Life-Like Network Automata Descriptor based on
Binary Patterns for Network Classification

Lucas C. Ribas*, Jeaneth Machicao+, Odemir M. Bruno+**

(*) Institute of Mathematical and Computer Sciences (ICMC), University of Sao Paulo
(USP), P.O. Boz 668, Sio Carlos, SP P.C. 14560-970, Brazil

(+) Scientific Computing Group. Sdo Carlos Institute of Physics, University of Sio Paulo,
Sao Carlos - SP, PO Box 369, 13560-970, Brazil.

Abstract

We propose a descriptor based on binary patterns extracted from network-
automata time-evolution patterns (TEP) aiming to characterize networks. More,
in particular, we explore TEPs descriptors from the Life-Like Network Automata
(LLNA), a cellular automaton inspired by the rules of the “Life-Like” family that
uses a network as tessellation, and based on its dynamics to extract features for
network characterization. In recent work, the LLNA has been introduced as a
pattern recognition tool that uses a descriptor based on the histograms of com-
plexity measures such as the entropy, word length, and Lempel-Ziv complexity.
However, these descriptors correspond to continuous values, and consequently,
their histograms lack of an optimal number of bins, which therefore turns out to
be a parametric issue. To overcome this disadvantage, we propose a new descrip-
tor that computes feature vectors formed by discrete binary patterns histograms
with different lengths D. Furthermore, we show a statistical improvement of
the proposed method compared to earlier approaches such as the original LLNA
and classical network structural measurements. Our experimental results show
the performance improvement of the proposed method in six synthetic network
databases and eight real network databases.

1. Introduction

Currently, with the introduction of data science and the big data era, there
is a high demand for pattern recognition methods that handle non-linear data.
Network science is being increasingly used because of its flexibility and ability to
represent and analyze any discrete system such as metabolic networks [17, 14],
protein-protein interaction networks [32, 40], social networks [11, 30], ecological
networks [15], scientific collaboration networks [29], brain networks [5], etc.
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In this context, networks science and pattern recognition emerge as an impor-
tant alternative in this scenario. Thus, pattern recognition in networks aims to
classify large-scale networks into several classes and distinguishing them accord-
ing to their intrinsic characteristics [3, 28], instead of focusing on the topology
properties of an isolated network, it is interested in the classification, clustering,
and comparison between different networks, in which the network is explored
as a whole [46]. In recent years the concept of networks has been applied to
different pattern recognition problems with promising results, such as computer
vision [35, 37, 33, 27, 34], authorship attribution [21, 26, 1], phylogenetic recon-
struction [3, 22], among others.

Recently, networks and cellular automata arise as an important combination
for data science and pattern recognition. Cellular automata are well-known for
its capability to produce complex patterns from even simple rules. These emer-
gent patterns may range from simpler such as homogeneous, stables or periodic
structures, to chaotic patterns, and even complex structures [44]. The spa-
tiotemporal patterns formed by cellular automata (CA) dynamics are still mar-
veling a huge number of researchers from diverse fields. For instances, ecologists
and biologists have studied the formation of the pigmentation pattern of ani-
mals, such as the shell of the species conus textile [43], as well as the formation of
tumors growth [31], epidemic propagation [38], plant population dynamics [9],
colonization processes [2]; Physicists have studied CAs to model crystals growth,
such as snowflakes [48] and grain growth [50]. Similarly, chemists have relied
on CAs to study chemical reaction diffusions [6]. CAs patterns have been used
even in more striking fields, such as cryptography [23, 20], and of course, by
computer scientists, e.g. either using image processing tools to classify CAs
rules [10, 24] or to propose CAs as a tool for image processing [36].

Although CAs are typically studied in regular tessellations, they can also be
explored in irregular structures such as graphs or networks. Recently, the incor-
poration of a CA dynamics over the network topology, also named as network-
automata, has started to gain more attention [49, 45, 25, 39, 28]. Network-
automata is a generalization of CA, in which a network (tessellation) is the
habitat where a CA simulates artificial life, the set of vertices represent the cells,
the edges represent the neighborhood, and a local rule governs their cell states.
The dynamic evolution of a network-automaton provides a time-evolution pat-
tern (TEP), which can be visualized by compiling their states (from top to
bottom) while it evolves in time, from which intrinsic network properties can
be extracted in order to be used in a pattern recognition context.

In a paper published in 2016, Miranda et al. [28] proposed a family of
network-automata called as the Life-Like Network Automata (LLNA) (Fig. la-
¢), which has been introduced as a tool for network analysis aimed for pattern
recognition applications. In this method, the TEPs patterns formed from the
dynamical behavior of this non-linear system are used as features (signatures).
Since the LLNA is a CA whose states are binaries, therefore the extracted TEPs
are represented as chains of zeros and ones, representing their cell’s states (live
or dead), e.g. 010100100010100111001. Miranda et al. [28] used a set of three
measurements: the Shannon entropy, the word length, and the Lempel-Ziv com-



plexity to calculate histogram distributions in order to obtain the corresponding
feature vectors, which are able to characterize the network topology.

Although, the dynamic evolution signature provided by the histograms of
the former measurements are well suited for pattern recognition tasks [28], there
is a lack of the method to choose the number of bins as a parameter for the
construction of the histograms. Since these measurements are composed of
continuous values, then there is a need to define an optimal number of bins
which will influence in the classification performance and it is necessary to be
obtained for any new classification task. For that reason, instead of putting
more efforts to find an optimal number of bins, which represents a difficult and
expensive task, a more robust manner to extract measurements independently
of this parameter issue is needed, which in consequence may lead to over exploit
the advantages from these rich patterns aiming to improve the classification
performance.

