Lina: Timing-Constrained High-Level Synthesis
Performance Estimator for Fast DSE

André Bannwart Perina and Jiirgen Becker

Karlsruhe Institute of Technology
Karlsruhe, Germany

Emails: abperina@usp.br, juergen.becker @kit.edu

Abstract—The adoption of Field-Programmable Gate Array
(FPGA) for general use in the High-Performance Computing
scenario has been limited by its complex development flow
required to get optimised designs coupled with a time-consuming
compilation. High-Level Synthesis (HLS) tools are adopted to
improve programmability, however the developer must perform
several iterations of optimisation schemes in order to achieve
reasonable performance results, which is tedious and not trivial.
Several works employ Design Space Exploration (DSE) through
different optimisation possibilities, coupled with fast performance
estimators to avoid the unacceptable compilation times. This
paper presents Lina, an expansion of the Lin-Analyzer fast pe-
formance estimator for C/C++ HLS including timing-constrained
scheduling and an extended analysis for nested loops. Results
over the PolyBench benchmark show that the average relative
error dropped from 8.85% to 3.02% when loop unrolling and
pipelining directives were considered. As a result Lina becomes
a better estimator for non-perfect loop nests and for different
timing constraints, which can be adopted as an additional design
space exploration knob.

I. INTRODUCTION

In an effort to increase the compute capability of High-
Performance Computing (HPC) systems while maintaining the
energy consumption to acceptable levels, alternate architec-
tures such as Graphics Processing Units (GPU) and Field-
Programmable Gate Arrays (FPGA) are employed to increase
the performance per Watt ratio.

High-Level Synthesis (HLS) tools such as Xilinx Vivado
and Intel FPGA SDK for OpenCL are able to generate designs
for FPGA from high-level software codes, reducing the FPGA
programming effort. However, “software-to-hardware* conver-
sion is not trivial and often leads to poor performance results,
requiring iterations of optimisation to achieve speedup [1].
One possibility is to iteratively explore the software code using
Design Space Exploration (DSE) of optimisation parameters.
Since the design space can easily explode in complexity, a fast
analyser for each design point is essential [2][3].

This paper presents Lina', which is in essence an expansion
of the Lin-Analyzer [2] fast C/C++ performance estimator for
Xilinx Vivado HLS. It expands Lin-Analyzer by providing
timing-constrained scheduling analysis (enabling frequency as
an additional exploration knob) and the capability to estimate
more complex loop nests. Experimental results show that for

ILina is available at https:/github.com/comododragon/lina

Vanderlei Bonato
University of Sdo Paulo
Sédo Carlos, Brazil
Email: vbonato@usp.br

a small design space with 48 points, the average relative
error for 9 kernels was of 13.01% when array partitioning
was explored and 3.02% without it, respectively, against Lin-
Analyzer’s 16.45% and 8.85%.

The paper is structured as follows: Section II presents the
original Lin-Analyzer and Lina. Section III presents the ex-
perimental setup for validation, with the results at Section IV.
Section V presents related works and finally Section VI
concludes the paper.

II. OVERVIEW

Lin-Analyzer estimates the cycle count for a C/C++ loop
nest by scheduling a Dynamic Data Dependence Graph
(DDDG) generated through analysis of a dynamic trace, which
is in turn generated through instrumented execution. DDDGs
are dynamic variants of Data Flow Graphs (DFG) and can be
scheduled to hardware operations using similar approaches as
the HLS tools with As-Soon-As-Possible (ASAP), As-Late-
As-Possible (ALAP) and Resource-Constrained List Schedul-
ing (RCLS) algorithms. The instrumented execution is per-
formed only once per application and different combinations of
optimisations parameters can be explored simply by modifying
the DDDG scheduling, which is fast. Thus, Lin-Analyzer is
able to explore large design spaces.

