Materials Science and Engineering B 264 (2021) 114971

Contents lists available at ScienceDirect

Materials Science & Engineering B

journal homepage: www.elsevier.com/locate/mseb

ELSEVIER

Check for

Structural, paramagnetic centres and luminescence investigations of the UV &
radiation-emitting BaZrO5:Gd>" perovskite ceramic prepared via
sol-gel route

Vijay Singh ™, S. Watanabe ", T.K. Gundu Rao”, G. Lakshminarayana

& Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
b Institute of Physics, University of Sao Paulo, SP 05508-090, Brazil
¢ Intelligent Construction Automation Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea

ARTICLE INFO ABSTRACT

Keywords: Perovskite-type ceramic materials have been widely studied due to their potential use in such applications as
Sol-gel ) electrical, thermal, optical, and immobilizing host materials in nuclear waste. In this work, Gd3+—doped BaZrO3
Perovskite perovskite samples were prepared by sol-gel method and characterized by scanning electron microscopy (SEM),
E;;amm X-ray diffraction (XRD), electron paramagnetic resonance (EPR) spectroscopy, and photoluminescence (PL)
Gd®" ions analysis. Our XRD analysis confirmed the formation of the sol-gel products, and the SEM data implicated the
BaZrOs prepared porous compound as the cause of the gases that evolved during the preparation. Upon excitation at

275 nm, the ceramic material displayed UVB emission at 315 nm (°Py,5 — 8S;,5). The EPR technique was used to
study the undoped and gadolinium-doped perovskite BaZrO3 ceramics. The lines in the undoped system were
caused by two defect centers. Center I displayed an isotropic line with a g-factor of 1.973 and a linewidth of 48
Gauss, and the center was assigned to an F' center. Center II exhibited an axially symmetric g-tensor with
principal values g =1.895 and g, =1.978. This center was identified as the Zr3* jon. The single dominant EPR
line with an effective g-value of 1.976 that was observed in the Gd-doped system was attributed to the Gd>* ion

Defect centers

experiencing a weak cubic symmetry crystal field.

1. Introduction

In recent years, perovskite-type ceramic has attracted much atten-
tion due to its highly stable structure, and various applied applications
[1-5]. The general formula for perovskite oxides is ABO3, where A is a
rare earth (RE) or an alkali-earth element and B a transition metal. The
perovskite oxides are gaining significant attention from researchers
[6-10]. Based on the different doping levels of A and B, the properties of
the perovskite ABO3 oxides can be changed, and these compounds have
been used for many technological applications [10-13]. Perovskite
oxide materials have gained much attention based on their interesting
properties in such areas as optics, superconductivity, ferroelectricity,
and magnetism [13-16]. Due to comparatively high lattice oxygen
mobility, these perovskite-type mixed oxides have been used in various
applications in solid oxide fuel cells (SOFCs), steam electrolytes, oxygen
sensors, catalysts, solid-state proton conductors, luminescent host, and
nuclear waste forms for fission products [17-23].
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Among the various perovskite forms, the barium zirconate (BaZrOs)
host is a well-known refractory material with a very high melting point
(2600 °C). Along with the essential features of a very high melting point,
small thermal expansion coefficient, high chemical stability, and the
highest bulk protonic conductivity, doped BaZrOs exhibits extremely
high grain boundary resistivity and has attracted extensive studies due
to its electrical and optical properties [24,25]. BaZrO3 materials have
high chemical stability, high fusion temperature, and wide bandgap,
which make them useful in various applications, such as in wireless
communication systems components, field emission displays, plasma
displays, and green photo-catalysis [26-30]. In addition, BaZrOj3 is an
alternative material for yttria-stabilized zirconia as a thermal barrier
coating material in the aerospace industry for supersonic jets [31].
Among the AZrOs (A: Ca, Sr or Ba) perovskites-type catalysts, BaZrO3
shows significantly high catalytic activity and high proton conductivity,
which makes acceptor-doped BaZrO3 a potential candidate for use in
applications such as hydrogen sensors, SOFCs electrolytes, and Hj
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production and extraction [32,33]. Perovskite oxide materials can be
used for nuclear waste disposal [34].