In this paper, we propose an improved manner to extract feature vectors
from LLNA time-evolution patterns (see Fig. 1) by means of binary pattern
dictionaries, hereinafter called as LLNA-BP. A dictionary Bp is a discrete set
B € [0,2P — 1] containing all possible combinations of zeros and ones of length
D. In order to fill the previous work lack, here we propose to account the
frequency of these patterns within a TEP, as can be observed in Fig. 1c, from
which a frequency histogram of the discrete set of binary patterns is calculated
(see Fig. 1e). In this work, we demonstrate how these measurements improve
the results obtained in the earlier work [28].
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Figure 1: Proposed pattern recognition scheme based on binary patterns extracted from
LLNA time-evolution patterns (LLNA-BP). (a) Given a network database problem. (b) For
each network, ¢) the Life-Like network automaton is evolved with a previously selected rule for
a given network initialized with random states represented by white (alive or one) and black
(dead or zero). From top to bottom, the corresponding time-evolution pattern produced by
the LLNA dynamics of the given network. (d) Sequences of zeros and ones are concatenated
to produce a binary pattern of different sizes, e.g. D =3, D =4,... D,, from which a unique
histogram is obtained, respectively, and (e) thus forming the feature vector by using various
strategies, e.g. concatenating the global frequency distributions Yo D1,Da,...,D,,» Which are
then used for (f) the networks classification task.



We evaluated the performance of the proposed approach using eight different
applications concerning pattern recognition in networks. Thus, we used two
types of databases, synthetics, and real-world networks. The first database of
synthetic networks contains four different models: random (Erdés & Rényi) [13],
small-world (Watts & Strogatz [41]), scale-free (Barabdsi & Albert [4]), and
geographical networks (Waxman [42]). The second and third database were
obtained based on the latter one: (i) focusing on the dependency of different &
degrees and (ii) a noise-perturbed database, where edges were randomly added
and removed from the network, respectively. The fourth database contains
exclusively networks belonging to the scale-free model with both linear and
non-linear preferential attachment and different parameters. Regarding the real-
world applications, a fifth database was explored containing two online social
networks (Twitter and Google+) [19]. Besides that, we also constructed seven
metabolic networks databases based on the biochemical reactions of several
species obtained from the Kyoto Encyclopedia of Genes and Genomes database
(KEGG) [18]. Therefore, we also applied our method in various classification
tasks aiming to distinguish metabolic networks from different biological origins
such as the eukariota and bacteria kingdom, the animal domain, fungi domain,
plant domain, protist domain, Firmicutes-Bacillis phylum and Actinobacteria
phylum. According to the results, our approach outperformed the results yielded
by the LLNA [28] and classical structural measurements of different types such
as degree-based, clustering coefficient, paths and degree-correlation [8, 7).

In the remainder of this manuscript, Section 2 presents a detailed descrip-
tion of the LLNA as well as its mathematical definitions. In Section 3, we
present a study regarding the histogram formation for different measurements.
In Section 4, the configurations of the experiments are detailed. In Section 5,
we evaluated the proposed approach regarding the classification task for eight
distinct databases with discussions about the results, and, finally, conclusions
are presented in Section 6.

2. Background

2.1. Life-Like network automaton

CAs were inspired by the concept of “artificial life”, in which its components
(cells) interact with each other and their environment, simulating life or death
of their cells. Their states are modified over time according to a local rule,
depending on the previous states of their neighborhood and its cell state itself,
from which rich patterns can emerge.

Formally, a network-automaton R can be defined by the tuple

R = <T,S,So,(b>.

The tessellation T of a CA is represented by the network topology, so each
vertex will be represented by a cell ¢; which is connected with its k; neighbors.
S is the set of states, which in our case is restricted to binary states s; = 1
(alive) and s; = 0 (dead). The function s(c;,t) indicates the state of a cell ¢;



at time ¢, thus sg represents the initial configuration of all the cells within the
automaton. The transition function ¢ is the rule governing the dynamics of the
network-automaton, which defines how the cell states are updated [28].

The number of neighbors of each cell is restricted to the neighborhood of
each vertex of the network. Therefore, the transition function ¢ is given as a
function of the neighborhood density o(c;,t), defined as the proportion of alive
neighbors at time .

Regarding the transition function ¢ : s(c¢;, t) — s(¢;, t + 1), it can be imple-
mented in different manners. The LLNA was presented in a more generalized
form of density function which can be interval, for example, 22% < o(v;,t) <
33%. The neighborhood density function o(v;,t) of the vertex v; is the propor-
tion of alive neighbors, described by Equation (1)

N
1
O'(Ui,t) = EZAijS(Uj’t)’ (1)
(3 ]=1

in which A;; is the adjacency matrix of the network, /N the number of vertices
and k; is the number of neighbors of vertex v; defined by Equation (2)

N
ki =Y Ajj. (2)
j=1

As the LLNA traces a correspondence between the transition functions and
the rules of the 2D CA Life-Like family, therefore the LLNA rules are also
described by the notation Bz-Sy, in the form Bxoxy ... rs-Syoy - - - ys, where B
and S represent the “born” and “survive” conditions, respectively; and, x, and
yy stands for the combination of digits ranging from 0 to 8, such as B23-S3,
B1357-52468, B0345-S36, B25-S8, etc. Considering the outer-totalistic 2D CA
version, where each cell can have a maximum of 9 neighbors, including itself
(Moore neighborhood 7 = 9). Therefore, the LLNA has also 2979 = 262,144
transition rules due to the combination of the conditions of birth (B) and survival
(S).

The LLNA transition function is defined as:

—_

, if s(e;,t) =0 and z,/r < o(c;,t) < (zz +1)/r = born (B)

s(ei,t+1) =<1, if s(¢;,t) =1 and y, /r < (e, t) < (yy + 1)/r = survive (S)
0, otherwise.

®3)
For the sake of illustration, we show in Fig. 2 the LLNA dynamics of a given
network containing N = 21 vertices with rule B25-S8 evolved during three-
time steps. In the upper left of Fig. 2a shows the initial configuration sy of
the network. In Fig. 2b is detailed how the cells ¢; and ¢; (shaded region) are
evolved from ¢t = 0 to ¢ = 1. First, considering the dead state of cell ¢;, i.e.
s(¢;,t) = 0, then the two birth conditions from the given rule B25 (B2 or B5)
can be applied in Equation (3). Since ¢; has 5 neighbors, from which 3 are alive