Lina expands Lin-Analyzer by implementing a Timing-
Constrained Scheduler (TCS) and Non-Perfect Loop Analysis
(NPLA). Lina also brings some adjustments in inner values
of Lin-Analyzer (e.g. the number of cycles to test the en-
ter/exit conditions of a loop) to improve accuracy. Fig. 1
provides an overview of the Lina framework, encompassing
the original instrumentation part and the improved DDDG
building/scheduling.

A. Timing-Constrained Scheduler

With HLS, software instructions are allocated to Functional
Units (FU) in FPGA. FUs are capable of solving basic
operations such as floating-point arithmetic, load, store, etc. In
terms of timing, an FU is defined by its latency ! (amount of
cycles it must iterate to provide a result) and critical path delay
tcp (the delay it takes to finish a cycle processing). To provide
valid results, the operational frequency f,, of the system must
be adjusted so that all FUs are able to compute their cycles
without timing violations (i.e. t, < i).

(©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

DDDG Builder

Sub-trace
Extraction

Input Data HLS
Directives

Instrumentation

IR Trace Execution
Generation Injection Engine

C/C++ Code

Dynamic Trace

DDDGs
Generation
(with NPLA)

DDDGs
Optimiser

Optimised DDDGs

FPGA
Timing/Resource
Profile

Estimated
Cycle Count

Fig. 1. Lina framework, with Lin-Analyzer modules and the features implemented by Lina marked with red diagonal arrows. Adapted from [2].

cycle i : cyclei+1

: cyclei : cyclei+ 1

fadd 8 cycles H
(tp=3.45 ns) ' fmul no merge
H ' possible
' '
fadd 10 cycles ! timing violation 1
(tp=2.46 ns) H H . merge
! : 1 possible
'

(@) (®

Fig. 2. Timing analysis performed by Lina exemplified at 300MHz. At left
(a) an example of FU adjust to avoid timing violation (the fadd must be
adjusted to 10 cycles, as with 8 cycles the critical path violates timing). At
right (b) two examples of cycle merge attempts.

To avoid violations, an HLS compiler may supply a set
of configurations {(1%t2,), (I',t%,), ...} for each FU, where
lower latencies reflect in more work per cycle, i.e. larger ..
If a high f,, is requested, the HLS compiler will allocate FUs
with lower t., but consequently having a large latency. Thus
fop 1s not only related to the total execution time, but also to
the total cycle count c and the peak performance is not always
at the highest f,, or lowest c.

In Lin-Analyzer, the latencies of all FUs are constrained
to a fixed frequency of 100MHz. In Lina, a hardware profile
library was created containing the set of configurations for
each FU. We collected such information from the detailed
scheduling reports from Vivado HLS by varying the target
fop and analysing the reaction on [and t., for relevant FUs.

During operation scheduling, the RCLS uses an Resource
Allocator (RA) to check if there are free resources to allocate
an operation. If positive, Lina proceeds to TCS with the
Timing Allocator (TA) which is performed in two parts: first,
Lina selects the configuration for each FU that has the smallest
[but without violating timing. Then, it performs timing-
constrained scheduling where cycle merges are possible: if two
consecutive dependent operations a and b (e.g. an arithmetic
operation and its store) have critical paths ¢¢, and tﬁp so that
e, + b, < ﬁ, it is possible to schedule both at the same
clock cycle. Fig. 2 presents both FUs adjustments and cycle
merge.

B. Non-Perfect Loop Analysis

Lin-Analyzer estimates performance by scheduling the
DDDG based on the sub-trace of the innermost loop body.
The estimation will have deviations when the loop nest is non-

perfect, worsening if the outer loop bounds are significantly
larger than the innermost bound.

Lina implements Non-Perfect Loop Analysis (NPLA) by
applying the same DDDG scheduling algorithm to DDDGs
located between loop nests to refine the estimation. Consid-
ering a loop depth ¢, the cycle count for this loop body c; is
given as:

(ci + il + (e (wi = 1) + (cig1) b
Uy

¢ = Lo (1)

bf af

where ¢;’, ¢!, ¥ are the cycle counts for the scheduled
DDDGs before, after and between nested loops (when unroll
is active), u; is the unroll factor, b; the loop bound and o is
the loop’s enter/exit test latency.

