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PREFACIO

Ao escolher para assunto de tese o Cilculo Opera-
téro — uma das partes do programa por nds elaborado
para « Awla de Estatistica e Cdleulo dus Observagdes.
C'dleulo Grifico ¢ Mecdnico. Nomografia e aprovado
pela Douta Congregagdo da Escola Politecnica de S.
Paulo —, tivemos o objetivo de destacar do nosso curso
uma das mais {mportantes, a nosso ver, a saber aquelg
que lida com as cxpressdes numéricas de forma simbolica,
utilizando us relucies de posicdo gque cnire elas existem
¢ que se traduzem do ponto de vista do cdlculo propria-
mente numérico em operacies de adigdo, subtragio, mul-
tiplicagio e divisio de gramdezas escalares, executadas
em sequéncias determinadas pela natureza das operagoes
simbolizadas.

No estudo destas operagies, tivemos em mira reduzil-
as todas a uma forma de correspondéncia entre duas
séries de grandezas, ligadas por relagdes proposicionais B
e ﬁ, no sentido de Bertrand Russel. Alguns exemplos
esclarecein os conceitos desenvolvidos na parte tedrica

e elucidam o espirito do método.
0 A.
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CAPITULO PRIMEIRO

CALCULO OPERATORIO

NO.(}AO DE CORRESPONDENCIA
Consideremos duas séries de grandezas
(M Xy, Xopooo, X
@) Yy Ya..., Y

Entre estas séries de grandezas existem duas relages
proposicionais do tipo :

®3) Y:RX: e XiRY;

validas qualquer que seja <.

As duas séries (1) e (2) acham-se definidas, nfo pelas suas
sequéncias, mas pelo conjunto das relagdes (3), que se veri-
ficam entre seus termos.

A primeira relagio (3) faz corresponder & grandeza X: da
1.* série uma grandeza Y; da 2.. Representando esta relagiio
R por uma operagio efetuada sobre X; para se obter Y e, desi-
gnando esta operagdo por g, podemos escrever

4) Y = oXi

A segunda relagdo (3) faz corresponder & grandeza Yi a
sua correspondente X; na relagio R. Representando esta segunda
operagdo por ¥, podemos escrever

(5) X; = ¥Y.

Estas operacgdes, ¢ e a sua recfproca ¥, envolvendo sempre
as duas grandezas X: e Yi, estabelecem relagdes de posigdo
entre X;: e Yi Assim dizemos que X; é, na operagio direta, a
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grandeza operada ou o argumento e Y; o resultado da operagéo
e, vice-versa, para ¥'. ¢ e ¥ so tambem chamados operadores.

Dizemos ainda que hi produto légico de duas operagdes
¢ e ©, na ordem ¢ O, sendo ¢ e O dois operadores quaisquer,
quando o resultado da operagiio © é o argumento da operagéo o.

Se levarmos na relagdo (4) o valor de X; dado por (5) e na
relagdo (5) o valor de Y; dado por (4), obtemos entdo os pro-
dutos logicos

Y: = WY,
Xi = WX,

Os simbolos ¥ e ¥¢, o primeiro aplicado aos Yie o segundo
aos X, traduzem operacgdes de efeito nulo, pois fazem corres-
ponder Y; a cada Y:e X;a cada Xy ; o seu efeito é equivalente
ao operador de multiplicagio por 1:

¥ =1

©) Po =1

Destas relagdes, tiramos por divisdo convencional ou sim-
boélica
¥ = ¢
o = Wl
donde para Y; e X; as expressdes
Yi = oXi
Xi= ¢ Y.
Dadas as operagdes ¢ e ¢, é possivel que existam certas

grandezas, em ndmero finito ou infinito, designadas gobal-
mente por

X* e Y*

tais que tenhamos sempre
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eX* = 0
elY* = 0.

Estas grandezas X* e Y* recebem o nome de grandezas

épero-nulas relativamente 4s operagdes ¢ e ¢~' respetivamente.

1)

2)

3)

CARATERES GERAIS DOS OPERADORES

Os operadores podem ser classificados :
quanto 4 natureza das operagdes a que se referem :
podem ser operadores escalares, algébricos ou transcendentes,
e operadores ndo-escalares ou de posigéo.
Na primeira categoria incluimos todas as expressdes anali-
ticas funcionais, tais como aquelas que resultam da aplica-
¢io das operagdes fundamentais a expressdes mondmias,
algébricas ou transcendentes, dependentes apenas do valor
do argumento.
Na segunda categoria, colocamos todos aqueles operadores
que, além dessas operagdes, apresentam outras, dependentes
da posigio da grandeza operads na sua série.
quanto 3 natureza das relagbes dos operadores entre si:
Essas relagtes sio de duas espéeies :
a) de um operador para o argumento de outro operador
b) de um operador para outro operador.

- Na classe a, incluimos as propriedades gerais de distribu-

tividade, total ou parcial, e, em b, as de comutatividade e as-
sociatividade das operagdes.

quanto 4 forma : podem ser operadores definidos por rela-
¢oes explicitas ou implicitas, resoluveis ou néo.

OPERADORES FUNDAMENTAIS DO CALCULO
OPERATORIO

Operador de Deslocamento E.
Se na série (2) do § 1 fizermos

Y1 = Xz
Y2 = Xa
Yn = Xn+1.
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=

vemos que cada termo da série (1) péde ser obtido do seu antece-
dente por um operador particular E, chamado operador de
deslocamento. Com efeito, pondo-se nas relagdes

Y,=¢X,
X, = ¢ Y,
as seguintes convengdes

9=EB¢' = ¢ =E"

e
V=X, e X,=Y,,
_obtemos
X = EX,
X, = EX,

Nestas condi¢des, qualquer série
Xl, Xz, eee g Xn,
pbde ser decomposta em duas séries do tipo (1) e (2) do § 1,

em que tivéssemos ¢ = E.

Por conveniéneia de notagdo numeramos as séries a pamr
do indice zero e, neste caso, temos o aspeto :

U, Uy=E U, U =E U, =EU, ..., Us=E*U,,
E, E2,.. . En, significando a reiteragio da operagio de desloca-
mento.

Operador de diferengacio finita.

Si na série (2) do § 1 fizermos
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definimos uma nova grandeza Y, que recebe o nome de diferenga
finita de X e a operago ¢ correspondente toma o nome de dife-

ren¢agdo, com a notagdo ¢ = A,
Nestas condi¢des a relagéo.
Vi = ¢oX;

toma o aspeto
2) Yi=aX;

Das férmulas (1) e (2) concluimos
AX; = X,‘+1—Xi = (E—l) X;.

