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A B S T R A C T   

Perovskite-type ceramic materials have been widely studied due to their potential use in such applications as 
electrical, thermal, optical, and immobilizing host materials in nuclear waste. In this work, Gd3+-doped BaZrO3 
perovskite samples were prepared by sol-gel method and characterized by scanning electron microscopy (SEM), 
X-ray diffraction (XRD), electron paramagnetic resonance (EPR) spectroscopy, and photoluminescence (PL) 
analysis. Our XRD analysis confirmed the formation of the sol-gel products, and the SEM data implicated the 
prepared porous compound as the cause of the gases that evolved during the preparation. Upon excitation at 
275 nm, the ceramic material displayed UVB emission at 315 nm (6P7/2 → 8S7/2). The EPR technique was used to 
study the undoped and gadolinium-doped perovskite BaZrO3 ceramics. The lines in the undoped system were 
caused by two defect centers. Center I displayed an isotropic line with a g-factor of 1.973 and a linewidth of 48 
Gauss, and the center was assigned to an F+ center. Center II exhibited an axially symmetric g-tensor with 
principal values g|| = 1.895 and g⊥ = 1.978. This center was identified as the Zr3+ ion. The single dominant EPR 
line with an effective g-value of 1.976 that was observed in the Gd-doped system was attributed to the Gd3+ ion 
experiencing a weak cubic symmetry crystal field.   

1. Introduction 

In recent years, perovskite-type ceramic has attracted much atten
tion due to its highly stable structure, and various applied applications 
[1–5]. The general formula for perovskite oxides is ABO3, where A is a 
rare earth (RE) or an alkali-earth element and B a transition metal. The 
perovskite oxides are gaining significant attention from researchers 
[6–10]. Based on the different doping levels of A and B, the properties of 
the perovskite ABO3 oxides can be changed, and these compounds have 
been used for many technological applications [10–13]. Perovskite 
oxide materials have gained much attention based on their interesting 
properties in such areas as optics, superconductivity, ferroelectricity, 
and magnetism [13–16]. Due to comparatively high lattice oxygen 
mobility, these perovskite-type mixed oxides have been used in various 
applications in solid oxide fuel cells (SOFCs), steam electrolytes, oxygen 
sensors, catalysts, solid-state proton conductors, luminescent host, and 
nuclear waste forms for fission products [17–23]. 

Among the various perovskite forms, the barium zirconate (BaZrO3) 
host is a well-known refractory material with a very high melting point 
(2600 ◦C). Along with the essential features of a very high melting point, 
small thermal expansion coefficient, high chemical stability, and the 
highest bulk protonic conductivity, doped BaZrO3 exhibits extremely 
high grain boundary resistivity and has attracted extensive studies due 
to its electrical and optical properties [24,25]. BaZrO3 materials have 
high chemical stability, high fusion temperature, and wide bandgap, 
which make them useful in various applications, such as in wireless 
communication systems components, field emission displays, plasma 
displays, and green photo-catalysis [26–30]. In addition, BaZrO3 is an 
alternative material for yttria-stabilized zirconia as a thermal barrier 
coating material in the aerospace industry for supersonic jets [31]. 
Among the AZrO3 (A: Ca, Sr or Ba) perovskites-type catalysts, BaZrO3 
shows significantly high catalytic activity and high proton conductivity, 
which makes acceptor-doped BaZrO3 a potential candidate for use in 
applications such as hydrogen sensors, SOFCs electrolytes, and H2 
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production and extraction [32,33]. Perovskite oxide materials can be 
used for nuclear waste disposal [34]. 

The extensive study of RE-doped BaZrO3 includes the crystal struc
ture and luminescent properties of Eu3+-doped BaZrO3 [35], the hy
drothermal synthesis of BaZrO3:Eu hybrid nanotube arrays using ZrO2 
nanotube layers as a template with different Eu3+-doped contents [36], 
the ferromagnetism and photoluminescence (PL) of multifunctional Fe- 
doped BaZrO3 ceramics [37], the synthesis of visible light-emitting 
BaZrO3 perovskite nanoceramics by an efficient, self-assisted, gel-com
bustion route [38], the use of Y-doped BaZrO3 in intermediate temper
ature SOFCs as a proton-conducting solid electrolyte [39], the use of RE- 
activated AZrO3 (A = Ba, Ca, Sr) phosphors for display and sensing [28], 
the electrochemical characterization and oxygen permeation properties 
of Fe-doped BaZrO3 [40], the synthesis and photocatalytic character
ization of a new photocatalyst, BaZrO3 [41], the use of perovskite ma
terials for highly efficient flexible photocatalyst [42–45], the visible 
frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor 
[46], the oxidation number and coordination system of an actinide 
uranium ion in SrZrO3 perovskite [47], and the luminescence properties 
of A2+B4+O3 (A = Ba, Ca, Sr, and B = Ti, Zr, Si, Hf, etc.) perovskite-type 
oxides activated with lanthanide and actinide ions [48–54]. 