Whenever possible, Vivado will merge the enter/exit tests
to neighbouring operations. This means that o can vary
depending on the loop structure. In the non-perfect case, the
values c?f , c?f and ¢ are adjusted accordingly. For perfect
loop nests, this can only occur when loop unrolling is enabled
and thus the total loop cycle count ¢; is calculated as:

(Ui —].) bl

Uq

2

C; = (Ci+1 . bl) + 0o —

III. EXPERIMENTAL SETUP

To validate Lina, we used kernels that are provided together
with Lin-Analyzer to test its accuracy, composed of 9 C
kernels from the PolyBench benchmark [4]: atax, bicg,
conv2d, conv3d, gemm, gesummv, mvt, syr2k and
syrk.

We performed a small parameters exploration with loop
unroll, pipelining, array partitioning and effective clock fre-
quency (detailed information about the parameters can be
found in the project repository). For each configuration, we
measured the relative percentage error from Lina and Lin-
Analyzer estimations against the values reported by Vivado
HLS 2018.2 for the Xilinx UltraScale+ ZCU102 (the original
Lin-Analyzer was adapted to support this board). All synthesis
were performed on a system with Arch Linux, Intel i7-5500U
CPU and 16GB of RAM.

IV. EXPERIMENTAL RESULTS

Fig. 3 presents the relative error from Lina and Lin-Analyzer
against the cycle counts reported by Vivado HLS for the atax
and conv2d kernels. Due to page limitations and to avoid
polluted plots, we show only the results for some kernels and

atax atax (w/ part.) convolution2d convolution2d (w/ part.)
80 80 80 80
£ 60 60 60 - 60
5 o []
& 40 o v, - 40 40 — 40 A \ 'A' ®
e L] 0 /\
- 20 o 20 20 20 41—
. j . | %e®e s 000Q . ISR SR A
- - 2) k! -
0 RBSH W L] o P B— B— 0 | RNV R, " 049 € & o
T T
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Configuration ID -@- Lin-Analyzer [4]

Fig. 3.

for a partitioning factor of 2 (IDs 16-30). Other results can be
found in the project repository.

Both estimators presented little or no error without parti-
tioning and pipelining (ID < 4) and improved accuracy on
conv2d and conv3d. With pipelining (IDs 4 and 6) both
had comparable results, with some configurations with error
of ~ 20%. Until this point both estimators were configured to
the same target frequency (100MHz with 27% uncertainty).
For the IDs 8-14, a different frequency was used and Lina
gave in many cases the exact cycle count, while Lin-Analyzer
deviated from 10% to 30%. One source for the mentioned
errors is due to internal optimisations performed by Vivado
that both estimators cannot reproduce.

With array partitioning enabled (ID > 16), Lina presented
improved overall accuracy, but for some configurations both
had notable deviations, with a peak value of ~ 65%. One of
the reasons is that Vivado conservatively assumes loop-carried
dependencies that Lina, Lin-Analyzer and other estimators [3]
do not. In some cases, Lin-Analyzer performed better than
Lina. This happens when: both Lina and Lin-Analyzer are
not able to accurately estimate the inner loop latency and;
innacuracies in Lin-Analyzer involving o (see end of Sec-
tion II) and latency for 1oad operation reduce the error (e.g.
an estimation that is higher than the expected value is deducted
by these innacuracies, inadvertedly reducing the error). We
found these differences by comparing ¢ and load latency
from Lin-Analyzer against the actual values from the Vivado
scheduling reports.

In average for all kernels and tested configurations, the
estimations from Lin-Analyzer had a relative error of 16.45%,
while Lina 13.01%. Excluding array partitioning, the error for
Lin-Analyzer dropped to 8.85% and Lina to 3.02%. Thus, in
average, Lina presented better accuracy than Lin-Analyzer.

