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Abstract 

It is always possible to construct a real function ¢, given random quanti­ties X and Y with continuous distribution functions F and G, respectively, in such a way that ¢,(X) and ¢(Y}, also random qua.ntities, have both the same distribution function, say H. 

Based on thiB result, it is introduced an alternative way to somehow chara.c­terize the "opinion" of a group of experts about a continuous random quantity of interest, the construction of Fields of coincidence of opinions. A Field of coincidence of opinions is a finite union of intervals where the opinions of the expert:, coincide with respect to that quantity of interest. 

1 Introduction 

The main object of this paper is to review a result about transformations of continuous random quantities presented by · De Finetti (1953). We will introduce the problem solved by De Finetti by first recalling a well-known theorem about transformations of random quantities. 

Theorem 1 Let X be a real random variable with continuous distribution function F and H any other distribution function. Then there is a real transformation f such that Z = f(X) has distribution function H . 

Two corollaries are derived from Theorem 1: 
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Corollary 1 {Probability Integral Transform} 

If X is a mndom variable with continuous distribution function F, then F(X) i., 

uniformly distributed on the interoal (0, 1). 

Corollary 2 Let U be a random variable uniformly distributed on (0, 1) and H any 

other distribution function. Then H-1(U) == sup{x E R: H(x) :$ U} is a mndom 

variable with distribution function H. 

The result of Theorem 1 applies to a single random variable in the sense that if 

X and Y are random variables with continuous, then /(X) and f(Y) will not have 

necessarily the same distribution function. In other words, given two continuous ran­

dom variables X and Y, it is always possible to construct two new random variables 

Z = f(X) and W = g(Y), both having a certain distribution function H. However, in 

general, f and g may differ. In this context, a question arises: Is there a real function 

</) such that the random variables ef>(X) and </)(Y) both have distribution function H? 

This question is affirmatively answered by De Finetti in his 1953 paper. De Finetti 

shows a real function <P satisfying the conditions stated in the question above and 

outlines the construction of the random variables ¢(X) and ¢(Y) and the derivation 

of their distribution functions. 

We will present, with full details, the theorem of the existence of such real functions 

ef> and will discuss the interpretation of this result. 

2 Main Result 

In this section, we first state the theorem mentioned in the previous section as well as 

the basic argumentation of its proof. We next construct a real function 'P which figures 

in the demonstration of the main result. Finally, we define the random variables ip(X) 

and 'P(Y) and determine their distribution functions. 

Initially, let us state the main theorem: 

Theorem 2 {Bruno de Finetti} 

Let X and Y be random variables with continuous distribution functions F and G, 

respectively, and H any other distribution function. Then there is a real function 

cJ, such that the mndom variables <f,(X) and <f>(Y) both have the same distribution 

function H. 
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Proof outline: It is sufficient to prove the existence of a real function cp such that the random variables cp(X) and <p(Y) have common uniform distribution on (0, 1), since if <I>= n-1 o cp, <t>(X) and <f>(Y) will both have distribution function H, by Corollary 2. Thus, we proceed to construct the uniformly distributed random variables cp(X) and cp(Y), without loss of generality. 

2.1 Construction of the function i.p 

The construction of the aforementioned real function cp is based on some properties of continuous distribution functions described in the sequel. 

Lemma 1 Let X and Y be random variables with continuous distribution functions F and G, respectively. Let Cx = {(a, b) E R 2 
: F(b) - F(a) = ½ , -oo < a < b < +oo}. If F and G have no common median, then there are (a1, b1], (a2, ~] E Cx such that G(bt) - G(a1) < ½ and G(~) - G(a2) > ½-

Lemma 2 Let X be a random variable with continuous distribution function F. The set Cx = {(a, b) E R 2
: F(b) - F(a) = ½ , -oo <a< b < +oo} is connected. 

Let us note that since t9 every point (x, y) E R 2 , with x < y, corresponds a unique interval (x, y] of real numbers, Cx may be seen as the set of all intervals of real numbers having X-probability ½-

We establish the following propositions: 

Proposition 1 Let X and Y be random variables with continuous distribution func­tions F and G, respectively. There is an interoal of real numbers Ii = (a, bJ, with -oo ~ a < b < +oo, satisfying 

1 F(b) - F(a) = G(b) - G(a) = 2 
Proof: Two situations need to be considered: 

(1) F and G have a common median: 
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In this case, the conclusion is immediate. It is sufficient to take a common median 

of F and G, say mo, and consider the interval (-oo, mo], as 

1 1 
F(m0) -F(-oo) = G(mo) - G(-oo) = - -0 = -

2 2 

(2) F and G have no common median: 

In this case, we will prove the existence of a point ( a, b) E C x ( as defined in Lemma 

1) such that G(b) - G(a) = ½- For this purpose, we define the function D: Cx ➔ R 

by: 

D(x,y) = G(y)- G(x). 