Ultraviolet-emitting luminescent systems UVA (315–400 nm), UVB 
(280–315 nm), and UVC (100–280 nm) have been widely applied in the 
field of developing phototherapy lamps, display devices, fluorescent 
lamps, and photochemistry [55–58]. Ultraviolet radiation from the sun 
is a source of vitamin D. UVB induces the production of vitamin D in the 
skin at the rates of up to 1000 IUs per minute. UVB and UVA have ap
plications in treating more than 40 types of skin conditions and disor
ders. Specifically, to heal the several kinds of skin diseases, such as 
psoriasis, eczema, vitiligo, narrow-band ultraviolet B radiation is used 
[55–60]. 

A Gd3+-activated system has been proven an ideal compound in 
germicidal applications because of its well-defined, narrow-band emis
sions in the UV-B region. Gd3+ ion-doped material gives a strong and 
narrow ultraviolet-B emission under excitation by UV–visible light 
because doped Gd3+ increases the intensity of the host system by 
forming defect centers in the host crystal lattice. Extensive investigation 
of a UVB-emitting, Gd3+-activated system for a phototherapy lamp 
revealed its high sensitivity to electron paramagnetic resonance (EPR) 
spectroscopy [61–65]. This research background led us to investigate 
the EPR spectra of the Gd3+-doped perovskite BaZrO3 host system syn
thesized by sol-gel technique. 

EPR is an extremely sensitive method for detecting the existence of 
free radicals, as it can detect 1013 spins. Furthermore, it is known that PL 
spectroscopy can be used to analyze the optical properties and local 
structures of the luminescent system. This is a convenient technique for 
estimating and detecting RE and transition metal ions at an ultra-trace 
level in solids. Therefore, herein we have used these techniques and 
other techniques for materials characterization to investigate the 
structure, paramagnetic centers, and optical property correlation of 
BaZrO3 with different Gd3+ doping levels. 

2. Materials and methods 

The BaZrO3:xGd3+ (x = 0.01 ≤ x ≤ 0.11) samples were synthesized 
by a simple sol-gel method using high purity of ZrO(NO3)2⋅2H2O, Ba 
(NO3)2, citric acid, and Gd(NO3)3⋅6H2O as starting materials, as shown 
in Table 1. In a typical synthesis, a stoichiometric amount of metal ni
trates was dissolved in 10 ml deionized water in a 100 ml glass beaker. 
Citric acid (citric acid/metal ion = 2:1, molar ratio) was added as a 
chelating agent with continuous stirring to obtain a homogeneous so
lution that was kept at 115 ◦C overnight in an oven to obtain the dried 
gel. This dried gel was then fired in a furnace at 410 ◦C for 2 h. The 
obtained residual was crushed and calcined at 1055 ◦C for 4 h to get the 
final product. 

The crystalline phase of the synthesized materials was characterized 

by X-ray diffraction (XRD; RIGAKU Miniflex-II diffractometer) using 
CuKα radiation (λ = 1.5406 Å). The measured XRD patterns were per
formed at a scan rate of 5◦/min in the range of 10–80◦. The surface 
morphology was obtained by scanning electron microscopy (SEM; S- 
3400, Hitachi, Japan). The room temperature (RT) excitation spectra 
and emission were recorded using a Shimadzu RF-5301PC spectro
fluorophotometer with a xenon lamp as an excitation source. The same 
amount of sample was used while recording the PL spectra. Excitation 
and emission spectra were recorded with a spectral slit width of 1.5 nm. 
The EPR spectra of the sample were recorded on a JEOL FE1X ESR 
Spectrometer, operating in the X-band frequencies, using the conven
tional 100 kHz magnetic field modulation. 

