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ABSTRACT. This paper develops an inference strategy for detecting heteroskedasticity in 
linear regression models. We develop a Bartlett adjustment to the modified profile likeli­
hood ratio test (Cox and Reid, 1987) for heteroskedasticity in the linear regression model. 
Our re.suits generalize those in Ferrari and Cribari-Neto (2002), since they allow for a 
vector-valued structure for the parameter that defines the skedastic function. Monte 
Carlo evidence shows that the proposed test displays reliable finite-sample behavior, out­
performing the original likelihood ratio test, the Bartlett-corrected likelihood ratio test, 
and the modified profile likelihood ratio test. 
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1. INTRODUCTION 

Linear regression models are oftentimes used to model the behavior of a variable 
of interest conditional on a set of explanatory variables. In practical applications, it is 
common for these models to include a heteroskedastic structure, thus indicating that the 
conditional variances are not constant across observations. Since the modeling strategies 
are different when such variances are not constant, it is important to first test whether 
heteroskedasticity is present in the data. The most commonly used tests for heteroskedas- . 
ticity are based on first order a.symptotics, since they rely on a large sample approximation. 
The asymptotic approximation used to perform the tests, however, may not deliver accu­
rate inference when the sample size is not large. In particular, likelihood ratio tests for 
constancy of variances in linear regression models tend to be severely oversized in samples 
of typical size. It is thus important to de~lop inference strategies that are more reliable 
and display superior finite-sample behavior. Cordeiro {1993) proposed a Bartlett adjust­
ment to the likelihood ratio test for heteroskeda.sticity, where the test statistic is modified 
using an adjustment factor that typically reduces finite-sample size discrepancies. The 
original likelihood ratio statistic is distributed as x2 up to an error of order n-1 whereas 
the transformed statistic follows the same limiting distribution up to an error of order n-2• 

Simonoff and Tsai (1994) used the modified profile likelihood inference approach proposed 
by Cox and Reid (1987) to develop a test for heteroskedasticity aiming at reducing the 
effect of nuisance parameters on the resulting inference. The proposed test typically de­
livers more reliable inference in finite samples, but the test statistic is still x2 distributed, 

-•· under the .null hypothesis, np to.an fil'or'Of-order n-1. Ferrari and Cribari-Neto {2002) 
have Bartlett-corrected this test to obtain an adjusted modified profile likelihood test that 
is second order accurate. Their results, however, have an important limitation: they are 
only valid for situations where the parameter that defines the heteroskedastic behavior 
of the data is scalar. Since in most applications practitioners use variance specifications 
that are based on more than just one covariate, it is important to develop second order 
accurate adjusted modified profile likelihood inference in wider generality. This is the goal 
of the present paper. 

The paper unfolds as follows. Section 2 presents the model of interest and the afore­
mentioned tests for heteroskeda.sticity. Section 3 develops the main result in the article, 
namely the second order accurate inference based on adjusted modified profile likelihood 
methods. Numerical evidence on the finite-sample behavior of the different tests is pre­
sented in Section 4. The numerical evidence favors the test proposed in this paper. Section 
5 discusses an application to real data. Concluding remarks are given in Section 6. 
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2. SOME TESTS FOR HETEROSKEDASTICITY 

The model of interest is 
y = XfJ+u, (1) 

where y is an n-vector of observations on the dependent variable, X is an n x k nonran­

dom matrix of covariates with full column rank, /3 is a. k-vector of unknown regression 

para.meters, and u is an n-vector of random errors. It is assumed that u ~ N(O,u2W), 

where W is an n x n diagonal matrix with Ith entry given by w, = w(zi, 6) > 0, .i, being 

the Ith row of the n x p matrix Z of variance covariates, o-2 is a strictly positive and finite 

unknown constant, and o is a p x 1 unknown parameter vector. The desired inference 

is obtained by testing the null hypothesis 11.o : 6 = 6o (homoskedasticity), where 6o is a 

given p-vector of constants such that w(z1, 60) = 1 for I = 1, ... , n, against a. two-sided al­

ternative hypothesis. The number of parameters of interest is therefore p, and the number 

of nuisance parameters is k + l. The resulting log-likelihood function is 

L = L(y; 6, /3, o-2) = -i log(u2)-tE1ogw(z1, o)-
2
~2 (y-Xf3)'~-1(y-X/3)+constant. 