and 2 dead, then it corresponds to a neighborhood density o(c;,t) = % = 60%

which satisfies the second birth condition 3 < o(c;,t) < g, therefore in the

following state it will born s(¢;,t + 1) = 1.9 On the other hand, cell ¢;, with
state s(c;,t) = 1, enables the survival condition of the given rule S8, thus we
check the condition § < o(c;,t) < 1, however as o(cj,t) = 2 = 75%, then it
does not satisfies the survival condition, and therefore in the following state
this cell will die s(¢;j,t +1) = 0. In a similar manner, all the states of the
automaton are also calculated synchronously. In Fig. 2c, we can observe the
corresponding time-evolution pattern generated by the automaton, where the
evolution of each cell is stacked from top to bottom. It should be noticed that,
for the sake of visualization, the vertices of the network were placed from left
to right according to a meaningless criterion, for example, labels of vertices,
ordering of their degree connectivity, among others.
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Figure 2: Construction of a Life-Like network automaton using rule B25-S8 for a network
with N = 21 vertices evolved during three iterations. (a) From top to bottom, the LLNA is
evolved, where the states are represented by white (alive) and black (dead). (b) A detailed
step-by-step of the transition function B25-58 for two given cells ¢; and c; satisfying the birth
and survival conditions. (¢) The time-evolution pattern obtained by the given network, which
is formed by stacking from top to bottom the states of all the cells as the automaton evolves.

2.2. LLNA rule selection

Miranda et al. [28] discussed the choice of the best LLNA rules for a specific
classification problem. They proposed a rule selection procedure consisting of
the search for a set of rules (solutions) that maximizes the accuracy rates for
an underlying problem. This is an important process since the same rule can
present different behaviors for networks of different classes, so it is not trivial to
predict what would be the best rule for a specific problem. In that work, it was
also emphasized that, since the rule selection is done through an optimization
procedure, it must be assumed that the set of solutions (selected rules) also
may bring some rules that do not comply the expectation when presenting a
new database. For that reason, each of the 262,144 rules of the Life-Like family



must be evaluated. That is, a network-automaton is built for each rule, then a
pre-classification process is made, i.e. feature vectors are extracted and then it
is obtained a pre-classification rate. Once a set of best rules is selected then the
LLNA can be used for the main classification tasks.

Furthermore, we emphasize that the choice of the best rules should be per-
formed on a representative subset of the network database, separated exclusively
for the rule selection, in order to obtain unbiased results, while the rest of net-
works dataset would be used to evaluate the performance of the classifiers. In
this manner, this procedure ensures that an unseen database is used for the rule
selection and for the validation of the method aiming to unbiased the cross-
validation scheme for the training and testing steps.

2.8. LLNA descriptor: previous work

Once a TEP is obtained from the LLNA dynamics (see Fig. 1c and Fig. 2c),
then each vertex of the network can be analyzed as a sequence of ones and
zeros, from which several characteristics can be measured. Miranda et al. [28]
proposed the histogram distribution combination of three measures: Shannon’s
entropy (iis), word length (fw), and Lempel-Ziv complexity (ji;) as feature
vectors. More specifically, the Shannon entropy of a binary sequence is defined
as fig; = —( EO) log, pgo) +p§1) log, pz(-l)), where pz(-o) e pl(-l) is the probability of
having zeros and ones, respectively. The word length describes the homogeneity
of the sequence with respect to the length of the words (subsequence of ones
limited by zeros). Finally, the Lempel-Ziv complexity is a measure based on
the count of all possible combinations of sequences of ones and zeros (blocks)
contained in the sequence and it is calculated as py = glogl/l, where [ is the
length of the sequence and g the number of blocks found within the sequence.
However, Miranda et al. approach [28] account for the combination of the
distribution histograms of these measurements, which leads to the lack of an
optimal number of bins.

3. Binary pattern descriptor (LLNA-BP)

In this section, we describe the proposed approach to extract information
from the time-evolution patterns generated by the LLNA based on binary pat-
terns histograms. Basically, our method can be divided into two parts: (i)
to extract binary patterns from TEPs and (ii) to build the binary pattern’s
signature. The next sections describe these steps.

3.1. Binary patterns from TEP

In this proposed approach, we use binary patterns dictionaries of different
lengths D in order to compound a feature vector (signature) extracted from the
LLNA time-evolution patterns. A dictionary Bp is a discrete set 5 € [0,2P — 1]
containing all possible combinations of zeros and ones of length D, i.e. 8p is the
alphabet containing binary patterns such as Sp = {00, 01, 10, 11} for D = 2,
Bp = {000, 001, 010, 011, 100, 101, 110, 111} for D = 3, and so on. In this



manner, a binary pattern is a statistical descriptor computed by considering the
states of a cell (vertex) through time.

First, given a cell ¢; (network vertex) at time ¢, we build a binary pattern
containing D bits. This binary pattern is composed by the states of a cell ¢;,
starting in s(c;, t) until s(¢;, t+ (D —1)). For a better representation, we coding
this binary patterns in a decimal format ®p(c;,t), as follows:

(D—1)+t

Opleit) = Y s j)2070. (4)

Jj=t

Then, we produce a set of binary patterns for each cell ¢; via a sliding
window, resulting in the following set {®p(c;,t), Pp(ci,t +1),...,Pp(cit +
(D —1))}. In this way, considering a maximum time 7" and a dictionary size
D, for each vertex (cell) from the network it is obtained (T"— D + 1) binary
patterns, as illustrated in Fig. 1(d).

In this work, two manners to compound the feature vectors using binary
patterns dictionary were explored. The first one is called as the global his-
togram H, gD and the second one as the degree histogram HP, which are detailed
hereinafter.

8.1.1. Global Histogram

Since the number of possible binary patterns is equal to 27, from all binary
patterns generated for a network, a global histogram H gD is computed to char-
acterize it, as can be seen in Fig. 1(e). This global histogram computes the
occurrence of the binary patterns in the TEPs of all network, according to

N (T—D+1)
HPG) =Y S 6(@n(i.0,p), 5)
i=1  t=0
D 1; r=y,
where p € [0,2” — 1] and 0k (x, y, ki) = )
0, otherwise .