The extensive study of RE-doped BaZrOs includes the crystal struc-
ture and luminescent properties of Eu®"-doped BaZrOs [35], the hy-
drothermal synthesis of BaZrOs:Eu hybrid nanotube arrays using ZrO,
nanotube layers as a template with different Eu®"-doped contents [36],
the ferromagnetism and photoluminescence (PL) of multifunctional Fe-
doped BaZrOgs ceramics [37], the synthesis of visible light-emitting
BaZrO3 perovskite nanoceramics by an efficient, self-assisted, gel-com-
bustion route [38], the use of Y-doped BaZrOs in intermediate temper-
ature SOFCs as a proton-conducting solid electrolyte [39], the use of RE-
activated AZrOs (A = Ba, Ca, Sr) phosphors for display and sensing [28],
the electrochemical characterization and oxygen permeation properties
of Fe-doped BaZrOs [40], the synthesis and photocatalytic character-
ization of a new photocatalyst, BaZrOs [41], the use of perovskite ma-
terials for highly efficient flexible photocatalyst [42-45], the visible
frequency upconversion in Er®* and Yb®* co-doped BaZrOs; phosphor
[46], the oxidation number and coordination system of an actinide
uranium ion in SrZrOgs perovskite [47], and the luminescence properties
of A2*B*"03 (A =Ba, Ca, Sr, and B = Ti, Zr, Si, Hf, etc.) perovskite-type
oxides activated with lanthanide and actinide ions [48-54].

Ultraviolet-emitting luminescent systems UVA (315-400 nm), UVB
(280-315nm), and UVC (100-280 nm) have been widely applied in the
field of developing phototherapy lamps, display devices, fluorescent
lamps, and photochemistry [55-58]. Ultraviolet radiation from the sun
is a source of vitamin D. UVB induces the production of vitamin D in the
skin at the rates of up to 1000 IUs per minute. UVB and UVA have ap-
plications in treating more than 40 types of skin conditions and disor-
ders. Specifically, to heal the several kinds of skin diseases, such as
psoriasis, eczema, vitiligo, narrow-band ultraviolet B radiation is used
[55-60].

A Gd*'-activated system has been proven an ideal compound in
germicidal applications because of its well-defined, narrow-band emis-
sions in the UV-B region. Gd** ion-doped material gives a strong and
narrow ultraviolet-B emission under excitation by UV-visible light
because doped Gd>' increases the intensity of the host system by
forming defect centers in the host crystal lattice. Extensive investigation
of a UVB-emitting, Gd>*-activated system for a phototherapy lamp
revealed its high sensitivity to electron paramagnetic resonance (EPR)
spectroscopy [61-65]. This research background led us to investigate
the EPR spectra of the Gd>"-doped perovskite BaZrOs host system syn-
thesized by sol-gel technique.

EPR is an extremely sensitive method for detecting the existence of
free radicals, as it can detect 10'® spins. Furthermore, it is known that PL
spectroscopy can be used to analyze the optical properties and local
structures of the luminescent system. This is a convenient technique for
estimating and detecting RE and transition metal ions at an ultra-trace
level in solids. Therefore, herein we have used these techniques and
other techniques for materials characterization to investigate the
structure, paramagnetic centers, and optical property correlation of
BaZrOs with different Gd>* doping levels.