Os operadores A e E-1 tém o mesmo efeito sobre a grandeza
X, como vemos da relagdo

A X, = (B-1) Xi,
donde, por omissio da grandeza operada, resulta

a = (E-1)
ou, ainda,
E=1+4s.

A operagdo inversa de A, a saber A7l, seria por definigfo
dada por

Al A X; =X, =42t (B1) Xy,
de que deduzimos
AT (E-1) =1 .
Daqui tiramos
1

Al = ——— -

E-1
Efetuando este cociente, obtemos

Al=—-(1+E+E*+ ... + ... En+ ...).

B’ facil verificar que a operagdo denotada pelo segundo

N

membro dessa equagdo corresponde & inversdo da operagdo
Yi= A X.
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Com efeito
AtaXi=av X - X)) = —(1+E+E? +.. +E"+..) (Xi31-X: ).
Mas .
A+E+E+. . +E"+.) Xt = Xit1+ Xigot . + Xignt...
(I+E+E+ . +E'+.)X; =X+ Xip1 + oo + Xignt o0
Daqui tiramos por diferenca

AIAX: = (Xi+ Xigy + ... + Xign+ ) = Xip1 + Xig2 + ... +
+Xipnt+ .. =X;

Se operarmos sobre a série dos AX; como operamos sobre
a dos Xi, obtemos uma diferenga da diferenca finita de X;,
que recebe a notagio A* X; e que se define por
A?X,; = AX 11— aX; .

Introduzindo-se o operador de deslocamento E, podemos
transformar esta expressio da seguinte forma :

A’ X; =A(EX; - X)) = a(B-DX; = (B-1)* X; .
Repetindo sucessivamente esta operagdo de diferengacio
as séries formadas, obtemos as diferengas segunda, terceira,
etc. , enésima, que serd dada por
AnX; = AvIX4 - ALY = A% [E-1] X
ou, ainda,
AnX = |B-1 X
Admitindo-se, por hipbtese, que
A" X; = [E—]]"Xi,
concluiriamos a validade desta relagie para n+1, como fizemos
acima.
Operador de Expansdo.

Si nas séries (1) e (2) do § 1 fizermos
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X; = f(x)

Y; = Jlzith),

teremos estabelecido uma nova operagdo que nos faz obter
j(z.+h) pela expansio ou aumento do argumento z; de f(z;) de
uma quantidade-dada h, que é chamada a amplitude da expansdo.
Esta operagdo & denotada pelo simbolo A4, afetado de um expo-
ente h, igual & sua amplitude e escrevemos entdo

Y: = flzith) = A% f(z) .
A operacdo inversa, que nos permitiria obter f(z:) de f(zi+h),
é designada pelo simbolo (471, o que nos dé
fx) = (A")7 f(zit+h) .

Observando-se que nenhuma restri¢io fizemos quanto a h,
podemos supor que A* possa ser aplicado com expoentes nega-
tivos, o que nos daria

A f(z) = f(zi—h) .
Substituindo-se nesta relagio z: por z:+h, concluimos
A fxith) = J(@) .
As operagdes
A e (AD1
como vemos, sio equivalentes, o que nos permite por
(AD1 = 4-h

e vice-versa.
Este operador goza ainda da propriedade :
Ah Ak = Ak Ah = AMFE

Quer dizer : o produto légico de dois operadores de expansao
é comutativo e goza da lei dos expoentes.



Quando os valores de z; formam uma progressio aritmé-
tica, é possivel estabelecer uma correspondéncia entre os opera-
dores A e E.

Com efeito : sendo dadas as séries.

Lo, X1,T2, ..., Tn, Ti = Lo+ 11

J@o) , fwotr) , f(ot2r), ..., fl@otrn) ,
teremos

J(an) = f(xot+rn) = E™j(x0) .
Por outro lado,

f(x") = Amf(:ro)
daqui concluimos
A™ = En
ou |
E =47 .

Quando a série dos z; é qualduer, a qual podemos por sob
a forma

Zo X1 =To+ A1, ... ,Tn = Tp+ Qn ,
terfamos

J@an) = f(xo + an) = A™ f(x5) = E™ f(x0)

A" = Er

Esta relagdo estabelece uma relagdo funcional entre A ¢ E,
mas que depende da ordem do argumento operado ..

Operador v .
Fazendo-se na série (2) do § 1
Vi = Xi- Xiy

introduzimos um novo operador v, dito de diferenga inversa,
tal que

Xi—- Xiq =vX;.



Entre éste operador e o operador de deslocamento E, temos
a relagdo
Xi—E,'l X, =vX;
donde
1-E1 =9,

Aplicando-se & série dos v X a mesma operagéo, formamos
uma nova operacido em relagio a v X; dita diferenga inversa
de 2.* ordem ¢ que designamos por

X, =vX,-vX; =V (I—E_l) X; = (I—E-l)2 X;.
De um modo geral, teriamos
v X = (I-8H) X; .
~ A operago inversa de V ¢ definida pela relagdo
viv =1
ou entdo
vi(-E7) =1

donde tiramos : ‘

1 E 1+A

vt = = = = 1+A1 .
1-E1 g-1 A

A operagdo inversa de ¥ " seria dada por
(v = —— = (7",
(1-E-YHr
0 due nos permite escrever simplesmente
(ve)yt = v
Operador D.
Se nas séries (1) e (2) fizermos
X; = fitg +C
Yo = f ),

t
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teremos estabelecido entre elas as relagdes

Y, = D X;
X,i = D1 Yi
onde D denota o simbolo de derivagio em relagio ao argumento
de f, e D! um operador tal que
D .D!'=1.

Ora da propriedade das integrais resulta

f Fd =5t) +C .

O primeiro membro dessa igualdade define o operador que,
atuando sobre j/(f), reproduz f(f) + C, seja o operador DL
Nestas condigdes

t;
D1 @) =f Fr@ dt =f@) +C .

Por D" entendemos a derivag¢do successiva de n vezes c
por D" a integragdo successiva n vezes. Estes dois operadores
sdo reciprocos, a menos de grandezas 6pero-nulas.

Assim,

D f(n) (x) = _f(.’L) + Py (.’.C)

onde Pn-:(z) representa um polindmio arbitririo de grdu (n-1).
Operador O

Se nas séries (1) e (2) do-§ 1 fizermos

Xi = (=)
1=012.,n

_ I+ ) i)
2

Y: DXi:
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teremos definido um novo operador, dito de semi-soma, de ampli-

tude h. ,
Podemos exprimir este operader (] em fungdo do operador

de expansio A.
Temos com efeito :
I

fai+ 5) = A2 f(z)

h

. fai-43) =42 f@)
donde
3 b
A? + 4 2
D= 2

A operagdo inversa [(J-! nos daria.

