada[i] $NUMMESMACOR;
posicac[i)=i;
}
/* bubble sort */
for (i=0;i<NUMSORTE-1;i++) {
for (j=NUMSORTE-1;j>i;j--) {
aux=ordenada(jl;
paux=posicao[j];
if (aux<ordenadal[j-11) {
ordenada[j]=ordenada[j-1]:
ordenada{j-1}=aux;
posicao(jl=posicao{j-11;
posicao{j-1)=paux;

}

/* premia sequencias - straight */

if ((ordenada[0)==(ordenada{1]}-1))&&{ordenada{l]==(ordenada[2]-1))&&
(ordenada[2])=={ordenada(3]-1))&&(ordenada{3]==(ordenada[4]-1})) {
sequencia=l;
for (i=0;i<NUMSORTE;i++) select{i]=1; /* sugestao */

/* duques - pair */

if (ndugues==1) codpremio=DUQUES;

/* deois duques two pairs*/

if (nduques==2) codpremio=DOISDUQUES;
/* trinca - three of a kind*/

if (ntrincas==1) codpremio=TRINCA;

/* trinca e dupla - full*/

if ((ntrincas==1)&&(nduques==1)) codpremio=TRINCAEDUPLA;
/* todas de mesma cor - flush */

if (cores) codpremio=CORES;

/* sequencia de numeros - straight*/

if (sequencia) codpremio=SEQUENCIA;

/* quadra - four*/

if (nquadras) codpremio=QUADRA;

/* sequencia de cores - straight flush */

if (sequenciak&cores) codpremio=SEQCORES;

return (codpremio);

}
void showlabel (int x, int y)
{
gotoxy(x, ¥):
textcolor (O0x8D):
cprintf (°® “3;
gotoxy(x, y+1);
#ifdef _RM_
cprintf (® This is the Real Machine®);
#endif
#ifdef _VM_

cprintf (°This is the Virtual Machine.\n");
#endif

gotoxy (x, y+2);

cprintf (* ");

}

void main (void)

{
int codpremio;

. char ¢;

#ifdef _RM_
int i, currentindex, showedseeds;
FILE *fpOut;
struct timeb t;
ftime (&t);
seed=t.time;
for (i=1000;i>t.millitm;i--) Rand ();
countgames=0;
currentindex=0;
showedseeds=0;
for (i=0;i<10;i++) { lastsead[i)=0; lastgame[i]=0; }
fpOut=fopen ("fotos.txt®", "wt");
if (!fpout) {

perror ("fotos.txt");
exit (0);

}

#endif

#ifdef _VM_
long semente;
/* Sincronizacao */

14

printf ("Type the seed to synchronize RM and VM.\n");
scanf ("%1d*, &semente);
sRand (semente) ;

#endif

c='\0"';

/* Jogo - Game*/
while (ci=27) ¢
¢ifdef _RM_

#endif

/t

if (e==9) {
gotoxy (1,15);
for (i=0;i<10;i++)
printf (*s{%ld)= %1ld\n*®, lastgame[i], lastseed(i]);
printf (*Press a key to continue. ");
while {tkbhit{)):
c=getch(};
showedseeds=1;
}
/* Rerandomize based on internmal clock. */
if (((countgames$10)==0)} || (showedseeds)) {
ftime (&t);
for (i=1000;i>t.millitm;i--) Rand {();
lastseed[currentindex}=seed;
lastgame [currentindex]=countgames;
currentindex++;
currentindex®$=10;
showedseeds=0;
}

countgames++;

clrscr();
scramble() ;
clearselection();
showremainindballs(2);
showlabel (40, 20);
getballs (select);
showballs (10);
codpremio=prize(select);
showhold(11);

#ifdef _RM_

#endif

fprintf (fpOut, “lst hand\n");
for (i=0;i<NUMSORTE;i++) {(
fprintf (fpOut, *%s%02d4 ", codcores([sorteadal[i]/13],
sorteadafi]$13);
}
fpute ('\n', fpOut);
for (i=0;i<NUMSORTE;i++) {
fprintf (fpOut, " %4 *, selectii]);
1
fpute ('\n', fplut);

c='\0";
while (cl=' ') {

15

#ifdef _RM_
seeds.\n");
#endif

#ifdef _VM_

#endif

}
#ifdef _RM

gotoxy (1, 1);
clreol ();

printf (*1..5= toggle hold, space= continue, tab= show

printf ("1..5 to toggle hold, space to continue.\n");

c=getch();
switch (c) {
case ‘'l1':
if (select{0)) select[0]=0;
else select{0]=l;
break;
case ‘2':
if (select[l]) select[1]=0;
else select[1]=1;
break;
case '3':
if (select(2])) select{2]=0;
else select(2]=1;
break;
case ‘4°':
if (select(3]) select[3]=0;
else select(3]=1;
break;
case '5':
if (select[4]) select[4]=0;
else select{4]=1;
break;
}
showhold (11);

fprintf (fpOut, “Hold\mn");

for

}

(i=0; i<NUMSORTE; i++) {
fprintf (fpoOut, * %4 *, select[il);

fpute ('\n', fpout});