2. Materials and methods

The BaZrOg:de3+ (x=0.01 <x<0.11) samples were synthesized
by a simple sol-gel method using high purity of ZrO(NO3),-2H20, Ba
(NOg)g, citric acid, and Gd(NO3)3-6H20 as starting materials, as shown
in Table 1. In a typical synthesis, a stoichiometric amount of metal ni-
trates was dissolved in 10 ml deionized water in a 100 ml glass beaker.
Citric acid (citric acid/metal ion = 2:1, molar ratio) was added as a
chelating agent with continuous stirring to obtain a homogeneous so-
lution that was kept at 115 °C overnight in an oven to obtain the dried
gel. This dried gel was then fired in a furnace at 410°C for 2h. The
obtained residual was crushed and calcined at 1055 °C for 4 h to get the
final product.

The crystalline phase of the synthesized materials was characterized
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Table 1
Detailed information of sample composition and starting materials.

Sample Base materials

composition

BaZrOg: Ba=1.0452¢g Zr=1.0688 g C. Gd=0.0180g
Gdo.o1 A=3.0736g

BaZrOg3: Ba=1.0452g Zr=1.0688g C. Gd=0.0541¢g
Gdo.03 A=3.0736g

BaZrOs: Ba=1.0452g Zr=1.0688g C. Gd=0.0902¢g
Gdo.os A=3.0736g

BaZrOg: Ba=1.0452g Zr=1.0688¢g C. Gd=0.1263¢g
Gdo.o7 A=3.0736g

BaZrOs: Ba=1.0452g Zr=1.0688g C. Gd=0.1624¢g
Gdo.o0 A=3.0736g

BaZrOs: Ba=1.0452g Zr=1.0688g C. Gd=0.1985¢g
Gdo.11 A=3.0736g

Ba = Ba(NO3),, Zr = ZrO(NO3),-2H,0, C.A = Citric acid, Gd = Gd(NO3)3-6H,0.

by X-ray diffraction (XRD; RIGAKU Miniflex-II diffractometer) using
CuKa radiation (A =1.5406 f\). The measured XRD patterns were per-
formed at a scan rate of 5°/min in the range of 10-80°. The surface
morphology was obtained by scanning electron microscopy (SEM; S-
3400, Hitachi, Japan). The room temperature (RT) excitation spectra
and emission were recorded using a Shimadzu RF-5301PC spectro-
fluorophotometer with a xenon lamp as an excitation source. The same
amount of sample was used while recording the PL spectra. Excitation
and emission spectra were recorded with a spectral slit width of 1.5 nm.
The EPR spectra of the sample were recorded on a JEOL FE1X ESR
Spectrometer, operating in the X-band frequencies, using the conven-
tional 100 kHz magnetic field modulation.

3. Results and discussion
3.1. Crystal structure and morphology

Fig. 1 displays the crystalline phase of BaZrO; and BaZrOs:xGd>*
(x=0.01 <x<0.11). The diffraction peaks of all the samples corre-
spond to a perovskite-type cubic structure, which agrees with the JCPDS
No0-06-0399. The BaZrO3 ceramic was indexed as having cubic sym-
metry with the point joint-group symmetry Oy, and space group of Pm3m.
The diffraction pattern shows that the sample contained some minor
unknown impurity peaks around 26.27°, 33.62°, and 41.68° up to
0.03mol of Gd>" ions. A clear decreasing trend in impurity peaks is
visible with increasing Gd*>* concentration beyond 0.03 mol. These re-
sults demonstrated that trivalent Gd*>* ions were dissolved in the BaZrOs
host matrix without changing the structural prototype. However, the
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Fig. 1. XRD patterns of BaZrO3:de3+ (x=0.01 <x<0.11) ceramic.
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XRD peak intensity decreased with increasing Gd** concentration,
possibly due to the change in electron density or to point defects. A study
of the effects of dopant concentration in BaZrj4Eu,O3
(x=0.0<x<0.10) phosphors found that XRD lines broaden with
increasing x [66], which was partly attributed to the increased lattice
defect and disorder formation induced by the doping. The study’s XRD
results indicated that in the above composition range, the Eu®" ions
substitute for Zr** sites without changing the crystal structure of cubic
BaZrOs. In another study of the influence of Er doping on the structural,
optical, and luminescence properties of pulsed-laser-deposited Er:
BaZrOs thin films [67], the XRD data revealed a decrease in d-spacing
for all the doped films in comparison to pure BaZrOs film, which is
suggestive of the compressive stress in films. Crystallite size was deter-
mined using the Scherrer equation, D = 0.941/fcosf, where D is the
average crystallite size, 1 the X-ray wavelength, ¢ the Bragg diffraction
angle, and g the line broadening at half the maximum intensity (FWHM).
The calculated crystallite size (D) of this method ranged from 20 to
28 nm. The structures of previously reported BaZrO3 show that a larger
cation Ba is located at the center and bonded to twelve O atoms with a
cuboctahedral configuration that forms [BaO1] clusters. In comparison,
smaller cation Zr is located at the corners and bonded to six oxygen (O)
atoms, which form the octahedral [ZrOg] clusters [68,69]. The doped
Gd>* ions can partially occupy the Ba and Zr cation sites [68,69].