O0*.0d=1,
de que obtemos
h
. 9 2 A2 L3
-1 — — = 2 -1
= = _L—AIZ+1_2A(1+A).
A2z + 42

Quando a série z; é formada por uma progressdio aritmética
de razdo h, temos

Ab = E

donde para [ a expressdo
1 1

E? +E 7.
D=———2———

A reiteragdo das operagdes [J e []-1nos daria os operadores

L A
[Az '|2'nA 2] ¢ [Dn]—l = 9n

A b
Dn= A2 + 4 2 .



Operador 8.
Para a definigdo de 3 pomos
1 =012 ..,n
X; = f(z)
Y = 83X = it ) = f@ - )

Resulta para 3 a expressdo em fungéio de 4 :
b L
8 = A2 — 4?2 .

h é dita a amplitude desta operagéo.
Quando a série dos z: é uma progressdo aritmética de razdo
h, dada a relagfo
E = A",

podemos escrever
1

- E? .

1
2

§=E

A inversio de 3 seria feita como nos casos anteriores, pondo-se

donde obteriamos

] ~a]|Z
5 = [ AZ - A 2}
e a séric inversa seria dada por

LS
()1t = {Az -4 2

|-n
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RELACOES ENTRE OS OPERADORES A E D.
Pondo-se nas séries (1) e (2) do § 1
X: = F@)
Y; = AF() ,
com

z = z+1 + h,

a diferenga finita primeira da fungdio F(z) para um valor genérico
z é por definigio, uma outra fungdo f(z), verificando a relagio

¢y F + h) - Flo) = f@) ,

sendo % a amplitude do intervalo de diferengagéo.
Esta relagiio pode ser escrita de acdrdo com a notagéo sim-
bélica da forma.

@ AF@ = j@) .
O 1.° membro de (1) pode ser desenvolvido em série de Tay-
lor, o que nos dé '
’ W2 W
Fizx+h — F(z) = hF'(z) +EI4 (x) + ...+EF()(:r-)+
ou, ainda, pela introdugio do simbolo D de derivagio em relagéio
a z, vird o aspeto

Fz+h-F@ = (hD+£D2+...+'EL"Dn+ ) F@) .

Mas a expressio entre paréntesis pode ser escrita

,ﬁ 2 R — phD _
AD+E D+ .+ oD = 1,
donde

) F(z + k) - F(@) = ("P-1) F(a) .
Comparando-se (1), (2) e (3), tiramos

@ : f@) = (*P-1) Fa) .
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Se tivéssemos um operador A tal que a-operagdo n (e'P-1)
fosse de efeito nulo, isto é,

(5) 7\(6"1)_1) B= 1 »
poderfamos tirar de (4) F(z), a saber
F@) = %@ .

Este operador A nos permitird obter a primitiva da fungdo

f(x), isto é, uma funcéo F(x) verificando (1).

~ Este problema sers tratado posteriormente no capitulo da

somagio, onde s determinagfo da primitiva de uma fungdo

somanda apresenta interesse para a sua somag#o.

Este operador X nfo é sendo o operador A-! expresso em
termos do operador D, visto que, da relagio

®) A = 01,

combinada com a relagio (5), que define o operador A, concluimos

LAA =1,
=—]—- = '1-‘
A X A

A relagio (6) pode ser transformada do seguinte modo
Ml =1 + A
Operando sobre ambos os membros por log, temos
. kD = log 1+ A) .
donde tiramos :
N . D= - log (1+4) .
As duas férmulas, que se equivalem,
A = -]
D=+ log 1+4),

representam as relagdes existentes entre os operadores A e D
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Entretanto, para que estes desenvolvimentos ilimitados te-
nham um sentido, & necessario que o resultado da aplica¢do dessas
operagdes seja numericamente: convergente. Isto é sempre pos-
sivel, quando o argumento da operagio é um polimdnio dado,
pois que as operagdes cessam a partir de uma certa ordem e esta
conclusio pode ser extendida Aquelas fungdes, cujas derivadas
ou diferengas a partir de uma certa ordem tendam a ser negli-
genciaveis.

RELACOES ENTRE OS OPERADORES [J E 3.

Combinando-se as expressdes

2 b
A2 + 42
0="—%—
2 b
5 = 42 - A % |
tiramos
2
AT =[]+ 8
R
A7 =0-+3

h h

Os dois operadores A2 e A 2 sfo reciprocos, donde

O+39@-+9 =

Daqui concluimos

=1+

Desta relacdo, deduzimos

Lo






CAPITULO SEGUNDO
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Generalidades.
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DIFERENGAS DIVIDIDAS

GENERALIDADES

Consideremos uma série de grandezas
(1) Qoy Q15+ .., 0n
e dois operadores, f e f-!, escalares.

Operando sobre (1) por f, obtemos uma nova série de gran-
dezas u;, dada por

@ w = fla)), w1 = fla1), ..., un = f(an) .

As séries (1) e (2) deste pardgrafo sfo séries nas condigdes
das séries (1) e (2) do § 1 c resultam da rarefagio de dois
conjuntos de valores, a saber o conjunto dos valores de uma
variavel o para a série (1) e, para a série (2), o conjunto dos
valores de uma fun¢fio u = f(a) da variavel a. Dadas as re-
lagdes entre a e f(a), a toda operagio sobre a podemos fazer
corresponder uma operagdo sobre f(a) e vice-versa.

O OPERADOR 0G,.
Se nas séries (1) e (2) do § 1, fizermos
X: = f(a)

¥: = @f(a) =[Gt 1@,

Ap4s — i

teremos definido um operador nas condigdes do § anterior.
A operagio executada por @, é de transformar f(a:) em

Jap+s) — f(as) |
Gpgi — @
de indice i:

como vemos, ele atua sobre o argumento ai
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Este operador goza das propriedades distributiva em relagdo

A soma e associativa e comutativa em relagfio ao produto logico.