D is obviously continuous on its domain Cx. By Lemma 2, Cx is connected 

and, since D is continuous, it follows that the image of D is also connected and, 

in particular, is an interval of real numbers. But, by Lemma 1, there are points 

(ai, b1 ) and (a2 , "2) E Gx such that D(a1 , b1 ) < ½ and D(~, b:z) > ½- The image of 

the function D is therefore an interval containing a value smaller than ½ and another 

greater than ½- Thus, there is an interval (a, b) E Cx such that 

1 
. D(a, b) = G(b) - G(a) = 2 = F(b) - F(a) , 

since (a, b) E Cx. 

We should emphasize that in situations where there are more than one interval 

satisfying Proposition 1, we will denote by 11 the interval having the lowest infimum 

among those satisfying this result, in order to avoid any ambiguity (here, we admit, 

in a misuse of notation, -oo as the infimum of an unbounded interval). This choice 

having been made and still existing more than one interval satisfying proposition 1, 

11 will represent the interval with lowest supremum. Furthermore, we will always 

consider [1 closed at the right and opened at the left and will denote by 10 the 

complementary set of 11 relatively to R. 

We now state another property of continuous distribution functions. 
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Proposition 2 Let us assume the conditions of proposition 1 and the set8 10 and 11 derived from it. Then: 

(i) there is a set lo1 C 10 such that P(X E lo1 ) = P(Y E lo1} = ¼ and 
(ii} there is a set In C 11 such that P(X E lu) = P(Y E 111 ) = ¼ 

Proof: 

(i) Let 11 = (a, b]. There are two situations to be considered: 

(1) Let us suppose -oo < a < b < +oo. By Proposition 1, F(b) - F(a) = G(b)-G(a) = ½- Let us define the following distribution function F derived from F: 

- { 2F(x) for x < a F(x)= 2{F(x+b-a)-½} forx~a 

Analogously, let us define G by: 

{ 
2G(x) for x < a 

G(x) = 2{G(x + b - a) - ½} for x ~ a 

By Proposition 1, 3 (ao, ~] c R such that F(bo) - F(ao) = G(bo) - G(ao) = ½-
• Suppose bo < a. In this case, F(bo) - F(ao) = 2F(bo) - 2F(ao) and G(bo) -G(ao) = 2G(bo) - 2G(ao). Then, 

F(bo) - F(ao) = G(bo) - G(ao) = ~ ~ 2F(bo) - 2F(ao) = 2G(bo) - 2G(ao) = ~ ~ 

1 ~ F(bo) - F(ao) = G(bo) - G(ao) = 4 
As the functions F and G are continuous, we can still write 

1 P(X E (ao, bo]) = P(Y E (ao, bo]) = 4 
Defining / 01 = (ao, bo], the result is proved. 
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• 
• Let us assume now ao < a ~ b0 • In this situation, F(bo) - F(~) = 2{F(bo + 

b- a) - ½}- 2F(a0) and G(bo) - G(a0) = 2{G(b0 + b- a) - ½} - 2G(ao). Thus, 

F(b0 ) - F(ao) = G(bo) - G(ao) = i => 

1 1 1 
=> 2{F(bo + b- a) - -} - 2F(ao) = 2{G{bo + b - a) - -} - 2G(ao) = - => 

2 2 2 

=> F(bo + b - a) -
1 

2 
-F(ao) = G(bo + b- a) -

1 -
2 .......... 

1 
-G(a,o) = - * 

4 
.......... 

F(b)-F(a) G(b)-G(a) 

1 
=> F(bo+b-a)-{F(b)-F(a)}-F(ao) = G(bo+b-a)-{G(b)-G(a)}-G(ao) = 4 => 

1 
=> {F(bo+b-a)-F(b)}+{F(a)-F(ao)} = {G(bo+b-a)-G(b)}+{G(a)-G(ao)} = 4 

Since F and G are continuous, it follows that 

1 
P(X E (ao, al)+ P(X E (b, bo + b- al) = P(Y E (ao, al)+ P(Y E (b, bo + b- al) = 4 

and, therefore, 

1 
P(X E (ao, a] LJ(b, bo + b - al) = P(Y E (ao, a] LJ(b, bo + b - a]) = 4 , 

so that we have 101 = (ao, a] U (b, bo + b - a) 

(ii) The proof of the existence of 111 C 11 such that P(X E 111) = P(Y E 111) = ¼ 

is analogous to the demonstration of part (i) of this proposition. We have just to 

consider the distribution functions 
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{
o . ifx<a 

F(x) = 2
1
(F(x) - F(a)) if a$ x :::; b 

ifx>b 

and proceed as in part (i). 