3. Results and discussion 

3.1. Crystal structure and morphology 

Fig. 1 displays the crystalline phase of BaZrO3 and BaZrO3:xGd3+

(x = 0.01 ≤ x ≤ 0.11). The diffraction peaks of all the samples corre
spond to a perovskite-type cubic structure, which agrees with the JCPDS 
No-06-0399. The BaZrO3 ceramic was indexed as having cubic sym
metry with the point joint-group symmetry Oh and space group of Pm3m. 
The diffraction pattern shows that the sample contained some minor 
unknown impurity peaks around 26.27◦, 33.62◦, and 41.68◦ up to 
0.03 mol of Gd3+ ions. A clear decreasing trend in impurity peaks is 
visible with increasing Gd3+ concentration beyond 0.03 mol. These re
sults demonstrated that trivalent Gd3+ ions were dissolved in the BaZrO3 
host matrix without changing the structural prototype. However, the 

Table 1 
Detailed information of sample composition and starting materials.  

Sample 
composition 

Base materials 

BaZrO3: 
Gd0.01 

Ba = 1.0452 g Zr = 1.0688 g C. 
A = 3.0736 g 

Gd = 0.0180 g 

BaZrO3: 
Gd0.03 

Ba = 1.0452 g Zr = 1.0688 g C. 
A = 3.0736 g 

Gd = 0.0541 g 

BaZrO3: 
Gd0.05 

Ba = 1.0452 g Zr = 1.0688 g C. 
A = 3.0736 g 

Gd = 0.0902 g 

BaZrO3: 
Gd0.07 

Ba = 1.0452 g Zr = 1.0688 g C. 
A = 3.0736 g 

Gd = 0.1263 g 

BaZrO3: 
Gd0.09 

Ba = 1.0452 g Zr = 1.0688 g C. 
A = 3.0736 g 

Gd = 0.1624 g 

BaZrO3: 
Gd0.11 

Ba = 1.0452 g Zr = 1.0688 g C. 
A = 3.0736 g 

Gd = 0.1985 g 

Ba = Ba(NO3)2, Zr = ZrO(NO3)2⋅2H2O, C.A = Citric acid, Gd =Gd(NO3)3⋅6H2O. 
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Fig. 1. XRD patterns of BaZrO3:xGd3+ (x = 0.01 ≤ x ≤ 0.11) ceramic.  
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XRD peak intensity decreased with increasing Gd3+ concentration, 
possibly due to the change in electron density or to point defects. A study 
of the effects of dopant concentration in BaZr1-xEuxO3 
(x = 0.0 ≤ x ≤ 0.10) phosphors found that XRD lines broaden with 
increasing x [66], which was partly attributed to the increased lattice 
defect and disorder formation induced by the doping. The study’s XRD 
results indicated that in the above composition range, the Eu3+ ions 
substitute for Zr4+ sites without changing the crystal structure of cubic 
BaZrO3. In another study of the influence of Er doping on the structural, 
optical, and luminescence properties of pulsed-laser-deposited Er: 
BaZrO3 thin films [67], the XRD data revealed a decrease in d-spacing 
for all the doped films in comparison to pure BaZrO3 film, which is 
suggestive of the compressive stress in films. Crystallite size was deter
mined using the Scherrer equation, D = 0.941λ/βcosθ, where D is the 
average crystallite size, λ the X-ray wavelength, θ the Bragg diffraction 
angle, and β the line broadening at half the maximum intensity (FWHM). 
The calculated crystallite size (D) of this method ranged from 20 to 
28 nm. The structures of previously reported BaZrO3 show that a larger 
cation Ba is located at the center and bonded to twelve O atoms with a 
cuboctahedral configuration that forms [BaO12] clusters. In comparison, 
smaller cation Zr is located at the corners and bonded to six oxygen (O) 
atoms, which form the octahedral [ZrO6] clusters [68,69]. The doped 
Gd3+ ions can partially occupy the Ba and Zr cation sites [68,69]. 

The SEM images in Fig. 2 showing the surface morphology of BaZ
rO3:0.07Gd powder at different magnifications reveal the size variation 
of the particles within the range of a few micrometers with no charac
teristic shape and merely a loose, foamy, irregular, and aggregated form 
(Fig. 2a and b). The particles’ highly interconnected nature makes it 
difficult to predict their morphology. Random grain growth is visible, 
with an agglomeration of smaller particles forming the grains (Fig. 2c). 
The smaller particles are sintered together to form larger particles, 
which is ascribed to the high annealing temperature. Smaller particles 

are formed on the surface of bigger particles due to the liberation of heat 
in the form of gas during the annealing process (Fig. 2d). 