l=l 

The maximum likelihood estimator (MLE) of o can be obtained by maximizing the profile 

log-likelihood function 
{2) 

where 

That is, 

Lp(y; 8) = -i log(al) - ~ t log w(z1, 8) + constant. 
l=l 

The likelihood ratio statistic for the test at hand is 

(3) 

where 6 is the MLE of 8. The null distribution of LR in large samples may be approxi­

mated by ax: distribution. However, it is well known that this approximation may be 

very poor if the sample size is not large enough. This shortcoming can be circumvented 

by modifying the test statistic using a Bartlett correction in order to improve on the 

approximation. The Bartlett-corrected likelihood ratio statistic, 

LR*= LR 
1 +c' 
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where c is a suitably chosen constant of order n-1 surh that E(LR) = p{(l + c) + 
O(n-312)}, has ax~ null distribution with an error of order n-2 (see Barndorff-Nielsen 
and Hall, 1988). The gain in accuracy stems from the fact that pr(LR'" > :,;0 ) = a+ 
O(n-2) whereas for the unmodified statistic pr(LR > x0 ) = a+ O(n-1), where Xa is 
the 1 - a upper point from a x} distribution. A general expression for c can be found 
in Lawley (1956); see Cribari-Neto and Cordeiro (1996). The Bartlett adjustment factor 
needs to be tailored for each application of interest, and Cordeiro (1993) has obtained 
a closed form expression for surh a constant for the test for heteroskedasticity in linear 
regression. His main result is reproduced by Ferrari and Cribari-Neto (2002, p. 355). 

As indicated earlier, Simonoff and Tsai (1994) have used the modified profile likelihood 
approach proposed by Cox and Reid (1987) to obtain an alternative homoslredasticity test 
statistic. To that end, it is required that o be orthogonal to the remaining parameters. 
For the model of interest here, the transformation ( o', {J', u2)' ---+ ( o', {J', 'Y )', with 

2 'Y 
U = l ' 

(liz=l w1)" 
delivers the desired orthogonality. The log-likelihood function for the reparameterized 
model is given by 

where V = diag{v1, . . . , v,.}, with 

n 

t11 = t11(0) = (IT Wm)lj'n /w,. 
m=l 

The corresponding profile log-likelihood function for o is 

i; = i;(v; «5) = -i log9.r + constant, 

(4) 

where 16 = ul(Ilf=t w,)1/n. The modified test statistic is given by equation (3) but with 
Lp(y; o) replace by 

where;• is the observed information matrix in the reparameterized model for the nuisance ,,.., 
parameters (fJ','Y)' evaluated at (/36, 9.r)'. The resulting test statistic is 

LRm = n - k - 2 LR+ lo { det~X' ~) } 
n g det(x:nxm) I 
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where Xm = a-112 X. Here, (} is an n X n diagonal matrix with Ith entry given by 
..... nn ..... 1/ 

w(z1,o)/{11m=1 w(z,,.,o)} n_ 

3. SECOND ORDER ACCURATE PROFILE LIKELIHOOD INFERENCE 

The modified profile likelihood ratio test presented in Section 2 typically delivers 

improved inference relative to the original likelihood ratio test, but both tests are based 

on first order asymptotics. It is possible to develop a Bartlett adjustment to such a test in 

order to obtain a new test that is second order accurate. This will be done in this section 

using the results in DiCiccio and Stern (1994). We find a correction factor Cm that defines 

the transformed statistic 

such that pr_(LR;,. > x0 ) =a+ O(n-2). 