{

o ifx<a 
and G(x) = 2

1
(G(x} - G(a)} if a $ x ~ 

if X > b 

Similarly to what was established for the interval 11, in the situation where we 
have more than one subset of 11 satisfying proposition 2, part (ii), we will consider 
the interval with lowest extremes as 111 . We also will denote by 101 the subset of Io satisfying the part (i) of proposition 1.2 formed by the least number of intervals. 
Again, if there is more than one subset of 10 in these conditions, we will denote by 101 that one with lowest infimum. Finally, the complementary set of 111 relatively to 11 will be called 110 and the complementary set of 101 relatively to 10 will be called 100 • 

In general, proceeding successively in this way, we can obtain, Vn E IN, 2n disjoint 
sets Ji1 ••• in, (i1, ... , in) E {O, it, such that 

l · · - 1- · o LJ J- · 1 Vn E 'IN 11-··'11 - •1 ·•·•n, 11 . .. In, 1 • 

Another characteristic of the sets Ji1 •.. i,,. is presented in Lemma 3 below. 

Lemma 3 Any set of the form li1 ••• in, (i1,---,in) E {O, l}", constructed by the proce­dure described above is f onned, at most, by n + 1 intervals of real numbers. 

Stated propositions 1 and 2 and their extensions yield the real function cp which 
makes the random variables cp(X) and rp(Y) uniformly distributed over (0, 1). 

We define cp : R ➔ [O, 1} by: 

where i1 , i2 , ... are such that x E l,1 .•• i,,., Vn ~ 1 (here, the sets J,1 ..• j,, correspond to 
the sets constructed via the distribution functions F and G). 
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• 
It should be noted that <pis also a function of the distribution functions F and G, 

but we will omit these arguments when referring to the function cp in order to keep 

the notation easy. 

Analysing the expression of <p, we see that the function associates to each real 

number x the element of the interval (0, 1] having a dyadic representation (expansion) 

given by 0, i1i2 ... , with x E /i1 .•• i,., Vn ~ 1. It can be proved in a straightforward 

manner that <pis well-defined. 

2.2 Detenmning the distribution of i.p 

Let us now prove that cp(X) and 1p(Y) both have uniform distribution on the interval 

(0, 1). We will determine the distribution function of ip(X), 

F<P(X)(t) = P(1p(X) < t) = P(X E <p-1 ({-oo,t)) = Px({x ER: rp(x) < t}), 

where Px is the probability measure on (R, B) induced by the random variable X 

and rp-1(A) is the inverse image of the set A E B by the function <p. We then have: 

(1) t $ 0 => {x ER: ip(x) < t} = 0 and Px({x ER: <p(x) < t}) = Px(0) = 
0. 

(2) t > 1 => {x E R: <p(x) < t} = R. So, Px({x E R : <p(x) < t}) = 
Px(R) = 1. , 

(3) If 0 < t $ 1, it follows that: 

00 

{x ER: <p(x) < t} = U An , so that 
n=l 

00 

F<P(X)(t) = Px( LJ An) , 
n=l 

where { An : n ~ 1} is the sequence of sets defined by: 

and An= { 
0 if d..(t) = 0 

ld1(t) ... dn-1(t),l-d,.(t) if d..(t) = 1 
,n > l 
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Let us fix t E (0, 1]. This point t may be written as t = }:~=l dn(t)(½)8, where 
d1 (t), th(t) ... are such that 0, d1 (t)th(t) ... is a dyadic expansion oft. In order to avoid 
any ambiguity in the definition of the dyadic expansion of a real number t E (0, 1], we 
will here consider for t the infinite dyadic representation, that is, the representation 
having an infinite number of 1' s (for instance, for t = ½, we will consider the expansion 
0, 01111 ... instead of the expansion 0, 10000 ... ). Then, taking x0 E {x ER: rp(x) < t} 
and considering rp(xo) = E:=l in(½t, we obtain: 

00 1 00 1 
Xo E {x ER: rp(x) < t} <=> rp(xo) < t <=> ~::>n(2r < E dn(t)(2t 

n=l n=l 

Since we are considering an infinite dyadic expansion fort, it follows that the last 
inequality above is true if, and only if, 

3 no E IN such that no= inf{n E IN: in=/:- dn(t) and in= 1- dn(t) = O} <=> 

<=> 3 no E IN such that Xo E ld1(t) ... d,.
0

_ 1(t),o and dn0 (t) = 1 <=> 

00 

<=> 3 no e IN such that Xo E Ano <=> Xo E LJ An , so that 
n=l 

00 

Xo E {x ER: rp(x) < t} <=> Xo E LJ An . Therefore, 
n=l 

00 

{x ER: cp(x) < t} = LJ An-
n=! 