3.2. Photoluminescence (PL) analysis 

The PL excitation spectra of BaZrO3:xGd3+ (x = 0.01 ≤ x ≤ 0.11) 
were investigated at RT with the emission monitored at 315 nm. Fig. 3 
(a) displays the excitation spectra. The excitation spectra reveal several 
bands around 254, 275, and 277 nm in the UV region. The band near 
254 nm is assigned to 8S7/2 → 6DJ transitions of Gd3+ ions [64,65]. The 
intense bands around 274 nm, 275 nm, and 276 nm are allocated to 8S7/ 

2 → 6IJ transitions of Gd3+ ions [64,65]. An intense peak was reported 
around 275 nm in Gd3+-doped barium-phosphate glasses when 
observing the 6P7/2 → 8S7/2 emission of Gd3+ at 315 nm [70]. Bands 
were observed at 230 nm, 258 nm, and 276 nm due to f–f transitions of 
the Gd3+ ion in aluminosilicate oxyfluoride glasses [71]. Fig. 3(b) shows 
the emission spectra of BaZrO3:xGd3+ (x = 0.01 ≤ x ≤ 0.11) under an 
excitation wavelength of 275 nm. The emission spectrum exhibits an 
intense band around 315 nm and weak bands around 313 nm and 
322 nm. These bands are caused by the transition from the excited state 
6PJ to the ground state 8S7/2 of Gd3+ ions. An examination of Gd3+- 
doped Y2O3 revealed emission bands at 314, 315, and 322 nm under X- 
ray excitation [72]. The sharp emission band at 314 nm in Gd3+-doped 
YAlO3 epitaxial thin films corresponded to 6PJ → 8S7/2 transition of Gd3+

ions [73]. Fig. 4 displays the energy level diagram of Gd3+. In BaZrO3, 
Gd3+ emission mainly occurs at 315 nm. Upon 275 nm excitation, Gd3+

ions are excited to the 6DJ and 6IJ levels, then decay non-radiatively to 
the 6PJ state, and finally are radiatively relaxed from 6PJ to 8S7/2 to give 
an emission at 315 nm in the UVB region. PL studies show the usefulness 
of the synthesized phosphors in phototherapy lamp for treating skin 
diseases. 

Fig. 5 shows that the emission intensity of BaZrO3:xGd3+

Fig. 2. SEM images of BaZrO3:Gd0.07 ceramic.  
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(x = 0.01 ≤ x ≤ 0.11) changes with the doping concentration of Gd3+

ions. The emission intensity of the sample initially increases with 
increasing Gd3+ concentration. As the distance between two adjacent 
Gd3+ ions is decreased by increasing Gd3+ concentration, the interaction 
between Gd3+- Gd3+ ions is enhanced, leading to nonradiative energy 
transfer between two Gd3+ ions. The electric multipolar and exchange 
interactions are involved in energy transfer. In the present system, the 
emission peaks at x = 0.07, which is the critical concentration, due to the 
concentration quenching effect arising from non-radiative energy 
transfer processes (cross-relaxation) among Gd3+ ions because of mul
tipole–multipole interactions or exchange interaction [74]. Confirming 
the type of interaction mechanism requires determination of the critical 
separation distance between the acceptor and donor, as defined by 
Blasse’s equation, which is used to calculate the critical energy transfer 
distance (Rc) through concentration quenching: 

Rc ≈ 2
[

3V
4πχcN

]1/3  

where V is the volume of the crystallographic unit cell of BaZrO3 
(73.1 Å3) [75], χc the critical Gd3+ concentration, and N the number of Z 
ions in the unit cell (4). The energy transfer of the non-radiative critical 
distance is about to 8 Å. The estimated Rc value is 8 Å, which is bigger 
than the 5 Å for exchange interaction; therefore, multipolar interaction 
is responsible for the energy transfer between the nearest-neighbor ions. 
To check the oxidation state of fused Gd3+ ions species, they were 
subjected to EPR studies, as described below. 

3.3. Electron paramagnetic resonance (EPR) analysis 

Fig. 6 shows the EPR spectrum of undoped BaZrO3 recorded at RT. A 
high-intensity signal is observed in the free-electron region (g ~ 2.0023). 
Fig. 7 illustrates the expanded spectrum focusing on the free-electron 
region. We attributed the spectrum to two different centers: one char
acterized by an axially symmetric g-tensor and the other with an 
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isotropic g-value. The EPR lines corresponding to these two centers are 
designated in Fig. 7. 