Com efeito temos :

_ [Faps) + H(aped] - [Fe) + H@)] _
Apopi — Qi

) 6, [F(af) + H (a,:)}

_ Flap4s) — Flai) " H{ap+s) — H(a:)

Gpti— i Opti— i = @p F((h) + @pH(Gi) o

II) Sendo ©; ¢ O dois operadores nas condi¢des supra, temos

F(ap+i)—F(aa+i) F(ap+i)—F(a)
-0 Flap4)-F(@)  Gpti—oqs Up4i— i
. Appi—0as Ag4i—0i

(')qli@pF(di)

_ F(a) . F(ap+i) F(ag+i)
(@i=ap+i) (@i—ag+i)  (@p+i—0:) (@p+i—Oo+i)  (Ag+i—0ai) (Qg+i—Ap+i) ’

expressdo simétrica em relagdo a p e ¢, o que mostra a co-
mutatividade.

IIT) - Verificariamos tambem que.

0, (O, ®r) = (0, 8 O = (@p @r) 0 = @p O, ®r'7 '
exatamente como se tivéssemos o produto algébrico de tres
fatores. E facil verificar ainda que o operador ®, pode ser
repregentado pela integral definida

1
[
1]

| gz = [floz+ A= apedlt_ @) —flemr) _
| Gi—apti o Gi—Gpr

= Opf(a:)

A operagio ©, sob esta forma, pode ser executada, como
observa Stephensen, em tres etapas:

aiz+ (1-2) apti

12) 'Derivagéo de f{a:) em relagdo a a:
2s) Substituicdo de a:; por az + (1—-2)ap+:
3%) Integracio da expressio obtida entre os limites

z2=0ez=1.
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DIFERENCAS DIVIDIDAS DE f(a) PARA OS VALORES
DE ¢ =a,, a3, as, ... , aax
Consideremos uma série de‘ operadores
Oy, Os,..., Op,
atuando sobre f(ao), f(a1), ..., flan) .

Entendemos por diferengas divididas de 1 2, ..., p* or-
dem de f(ao), f(a), ..., flan) as expressdes

Hao]ar) = ©1f(a0)
Haia) = ©:1f(ay)

Flan-1|an) = O1f(an-1)
para as diferengas de 1* ordem;
flas|ar]a) = B2 O flao)
flai|as|as) = @2 O, flav)
F(an-2| @n-1]an) = ©2 O1 flan-2)
para as de 2° ordem e assim por diante.

De um modo geral terfamos, para fla,) e f(a:)) , as cxpressdes
seguintes, para as diferencas divididas de ordem p :

f(aafall...]ap) =] @p @p-l . By O f(a'o>
flai| @igr] . . .| Gitp) = Op Op1 ... Oz Oy f(a)

Vamos demonstrar que estas diferengas divididas gozam da
propriedade dada pela relagio seguinte:

aolar]...lap) — flarlas].. .| ap|ap+1)
fanl ol el app) = Lelorlolon) Jnleal...Joolopn
Com efeito, sendo f(ai|as|...|ap|ap+1) simétrica cm relagio

a0s seus argumentos, em virtude da associatividade e comu-
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tatividade dos operadores ©;, ©,, ..., ©p, podemos escrever

o] asz|. . .| ap|aps) = f(ap+1|al|azl- ap)
donde .
f(ao|a1|...|ap)—j(a1|a2_|...Ia.p{apﬂ) =j(a-o|a1]...Iap)—j(ap+1|a1|a2|...iavp) |
G0 — Qpt1 : Gp — Gp+1
= Op+1 flaolas].. . lan) = flao|aa]. . |ap+1) -

Analisando as diferengas divididas de 1%, 2%, ..., p* ordem,
podemos ver que elas se apresentam sob a forma de uma
soma de (p+1) quocientes do tipo

f(as) _
=0,12,...
(ai—ao) (@i—ay) . .. (ai—aizy) (@i—Qit1) . . . (@i—ap) v 2 , 1,2, P
Vamos admitir para f(oo|a1|...|ep) a expressdo geral
v=p
R faolar]. . Jar) = ¥ f(aw)

vmo (G”_aC’) ol (a'”—ap) ’

¢ provar que esta relagio é vilida para p+1 .

Com efeito, temos, pela propriedade que consideramos no §
anterior

I

Mas, de acordo com a expressdo (1), podemos escrever

- (o) J(a)
2 fladay|...]ap) —(ao—al)...(ao—a,,)f"' _—m—(ai—ao).,.(ai—a,,)-*-”'-l—
' (ap)
Lianl (ap—00)...(ap—0p-1)
; _ fay)
@ flai]az|...lap+1) = AL G R
+ f(a’i) + f(aP+l>

T (@imay) ... (@imapt) T (@prima@) - (@p+1—an)
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Subtraindo (3) de (2) e dividindo o resultado por (@o—ap+1), temos

J(@olar]... Jar) ~F(@r]as]. . Jap+) _ j(a) .
Go— Qp+1 (@o—a1)...(@o—ap) (Go—ap+1)
flai) 1 1
R (@i—ay)...(@i=ap) (Go—Gp+1) |Gi=Go  Gi—apty Rl

flap+1)

+...
(ap+1—01)...(Gp+1—0p) {(Go—Op+1)

Observando-se que

1
(a,z—a 1) (ai"ap) (ao—ap'f' 1)
e
— (@p+1-a1)...(ap+1-0p) (@Go—p+1) = (@p+1-00) (Ap+1-a1)...(Ap+1—ap) ,

1 1
Ai—Qo Ai—0p-+1

1
o (ai—ao)(ai—ay)...(ai—0p+1)

podemos escrever afinal

_ o)
f(ao[a1|...|ap+1) == vfo (ai—ao)...(ai—ap+1) ’

0 que generalisa a relagdo (1) para p qualquer.

3. Esta expressio, que obtivemos, pode ser transformada
com o auxilio do determinante de Vandermonde.

Este determinante tem por expressdo

P ¥4
a al a
p=-1 p-1 p-1
CLU al o 35 ap
lv] = . C . (1)
a, ay ap
1 1 1




— 32 —

Considerando que |v| é polinémio de griu p em relagic a &
e que se anula p vezes, quando pomos

Qi =0 = ... = Gi-1 = Qi+1... = 0p ,
vemos facilmente, aplicando-se a propriedade da fatoragio de
um polinémio de griu p em seus p fatores de 1° grdu, que
éle é da forma:
(2) lv] = K(ai—ao) . .. (@i— ai-1) (@i=ai+1) . .. (@i—ap) ,
sendo K independente de a: .
Para determinarmos K, fazemos a: = 0, donde

p ¥4 D P P
a, @ ... 6, 0 o, ... @ ‘
-1 p-1 p-1 -1 p-1
a, a ... @, 0 o, ... a |
— (_1\P
={-1) agal..ai_lawrl..apK
a, a ... 4, 0 e, ... @
11 ... 1 1 1 ... 1
Por outro lado, o 1® membro desta expressdo toma a forma
| 4 » » p P |
| a, a, Oy Gy oo G
vl = (—1)10-{—"L b g o7t -1 -1
a;=0 o 1 o w1 Yy e Gy
a, a, Gy Gy - G
ou, ainda, pondo em evidéncia os p fatores ao,...,ap ,
p-1 1 -1 -1 1
a, & - w1 Ty O
_ (\Pt+t
iv =" "a0 .0, 0, .0
a,--O .
G, '@ Oy Ypr @y
1 1 1 1 1




donde para K o valor:| 71 g1 a:.’_‘ll af’:l a:

@ K=

Ora, este determinante (3) nfo é mais do que o menor A;
relativo a af no determinante (1) .