However, for every fl E IN , each set of the form Ii1 ...... is formed by a finite union 
of intervals ( at most n + 1 inte_rvals), as stated in Lemma 3, and since A,. = 0 or An 
is of the form Ji1 ••• .,., it follows that An EB, 'r/n ~ 1. Since An EB, 'r/n ~ 1, we have 
that Lfn"=1 An EB and, consequently, {x ER: rp(x) < t} EB, 'r/t E (0, 1). 

Finally, let us determine the distribution function of rp(X). 
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00 00 

F<p(X)(t) = Px( U An) = L Px(An) , 
n=l n=l 

since { An : n ~ I} is a sequence of pairwise disjoint sets. 

However, if dn(t) = 0, then An= 0 and Px(An) = O. H dn(t) = 1, then Px(An) = 
Px(ld1 lt) ... d..-i(t),t-da(t)) = (½)n, as, by construction, the set ld1(t) ... da-i(t),l-d..(t) con­
tains (2t of the distribution of X. In this way: 

{ 
0 if d,.(t) = 0 

Px(An) = (½)n if dn(t) = 1 

Recalling the expression of the distribution function of cp(X), we have 

since O,d1(t)d2 (t) ... is a dyadic expansion oft. We then obtain, from (1), (2) and 
(3), 

{ 

0 if t < 0 
. F,p(X)(t) = t if O < t $1 

. 1 ift>l 

which is the distribution function of a random variable uniformly distributed on 
(0, 1). The proof that cp(Y) ~ U(O, 1) is analogous. 

It is interesting to emphasize that in the conditions of Theorem 2 nothing is men­
tioned about the probability spaces where X and Y are defined; references are made 
only on the structure of the distribution functions Fe G, so that the result of theorem 
2 is valid also for random variables defined in distinct probability spaces. We also 
note that X and Y need neither to be absolutely continuous random variables nor to 
possess moments. 

In the next section, we present an interpretation of the result just proved. 
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3 Interpretation 

The most interesting focus of Theorem 2, according to De Finetti, corresponds to 
the situation in which the random variables X and Y are related to a unique random 
quantity of interest, instead of two distinct quantities of interest, and F and G are the 
the opinions of two individuals about this unique random quantity. This formulation 
is, of course, natural from the subjectivistic standpoint. probability, natural at all. 

In this context, when two persons express their opinions about a given random 
quantity of interest, we have the following fact from the construction of the real 
function I.() (and of the random variables ip(X) and ip(Y)): it is always possible to 
construct a finite union of intervals, which De Finetti named Fields of Coincidence 
of Opinions, where the opinions of both individuals about the quantity of interest 
(represented by F and G) coincide. In other words, it is always possible to construct 
a finite union of intervals that contains, for any level a E (0, 1), at least 1 - a of the 
distributions of X and Y simultaneously. Formally, we state this fact in the following 
proposition: 

Proposition 3 Let X and Y be random variables with continuous distribution func­
tions F and G, respectively. Then, Va E (0, 1), there is a finite union of intervals 
B = B(o:) such that 

. Px(B) = Py(B) ;::: 1 - a . 

Proof: Let us fix a E {O, 1). We know that there is a natural number no = 
no(a) E IN such that 1 - (½)no ;::: 1 - a. -We then need only to define a sequence of 
sets {B,.: n ~ 1} by 

Bi= 11 
B2 = 101 
B3 = 1001 

B,. = l 0 ... 01 -.........-
n.-1 aero'• 
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and take B = U~1 Bn. We will have 

no no 
Px(B) = Px( LJ Bn) = L Px(Bn) 

n=l n=l 

where the last equality follows from the fact that { Bn : n 2::: 1} is a sequence of 
pairwise disjoint sets. And since, by construction, Px(Bn) = (½)" , Vn 2:: 1, it follows 

that: 

no 1" 1no . 
Px{B)=E(-) =1-(-) 2:::1-a 

n=l 2 2 

In an analogous way, we verify that Py(B) = 1 - (½)"° ~ 1 - a, concluding the 
demonstration of Proposition 3. 