The notation used can be summarized as follows, where indices a, b, ... range over 

1, ... ,P, and indices r, s, t, ... range over 1, ... ,p+k+l. Let 0 = (o', {31
, 7)1

, fJ" denoting the 

rth element of 6, >.r, = E(a2 L/8fJ"86'), Ar,t = E(a3 L/8fJ"8fJ'{}f/f), etc. Define (>.r.)t = 
o>-r,/aot, (>-ra),,. = a2 >-ra/&IJtcJ(JU, etc. The (r, s) element of Fisher's information matrix 

is thus given by - >.r,, and the corresponding element of its inverse is - >.r•. Additionally, 

rr• = ,xro,x,bO'ab, where (uab) is thepxp matrix inverse of (>.06), and vr• = ,xr•-rr11
• Note 

that the entries of the (p + k + 1) x (p + k + 1) matrix ( 1P) are all zero except for its lower 

right-hanc. (k + 1) x (k+ 1) submatrix which is the inverse of Fisher's information matrix 

for the nuisance parameters (/3', 'Y) keeping o fixed. The implicit summation convention is 

used throughout, i.e., indices repeated as subscripts and superscripts indicate summation 

over the appropriate range. 

DiCiccio and Stern (1994, p. 404, equation (25)) obtained a general expression for Cm, 

that can be written as 

1 
Cm= 4r"'r8t Antu - ,xrur,t(Arat)u + (_xru ,xat - 1/rull,t)(.Xr,)tu 

_ (!_xrurstrvw + ~_xrur,wrtv _ ~r"'rawrtv) .L,>. 
4 2 3 r •• 'IWW 

+ (>.r"r't>.tlW + _xru.,xaw.,xtv -Vru.,xaw11tv)Ar,t(Auv)w 

_ (Aru_xst _xvw _ 11rvv•t 11vw + >."' _xaw _xtv _ 11rvvaw 11tv)(>.r,)t(>.uv)w, 

In our setup, i.e., where the parameter vector is written in partitioned form as (o', {3', 7)1 

and I is scalar, we have that 11ab = 11a'Y = vai = 0, rab = >.ab, r°'Y = .,\a'Y, r°i = _xai, and 

ri'Y = >.h, where 'Y is used to represent the index corresponding to the last component 
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of the parameter vector (6',/J',y)', and i,j, ... range over p+ 1, ... ,p + k. Using the the orthogonality between 6, fJ and 'Y, it can be shown that rii = rTI = >-ai = >.IJ'"f = >.i,., = >,0 i = )..G'"f = >.i-t = 0, vii = >,ii and ).TI = vn. After long algebra, we obtain the following 
expression for em: 

Cm.= ~.\.ab ).cd Aabcd - ).ab ).cd(>.acc1)b + ).ab ).cd(Aac)dh _ ).ii ).ab(.).iab); 

_ ).TI).ab(~),.,- (¼>-.w>.<ld>,.ef + ~>.ab)/f>,de -½).ab).ef).de) >.acc1AI,eJ 

+ (>.ab>.cd>.ef + >,ab).cf>.de)Aacd(Ai,e)J _ (>.ab>,.cd>,.ef + ).ab).ef>.de)(>.aeMAbe)J 

_ (¼>.ii ).ab >,cd + ~).•i >,ad ).be) ).iab>.;c,1 + >,•i >,.ab>,kl ~(>.;k)I 

_ n).'rY).ab).cd + ~).'rY).ad).bc) ~Aod'"f + ().TI).ab).'TY)).ab'"((A,.,,.,),.,. (5) 

It is noteworthy that the expression we derived, expression (5), can be used to obtain closed-form expressions for the Bartlett adjustment factor in any class of models that uses the partition of the parameter vector as here and where orthogonality holds. In that sense, equation (5) is quite general and can be used to Bartlett-adjust modified profile likelihood ratio tests in classes of models other than the one we focus in this paper. 
In what follows we consider the framework described in the previous section. It can be easily shown that 

The expression for VR1 follows from 

. { 8"'v1 B"'vn } VRm = diag 0r,a1 •. . 0r,am' · · ·' 0r,a1 .•. {}r,0m. 
with m = 1, where v1, ... , Vn are given in (4). Using the fact that if E(z) = /J and cov(z) = E for an n x 1 random vector z, then E(z' Az) = tr(AI::) + J/ Aµ, A being an n x n nonrandom matrix, we obtain 

(a£") 1 -J 1 ~ t)IG E 000 = - 2tr(Vn1 V ) = - 2 L..J -;, 
l=l 

where v, .. = 8vtfooa. It follows from regularity conditions that the above expected value 
equals zero, so thew's must satisfy E;=l v, .. /v, = 0. Note that 