Le'vando este valor de K na relagdo (2) temos

(@i—ao) . .. (Gi— @i-1) (@Gi— Qi) . .. (@i~ ap) = (-1)? i VI’
donde para f(a.|a:|...|as) o aspeto
Jao) ... fla) ... flap) |
&t
[4] 2 7 '
a, a; a,
_p . .|Ail_ 1 o1 R | '
f(aalall"'[ap) ] Z (_1) f(al) I VI . I V|

i=0

4. Introduzindo a expressio sob a forma de integral de-
finida de ©;, ©g,..., ©, podemos dar a f(a.|ai|...|ap) uma
outra expressdo sob a forma de uma integral p-upla; para
1ss0 observemos o seguinte :

o produto légico de @, e @, pode ser expresso por uma inte-
gral dupla, como veremos a seguir.



- 34 —

Podemos escrever

0, fa) = fj’[aot+(1—t)a,,] dt = F(ao)

1
0, 0, f(a) = O, Flas) = f F'laoz + (1-2) ag] dz
0 .

Mas temos por derivagio em relagdo a a,
1
F'(a) = [ f'lact + (1-t)as)] tat
0
donde

1
F'[aaz+ (1_z)aqi = fj”[(l—t)ap+t{aoz+(l—z)aq}y tdt
0

e, portanto, integrando sob o sinal de integragio, vird a in-

tegral dupla
1

1

0, O, f(a) = fdsz" [(1-f)ap + aotz + (t—t2)agl t dt
0 [0}

ou seja afinal

1 1
B, 0, f(ar) = f fj" (1 -0 ap + aolz + (t—te)ag t dz dt
[4] 0

Podemos dar esta integral dupla um outro aspeto, efetuando-
se a transformagdo

t =1

2t = u,
Diw) |01t _
D(z,t)_‘lz B

t dz dt = dt du

e os limites de integragdo passam a ser

Temos

u=20 u =1
t=0  t=1
donde o aspeto

we=

1
dt f 7 [aou + (1-t)ap + (t—u)ag] du

=0 u =0

t
0, 6, fla) =
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5. O mesmo processo nos daria
tem]l uw=i
0,090,060, f(a,) fdvfdtfj”’{(l t)ap+(t—u)aq+u aov+(1—v)arl u du
t=0 u=0
ou

r=] t=1 u=1]

0,0,0,f(a.) = f f f " lacur+ (1-t)ap+ (t—u)ag+ (u—uv)arJudvdidu

v=0 =0 u=0

Efetuando-se a transformagio

U =u
t =1
U= W
obtemos
D(u,t, w) S
D(u—tv) = 010 172
T v 0 u
donde

udovdt du=du dt dw

e para os limites de integracio
w=20 w=1u
u=20 U =1
t=0 =1
logo

1 t %
©r B, O flao) =f dtfduff”’ [acw~+(1-t)ap+ (t~w)ag+ (u—w)a.) dw
V] 0 ]

Fazendo-se
p=1 ¢=2 r=3,...,s=p,

acharfamos para o caso geral
1 H tp.1
F(aolay)..|ap) =fdt, fdtz..ff@)[aotp+a1(1—t1)+a2(t1—t2)+...+
0 0 0 ‘
+ (tp1—tp) ap] dip

mudando-se convenientemente as variaveis de integragdo para
t, ts,...tp. Pondo-se {, = 1, teremos

1 4 ‘p-l P
#(ao|as]..|ar) =fdt1fdtg...ff(1’)[aatp— Yay v tv:l diy .
0 0 0 1
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Resta-nos mostrar que esta expressdo é verdadeira para (p+1) .
Para tanto vamos utilizar da propriedade :

faolar]. . .| ap)=flar]@z]. . .{ap+1)
Qo — Ap+1

= flao|anl. . .[ap+1) -

Pela: formula induzida anteriormente, podemos escrever

1 4 th-1
faolasl.. lap) = [dts fata... [ j@ i,
Q 0 Q

i
aotp_ Zav V tv
) 1 1

dtp -

1 1 tp—l P -
f(a11azl. 5 .]ap+ 1) =fdt1fdt2...ff(p) {(htp— ):lav-i-lny
’ 0 ] 0 1 |
Cabe estudar agora uma transformagio da expressdo

1 4 tp1
flas|ar]. .. |ap) =fdt1fdt2...fj(1’)
? 0 0

levando-se em conta a simetria que as diferengas divididas
apresentam em relagdo aos argumentos

dip

i D
aotp_ Earu Vtv
L 1 i

aa, al, az,..., a/p

que nellas entram.
A expressdo supra é relativa 4 diferenca dividida de ordem p
de uma fungdo f(a) para a série de argumentos

oy O1, Gy . -+ Op +

Como esta diferenca dividida é simétrica em relagio a esses
argumentos, obterfamos para ela um mesmo valor, se consi-
derdssemos estes argumentos dispostos numa outra ordem,
como por exemplo s seguinte:

ap, ao, al, a2,---, arp—l .

Designando-se provisoriamente os argumentos nesta ordem por
Bo, B1,..., Bp de tal modo que



go = ap
Bl = Qs
B = a1
BP = Qp-1 ,
a expressdo da diferenca dividida f(B.]81]...|Bp) seria dada pela

férmula supra de acordo com a expressdo

dtp .

1 131 tp-l S » y
J(Bol 8] 85) =fdtlfdiz---ff(”’{Botp—zﬁv'vtv
[ 0 0 .