In Equation 5, observe that p is the decimal representation of a binary pat-
tern output by the proposed approach. It should be noticed that this histogram
H gD (p) is then computed as a probability density function, i.e. divided by the
total number of patterns, in order to turn the histogram invariant to the network
size, as follows:

Hp (p) = 54— (6)

3.1.2. Degree Histogram
Regarding the degree k values, we can also consider histograms for the ver-
tices with the same degree k. This histogram aims to obtain information of the



occurrence of binary patterns in vertices that are similar in the network. In
this way, a histogram HP is computed for each degree k of the network. These
histograms can be defined as follows:

N (

T-D+1)
HkD(p) = Z Z or(®p(i,t),p, ki), (7)
t=0

=1

1,z = dk, =k
where p € [0,2P — 1] and i (=, y, k;) = = %n ‘ ’
0, otherwise .
Similarly to the global histogram, the degree histogram HY (p) is computed
as a probability density function, dividing by the total number of patterns of

each degree k, according to

P () = o) ®

D-1 '
> HP()
i=0

Fig. 3(a) shows the corresponding TEPs obtained for random, small-world,
scale-free and geographical networks with N = 500 vertices. These TEPs were
generated using the LLNA rule B135678-S03456 and were evolved for T' = 500
time steps. Three examples of histogram H gD (p), using different values of D,
are given in Fig. 3(b). For each network model, we plotted the corresponding
histograms for each TEP sample (Fig. 3(a)). The samples from different network
models (classes) are hard to distinguish because they are visually very similar.
However, the corresponding histograms of the same classes are similar while the
histograms of different classes are different, thus minimizing intra-class variance
and maximizing inter-class variance, which corroborates the robustness of our
approach.

8.2. Signature

The feature vectors (i.e, the signature) are constructed based on the his-
tograms H gD and HP. The first feature vector considered is composed by the
global histograms H f with different D values. This strategy aims to combine
different sizes of binary patterns for the network representation, according to

Y9p, p,...0, = [HP HP2, .. HP]. (9)

Then, once there is a histogram H kD for each degree of the network, we
propose the average p and the standard deviation o of all these histograms for
network characterization. Thus, it is possible to analyze the frequency of the
binary patterns in vertices with different degree. For instance, the frequency of a
given binary pattern can be high for vertices with a low degree and the opposite
for vertices with high degree. In this way, the average feature vector F(D), and
the standard deviation feature vector F'(D), are obtained, according to
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Figure 3: Two samples of time-evolution patterns for four different network models: random,
small-world, scale-free and geographical and their histograms. (a) The TEPs correspond to
networks with N = 500 vertices and average degree (k) = 10 that were evolved with rule
B135678-S03456 during 7" = 350 time steps. Each column is a different network model and
each line is a different network sample. (b) Histograms corresponding to the global histogram
H gD (p) considering different values of binary pattern length D. Each curve corresponds to

each of the samples in (a).
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F(D)y =0 e (11)

D
Hy.

where K is the maximum number of degrees in the network. To describe the
network, we combined the average feature vector F(D;), considering different

—

D values. Thus, it is obtained the features vector Y#p, p,. . p, as follows:

,,,,,

YDy Dg0y = [F(D1) s F(D2)yay oo, F(D) . (12)
The standard deviation feature vector F(D1), also is combined using differ-

—

ent D values to compose the feature vector Y9 p, p,... p,, according to

T_»HDI,DQ,.A.,D" = [F(D1)o,F(D32)g, ..., F(Dy)s). (13)

Finally, we propose a robust feature vector U D1.,Ds.,...,D,,, as follows,

\f’Dl,DQ,...,Dn =[Y9p, D,,..., Dn,’f’LDl,D2 ..... Dn,f"Dl,Dz,...,Dn}, (14)

—

which is composed by concatenating the feature vectors Y9p, p, ... p., YDy Do, ...

and Y° D1,Ds.,...,D, - This final feature vector combines different information
about the TEPs and, consequently, about the network structure, improving the
classification performance. In the experiments, this feature vector obtained the

best classification results.

3.8. Computational Complexity

Consider a network with N vertices and average degree (k). To calculate
the computational complexity of our approach LLNA-BP, let first analyze the
complexity of the LLNA, which provides the TEP. Given a rule, the LLNA
approach computes the next state of each vertex based on the neighboring vertex
states. In this way, for each LLNA iteration, N x (k) operations are required.
Once the LLNA is iterated by T time steps, to obtain a TEP, N x (k) x T
operations are needed. Therefore, the computational complexity of the LLNA
approach to obtain a TEP is given by O(N x (k) x T).

The proposed approach computes the binary pattern for each network vertex
considering the dictionary size D. Thus, N x T' x D operations are performed
in order to obtain the binary patterns histograms. Therefore, considering all
the steps of our proposed method LLBP-BP, the computational complexity is
O((N x T) x ({k) + D)).
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4. Experiments

In this section, we detail the network databases, comparison methods, and
validation strategy and classifier used in the experiments. We also describe the
experimental setup used by the proposed method.

4.1. Network databases

In this section, we describe the synthetic networks database (4-models, 4-
models + (k), noisy and scalefree) and the real networks database (social and
metabolic) used in the experiments. These databases can be downloaded at
http://scg.ifsc.usp.br/LLNA. The proposed method and others are assessed over
eight different networks databases. Detailed information about the databases is
presented below.

e J-models synthetic-database: this database is composed of synthetic net-
works built according to four models: i) random (Erdos & Rényi [13]),
with connection probability between two vertices of p = (k)/n; ii) small-
world (Watts & Strogatz [41]), with rewiring probability of p = 0.1; iii)
scale-free (Barabdsi & Albert [4]), with both linear and non-linear prefer-
ential attachments, and, iv) geographical (Waxman [42]). Each network
model was generated following the parameters: (k): 4, 6, 8, 10, 12, 14,
16; and, N: 500, 1000, 1500 and 2000. Each of the 28 combinations of
(k) — N contains 100 networks. Thus, the number of networks for each
model is 2800, resulting in a total of 11200 networks in the database;

o /-models + (k) synthetic-database: a second experiment was performed to
classify the 28 classes consisting of the combinations (k) — N, therefore,
in this database there are 28 classes with 100 samples each;

e Noisy-synthetic-database: this database is composed of the same networks
of the synthetic-database using three different p values: 10%, 20% and
30%, where the noise rate p was applied into the networks aiming to
modify the network topology by the removal and the addition of edges.
Thus, £ of edges are added, regarding the total number of edges, and,
g are removed. Therefore, as the p increases, more structural changes

are performed on the network topology [28]. This database was used to

evaluate the robustness of the method regarding noise tolerance;