( 
{fl L* ) 1 { 1 } 1 -1 1 ~ v,,. E a~~ =-

2 2E (y-XP)Vn1(y-Xp) =-2 tr(VR1 V )=-2 LJ-=0, Cla.,, 'Y 'Y 'Y l=l tll 
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so that orthogonality between o and 'Y is preserved, as desired. The second derivative of 

L• with respect to the elements of o is 

Therefore, 

l~v1, n 2,y2 n 

(\w.-,h = - 2-y2 f;r v~ ' A-y-y = - 2,2' xn = -n, (>.-y-y)-y = r, 

(>.Bbc)d = -~ t a!d ("~•"), (>.ab)c.t = -½ E 80: 0d (~) , 
l=l I 1=1 Vz 

(,\ab)c = -} t a~c (v'4

•)' ,\iab = 0. 
l=l VI 

It is now possible to further simplify the expression given for em: 

ab cd{ 1 l } 
Cm=). ). 4>.abcd- (>.acd)b + (>.ac)db - ;i->.TI>.ab-y>.cd.., 

- ).ab >,.cd ).ef GAacdAbef + Aacd(>..1,e) / - (>..ac)d(>..1,e)J} 

- ).ab ).cf ).deG).acd).bef + >.acd(>..1ie)f - (>..ac)d(>..1ie)1} 

- ,\ab{ ).'Y'Y(>.ab-yh- (>.TI)2Aab-y(Anh} 

l ad be - 2 >. ). >. TI Aab-yAaJ-y · (6) 

In what follows, we shall consider the case of multiplicative heteroskedasticity, i.e., 

the special case where w, = exp{izo}. Here, 

VI = exp{-(z1 - z)' o}, Vt4 = -(z1 - z)aexp{-(zz - z)' o} = -(z1 - z)avl, 
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v, .. = (z, - z)abvl, t11Gbc = -(z1 - z)abcvl and v,..- = (z1 - z)obcd1J1, 
with z =· (z1, ... , z,,)' and Za = n-1 Ei=l Zia for a== 1, ... ,p. Here, (z1 - z)a = z1a - z4 , 
(z1 - z)ab = (z1a - za)(z1b - Zb), and so on. We have that 

. 1 n 1 n 1 n 
,\abed= - 2 })z, - z)abcd, -'abc = 2 })z, - z)abc, "°6 = - 2 ~)z1 - z)ab, 

l=l l=l l=l 
1 n 1 n 

Aatr, = 2 })z, - z)ab, (~),., = -i2 ~)z1 - z)00, 
'Y l=l 'Y l=l 

2-y2 xn = -n, (-'aa,)1, = (Aac)db = (A1ie)1 = 0. 

Plugging these quantities into equation (6) it is possible to write Cm as 

1 n 
Cm = - 8 I:(z, - z)aA00(z1 - z)b(z1 - z)c,\cd(z1 - z)d 

l=l 
l n n 

+ Sn ~)z, - z)aA00 (z1 - z)1, L (z,,. - z)c,\cd(Zm - z)a 
l=l m=l 

l n n 
- 16 LL (z, - z)a..\00(z1 - z)b(z, - z)c,\cd(Zm - z)d(Zm - z)e,\e/ (.z,,. - z)1 

l=l m=l 

-
2
~ EE (z, - z)a>.ab(Zm - z)b(z1 - z)c>-""(Zm - z)a(z1 - z)e.>.e/ (Zm - z)1 

l=l m=l 

+ .!_ t(z1 - z)aAa1,(z1 - z)i, 
n l=l 

+ 
4
~ t t (z1 - z)a,\ab(Zm - z)1,(z1 - z)c,\cd(Zm - z)d, 

l=l m=l 

Let H = {hzm} == (Z -Z)[(Z -.Z)'(Z-Z)t1(Z-Z) 1
, with (Z-.Z) = (z1 -z, ... , z,.-z)' . 