Observando-se que 8o =1 ¢ que de » =1 a v = p temos
Bv = dz-1
podemos escrever em lugar de
Botp — i BV
a expressio 1

P
Gplp— ) 01V b
1

Nestas condigdes resultard para a diferenca dividida f(ao|as|...|an)
a expressdo

1 13 ‘p-l
j(aalall...|ap) = fdhfdtz...ff(p)
0 0 0

Para a diferenga dividida f(a1|az|...|ap+1) achamos com a mu-~
danga de v para v+1 a expresséo

5 ¥
aptp - Z arp—lv tv] dtp .
i 1

1 31 ‘p-l = P
f(ar|as|... | ap| @p41) = fdtlfdtz...fj(l’) Gpitp—3 0V t,J dtp .
0 0 0 = 1

Subtraindo-se f(ai|az|...|@p+1) de f(as|a1]...|ap) e dividindo-se
o resultado por (a,— ap+1) temos
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1 4 ‘p-l » ) P
fladay.. Jap+1) = f dty [ dts... f f@ {aatp-za,,vtuJ—j(P)[apﬂtp-Za,,Vtu dip.
0 0 0 1 1

Qo — Ap+-1

Mas, temos identicamente

» i P
J® | aoty, — E G V tv} P ap41t, — Z GV ip
1 1 |
Qo — Qp+1
tp »
= fj(p+1> (Go=p+1)z = Y. € V by + apr1ty| d2
0 1

Com efeito. ‘Esta integracdo é imediata e nos d4

tp

- p N
ff“’+1) (@o—Gp+1)2 =Y ¥ to + Gpr1tp| dz =
o 1 I
: B | lz=t
f(?) (ao— ap+1)z —Z WVt apt+i1ls 7
. =
Qo — ap+l
Ora,

v
=ap+1tp“zavvtv .
z=0 1

rd
{(ao - ap-f-l)z _E WV b+ Gpt+i1lp
1 |

P
= o tp—Za,,, Vi,

i b
(ao— ap+l)2"2 WV b+ aptarlp
i 1 z=tp 1

donde a identidade enunciada:

tp

ff“’ﬂ)-

D
(o= Gp+1)2= Y, @V b+ Gpt1tp
B _ 1 :

j(p)

dz =

r
aotp - E ay V tu] __j(p)
, 1

Qo — Qp+1

] P
Gp+1tp ‘Z &V tv}
. 1

Levando este valor na expressdo de f(ao|a:]...|ap+1), achamos

1 i Ip1 tp
J(adaif..ap+1) =fdt1 dtg._.fdtpfj(pﬂ) dz
0 o° ] 0

[ P
(@o-0p+1)2- Y 0Vt Gty
1 .
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Fazendo-se z = tp,+1, podemos escrever

P p+l
(ao_ap+1)z—2 0V i+ Gpt1lp = dolpt1 — E &Vl o,
1 1

o que geperaliza a regra induzida, pois que temos :

r+1 i
Qo tp+l"‘ Z avV tu
1

1 3 tp
j(ag[axi. B .|ap+1) =fdt1fdt2...fdtp+1f(p+l)
0 0 0



FORMULA DO BINOMIO DE NEWTON

No estudo de desenvolvimentos que vamos fazer, ser-nos-do
uteis certas transformagdes da forma do binémio de Newton
para expoente inteiro positivo.

Vamos estudar separadamente os dois casos: expoente par e
expoente impar. Para o primeiro caso temos

(@+B)" = 0™+ €™ b+ C7a™ b + ... + O™ PH ...+
+ Cfv av bv +..+ C:v aq b2v-q + .+ sz a2 b2v—2 + Civ ab‘.’v-l + b2v.

Neste desenvolvimento utilizamos dois indices p e ¢, o pri-
meiro para as poténcias de b de zero até v-1 e o segundo,
para as poténcias de b de v+1 até 2v, bem como puzemos
em evidéncia o termo médio do desenvolvimento.

Nestas condigdes podemos escrever

2v _ 20 vqv Ll 20 20-p3p B 2y g4 29-¢q
@+ =Ca’d’+ Y, C'a™"b + Y, C7a"b
p=0 q=0

Fagamos nessas sométérias

o-p=v+k
w-q =0+ k;
donde
p=v-k, 12k £y
qg=v-—k, lékl—v

Temos entdo

o L
5 - N —k X
(a+b)21: — Cf» a'b + ‘\_ Cff;; av+k b k + )—, Cf:.kl al " bv+ e1
k=1 k=1
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ou, pondo ambas as somatérias sob o mesmo indice de somagio
2 2v 7 22 u+k vk 2y v-k v+k
@+b* =C"a b+2[ Al

Como aplicagio, fagamos

a=F, b=-1
obtemos
E-1 = CPCI'E+ Y |07 LB+ (—1)”+’°ij_kE'”‘J

Para o segundo caso, temos, levando em conta as combina-
¢bes complementares,

(a+b)2v+1 = a2u+1 + Cfu+1 a2vb +.. 4+ Civ+1 a2v+1-17 bp + .+
+CZu+1 v+1b +.. +C2v+1 v v+1+ +C2v+1 qb2v+1—q+ L+
O P

Este desenvolvimento contem 2 (v+1) termos, que, reunidos
segundo os indices p e ¢, nos ddo as somatérias :

(@+b)>*! = Z Crt g™ Py 4 V CIH gty
p=0 q-O
Fagamos as transformagoes :
2+l-p=v+k Sk =v+1-p
+1-qg=v+k: Cohki=v4+1-9¢

donde resultam para p e ¢ as expressdes

IN

p=v—-k +1, lék v+ 1

g=0v-Fk +1, 14mto+1.

Obtemos, levando estes valores nas somatérias, a express&o

»+1
241 2v+1 o4k yo-k+1 2v+1 v—k‘1+1 v4k1
(a+d) = 21 Coppr@ b + Z Cv—k1+1 b
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Reunindo estas duas somatérias sob o mesmo indice de so-
macio, achamos

2041 _ 241 vtk -kt 1 241 kL otk
(a+b) E ICv—k+1 b +Chy @ b ;

observando-se que

2+1 201
Cv—k1+1 = Cv+k1 *
Aplicando-se para
a=2E b=-1,

resulta a expressio

(}_711_1)21;+1_"'L'x1 a1 QT gtk o yobh o2l gkl
—k}:,l G R A M DR s :

Substituindo-se » por »-1, obtemos a expressio seguinte,
que nos serd util :

21)—1
(E_l) vtk-1

(_l)v-k 2v- Ev+k 1 +( 1)v+l =1 C2v— u-kJ .
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CAPITULO TERCEIRO

EXPRESSOES PARTICULARES
DAS DIFERENCAS DIVIDIDAS

GENERALIDADES

Caso em que todos argumentos sio nulos, a exce¢do de um.
Caso em que todos o0s argumentos sio nulos.