o Scalefree-synthetic-database: this database contains scale-free networks
generated using two different models: Barabési & Albert [4] and Dorogovt-
sev & Mendes [12]. For the former model, it contains networks with both
linear and non-linear preferential attachments (a): 0.5, 1.0, 1.5 and 2.0.
In this way, this database has five classes with 100 networks (N = 1000
vertices and (k) = 8) per class;

o Social-networks-database: composed of networks from the SNAP (Stan-
ford Network Analysis Project) platform [19]. Each social network (or
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“ego-networks”) corresponds to the social relationships or friendships of a
specific user that is not represented in the network. This database con-
tains 100 samples divided into two classes (Google+ and Twitter) with 50
network samples for each;

e Metabolic-networks-database: this database is composed of metabolic net-
works that were constructed using the substrate-product network model
[47]. Thus, metabolites (vertices) from substrates are linked to metabo-
lites from products per each reaction. The biochemical reactions of sev-
eral organisms were obtained from the Kyoto Encyclopedia of Genes and
Genomes database [18] (KEGG). This database was subdivided into seven
sets (see Tables S1-S7 from the Supplementary Material), as follows:

— kingdom-database: this database comprises species from the eukary-
ota domain of life, which consists of four kingdoms: animals, plants,
fungi and protist, each of them containing 40 networks.

— Animal-database: this database contains four classes: mammals, birds,
fishes and insects, containing 14 samples per class.

— Fungi-database: this database contains four classes: saccharomycetes,
sordariomycetes, eurotiomycetes and basidiomycetes, each of them
containing 15 networks.

— Plant-database: contains three classes Monocots, Green algae and
Eudicots, containing 9 organism per each class.

— Protist-database: this database comprises four classes Amoebozoa,
Alveolates, Stramenopiles and Euglenozoa, each of them containing 5
organisms.

— Firmicutes-Bacillis-database: this database presents four classes Bacil-
lus, Staphylococcus, Streptococcus and Lactobacillus, containing un-
balanced number of species, 122, 76, 133 and 83 respectively.

— Actinobacteria-database: This database is also unbalanced, present-
ing three classes Mycobacterium, Corynebacterium and Streptomyces
with 60, 86, and 53 species, respectively.

o Metabolic-rule-selection-database: Since the choice of the best LLNA rules
for each classification problem should be performed on a exclusive database,
therefore we generated seven databases containing metabolic networks
from other species of the same classes, to be used for the LLNA rule se-
lection (see Section 2.2). Thus, the kingdom-selection-database comprises
9 samples per each class. The animal-selection-database, fungi-selection-
database, plant-selection-database and protist-selection-database comprises
2 samples per each class, while the firmicutes-Bacillis-selection-database
and actinobacteria-selection-database contains 10 networks per class. The
complete list of organisms and their respective network databases are
found in Tables S8-S14 from the Supplementary Material.
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4.2. LLNA-BP setup

In this section, we detail the network-automata configuration to generate the
TEPs used in the experiments. Since the purpose of our approach is to improve
the TEPs characterization, thus we used the same parameters regarding the
specifications of the LLNA from the original work [28]. Therefore, the initial
configuration sg was setup randomly using probabilities of 50% of cells alive, and
the network-automata were evolved during 7" = 350 iterations. Furthermore,
we used the same optimal rules selected for each of the databases used in Ref.
[28].

The rule B135678-S03456 was used for the 4-models synthetic-database and
the noisy-synthetic-database. For the scale-free synthetic-database was consid-
ered the rule B0157-S457, while rule B01678-S0457 was considered for the 4-
models + (k) synthetic-database. Regarding the real-world applications, for the
social-database was used the rule B0167-S248. Thus, it is possible to compare
in a fair way the proposed approach and the previous method.

Since, in this work, we introduced new metabolic networks databases, there-
fore we also performed the rule selection procedure (see Section 2.2) using
the metabolic-rule-selection-database, which contains a small number of other
metabolic networks for each classification problem. We computed the rule se-
lection following the same criteria established by Miranda et al. [28]. As a result,
we selected the following optimal rules: B02345678-S123468, B023468-S01468,
B04-51468, B0468-S0467, B0236-S123567, B0468-S0458, B1237-S267 for the
Kingdom, Animal, Fungi, Plant, Protist, Firmicutes-Bacillis and Actibacteria-
databases respectively.

4.8. Classification setup

In the classification process, it was used a 10-fold cross-validation strategy,
which is a generalized way to evaluate the prediction capacity of a model. This
strategy divides the dataset into 10 equal or almost equal subsets, one subset
is used for testing and the rest of the 9 for training. All subsets are used as
test set. Since this validation strategy is not deterministic, the cross-validation
procedure was applied 100 times and, the mean accuracy and standard deviation
are considered as the performance of the method. The SVM (Support Vector
Machines) classifier was used in the experiments, in order to follow the setup
experiments of Miranda et al [28]. This classifier uses hyperplanes as decision
boundaries and the classification is performed by finding the hyperplane that
yields the maximal separation between two classes [16].

4.4. Comparison methods

In this work, we compared the performance of the LLNA-BP with the pre-
vious LLNA [28]. Therefore, we reproduced the results obtained in Ref. [28]
using the Shannon entropy, word length, and Lempel-Ziv complexity histogram
distribution given by [fs, fiw, fi1] as the feature vector. Besides the compari-
son with the LLNA method, the LLNA-BP was also compared to the classical
topological networks measurements. As suggested by Costa et al. [7], a set of
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network measurements from different categories, such as mean degree, degree
distributions, correlations, distances, and path lengths, hierarchical, spectral
measures, transitivity, and clustering coefficient, among others, are commonly
used to characterize the topology of networks. Therefore, we used the combina-
tion of the average degree ((k)), average hierarchical degree of level 1 ({(Hy,))
and level 2 ((Hy,)), average clustering coefficient ({cc)), average path length (1)
and degree Pearson correlation (pp) [8, 7]. More specifically their equations are
stated as follows:

o (k) =% Xk

(Hy,) = % >_; kI', when h = 2 it represents the sum of the degrees of the
neighbors of vertex v;. Similarly, when h = 3 represents the sum of the
degrees of the neighbors of the neighbors of vertex v;;

e (cc) = &3, cc;, where the clustering coefficient is defined by cc; =
m and e; is the number of pairs connected to each of all the neighbors
of vy;

e (I), is the average length of the shortest paths between any two vertices
of the network.

e pp is a measure of the network assortativity.