Note that (z1-z),,,A00{.z,,.-z)1, = -2 hzm• It is then possible to reduce the above expression 
for Cm to 
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It is noteworthy that E~1 h11 = tr(H) = p. Therefore, c.,. can be written in matrix fonn 

as 
1( ) 12 1, 1,(3) 2 1,(2) () c.,.=-2trHdHd +

2
np + 2iHdHHdi+ 3iH L-;;_P+;;_iH i, 7 

where Lis an n-vector of ones, Hd = diag{h11, · · ·, h..n}, H(2) = (h~m) and H(2) = (hfm). 
Equation (7) gives a simple matrix expression for the Bartlett adjustment factor. The 

expression only involves simple matrix operations, and can be easily implemented into any 
computer algebra system or statistical software that can carry out simple linear algebra 
operatioi:15 .. . It can thus be used with minimal effort by practitioners. We also note that 
the c.,. in (7) depends only on the matriz Z of covariates used to model the fluctuations 
in the conditional variance of the response, on the number of unknown parameters in 
the skedastic function and on the number of observations. In particular, it is important 
to note that the Bartlett adjustment factor does not depend on the number of nuisance 
parameters (nor does it depend on any unknown parameters). This can be interpreted in 
light of the fact that the Cox and Reid adjustment to the profile likelihood aims at reducing 
the impact of nuisance parameters on the resulting inference, and this adjustment was 
used prior to the Bartlett correction of the test statistic. Finally, we note that expression 
(7) generalizes the result in Ferrari and Cribari-Neto (2002, p. 358), which only holds for 
p = 1, as indicated earlier. 

4. NUMERICAL EVIDENCE 

The simulation results are based on the linear regression model 

where tt.1 ~ N(0, u2 exp{81z11 + · · · + OpZ!p}), and cov(u1, um) = 0 for all l -:/= m. When 
81 = • • • = Op = 0 the model is hornoskedastic, with heteroskedasticity arising when 

min{lc51I, ... , l6pl} i= 0. The simulations were carried out for different values of p and k. 
The covariates x2, ... , Xk were generated as independent draws from a standard unifonn 
distribution U(O, 1). When p < k, the matrix Z was fonned using columns 2, ... ,p+ 1 of 
X; when p ?: k, the extra columns of Z were created using independent draws from the 
U(O, 1) distribution. 

We shall report the null rejection rates of the original likelihood ratio test (LR), its 
Bartlett-corrected version (LR•), the modified profile likelihood ratio test (LRm}, and its 

Bartlett-corrected version (L~) for the test of the null hypothesis 1-lo : 61 = · · · = i5p = 0. 
The number of replications was set at 10,000 and the following levels of significance were 

considered: a = 0.100, 0.050, 0.010, 0.005. The simulations were performed using the · 
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Ox matrix programming language (Doornik, 2001). The nonlinear maximizations of the 
relevant log-likelihoods were carried out using the BFGS quasi-Newton algorithm, which 
ls generally perceived as the best performing method. All entries in the tables that follow 
are percentag,ia. 

Table 1 presents results for n = 35, p = 2 and different values for k. We vary k 
to analyze the effect of the number of nuisance parameters on the different tests. At the 
outset, we note that the original likelihood ratio test is considerably oversized, especially as 
the number of nuisance parameters increases. For instance, when k = 7 and a = 5%, the 
null rejection rate exceeds 16%. The tendency of the test to overreject is atenuated by the 
Bartlett correction, the resulting Bartlett-adjusted test displaying smaller size distortions. 
For example, its null rejection rate for the same situation was 9.0%. The modified profile 
likelihood ratio test tends to overcorrect the liberal tendency of the original test, displaying 
null rejection rates that are smaller than the nominal level of the test. Again, when k = 7 
and a = 5%, its null rejection rate was 3.2%. The Bartlett correction applied to this test 
brings its empirical type I error probability closer to the nominal size of the test. For the 
situation singled out above, its null rejection rate was 3.5%. The above conclusions also 
bold for other nominal levels, even for very small ones. 

Table 2 contains results for the situation where n = 35, k = 5 and p = 1, ... , 8. 
Again, the results show that the original likelihood ratio test is considerably over5ized, 
the more so the larger the number of covariates used in the specification of the skedastic 
function; e.g., when p = 6 and o: = 5%, the rejection rate of the test under the null 
hypothesis was nearly 26%, i.e., more than five times the nominal level selected for the 
tesL .The other conclusions drawn from Table 1 also hold here. For the same situation 
(p = 6 and o: = 5%), the null rejection rates of the Bartlett-corrected likelihood ratio test, 
the modified profile likelihood ratio test, and of its Bartlett-adjusted version were 13.0%, 
2.8% and 3.4%, respectively. 