Caso em que os argumentos estao ordenados.

Caso em que os argumentos sfo da forma a,=wv.

Caso em que os argumentos sio da forma a, = .
Célculo metbédico das diferengas divididas.

Fungdes produtos de argumentos entre si.

Caso em que os argumentos sdo da forma @s-1 = —v e ax =v.
Caso em que os argumentos sfo da forma dx-1 = ve axn = —v.






CAPITULO TERCEIRO

EXPRESSOES PARTICULARES
DAS DIFERENCAS DIVIDIDAS

As diferencas divididas dependem da série de valores
0] Qo, B1, A2, - - ; Gn
e tomam formas particulares, algumas das quais importantes

de se conhecer, quando assumimos tambem para (1) uma forma
particular.

No estudo destes casos particulares, é-nos util uma trans-
formacdo da expressio da diferenga dividida sob a forma de
uma integral p-upla.

Obtivemos no capitulo anterior a expressio

1 21 ‘p-l »
j(aa | al| oG [ap) =fdt1fdt2 . ff(p) {aotp— E av Vth dtp o
L 1

Sendo f(aolail. . .| ap) simétrica em relagio aos seus argu-
mentos, poderiamos escrever

1 t to1
faolar] ... | ap) =fdt1fdtz..fj(f’)

dtp .

. .
ap ty— E Gy-1 Vo
. 1
Por outro lado
% i,
Gpto = ) Qo1 Vo = Qo + D, by Vo
1 1

donde o aspeto final
tp-1

f(a-olalf ]a,,) =fdt1fdtz... f(p)

o
a0 + ; tvvaﬂ,‘ dtp .
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Posto isto, vejamos os seguintes casos :

1. TODOS 0S ARGUMENTOS SAO NULOS, A EXCE-
CAO DE UM.

Neste caso, temos

Go =2, Q1 = Q2= ... =gp = (

P
[+ 2 + Ztvv Ay = X (l_tl) 5
1
donde o aspeto

1 f ty 1
f(xlo|...]0)=ff<v> dtlfdtz...fdtp .

Efetuando-sz a integragdo das (p—1) ultimas integrais, temos

X (l—fl)

1

1
j(:z:[O]|O) =m—ft1p—1j(1’) dfl

Z(l—tl)

2. TODOS OS ARGUMENTOS SAO NULOS.
Nesta hipbtese, vird ‘
P
Qo + Etvvav= 0 o
1

Para a differenca dividida de ordem p virid entdo

1 Bt
i©10]...10) =fdt1fdtz...ﬁ(P) ©) dtp = |fp—;§°l

3. OSELEMENTOS a,, a1, ..., ap ESTAO ORDENADOS.

Neste caso, suponhamos

aa_<_a1_<_az_<_...<a.,,.
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A expressido

P
do + Zt,, Va, = a0 + (@rao) i+ ...+ (@p=ap-1) tp
1

verifica, uma vez que

0<u<1,

a desigualdade

P
G < a + )__,tvvav < ap .
1

Sendo £ um numero compreendido entre a, e ap, podemos

escrever
1 ty tp_l ) =
P (p)
fdtlfdtg ...ﬁ(p) ao + E LV, | dip = j p@
| 1 ) |
donde ‘
< a1 X ... £ g

(®) (£
J@o|a]...|ap) =flﬂ)

a0 < &< a .

4. 0S ARGUMENTOS a, SAO DE FORMA a, = v.

Si fizermos
a: = v, temos

) b4
Go + XV = fitlat.. ..+
1

donde

1 f tpm1
jol1|2]...]1p =fdt1ﬁt2..ff‘9) (httat...+1p) dip .

Integrando-se esta expressdo para p = 1, 2, ,3 etc. obtemos

sucessivamente

a)p =1
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JO[ 1 =j J ) db = Q1) - f(0) = A0
by p =2

1 1 1 =
f(0|l]2)-fdtt[ "(t1+t2)dtz'f ,f’(tri'tz)

ou, ainda,

| _1@-50)
2

o 1 1
dty = f’(2t1)dt1—ff'(t1)dl1

”

225 (1)+5(0) _ (E-1)%(0) _ A%(0)
2

J0I1]2 5 B

5§(0) =

¢) para p = 3 acharfamos sem dificuldade
A*§(0)
[3
~ Admitamos esta expressdo verdadeira para p e vejamos si o é
para p+1.

fO[1]2]3) =

Temos

01112 1plps 1y < LOIZL IR+ D -FOIL]...|p

p+1
por outro lado
A
F0[1]2]...1p) = | i«n
fa2l...plp+1) = E f0[1]2]...]p) = E?;f(o) N ATZ,(I) |
visto que & = E°. a,

donde
APf(1) AP §(0)

e lp AP ()-j(0) _ AP*14(0)
FOI]...|plp+1) = T Eh e e
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5. OS ARGUMENTOS a, VERIFICAM A CONDICAO a, =-v.

Fazendo-se @, = —v», obteriamos por um cdlculo absolu-
tamente anilogo

v? f (0)
jol-1]-2]...[-p =Tfp(—

6. Antes de prosseguirmos no estudo destas expressdes gerais,
vejamos um processo para calcularmos de forma metédica a
diferenca dividida de uma certa fungdo f(a) no ponto a, para
uma série dada de argumentos

Qo, A1, .oy dp .

Seja o exemplo :

Calcular as diferengas divididas de f(a,) até 62 ordem para
a seguinte série de argumentos :

Op-1 = —V
Ay = V¥ y

. Formamos preliminarmente um quadro, onde registramos
nas linhas I e II respetivamente os argumentos a: e seus valores
correspondentes.

Nas colunas intituladas a,,ay, . . .,ap, registramos, em cada
linha, as diferengas do argumento-titulo com todos os restantes.
Estas linhas estdo designadas por

Qo =i, Q1 —Qiy ... Op =Ci .

A diferenga de a: com ele proprio nio se registra e o seu
lugar estd preenchido com um trago.

Em seguida, nas colunas p=1, p = 2, etc., escrevemos os
produtos das diferengas que se acham em cada linha, tomando-
se para p = 1 56 a primeira diferenga a partir da esquerda, para
= 2 as duas primeiras e assim sucessivamente, acrescentando
“uma diferenga, como fator, para cada unidade a mais no valor
de p.
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Os produtos obtides sdo divisores de f(a:;) na expressio :

com

diferencas divididas de f(a,) até 62 ordem.

flaolaal ... Jap) = Y
1=0

P

fla:)

pa,‘

Pa; = (@i~00) . .. (@—ai-1) (@i—ait)) . .. (ai—ap) .