5. Results

In this section, we report the experimental results obtained in the classifica-
tion task applied to all of the network databases studied here. We also analyzed
the performance of the proposed method using different parameters. Finally,
we also compare the classification performance between our proposed method,
traditional network measurements and the previous approach [28].

5.1. Parameter evaluation

In order to efficiently apply our proposed approach for network classifica-
tion, we first must define the ideal feature vector and binary pattern length of
D. Table 1 shows the results achieved on the social-database when using differ-
ent values of binary pattern length D to compute the proposed feature vectors
ngl,DQ,H.,Dnv ’r_'IJ/Dl,DQ,‘..7Dn7 ’r_'UDlgD2»~~yDn and q_}D17D27~~~5Dn' The results refer
to the percentage of network samples correctly classified using each parameter.
The results show that the proposed method is robust, achieving good results for
all feature vectors and combinations of D. Concerning the different feature vec-
tors, the best results were obtained with the feature vector U D1.Ds.,....D,,- This
feature vector contains more information about the network patterns because
it combine the global features and specific degree characteristics (T_’“ D1,Ds,....Dy,
and TGDl,Dg,...,Dn)-

Considering only the feature vector U D1,Ds,....D,,, the Table 2 and Table 3
show the results for the synthetic-database and the metabolic-database using
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Table 1: Accuracy (%) and standard deviation for the social-network-database using different
feature vectors (columns) and various combinations of D values (rows).

—

{Dy,Ds,....,D,}  Y9p, p,. . .D, fMDl,DQ,.H,Dn Tﬁ(’Dl,DQ,H.,Dn \I_}Dl,Dg,..‘,Dn
(4) 93.00 (£ 0.00)  93.00 (£ 0.00)  91.00 (£ 0.00)  92.80 (& 0.40)
{5) 92.70 (+ 0.64)  93.00 (+ 0.00)  90.90 (+ 0.30)  92.40 (+ 0.49)
{6} 93.10 (+ 0.30)  93.20 (+ 0.75)  90.20 (+ 0.40)  92.70 (+ 0.64)
! 93.00 (+ 0.00)  93.20 (+ 0.40)  90.20 (+ 0.60)  92.50 (+ 1.02)
(8) 92.90 (£ 0.70)  92.00 (£ 0.63)  89.30 (+ 0.90)  92.50 (& 1.02)

{4, 5} 93.00 (i 0.63) 93.00 (i 0.00) 90.90 (i 0.30) 92.30 (i 0.46)
{4, 6} 93.00 (£ 0.00)  93.10 (£ 0.70)  90.10 (+ 0.54)  92.40 (% 0.66)
(4,7} 93.00 (+ 0.00)  93.10 (+ 0.30)  90.30 (+ 0.46)  92.30 (+ 0.78)
{4, 8} 92.80 (£ 0.87) 91.70 (£ 0.78) 89.30 (£ 1.19) 92.80 (£ 0.75)
(5, 6} 93.20 (+ 0.40)  93.10 (£ 0.54)  90.00 (+ 0.45)  92.50 (& 0.67)
5, 93.10 (£ 0.30 93.10 (£ 0.30 90.00 (£ 0.63 93.40 (£ 0.92
7
(5, 8} 92.80 (+ 0.87)  91.70 (+ 0.78)  89.40 (+ 1.02)  92.90 (+ 0.70)
{6, 7} 93.10 (+ 0.30)  93.00 (+ 0.45)  89.90 (+ 0.54)  93.40 (+ 1.02)
{6, 8} 92.80 (+ 0.87)  91.60 (+ 0.66)  89.80 (+ 0.87)  92.90 (+ 1.04)
{7, 8} 92.00 (£ 0.63) 91.40 (£ 0.66) 89.20 (£ 1.08) 92.70 (£ 1.00)
(4,5, 6) 93.20 (+ 0.40)  93.10 (£ 0.30)  89.90 (+ 0.54)  92.60 (& 0.49)
4,5, 7) 93.10 (£ 0.30)  93.00 (£ 0.45)  90.10 (£ 0.70)  93.60 (& 0.92)
{4, 5, 8) 92.80 (+ 0.87)  91.70 (+ 0.78)  89.40 (+ 1.02)  93.10 (+ 0.70)
{4,6,7) 93.10 (+ 0.30)  93.00 (+ 0.45)  90.00 (+ 0.45)  93.70 (+ 0.78)
{4,6,8) 92.70 (+ 0.90)  91.60 (+ 0.66)  89.40 (+ 1.02)  93.20 (+ 0.87)
(4,7,8 92.00 (+ 0.63)  91.40 (£ 0.66)  89.10 (+ 0.83)  92.60 (% 1.02)
{5, 6, 7} 93.10 (i 0.30) 92.90 (i 0.54) 89.90 (i 0.54) 93.90 (i 0.83)
{5, 6, 8) 92.60 (+ 0.80)  91.60 (+ 0.66)  89.60 (+ 0.80)  93.30 (+ 0.78)
(5,7, 8) 91.90 (+ 0.70)  91.40 (+ 0.66)  89.10 (+ 0.83)  93.00 (+ 1.18)
(6,7, 8) 9170 (+ 0.78)  91.30 (+ 0.64)  88.70 (+ 0.78)  93.20 (+ 1.08)
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different values and combinations of D. On the animal-database and the fungi-
database we can note that the accuracy tends to increase as we increase the
value of D. On the other hand, the results obtained on the synthetic-database,
social-database and kingdom-database show a high correct classification rate for
any combination of D values. In this way, for these tests, we did not combine
more than three D values to compose the feature vectors, in order to avoid a
large number of descriptors. Also, the results show a small improvement in the
classification rate as we combine more than two D values. Therefore, we suggest
the feature vector \f'5,7, as it represents a good tradeoff between performance
and number of features of all databases, to be used as a default parameter of
our approach. This feature vector has 480 descriptors that are much smaller as
compared to the size of other proposed feature vectors such as \1'16’778, which has
1344 features.