#endif

getballs (select);
showballs(12);
clearselection ();
codpremio=prize(select);
showhold(13);

#ifdef _RM_

fprintf (fpOut, "2nd hand\n*};

for

}

(1=0; 1<NUMSORTE; i++) {
fprintf (fpOut, *%s%02d ", codcores[sorteada{i}/13],
sorteada[i]%13);

fputc ('\n‘', fpOut);

16

for (i=0;i<NUMSORTE;i++) {
fprintf (fpout, * %4 *, select[i]);
}
fpute ('\n', fpOut};
fprintf (fpOut, *\n%s\n\n", strpremic([codpremioc]);

#endif
printf (*\n%s\n", strpremio{codpremiol);
gotoxy (1, 1);
printf ("ESC to end, any other key to continue.\n*);
while (tkbhit());
c=getch();
}
#ifdef _RM_
fclose (fpOut);
#endif
}

17

RELATORIOS TECNICOS

DEPARTAMENTO DE CIENCIA DA COMPUTACAO
Instituto de Matemética ¢ Estatistica da USP

A listagem coatendo os relatorios técnicos anteriores & 1996 poderd ser consuitada ou solicitada & Secretaria do
Departamento, pessoalmente, por carta ou e-mail{mac@ime. usp.br).

Daniela V. Carbogim and Flévio S. Corréa da Silva
FACTS, ANNOTATIONS, ARGUMENTS AND REASONING
RT-MAC-9601, janeiro de 1996, 22 pp.

Kumio Okoda
REDUGAO DE DEPENDENCIA PARCIAL E REDUCAO DE DEPENDENCIA GENERALIZADA
RT-MAC-9602, fevereiro de 1996, 20 pp.

Junior Batrers, Edward R. Dougherty and Nina Sumiko Tomita

AUTOMATIC PROGRAMMING OF BINARY MORPHOLOGICAL MACHINES BY DESIGN OF STATISTICALLY
OPTIMAL OPERATORS IN THE CONTEXT OF COMPUTATIONAL LEARNING THEORY.

RT-MAC-9603, abril de 1996, 48 pp.

Junior Barrera ¢ Guillermo Pablo Salas
SET OPERATIONS ON CLOSED INTERVALS AND THEIR APPLICATIONS TO THE AUTOMATIC
PROGRAMMINIG OF MMACHS .

RT-MAC-9604, abril de 1995, 66 pp.

Kunio Okuda
CYCLE SHRINKING BY DEPENDENCE REDUCTION
RT-MAC-9605, maio de 1996, 25 pp.

Julio Stern, Fabio Nakano e Marcelo Laureito
REAL: REAL ATTRIBUTE LEARNING FOR STRATEGIC MARKET OPERATION
RT-MAC-9606, agosto de 1996, 16 pp.

Markus Endler)
SISTEMAS OPERACIONAIS DISTRIBUIDOS: CONCEITOS, EXEMPLOS E TENDENCIAS
RT-MAC-9607, agosto de 1996, 120 pp.

Hae Yong Kim

CONSTRUCAO RAPIDA E AUTOMATICA DE OPERADORES MORFOLOGICOS E EFICIENTES PELA
APRENDIZAGEM COMPUTACIONAL

RT-MAC-9608, outubro de 1996, 19 pp.

Marcelo Finger
NOTES ON COMPLEX COMBINATORS AND STRUCTURALLY-FREE THEOREM PROVING
RT-MAC-9609, dezembro 1996, 28 pp.

Carios Eduardo Ferreira, Flévio Keidi Miyazawa ¢ Yoshiko Wakabayashi (eds)
ANAIS DA I OFICINA NACIONAL EM PROBLEMAS DE CORTE E FMPACOTAMENTO
RT-MAC-9610, dezembro de 1996, 65 pp.

Carlos Eduardo Ferreim, C. C. de Souza ¢ Yoshiko Wakabayashi
REARRANGEMENT OF DNA FRAGMENTS: A BRANCH-AND-CUT ALGORITHM
RT-MAC-9701, janeiro de 1997, 24 pp.