Fig. 4 presents the relative errors for gemm with a larger
frequency for IDs 8-14 and 24-30. As expected, the increased
frequency disparity from the fixed 100MHz of Lin-Analyzer
yielded larger error for these configurations, since it does not
perform any timing analysis.

Fig. 5 presents the cycle count for bicg and conv2d
under different frequencies with optimisations disabled. It can
be noted that Lina accurately reacted to the different timing
constraints. Furthermore, the peak performance was not at
the highest frequency nor the lowest cycle count: the optimal
frequency was estimated at 285.71MHz and 153.85MHz for

Lina (TCS + NPLA) Configuration ID

Relative error between Lina and Lin-Analyzer against the cycle counts reported by Vivado HLS for different configurations of atax and conv2d.

80 80
£ 60 o 60 o
5
o 40 40
[
2
® e
3 20 - 20 i
a2 o ¢
o 4+ e ee—S 0 404 R—
T T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Configuration ID

-@- Lin-Analyzer [4]

Configuration ID

Lina (TCS)

Fig. 4. Results for gemm with higher frequency for IDs 8-14 and 24-30.
bicg convolution2d
1.6 - 4.6
- \ ST §
G 1.4 o - 2 Y & a4
< » A \ g
1.2 A \ 1 B Al 42
5 i AN] vy N1 B
o 1.0 4 Y ~ - 53 - F 4.0 o
S = S v]
2 W S] &
S] N
2 0.8 - < E 38
[€) i . i o
Ins sy _—s o0 e
o oo
06 =7 T T T T T T T 3.6
150 200 250 300 150 200 250 300

Frequency (MHz) Frequency (MHz)

~@- Vivado HLS Lina (TCS + NPLA)

Fig. 5. Cycle count reported by Lina and Vivado HLS for bicg and conv2d
in different frequencies (all optimisations disabled). The dashed line represents
the total execution times considering frequency and cycle count. Both plots
are scaled to the same intervals.

80 80
X 60 o 60 -
g
& 40 40
3
2
o 20 o 20
= xm |8/ oo
0 1 @@ 0 o gl
T T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Configuration ID
Lina (TCS + NPLA)

Configuration ID
-@- Lin-Analyzer [4]

Fig. 6. Relative errors for a variant of gemm with different loop bounds.

bicg and conv2d respectively.

Fig. 6 presents a variation of gemm where different loop
bounds were used in a way that the proportion of executed
operations between the outer loops and the innermost loop
increased. As expected, the error difference between Lina and
Lin-Analyzer was more noticeable, since Lin-Analyzer ignores
the instructions between loop nests. For three configurations

Lina had worse accuracy, which was caused by a similar effect
as previously explained: the innermost loop latency had a
positive error for both estimators and NPLA only worsened
the cycle count, which in turn increased the error for Lina.

Regarding the execution time of the estimations, the trace
part was the most significant portion of the total time, account-
ing for 95% and 93% of the time of Lin-Analyzer and Lina
respectively. Since it has to be performed only once, its impact
decreases with the design space size. For the experiments in
this paper, the total exploration time was 7.50 minutes with
Lin-Analyzer and 7.67 with Lina, while Vivado HLS took
397.91 minutes.

V. RELATED WORKS

According to [5], FPGA HLS estimators for DSE are
basically divided in two flavours: the ones that require HLS
compilation and the ones that avoid it. Both avoid the whole
synthesis process, which would lead to hours for a single de-
sign point. However, even the pre-synthesis HLS compilation
itself might take several minutes, still hindering large DSE.

HLScope+ [6] uses code instrumentation and analytical
modelling to improve the accuracy of the Vivado HLS sim-
ulator. It is two orders of magnitude faster than the whole
synthesis process but since it requires HLS simulation for each
design point, it is not well suited for very large DSE.

COMBA [3] has a similar methodology than Lina and Lin-
Analyzer. It enables fast exploration by using a metric-guided
DSE, discarding uninteresting points according to performance
metrics. It also supports more exploration knobs, such as
function pipelining, dataflow, inlining. The average errors for
the PolyBench kernels are less than 2%.