In Table 3, we fix the value of p at 2 and vary the sample size: n = 35, 50, 100 for 
k = 5, 8. As the sample increases, the null rejection rates of all four tests become closer to 
the nominal level of the test, as expected. We also note that even for n = 100 the original 
likelihood ratio test is still oversized. As an illustration, when k = 8 and a = 5%, the 
null rejection rates of the likelihood ratio test, its Bartlett-corrected version, the modified 
profile likelihood ratio test, and its Bartlett-adjusted version were, respectively, 8.1%, 
5.7%, 4.9% and 5.0%. 

The test of equality of variances for the one factor and three levels model is considered 
in Table 4. Here, there are three normal populations with means µ1, µ2, µ3 and variances 
af, u~, ot and the null hypothesis of interest is 1-lo : a~ = oJ = a~. Note that here p = 2 
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.... .... 

k 

2 

3 

4 

5 

6 

7 

8 

p 

1 

2 

3 

4 

5 

6 

7 

8 

LR 

13.4 

14.5 

16.3 

19.2 

22.3 

24.9 

30.4 

LR 

16.3 

19.2 

21.8 

26.6 
-29.6 

36.0 

46.l 

49.4 

a= 10% 

LR• LR,,, 

10.6 8.7 

10.9 8.8 

11.2 7.9 

12.8 8.0 

14.4 6.4 

15.6 7.3 

18.9 5.3 

a= 10% 

LR• LR,,, 

11.6 8.5 

12.8 8.0 

13.9 8.0 

15.8 7.4 

17.3 7.0 

21.2 6.1 

27.6 4.5 

28.8 4.0 

LR;,. LR 

9.7 7.5 

9.6 8.2 

8.8 9.5 

8.9 ll.9 

7.4 14.6 

7.8 16.6 

5.8 21.8 

LR;,. LR 

9.2 9.6 

8.9 11.9 

8.7 14.0 

8.4 17.2 

7.8 20.0 

6.9 25.9 

4.9 34.9 

4.4 3U 

Table 1. Null rejection raleo, n = 35 and p = 2. 

a=5% a=1% a=0.5% 

LR" LR.,. LR:,, LR LR' LR,,, LR:,, LR LR' LR.,. LR;. 

5.4 4.2 4 .8 1.6 1.1 0.7 0.9 0.9 0.5 0.4 0.5 

5.9 4.4 4.9 2.3 1.2 0.8 0.9 1.2 0.7 0.4 0.5 

5.7 3.9 ,U 2.7 1.3 0.8 0.9 1.7 0.8 0.4 0.4 

7.2 3.7 4.3 3.8 l.6 0.6 0.8 2.4 0.9 0.3 0.4 

7.8 3.0 3.5 5.2 2.1 0.5 0.7 3.3 1.3 0.3 0.3 

9,0 3.2 3.5 6.3 2.5 0.5 0.7 4.1 1.5 0.2 0.3 

11.7 2.3 2.6 9.7 3.7 0.4 0.4 6.9 2.3 0.2 0.2 

Table 2. Null rejection rales, n = 35 and le = 5. 

a=5% a=l% a=0.5% 

LR• LR,,, LR:,, LR LR' LR,,, LR:;.. LR LR' LR.,. L.R:;.. 

6 .1 4.1 4.4 3.0 1.6 0.7 0.9 1.8 0.9 0.4 0.4 

7.2 3.7 u 3.8 1.6 0.6 0.8 2.4 0.9 0.3 0.4 

7.ll 3.6 4.2 4.7 1.9 0.7 0.8 2.9 1.0 0.3 0.4 

9.1 3.2 3.8 6.3 2.4 0.7 0.8 4.1 1.4 0.4 0.5 

11.9 3.4 3.8 8.0 2.8 0.6 0.7 6.3 l.7 0.3 0.4 

13.0 2.8 3.4 11.2 4.4 0.7 0.8 8.0 2.8 0.3 0.4 

18.0 2.0 2.2 17.3 6.9 0.4 o.s 12.9 u 0.1 0.2 

19.2 1.6 1.9 18.9 7.2 0.4 0.4 14.1 4.7 0.1 0.2 



Table 3. Null rejection rat.ea, p = 2 a.nd several sample sizes. 