Marcelo Finger
NOTES ON THE LOGICAL RECONSTRUCTION OF TEMPORAL DATABASES
RT-MAC-9702, margo de 1997, 36 pp.

Flévio 8. Corréa da Silva, Wamberto W. Vasconcelos e David Robertson
COOPERATION BETWEEN KNOWLEDGE BASED SYSTEMS
RT-MAC-9703, abril de 1997, 18 pp.

Junior Barrera, Gerald Jean Francis Banon, Roberto de Alencar Lotufo, Roberto Hirata Junior
MMACH: A MATHEMATICAL MORPHOLOGY TOOLBOX FOR THE KHOROS SYSTEM
RT-MAC-9704, maio de 1997, 67 pp.

Julio Michael Stem & Cibele Dunder
PORTFOLIOS EFICIENTES INCLUINDO OPCOES
RT-MAC-9705, maio de 1997, 29 pp.

Junior Barrers ¢ Ronaldo Fumio Hashimoto
COMPACT REPRESENTATION OF W-OPERATORS
RT-MAC-9706, julho de 1997, 13 pp.

Dilma M. Silva e Markus Endler
CONFIGURACAO DINAMICA DE SISTEMAS
RT-MAC-9707, agosto de 1997, 35 pp

Kenji Koyama e Routo Terada
AN AUGMENTED FAMILY OF CRYPTOGRAPHIC PARITY CIRCUITS
RT-MAC-9708, sctembro de 1997, 15 pp

Routo Terada e Jorge Nakahara Jr.
LINEAR AND DIFFERENTIAL CRYPTANALYSIS OF FEAL-N WITH SWAPPING
RT-MAC-9709, sctembro de 1997, 16 pp

Flévio 8. Corréa da Silva e Yara M. Michelacci

MAKING OF AN INTELLIGENT TUTORING SYSTEM (OR METHODOLOGICAL ISSUES OF ARTIFTCIAL
INTELLIGENCE RESEARCH BY EXAMPLE)

RT-MAC-9710, outubro de 1997, 16 pp.

Marcelo Finger
COMPUTING LIST COMBINATOR SOLUTIONS FOR STRUCTURAL EQUATIONS
RT-MAC-9711, outabro de 1997, 22 pp.

Maria Angela Gurgel and E.M Rodrigues
THE F-FACTOR PROBLEM
RT-MAC-9712, dezembro de 1997, 22 pp.

Perry R. James, Markus Endler, Marie-Claude Gandel
DEVELOPMENT OF AN ATOMIC-BROADCAST PROTOCOL USING LOTOS
RT-MAC-9713, dezembro de 1997, 27 pp.

Carlos Eduardo Ferreira and Marko Loparic

A BRANCH-AND-CUT ALGORITHM FOR A VERICLE ROUTING PROBLEM WITH CAPACITY AND TIME
CONSTRAINTS

RT-MAC-9714, dezembro de 1997, 20 pp.

Nemi Kobayashi
A HIERARCHY FOR THE RECOGNIZABLE M-SUBSETS
RT-MAC-9715, dezembro de 1997, 47 pp.

Flavio Soares Corréa da Silva ¢ Denicla Vasconcelos Carbogim
A TWO-SORTED INTERPRETATION FOR ANNOTATED LOGIC
RT-MAC-9301, fevereiro de 1998, 17 pp.

Flévio Soares Corréa da Silve, Wamberto Weber Vasconcelos, Jaume Agusti, David Robertsan ¢ Ana Cristine V. de
Melo.

WHY ONTOLOGIES ARE NOT ENOUGH FOR KNOWLEDGE SHARING

RT-MAC-9802, outubro de 1998, 15 pp.

J. C.de Pina e J. Soares
ON THE INTEGER CONE OF THE BASES OF A MATROID
RT-MAC-9803, novembro de 1998, 16 pp.

K. Okuda and 8.W.Song
REVISITING HAMILTONIAM DECOMPOSITION OF THE HYPERCUBE
RT-MAC-9804, dezembro 1998, 17pp.

Markus Endler
AGENTES MOVEIS: UM TUTORIAL
RT-MAC-9805, dezembro 1998, 19pp.

Carlos Alberto de Braganga Pereira, Fabio Nakeno ¢ Julio Michael Stem
A DYNAMIC SOFTWARE CERTIFICATION AN VERIFICATION PROCEDURE
RT-MAC-9901, MARCO 1999, 21pp.