The SEM images in Fig. 2 showing the surface morphology of BaZ-
r03:0.07Gd powder at different magnifications reveal the size variation
of the particles within the range of a few micrometers with no charac-
teristic shape and merely a loose, foamy, irregular, and aggregated form
(Fig. 2a and b). The particles’ highly interconnected nature makes it
difficult to predict their morphology. Random grain growth is visible,
with an agglomeration of smaller particles forming the grains (Fig. 2c).
The smaller particles are sintered together to form larger particles,
which is ascribed to the high annealing temperature. Smaller particles

£~ N

b.0kV 13.3mm x10.0k SE(U)
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are formed on the surface of bigger particles due to the liberation of heat
in the form of gas during the annealing process (Fig. 2d).

3.2. Photoluminescence (PL) analysis

The PL excitation spectra of BaZr03:de3Jr (x=0.01<x<0.11)
were investigated at RT with the emission monitored at 315 nm. Fig. 3
(a) displays the excitation spectra. The excitation spectra reveal several
bands around 254, 275, and 277 nm in the UV region. The band near
254 nm is assigned to 857/2 =% j transitions of Gd®* ions [64,65]. The
intense bands around 274 nm, 275 nm, and 276 nm are allocated to 857 /
9= 61J transitions of Gd®* ions [64,65]. An intense peak was reported
around 275nm in Gd®T-doped barium-phosphate glasses when
observing the P;/5 — 8S;/5 emission of Gd®>* at 315nm [70]. Bands
were observed at 230 nm, 258 nm, and 276 nm due to f—f transitions of
the Gd®* ion in aluminosilicate oxyfluoride glasses [71]. Fig. 3(b) shows
the emission spectra of BaZr03:de3+ (x=0.01 <x<0.11) under an
excitation wavelength of 275 nm. The emission spectrum exhibits an
intense band around 315nm and weak bands around 313nm and
322 nm. These bands are caused by the transition from the excited state
5P} to the ground state 3S;,5 of Gd*" ions. An examination of Gd3'-
doped Y203 revealed emission bands at 314, 315, and 322 nm under X-
ray excitation [72]. The sharp emission band at 314 nm in Gd>*-doped
YAIOjs epitaxial thin films corresponded to 6p; - 8g, /2 transition of Gd3*
ions [73]. Fig. 4 displays the energy level diagram of Gd>*. In BaZrOs,
Gd®* emission mainly occurs at 315 nm. Upon 275 nm excitation, Gd3+
ions are excited to the °D; and °I; levels, then decay non-radiatively to
the ®P; state, and finally are radiatively relaxed from °P; to 8, , to give
an emission at 315 nm in the UVB region. PL studies show the usefulness
of the synthesized phosphors in phototherapy lamp for treating skin
diseases.