A:=5 k=8 
n Q LR LR° LR.,. LR:,. LR LR• LR.,. LR:,. 

10.0 25.0 16.4 6.7 7.8 36.6 23.4 4.0 4.5 
5.0 16.7 9.9 3.1 3.6 27.5 14.9 1.6 1.8 30 
LO 6.6 2.8 0.6 0.7 13.4 4.8 0.3 0.3 
0.5 4.2 1.5 0.3 0.4 9.5 3.1 0.1 0.1 
10.0 16.2 11.2 8.9 9.5 21.6 13.8 8.3 8.8 
5.0 9.2 5.8 4.1 4.5 13.6 7.7 3.7 4.1 50 
1.0 2.5 1.3 0.8 0.9 4.7 2.1 0.8 0.9 
0.5 1.5 0.7 0.4 0.4 3.0 1.1 0.4 0.4 
10.0 12.0 9.8 9.0 9.9 14.5 10.8 9.6 9.8 
3.0 6.2 5.0 4.6 5.0 8.1 5.7 4.9 5.0 100 
1.0 1.6 1.0 0.9 1.0 2.2 1.3 1.0 1.0 
0.5 0.8 0.5 0.4 0.5 1.3 0.6 0.5 0.5 

Table 4. Null rejection rates, model with one factor and three Iev-, p = 2 and A: = 3. 

n Q LR LR• LR.,. LR:,. 
10.0 28.2 14.4 5.4 6.8 
5.0 18.6 8.1 2.4 3.2 

9 
1.0 7.4 2.2 0.3 0.5 
0.5 5.0 1.2 0.1 0.2 
10.0 16.6 10.6 8.5 9.2 
5.0 9.6 5.8 4.2 4.7 

18 
1.0 3.1 1.3 0.8 0.9 
0.5 1.9 0.7 0.4 0.5 
10.0 14.6 10.6 9.3 9.9 
5.0 8.2 5.5 4.7 5.0 

27 
1.0 2.1 1.1 0.9 1.0 
0.5 1.2 0.6 0.4 0.5 

10.0 12.8 10.1 9.4 9.8 

5.0 7.2 5.3 4.7 5.0 
36 

1.0 1.8 1.1 0.9 1.1 
0.5 1.0 0.5 0.4 0.5 

10.0 12.3 10.1 9.3 9.7 
5.0 6.5 5.2 4.7 5.0 

45 
1.0 1.5 1.1 1.0 1.1 
0.5 0.9 0.5 0.5 0.5 
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and k = 3. The number of observations from each of the three populations was n1, n2, n3 
{n1 +n2+n3 = n). The simulation was performed using n1 = n2 = na = n/3. The figures 
in Table 4 yield conclusions that are in agreement with the ones drawn from Tables 1, 2 
and 3. 

Table 5 collects results obtained from simulations carried out under the alternative 
hypothesis {heteroskedasticity) for n = 30, p = 2 and different values of 61 = 82 = d. It is 
noteworthy that these power simulations correspond to the setting in Table 3 for n = 30. 
We only compare the power of the modified profile likelihood ratio test and its Bartlett­
corrected variant, since the remaining two tests a.re considerably oversized and cannot be 
recommended. The results indicate that there is no loss in power derived from using the 
Bartlett adjustment derived in this paper. The power of the two tests a.re similar, with 
the slight advantage of the corrected test sterning from its smaller size distortion. 

Table 5. Nonnull rejection rates, n = 30, p = 2. 

k=5 k=8 
6 LR LR• LR.,. LR;,. 