BaZrO3 is a perovskite of the ABO3 family and the oxygen ions with 
Zr4+ ion sited at the center of the octahedron [76]. A three-dimensional 
framework is formed by linking these octahedra by sharing corners. On 
the other hand, Ba2+ ions are coordinated by oxygen ions which form a 
cubo-octahedral coordination. The BaZrO3 lattice contains divalent 
Ba2+ ions and tetravalent Zr4+ ions. Hence, a partial substitution of 
tetravalent ions by divalent ions is possible as a consequence of anti-site 
cation exchange. This type of substitution is a point defect in crystals 
that is termed cation exchange disorder. Truong et al. [77] have directly 
observed this disorder in crystal lattices. 

Fig. 7 shows the Center I characterized by a g-value equal to 1.973 
and a linewidth of 48 Gauss. The EPR line has a relatively large line
width, such as arises in the presence of an unresolved hyperfine struc
ture that can be induced by the interaction of the unpaired electron with 
near by nuclear spins. In the present BaZrO3 system, barium and zirco
nium have isotopes with nuclear spins. 135Ba and 137Ba are barium 
isotopes with nuclear spin 3/2 [78]. The abundance of 135Ba (11.2%) is 
more than 137Ba (6.6%). The nuclear magnetic moment of 137Ba (0.94) is 
higher than 135Ba (0.84). 91Zr has an abundance of 11.2% with nuclear 
spin 5/2 and a magnetic moment of − 1.3 [78]. Therefore, the unpaired 

electron interacts with both barium and zirconium nuclear spins. 
Cation exchange disorder mentioned earlier, and non-stoichiometry 

leads to lattice defects resulting in trapping centers. It has been shown by 
first-principle calculations [79] that oxygen vacancies can form in 
crystal lattices with cation disorder. These vacancies can trap electrons 
during irradiation and can result in the formation of F+-centers (an 
electron trapped at an anion vacancy). Such centers can form in a system 
like BaZrO3. The amount of delocalization of the unpaired electrons, 
along with magnetic moments and relative abundance of isotopes of ions 
present in the system, determine the linewidth. 

The main feature of an F-center is a g-value near to the free-electron 
value and a g-shift, which may be positive or adverse. In the BaZrO3 
system, center I has a slight g-shift and a large linewidth of 48 Gauss. 
Because of these observations, we tentatively assigned center I as an F+- 
center. The aforementioned oxygen vacancies present in the system trap 
electrons during the preparation of the phosphor, which induces the 
formation of the F+-center. Defect centers are formed when phosphors 
are subjected to ionizing radiation. However, the BaZrO3 system seems 
to be a special case where defect centers are formed most probably 
during the preparation of the ceramic powder. Another example, YAlO3 
(Yttrium-aluminum) perovskite was grown in vacuum [80]. 

The second center observed in undoped BaZrO3 (center II) has an 
axially symmetric g-tensor with principal values g|| = 1.895 and 
g⊥ = 1.978. A center that may be observed in systems with zirconium 
ions in the Zr3+ ion observed recently in pure polycrystalline zirconia 
and in zirconium subjected to reductive treatments too [81]. The Zr3+

ion is characterized by the principal g-values g|| = 1.959 and g⊥ = 1.977 
in this system. This center is also observed in other systems like ZrF4 
[82], Zr-doped YPO4 [83], and Zr-doped YAG [84]. These studies 
showed that the center has g-values lower than the free-electron value 
(2.0023) when the ion is located in lower symmetry environments like a 
distorted cube or distorted octahedral sites and also g|| < g⊥. 

Center II in BaZrO3 has an axial g-tensor with principal values less 
than the free-electron value. Based on the previous studies of the Zr3+

ion, center II in the current system is tentatively identified as the Zr3+

ion. The crystal structure indicates that zirconium ion is situated in a 
regular octahedron environment in BaZrO3 [76]. The oxygen vacancies 
existing in the lattice due to anti-site disorder could cause changes in the 
zirconium ion’s environment, leading to a lower symmetry. The devia
tion from the regular octahedral environment could cause the g-tensor to 
exhibit axial symmetry. 