We emphasize that the result of Proposition 3 can be extended to any finite number 
of continuous distribution functions. Thus, it is possible to establish fields of coinci­
dence of opinions for a finite group of individuals. This fact, according to De Finetti, 

hints a possibility of characterizing the "conjoint opinion" of a group of experts, as 
discussed below. 

Let us consider the situation where a group of experts bas to make a decision jointly 
and, for this purpose, they have to tell their opinions about a certain random quantity 
of interest via the elicitation of their respective distribution functions {that we will 
suppose continuous). The construction of the fields of coincidence of opinions sketches 
an alternative method of expressing what the "opinion" of these experts would look 
like, as some properties of the fields of coincidence of opinions are requirements to 
characterize the "opinion" of a group of experts. 

At first, we emphasize that the fields of coincidence can be seen as a genuine 
attribution of probability from the group, differently of the usual procedures of mix­
ing probabilities, which produce probability distributions having no meaning in the 
subjectivistic paradigm. In other words, the probability distributions resulting from 
the processes of mixture do not correspond to the opinion of anybody, opposing De 
Finetti's viewpoint. 

Another positive point of this method is that the individual opinions are preserved 
at the construction of the fields of coincidence of opinions. This property gives to 
this method an objective character in the sense that individual opinions are preserved 
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and there is no reason for the members of the group to reject the fields of coincidence 
of opinions as a consensus expression (in fact, no member of the group needs to 
give up his beliefs about the random quantity in the construction of these fields of 
coincidence). 

The method based on fields of coincidence also presents some limitations. Ini­
tially, we observe that a field of coincidence of opinions does not determine a proper 
probability distribution as it consists only of a finite union of intervals and their re­
spective uncertainty rates according to all members of the group. Thus, the normative 
Bayesian theory for decision-making (based on expected utility maximization) does 
not apply to any procedure of decision-making based on the fields of coincidence as 
a description of the "opinion" of the group. 

Another deficiency that we can point out in this method is the absence of an ax­
iomatic support, based on coherence, which would justify the adoption of the fields of 
coincidence as a representation of the "opinion" of a group of experts. This disadvan­
tage arises because there is no concept of joint coherence (or rationality). Notwith­
standing Arrow's [1] impossibility result, much of current research in group decision 
theory has been devoted to establish such a concept and, consequently, a numerical 
transcription of the uncertainty of a group of experts. 

In this context, where there ie no normative theory for decision-making, but many 
attempts to characterize joint coherence, we think that the existence of the fields 
of coincidence of opinions n;iay contribute to the discussion on this question. This 
discussion turns out to be even more open as there is " a point which is becom­
ing increasingly better understood in group decision theory, namely that a group of 
Bayesians cannot always be fully Bayesian even when its members would want it to 
be" (Genest and Zidek [4]). 

We now show some examples of fields of coincidence of opinions. 

Example I Let X and Y be random variables uniformly distributed on (l, 2) and 
(2, 3), respectively. 

A field of coincidence of opinions with a= 0,125 would be the union of intervals 
(1, ¥-1 U(}, ¥] (corresponding to 11 U 101 Uloo1, as the construction in section 2.1), or 
the interval (J, f ]. As the supports of the distributions of X and Y are disjoint, no 
field of coincidence will be contained in the intersection of these supports. 
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Example 2 Let X and Y be random variables normally distributed with common 

mean O and variances 1 and 4, respectively. 

Here, a field of coincidence of opinions with a= 0,25 is the set (-oo, OJ U (0, 635 ; 2, 35J. 
In this case, it seems that no field of coincidence is formed by a unique interval, dif­
ferently from the previous example. 

These two examples show that there are a number of points to be better understood 
in the characterization of the fields of coincidence: When is a field of coincidence for a 
given value of a unique? Under what conditions over the supports of the distribution 
functions F and G is it possible to obtain a unique interval of real numbers as a field 
of coincidence of opinions? How does the number of intervals vary in function of o.? 
(As to the last question, a rough upper bound for the number of intervals is no(~+l) 

, where no= no(a) = min{n E IN: 1- (½t ~ 1- o.}). 

Apart from the mathematical questions just mentioned, there are also some philo­
sophical inquiries: Does it make sense to construct fields of coincidence of opinions 
when the supports of the distributions of X and Y are mutually exclusive? Do fields 
of coincidence provide a more precise interpretation of the uncertainty of a group of 
experts when F and G have the same support than in situations when F and G are 
more generic? How better is to have a group's uncompromising field instead of a 
group's (mathematical) probability as a measure of its "opinion"? As we can see, 
there is much to be studied and understood on De Finetti's fields of coincidence of 
opinions. 
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