Fig. 5 shows that the emission intensity of BaZrOsxGd>*

Fig. 2. SEM images of BaZrO3:Gdg 7 ceramic.
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Fig. 3. Photoluminescence spectra of BaZr03szd3+ (x=0.01 <x<0.11) ceramic (a) Excitation spectrum of BaZr03:de3+ (x=0.01 <x<0.11) (Aemy, = 315nm) and

(b) Emission spectrum of BaZrO5:xGd®" (x=0.01 <x <0.11) (Aexc = 275 nm).
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Fig. 4. The energy level diagram of Gd** ions.

(x=0.01 <x<0.11) changes with the doping concentration of Gd3+
ions. The emission intensity of the sample initially increases with
increasing Gd>* concentration. As the distance between two adjacent
Gd>* ions is decreased by increasing Gd>* concentration, the interaction
between Gd>*- Gd®" ions is enhanced, leading to nonradiative energy
transfer between two Gd>* ions. The electric multipolar and exchange
interactions are involved in energy transfer. In the present system, the
emission peaks at x = 0.07, which is the critical concentration, due to the
concentration quenching effect arising from non-radiative energy
transfer processes (cross-relaxation) among Gd>* ions because of mul-
tipole-multipole interactions or exchange interaction [74]. Confirming
the type of interaction mechanism requires determination of the critical
separation distance between the acceptor and donor, as defined by
Blasse’s equation, which is used to calculate the critical energy transfer
distance (R.) through concentration quenching:
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Fig. 5. Variation in the emission intensity of 315 nm peak as a function of Gd**

concentration.
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where V is the volume of the crystallographic unit cell of BaZrOs
(73.1 1?\3) [75], y. the critical Gd3* concentration, and N the number of Z
ions in the unit cell (4). The energy transfer of the non-radiative critical
distance is about to 8 A. The estimated R. value is 8 A, which is bigger
than the 5 A for exchange interaction; therefore, multipolar interaction
is responsible for the energy transfer between the nearest-neighbor ions.
To check the oxidation state of fused Gd®" ions species, they were
subjected to EPR studies, as described below.

3.3. Electron paramagnetic resonance (EPR) analysis

Fig. 6 shows the EPR spectrum of undoped BaZrO3 recorded at RT. A
high-intensity signal is observed in the free-electron region (g ~ 2.0023).
Fig. 7 illustrates the expanded spectrum focusing on the free-electron
region. We attributed the spectrum to two different centers: one char-
acterized by an axially symmetric g-tensor and the other with an
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Fig. 6. Room temperature electron paramagnetic resonance (EPR) spectrum of
un-doped BaZrOj3 ceramic.
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Fig. 7. Electron paramagnetic resonance (EPR) spectrum at room temperature
of BaZrOs in the free-electron region (g ~ 2.0023). Center I line is assigned to an
F'-center, and center II, characterized by an axial g-tensor, is ascribed to a
Zr** ion.

isotropic g-value. The EPR lines corresponding to these two centers are
designated in Fig. 7.

BaZrOs is a perovskite of the ABO3 family and the oxygen ions with
Zr** ion sited at the center of the octahedron [76]. A three-dimensional
framework is formed by linking these octahedra by sharing corners. On
the other hand, Ba?* ions are coordinated by oxygen ions which form a
cubo-octahedral coordination. The BaZrOs lattice contains divalent
Ba?*' ions and tetravalent Zr** ions. Hence, a partial substitution of
tetravalent ions by divalent ions is possible as a consequence of anti-site
cation exchange. This type of substitution is a point defect in crystals
that is termed cation exchange disorder. Truong et al. [77] have directly
observed this disorder in crystal lattices.