Fig. 8 displays the EPR spectrum observed at RT in Gd3+-doped 
BaZrO3. This signal is ascribed to a Gd3+ ion, which likely experiences a 
poor crystal field arising from the Gd3+ lattice site. Brodbeck and Iton 
explained the EPR spectrum of Gd3+ ion in powder systems [85], and 
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also proposed that Gd3+ ion limited with the poor crystal and located in 
a comparatively undistorted environment displays EPR lines near the 
g ~ 2.0 region. On the other hand, Gd3+ ion experiences a strong crystal 
field (according to the Brodbeck and Iton representation if it is an in
termediate crystal field) in a distorted environment, and low field lines 
are now seen in the ESR spectrum. 

Ionic radii considerations suggest that the Gd3+ ion is likely to be 
located at the Zr4+ site in BaZrO3. The Zr4+ ion in an octahedral coor
dination has an ionic radius of 0.72 Å [86]. Ba2+ ion has 12-fold coor
dination and an ionic radius of 1.61 Å. In the 6-fold coordination of an 
octahedron, the ionic radius of Gd3+ is 0.94 Å, compared to 1.11 Å in the 
9-fold coordination. The Pr4+ ion with an ionic radius (0.85 Å) close to 
the 6-fold coordination of Gd3+ ion has previously been found on the 
Zr4+ site [87]. 

However, another study on BaTiO3, a system very similar to BaZrO3, 
showed that Gd3+ ion replaces Ba2+ ion [88]. Therefore, Gd3+ ion can be 
located at Zr4+ sites and at Ba2+ sites in the BaZrO3:Gd ceramic. A 
careful examination of the observed spectra indicates that it is a su
perposition of two lines with almost identical g-values but differing 
linewidths. An expanded view of the spectrum showing the central EPR 
line is shown in Fig. 9. The linewidth of one of the lines is 86 Gauss 
[Gd3+(1)] whilst the other line [Gd3+(2)] has a broader linewidth of 296 
Gauss. The g-value is 1.94 for both lines. We believe that these two lines 
originate from the Gd3+ ion situated at the Zr4+ and Ba2+ sites in the 
lattice. Fig. 10 displays the observed EPR spectrum with an increase of 
Gd3+ ions concentration. The intensity of the narrow Gd3+ line is almost 
constant with increasing Gd3+ content in the phosphor. However, the 
broad Gd3+ line has a smaller intensity at a dopant concentration of 
0.01 mol. The intensity of the broad Gd3+ line increases with increasing 
dopant concentration and reaches saturation at about 0.07 mol Gd3+

concentration. The Gd3+ ion appears to prefer occupying the site, giving 
rise to a broad line when the dopant concentration increases. 

Charge neutrality requires Ba2+ vacancies to be created when Gd3+

ions replace Ba2+ ions. The presence of vacancies near the Gd3+ site can 
change the environment around the Gd3+ ion and thereby induce dis
tortions near the Gd3+ site and increase the crystal field experienced by 
the ion. Brodbeck and Iton et al. [85] suggested that the lines would be 
seen in the low field region of the spectrum at a stronger crystal field. 
However, Gd3+ lines are seen near the g ~ 2.0 region, indicating that the 
charge compensator is located farther from the Gd3+ site. When Gd3+

ions substitute for Zr4+ ions, oxygen vacancies are created for charge 
compensation. 

4. Conclusions 

In summary, we demonstrated that the undoped and Gd3+-doped 
BaZrO3 ceramic with a perovskite structure can be effectively prepared 
by the sol-gel method. Among the detailed characterization analyses, the 
XRD results revealed the disappearance of very low-intensity impurity 
peaks at a high doping level of more than 0.03 mol. Correspondingly, 
increasing the Gd3+ concentration decreased the XRD peaks intensity. 
The SEM data revealed the ceramic’s irregular morphology and high 
degree of aggregation. The emission band near 315 nm was assigned to 
6P7/2 → 8S7/2 transition of the Gd3+ ion, upon excitation at 275 nm. The 
BaZrO3:Gd3+ ceramic prepared with a Gd3+ concentration of 0.07 mol 
showed the maximum emission intensity. The PL results demonstrated 
the ceramic’s attractive luminescence property for the generation of 
UVB-emitting radiation. The prepared ceramic exhibited EPR lines due 
to defect centers probably formed during the synthesis. These were 
tentatively identified as F+- center and Zr3+ ion. A relatively high 
symmetry environment around the Gd3+ ion was indicated by the 
gadolinium-doped ceramic’s EPR lines near the g ~ 2.0 region. The Gd3+

ion appeared to be located at both the Zr4+ sites and the Ba2+ sites. 
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