Table 2: Results for different combinations of D values with the feature vector \Iﬂ/Dl,Dz’m,D
databases.?.

n

on the synthetic-

{D1,Ds,...,Dn} 4-models 4-models + (k) Scale-free Noisy Networks
p=10% p=20% p=30%

{4} 99.53 94.39 99.36 (£ 0.23) 99.44 99.09 98.65
{5} 99.98 96.71 99.46 (£ 0.21) 99.96 99.94 99.77
{6} 100.00 97.60 99.54 (£ 0.19) 100.00 99.99 99.97
{7} 100.00 98.23 99.58 (£ 0.22) 100.00 99.98 99.99
{8} 100.00 98.58 99.70 (£ 0.19) 100.00 99.99 99.97
{4, 5} 99.98 96.99 99.32 (£ 0.21) 99.95 99.94 99.75
{4, 6} 100.00 97.75 99.32 (£ 0.25) 100.00 99.99 99.96
{4, 7} 100.00 98.27 99.36 (£ 0.23) 100.00 99.99 99.99
{4, 8} 100.00 98.59 99.38 (£ 0.26) 100.00 99.99 99.97
{5, 6} 100.00 97.90 99.50 (£ 0.22) 100.00 99.99 99.96
{5, 7} 100.00 98.31 99.52 (+ 0.19) 100.00 99.98 99.99
{5, 8} 100.00 98.61 99.52 (£ 0.19) 100.00 99.99 99.97
{6, 7} 100.00 98.40 99.56 (£ 0.21) 100.00 99.99 99.99
{6, 8} 100.00 98.63 99.56 (£ 0.21) 100.00 99.99 99.98
{7, 8} 100.00 98.68 99.66 (£ 0.25) 100.00 99.99 99.98
{4, 5, 6} 100.00 97.96 99.46 (£ 0.27) 100.00 99.99 99.96
{4, 5, 7} 100.00 98.39 99.48 (£ 0.19) 100.00 99.98 99.99
{4, 5, 8} 100.00 98.65 99.46 (£ 0.25) 100.00 99.99 99.97
{4, 6, T} 100.00 98.46 99.42 (£ 0.24) 100.00 99.98 99.98
{4, 6, 8} 100.00 98.66 99.42 (£ 0.24) 100.00 99.99 99.97
{4, 7, 8} 100.00 98.70 99.46 (£ 0.19) 100.00 99.99 99.98
{5, 6, 7} 100.00 98.48 99.54 (£ 0.19) 100.00 99.98 99.99
{5, 6, 8} 100.00 98.68 99.52 (£ 0.19) 100.00 99.99 99.98
{5, 7, 8} 100.00 98.72 99.52 (£ 0.19) 100.00 99.99 99.98
{6, 7, 8} 100.00 98.73 99.58 (£ 0.22) 100.00 99.99 99.98

& Smallest standard deviations between £0.0 and £0.09 are not shown.
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Table 3: Accuracy (%) and standard deviation for the classification of three metabolic-
networks-database using different combinations of D values with the feature vector

{D1,Ds,..., Dy} Kingdom Animal Fungi

(4} 94.12 (+ 6.08)  68.03 (£ 20.30)  62.00 (< 17.90)
{51 96.19 (+ 4.69)  78.00 (£ 16.65) 7150 (< 17.62)
(6} 97.06 (+ 4.57) 7843 (£ 16.31)  75.00 ( 17.33)
(7 97.25 (+ 4.20)  83.63 (£ 15.52)  T7.17 ( 16.69)
(8} 96.56 (£ 4.20) 8153 (£ 16.39)  77.50 (£ 17.14)
{4, 5} 96.19 (£ 4.69)  74.80 (£ 17.36)  70.67 (£ 15.91)
{4, 6} 97.12 (£ 4.21) 7853 (£ 17.35)  T4.67 (£ 17.80)
(4,7} 97.50 (+ 4.07)  82.57 (£ 16.02)  TT.67 ( 17.12)
{4, 8} 96.56 (£ 4.20) 81.77 (£ 15.97) 78.83 (£ 16.56)
{5, 6} 96.69 (£ 4.65)  78.03 (£ 17.29)  T4.50 (£ 17.32)
{5, 7} 97.44 (+ 3.98) 84.87 (+ 15.25) 76.17 (& 17.45)
(5, 8} 96.60 (+ 4.11)  82.27 (+ 15.75)  78.33 (+ 16.33)
{6, 7} 97.19 (+ 4.20)  82.93 (+ 14.61)  76.67 (= 17.08)
(6, 8) 96.62 (+ 4.30)  82.47 (+ 15.59)  78.17 (< 16.87)
{7, 8} 96.56 (+ 4.20)  82.60 (+ 15.33)  T7.50 (+ 16.65)
{4, 5, 6} 96.60 (+ 4.65)  TT.60 (+ 17.44)  T73.83 ( 17.29)
(4,57} 97.50 (+ 3.87)  82.73 (+ 15.84)  76.33 (< 16.95)
{4, 5, 8} 96.75 (£ 4.12) 81.20 (& 15.98) 79.17 (4 16.30)
(4,6, 7} 907.44 (£ 4.08)  83.10 (£ 15.51)  76.50 (& 18.06)
{4, 6, 8} 96.81 (£ 4.21)  82.27 (£ 15.57)  78.83 (+ 16.73)
{4, 7,8} 96.62 (+ 4.11)  82.60 (+ 15.85)  78.33 ( 16.50)
{5, 6, 7} 07.44 (£ 3.98)  82.80 (£ 15.16)  75.67 (£ 18.11)
{5, 6, 8} 96.94 (£ 4.12)  82.63 (£ 15.41)  78.50 (£ 16.29)
(5,7, 8} 96.75 (£ 4.12)  82.77 (£ 16.12)  77.83 (£ 16.42)
(6,7, 8) 96.69 (+ 4.30)  83.37 (+ 15.87)  78.50 (< 16.46)
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5.2. Comparison and discussion

In order to scrutinize more the evaluation of our proposed approach, we com-
pare the results using classical network measurements and the previous LLNA.
The classical network measurements used in this experiment are described in
Section 4.4. For the previous LLNA, we replicated the results obtained from
Miranda et al. [28], as detailed in Section 4.4. For our proposed approach, we
considered the feature vector \175,7 in all databases, since it has obtained a good
performance as reported in Section 5.1.