Fig. 7 shows the Center I characterized by a g-value equal to 1.973
and a linewidth of 48 Gauss. The EPR line has a relatively large line-
width, such as arises in the presence of an unresolved hyperfine struc-
ture that can be induced by the interaction of the unpaired electron with
near by nuclear spins. In the present BaZrO3 system, barium and zirco-
nium have isotopes with nuclear spins. *°Ba and '%’Ba are barium
isotopes with nuclear spin 3/2 [78]. The abundance of '*Ba (11.2%) is
more than 1"Ba (6.6%). The nuclear magnetic moment of 137B4 (0.94) is
higher than 1354 (0.84). °'Zr has an abundance of 11.2% with nuclear
spin 5/2 and a magnetic moment of —1.3 [78]. Therefore, the unpaired
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electron interacts with both barium and zirconium nuclear spins.

Cation exchange disorder mentioned earlier, and non-stoichiometry
leads to lattice defects resulting in trapping centers. It has been shown by
first-principle calculations [79] that oxygen vacancies can form in
crystal lattices with cation disorder. These vacancies can trap electrons
during irradiation and can result in the formation of F'-centers (an
electron trapped at an anion vacancy). Such centers can form in a system
like BaZrOs. The amount of delocalization of the unpaired electrons,
along with magnetic moments and relative abundance of isotopes of ions
present in the system, determine the linewidth.

The main feature of an F-center is a g-value near to the free-electron
value and a g-shift, which may be positive or adverse. In the BaZrOs
system, center I has a slight g-shift and a large linewidth of 48 Gauss.
Because of these observations, we tentatively assigned center [ as an F'-
center. The aforementioned oxygen vacancies present in the system trap
electrons during the preparation of the phosphor, which induces the
formation of the F'-center. Defect centers are formed when phosphors
are subjected to ionizing radiation. However, the BaZrOs system seems
to be a special case where defect centers are formed most probably
during the preparation of the ceramic powder. Another example, YAIO3
(Yttrium-aluminum) perovskite was grown in vacuum [80].

The second center observed in undoped BaZrOgs (center II) has an
axially symmetric g-tensor with principal values g;=1.895 and
g, =1.978. A center that may be observed in systems with zirconium
ions in the Zr>" ion observed recently in pure polycrystalline zirconia
and in zirconium subjected to reductive treatments too [81]. The Zr>*
ion is characterized by the principal g-values g =1.959 and g, =1.977
in this system. This center is also observed in other systems like ZrF4
[82], Zr-doped YPO4 [83], and Zr-doped YAG [84]. These studies
showed that the center has g-values lower than the free-electron value
(2.0023) when the ion is located in lower symmetry environments like a
distorted cube or distorted octahedral sites and also g < g, .

Center II in BaZrOs has an axial g-tensor with principal values less
than the free-electron value. Based on the previous studies of the Zr3t
ion, center II in the current system is tentatively identified as the Zr**
ion. The crystal structure indicates that zirconium ion is situated in a
regular octahedron environment in BaZrO3 [76]. The oxygen vacancies
existing in the lattice due to anti-site disorder could cause changes in the
zirconium ion’s environment, leading to a lower symmetry. The devia-
tion from the regular octahedral environment could cause the g-tensor to
exhibit axial symmetry.

Fig. 8 displays the EPR spectrum observed at RT in Gd’"-doped
BaZrOs. This signal is ascribed to a Gd** ion, which likely experiences a
poor crystal field arising from the Gd>* lattice site. Brodbeck and Iton
explained the EPR spectrum of Gd** ion in powder systems [85], and

d3+
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Fig. 8. Electron paramagnetic resonance (EPR) spectrum of BaZrOs:Gd>" at
room temperature.
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also proposed that Gd>* ion limited with the poor crystal and located in
a comparatively undistorted environment displays EPR lines near the
g ~ 2.0 region. On the other hand, Gd** ion experiences a strong crystal
field (according to the Brodbeck and Iton representation if it is an in-
termediate crystal field) in a distorted environment, and low field lines
are now seen in the ESR spectrum.