For comparison purposes, we executed COMBA and Lina
for bicg and gemm kernels with large and small loop bounds.
For bicg, COMBA explored 1758 and 514 points for large
and small variants respectively, leading to a per-point execu-
tion time of 0.40s and 0.46s against Lina’s 0.12s and 0.05s
including trace. For the gemm kernel, 1444 and 604 points
were explored by COMBA for the large and small variants,
leading to per-point 0.35s and 0.38s while Lina took 1.75s
and 0.07s. The increased time for gemm large bounds with
Lina is due to the dominating trace time, which would better
dissolve with larger design spaces. Furthermore, the metric-
guided DSE could be applied to Lina as well, reducing the
amount of analysed points.

Even though COMBA also performs timing analysis and
cycle merging, it has only 5 options of frequencies and the
values used for the analysis were extracted through profiling,
which is potentially less accurate than acquiring the values
directly from the Vivado reports as we did. Furthermore,
they analysed the merging possibilities in an instruction-by-
instruction basis, which potentially exclude particular cases.
We created a preliminary hardware profile for the board used
in their paper and compared the cycle count from bicg
against the actual values of Vivado for different frequencies
as shown in Fig. 7. It can be noted that COMBA presents
deviation from 150MHz onwards, while Lina keeps accurate.

1200 -
1100 -
1000 -
900 A
800 -

Cycle count (kcycles)

700 —

T T T T T T T
100 125 150 175 200 225 250

Frequency (MHz)

-@- COMBAI[3] Vivado HLS ~ —»¢ Lina

Fig. 7. Cycle count comparison between COMBA, Lina and Vivado HLS for
the bicg kernel at different frequencies (all optimisations disabled), using a
preliminary hardware profile library.

VI. CONCLUSION

This paper presented Lina, a performance estimator for
C/C++ codes when used as input for Xilinx Vivado HLS. Lina
is an improvement of Lin-Analyzer by including timing and
non-perfect loop nest analyses. Results show that for different
optimisation configurations for 9 kernels from PolyBench,
Lina had an average relative error of 13.01% and 3.02% if
array partitioning is not explored, an improvement over Lin-
Analyzer’s 16.45% and 8.85%. Lina is able to accurately pre-
dict different timing budgets, opening the opportunity for the
user to find a good balance between operating frequency and
total cycle count. Future works include attaching models for
external memories and improvements in the loop scheduling.

ACKNOWLEDGMENT

The authors would like to thank FAPESP (Sao Paulo Re-
search Foundation, grants no. 2018/22289-6 and 2016/18937-
7) and Karlsruhe Institute of Technology for the financial
supports given to this research project.

REFERENCES

[1] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka,
“Evaluating and optimizing OpenCL kernels for high performance com-
puting with FPGAs,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 1EEE
Press, 2016, p. 35.

[2] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, “Lin-Analyzer: A
High-level Performance Analysis Tool for FPGA-based Accelerators,” in
Proceedings of the 53rd Annual Design Automation Conference. ACM,
2016, p. 136.

[3] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “COMBA:
A Comprehensive Model-Based Analysis Framework for High Level
Synthesis of Real Applications,” in Proceedings of the 36th International
Conference on Computer-Aided Design. 1EEE Press, 2017, pp. 430-437.

[4] L.-N. Pouchet, “PolyBench: the polyhedral benchmark suite,” 2012, avail-
able at https://www.cs.ucla.edu/pouchet/software/polybench, accessed 9th
apr. 2019.

[5] K. O’Neal and P. Brisk, “Predictive Modeling for CPU, GPU, and
FPGA Performance and Power Consumption: A Survey,” in 2018 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI). 1EEE, 2018,
pp. 763-768.

[6] Y.-k. Choi, P. Zhang, P. Li, and J. Cong, “HLScope+: Fast and Accurate
Performance Estimation for FPGA HLS,” in 2017 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD). 1EEE, 2017,
pp. 691-698.