0.5 9.6 10.5 6.9 7.7 

1.0 26.3 28.2 15.0 16.6 
1.5 47.2 49.2 28.2 29.0 

2.0 76.7 78.2 30.6 31.8 

2.5 83.0 84.0 39.0 40.9 

3.0 97.4 97.6 46.9 48.5 

3.5 98.8 98.9 91.3 91.8 

Overall, the likelihood ratio test can be severely liberal, overrejecting the null hy­
pothesis more often than expected based on the selected nominal level for the test. The 
Bartlett correction to the likelihood ratio test does bring the empirical nuli" rejection rate 
closer to the nominal level of the test, but it does not fully correct its liberal tendency. 
The modified profile likelihood ratio test introduces, on the other hand, an overcorrection, 
thus delivering an undersized test. The Bartlett adjustment to this test brings the size 
distortions closer to zero; it yields the most accurate of the four tests. 

5. AN APPLICATION 

We shall consider the data analyzed by Montgomery, Peck and Vining (2001, p. 76). 
The application involves a soft drink bottler who wishes to predict the amount of time re­
quired to service the vending machines in an outlet. The service activity includes stocking 
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the locbioeo oith """ and bottl,s of i.,,,,,..,. 000 pedonning mino, maintainaoce o, 
hofkeeping. The response (y) is the time (in minutes) spent on servicing soft drinks mar 
chil\es, and the covariates are the number of beverage cases stocked (x2) and the distance 
(ln fee~) travelled (x3). The model USe<i is tn = /31 + fJ2x11. + /33x13 + u1, l = 1, . . . , 25. We 
8581:fme that u, ~ N(0,q2 exp{61x12+62x13}) Mtd cov(u1, Um)= 0 for all I =f. m. Standard 
diagnostic analyses suggest that observations 9 and 22 are leverage points, the former also 
classifying as an influential observation; see Montgomery, Peck aud Vining (2001, pp. 210, 
2131 215, 216, 217). In what follows we shall work with the incomplete dataset, i.e., we 
sha.¥ exclude ~servations ~ aud 22 from t~e data. The maximum likelihood parameter 
estiµlates are /31 = 4.643, /32 = 1.456 and /33 = 0.011. The estimate of u2 is a2 = 6.163 
and1 the coefficient of determination, R2, equals 0.9072. These estimates were obtained 
im~sing 61 = 62 = 0. Diagnostic analyses for the incomplete data set do not show 
evi1ence of heteroskedasticity. 

Our main interest lies in testing 11.o : 61 = 62 = 0 (homoskedasticity) against a twer 
sid~ alternative (heteroskedasticity). Rejection of the null hypothesis would suggest that 
the non-constant response variance should be modelled as well. The test statistics are 
LR = 4.825, LR:' = 3.717, LR,,. = 4.126 and LM:,. = 4.352; the respective p-values 
are 0.090, 0.156, 0.127 and 0.114. It then follows that the standard likelihood ratio test 
yiel{is rejection of the null hypothesis (thus suggesting the presence of heteroskedasticity) 
at ~he 10% nominal level whereas the null of homoskedasticity is not rejected, at the 
same nominal level, when the remaining tests (i.e., those based on LR:', LRm and LM:.,) 
are used. That is, the Bartlett-corrected, the adjusted profile likelihood ratio and the 
conlected adjusted profile likelihood ratio tests lead to infereru:e different from that reached 
by re standard likelihood ratio test. 

I 6. CONCLUDING REMARKS 

Practitioners commonly test for the presence of heteroskedasticity when estimating 
linef regression structures in order to decide what is the appropriate modeling strategy. It 
is thus important to devise reliable tests for detecting nonconstant conditional variances. 
In ~his paper we have derived a Bartlett correction that can be applied to likelihood 
ratib statistics obtained using modified profile likelihood. The results allow for skedMtic 
fun{tions that involve more than one parameter, and thus generalize results available in 
the literature. The numerical results presented compared the finite-sample performance 
of fc;mr tests, namely: the original likelihood ratio test, its Bartlett-corrected version, the 
mo<lified profile likelihood ratio test, and the Bartlett-adjusted modified profile likelihood 
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ratio test we proposed. Overall, the numerical results favor the latter, i.e., they favor 

the test obtained from applying a Bartlett correction to the statistic of the modified 

profile likelihood ratio test. In short, the modification of the profile likelihood atenuates 

the effects of nuisance parameters on the inference, and the Bartlett correction yields 

a faster convergence rate of the test statistic to its first order asymptotic distribution. 

We, therefore, encourage practitioners to use the test proposed in the present paper in 

applicationa. 
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