Tonic radii considerations suggest that the Gd** ion is likely to be
located at the Zr** site in BaZrOs. The Zr** ion in an octahedral coor-
dination has an ionic radius of 0.72 A [86]. Ba%* ion has 12-fold coor-
dination and an ionic radius of 1.61 A. In the 6-fold coordination of an
octahedron, the ionic radius of Gd>* is 0.94 A, compared to 1.11 A in the
9-fold coordination. The Pr** ion with an ionic radius (0.85 ;\) close to
the 6-fold coordination of Gd>* ion has previously been found on the
Zr** site [87].

However, another study on BaTiOs, a system very similar to BaZrOs,
showed that Gd>* ion replaces Ba®" ion [88]. Therefore, Gd*" ion can be
located at Zr*" sites and at Ba®* sites in the BaZrOs:Gd ceramic. A
careful examination of the observed spectra indicates that it is a su-
perposition of two lines with almost identical g-values but differing
linewidths. An expanded view of the spectrum showing the central EPR
line is shown in Fig. 9. The linewidth of one of the lines is 86 Gauss
[Gd3+(1)] whilst the other line [Gd®*(2)] has a broader linewidth of 296
Gauss. The g-value is 1.94 for both lines. We believe that these two lines
originate from the Gd*>" ion situated at the Zr*" and Ba®" sites in the
lattice. Fig. 10 displays the observed EPR spectrum with an increase of
Gd>* ions concentration. The intensity of the narrow Gd>* line is almost
constant with increasing Gd*>" content in the phosphor. However, the
broad Gd>* line has a smaller intensity at a dopant concentration of
0.01 mol. The intensity of the broad Gd>* line increases with increasing
dopant concentration and reaches saturation at about 0.07 mol Gd>*
concentration. The Gd®* ion appears to prefer occupying the site, giving
rise to a broad line when the dopant concentration increases.

Charge neutrality requires Ba?* vacancies to be created when G
ions replace Ba®* jons. The presence of vacancies near the Gd>* site can
change the environment around the Gd>* ion and thereby induce dis-
tortions near the Gd>" site and increase the crystal field experienced by
the ion. Brodbeck and Iton et al. [85] suggested that the lines would be
seen in the low field region of the spectrum at a stronger crystal field.
However, Gd>" lines are seen near the g ~ 2.0 region, indicating that the
charge compensator is located farther from the Gd>" site. When Gd>"
ions substitute for Zr*" ions, oxygen vacancies are created for charge
compensation.

d3+

4. Conclusions

In summary, we demonstrated that the undoped and Gd>*-doped
BaZrO3 ceramic with a perovskite structure can be effectively prepared
by the sol-gel method. Among the detailed characterization analyses, the
XRD results revealed the disappearance of very low-intensity impurity
peaks at a high doping level of more than 0.03 mol. Correspondingly,
increasing the Gd>* concentration decreased the XRD peaks intensity.
The SEM data revealed the ceramic’s irregular morphology and high
degree of aggregation. The emission band near 315 nm was assigned to
6P7 /2= 8S7 /2 transition of the Gd®* ion, upon excitation at 275 nm. The
BaZrO5:Gd>* ceramic prepared with a Gd®* concentration of 0.07 mol
showed the maximum emission intensity. The PL results demonstrated
the ceramic’s attractive luminescence property for the generation of
UVB-emitting radiation. The prepared ceramic exhibited EPR lines due
to defect centers probably formed during the synthesis. These were
tentatively identified as F*- center and Zr®" ion. A relatively high
symmetry environment around the Gd*' ion was indicated by the
gadolinium-doped ceramic’s EPR lines near the g ~ 2.0 region. The Gd*>*
ion appeared to be located at both the Zr*" sites and the Ba®" sites.
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Fig. 9. Expanded view of electron paramagnetic resonance (EPR) spectrum of
BaZrO5:Gd>" at room temperature.
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Fig. 10. Electron paramagnetic resonance (EPR) spectra of BaZr03:de3+

(x=0.01 <x<0.11) ceramic.
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