Table 4 presents the results obtained for each approach evaluated in different
network databases. The 4-models synthetic-database and the noisy-synthetic-
database showed that the proposed method obtained very similar accuracies
compared to the other approaches. On the other hand, regarding the 4-model
+ (k) database, the LLNA-BP (98.31%) outperformed the previous LLNA
(90.76%) and the classical network measurements (65.20%). Also, on the scalefree-
synthetic-database, our method presents a slight improvement of 1.22% and
3.32% compared to the previous LLNA and the classical network measurements,
respectively.

The proposed method was also compared with other real-world networks
databases (see Table 4). The classification tasks from these databases is a chal-
lenging problem. Each application has different properties allowing to evaluate
the generalization ability of the method. Regarding the task of identifying
structural patterns in social networks, the proposed method obtained the high-
est accuracy when compared to the other approaches. Our method provided an
accuracy improvement of 1.4% for the previous LLNA, and 5.4% for the classical
measures, demonstrating to be a better discrimination method.

Regarding the task of identifying organisms using metabolic networks, the
proposed method also presented higher accuracy than the other approaches.
On the fungi-database the experimental results indicate that our method signif-
icantly improves accuracy, e.g. from 54.58% (% 19.38) to 76.17% (£ 17.45) over
the previous LLNA and from 54.90% (£ 15.39) to 76.17% (£ 17.45) over the
classical network measures. On the animal-database an accuracy of 84.87% (£
15.25) is achieved by the proposed method, which is followed by the accuracy
of 83.71% (& 15.29) and 77.25% (& 16.29) obtained by the classical network
measures and previous LLNA, respectively. For the kingdom-database, the max-
imum accuracy obtained with proposed method was 97.44% (% 3.98) in contrast
t0 96.61% (% 4.33) using the classical network measures as a feature vector.

In the experiment using the Plant-database, the proposed method obtained
the highest accuracy, 74.81%(45.64). On the Protist-database, the proposed
method LLNA-BP outperformed the previous LLNA and the structural mea-
sures by 18.45% and 41.90%, respectively. In the other two databases (Firmicutes-
Bacillis and Actinobacteria), the LLNA-BP also obtained a better performance
when compared to the others. Note that on some databases it is evident that
structural measures cannot deal with the complex patterns and thus, it is not a
good option for the network characterization. Besides that, the results demon-
strate that the binary pattern’s signature can better characterize the complex-
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ity of the TEPs generated by the LLNA. In general, the experimental results
showed that our approach improved the accuracy in all the studied databases
when compared to the original LLNA.

Table 4: Comparison of the accuracy (%) and standard deviation obtained by the proposed
approach, the original LLNA and the structural network measures applied in the classifica-
tion of eight network databases. The LLNA-BP used the feature vector \175,7. The LLNA
used [fg, fw, L] as a feature vector. The structural measurements feature vector was

[<k>7 <Hk1>v <Hk2>7 <Cc>7lva]'

Approaches
Databases LLNA-BP LLNA = Structural measures
J-models 100.0 (£ 0.00)  99.992 (£ 0.002) 100.0 (& 0.00)
£ Jmodel + (k) 98.31 (£ 0.02)  90.76 (£ 0.07)  65.20 (& 0.20)
2 Scale-free 99.52 (£ 0.19)  98.30 (£ 0.2) 96.20 (£ 0.04)
€ Noise p = 10% 100.0 (£ 0.00)  99.983 (£ 0.004) 100.0 (< 0.00)
& Noise p = 20% 99.98 (+ 0.00)  99.97 (£ 0.01)  100.0 (£ 0.00)
Noise p = 30% 99.99 (+ 0.00)  99.95 (£ 0.01)  100.0 (< 0.00)
Social 93.40 (£ 0.92)  92.00 (£ 1.00) _ 88.00 (£ 2.00)
Kingdom 07.44 (£ 3.98)  93.10 (£5.38)  96.61 (£ 4.33)
~  Animal 84.87 (4 15.25) 77.25 (+ 16.20)  83.71 (& 15.29)
S Fungi 76.17 (£ 17.45) 54.58 (+ 19.38)  54.90 (& 15.39)
Plant 74.81 (£ 5.64)  69.70 (£ 4.67)  54.19 (& 9.17)
Protist 87.00 (£ 5.29)  68.55 (£ 6.30)  45.10 (£ 10.02)
Firmicutes-Bacillis  98.30 (£ 1.17)  84.63 (£ 2.00)  95.67 (& 0.59)
Actinobacteria 95.13 (+ 1.22)  91.48 (+ 1.60) 93.16 (& 0.70)

5.3. Processing Time

In order to evaluate the processing time, we consider networks from the
scalefree-synthetic-database with (k) = 16. The proposed method LLNA-BP
took on average 0.10s, 0.21s, 0.32s, and 0.45s to compute the signatures from
the networks with N = 500, 1000, 1500 and 2000 nodes, respectively. On the
other hand, the traditional LLNA method took on average, 0.04s, 0.09s, 0.14s,
and 0.19s to obtain the signatures from the same network samples, respectively.
In these tests, we used a 3.60GHz Intel(R) Core i7, 64GB RAM and 64-bit Oper-
ating System. Although the LLNA-BP has spent a slightly higher running time
compared to the traditional LLNA, the results indicate that both approaches
have very competitive running times for real-time application.

6. Conclusions

In this paper, we presented an innovative manner to improve the feature ex-
traction of LLNA time-evolution patterns in the context of pattern recognition.
Thus, we proposed to represent their sequences of zeros and ones into frequen-
cies of binary patterns, from which various descriptors were used for network
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characterization. We have demonstrated the robustness of our method with
respect to two types of databases: synthetic and real-world networks. First, we
investigated the effect of the involved parameters on the performance of clas-
sification on the databases. From this study, it was possible to define a set of
default parameters for all databases that represents a good tradeoff between
performance and number of features. Then, experimental results confirmed the
effectiveness of the proposed method against the original LLNA and structural
network measurements obtained directly from the network topology when used
as feature vectors. In particular, the proposed method significantly improves the
accuracy compared to the original LLNA in real-world applications. This clearly
demonstrates that even in challenging tasks, the proposed method leads to an
effective interpretation of the complex patterns present in the TEPs. Finally,
besides we showed an interesting case where the binary patterns descriptors im-
prove the performance, certainly, this same proposal can be extended to other
cellular automata TEPs.
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