Com estes esclarecimentos, podemos interpretar o quadro
anexo 1.

Desse quadro I, tiramos as seguintes expressdes para as

QUADRO 1.
I |ao | a1y | ae | a3 | as | a5 | ag pa;

II{ o|-1| 1(-2| 2|-3| 3|p=1|p=2|p=3|p=4|p=5|p=6
0| — 1]-1 2| -2 3| -3 -1 -1 -2 4 12| -36
1 |=-1]|— |2 1|-3 2| -4 -1 21 42| 6| -12| 48
2 1 2| — 3|-1 4 | -2 2 6| 6| —24| 48
3 |-2|-1|-3|—|-4 1|-5 -6 24| 24|-120

-
4 2 3 1 4| — 5] -1 24| 120|-120
L— = = e S
5|1 -3|-2|4|-1|-5|—1|-6 -120| 720
6 3 4 2 5 1 6| — 720




' QUADRO II

I ao a a2

as a4 as ag pa

17| o _1- 1| 22| 3|-3|p=1|p=2|p=3|p=4|p=5|p=6
T?T 1| -2 2| -3 —3 -1 -1 2 4| -12| -36
1 1| — _2 -1 3 :—4 1 2 2| -6 12 48
2 | -1 :j -3 —1 -4 2 2 —6 -6 24 48
3 2 1 ._3' —_— 4 j 5 -6 24| 24 |-120
4 | -2 | -3 : -4 | — | -5 1 24 |-120 | -120
5 3 2 4 1 5| — 6 120 | 720
-6_——3 -4 | -2 : -1 : —_ 720
01y - FQ KD gy
j(01-1|1)-@ +f(’71)+&21—)-&§‘—1)
sorpy - 12 L 10, J0, S8 A5
JO-1[1-212) - f(°’+f(—6” TRIOR L ¢ (22
7(0-1]1]-2/2/-3) = f(0)+f(—1) +f—(1—)+i(——2)+-@ 168) | A%3)

0l-1{1}-212}-3[3)

12 T 24 120 " -120 120
1O fCD) fQ) f62) f2) J:3) @)  AYC3)

36" 48 48 -120 120 720 =720 720
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A inspe¢io deste quadro I mostra-nos que

A2v-1 _)
flaolar]...|an1) = 2—;){(11

A% f(-
j(ao]all...la._,,,) = |+U(v)

Do quadro II tiramos

DRI N

_ 10 ) JCD A%

JOI1]-) = =5+ . i
| O A%f(-1)
f(0|1|—1|2)=f(?°)+f_<_;)+1%+j_%2) S |
e no caso geral
A%-1f(~
flas|ar]. .. |an-1) = %
AY f(—1v)
j(ao|a1|...]a2”) = ﬁ

7. Para generalisarmos estas expressdes, temos de resolver
preliminarmente os seguintes problemas :
Dadas as séries (a) e (b)

(@) 0,-1,1,-2,2,-3,3,...... , =kk, ... , U
(b) 0,1,-1,2-23-3,...... ket oo , —vlp-1,-2.

calcular o producto das diferengas de um termo genérico com 0s
restantes em cada uma destas séries.

Fagamos
Po(a) = 1T (a+3) @-3)
- Pyr) = (x+v) i_;I} (x+J) ()

onde o apéstrofe indica a exclusfio do valor particular j = x.
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Os produtos desejados ndo sio mais do que as expressdes

Pa (_k)y Pa (k); Pb (_k): Pb (k) ’

pois que estas expressdes sdo denominadores que aparecem na

expressio de f(ao|a, . .. |ap) sob férma de soma de fragdes.
Calculemos sucessivamente estes produtos.
Temos

P,(-k) = H (k +j) (hj) = IiI(—k—j). n k+37) .

Mas
v IU + k
U (k) = CU+

v -1 v
Il (k +3) = T(~k+5) 1T (k+37)
1 1 k+1

k-1 k-1
II (~k+j) = DF? 111 (k=) = (1¥' [ k-1

I (k+j) = |k
k+1

donde

Po-k) = (-1)¥! F,:—’f EDF Rl ke = (CL)FE otk ok

observando-se que (—1)*** = (-1)**, vemos que esta expres-
sio 6 simétrica em relagdo a k e -k, donde poderiamos tirar

Pak) = () o+k |k

Aliss a dedugdo diréta desta expressdo nfo oferece difi-
culdade, como vemos

P, (k) = IV (k-+) (k=) = Iil(kw‘) . H (-j) =

= N L S ]
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Destas relagdes concluimos para P, (-k) e P, (k) as expressdes:
Py(~k) = (~k+v) (F1)+*t o+ k=1 jp-k—1 = (-1)7+5 o+ k-1 -k
Pyk) = (1) fe+v) [p+E-1 [p=k-1 = (151 jo+k k-1 .
Da mesma forma obteriamos para as series

(@) 0,1,-1,2,-2, ... ,k, -k, ...,0,—

by 0,1,-1,2,-2, ..., k, -k, ...,v,
as expressdes

v P k-1 2
Py (-k) = 1;1' (-k—j) = I (-k-7) . TII (-k+1) -]1;11 (-k+j) =

|+lc

= (L == (1 =l ke = (<L) o+ [u—e

Pa,(k) =(—1)v+k|v_+_@@
Poy(-k) = (o) (-1)=* |ode-1 [p+he—1 = (~1)=*|phe [p-k-1

Poyk) = (k=) (-1 |odo-l ptk~1 = (-1)7Hothe-1 ok .

Estas expressoes podem ser transformadas de acordo com a
férmula da combinagio de m objetos tomados p a p:

Cm \—m_

14 I P Im...

Utilizando esta relagdo obtemos as segwintes férmulas finais :

2v 2y

Pk) = (D %— Puich) = (Db
1=k -k

201 2v-1

Pb(—k) = (—1)"+k-1 2u-1 Pbl(_k) = ( l)v k I 29-1
Cv+k'-1 Cv-l—k
2v-1 2v-1

Pyk) = (-lyt+t oL Py (k) = (-1)* o

v+k v+k-1
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8. Consideremos as expressoes gerais de f(aojai]. . .|az) e
f(aolai|. . .|az-1) para a série de argumentos
QAop-1 = —V, dow = U .

De acordo com as relages anteriores, podemos escrever

_ o) N [iR) L S
j(ao|a1[ oigio |a2v) = Pa(O) + )T, [Pa(—k) + Pa(k)
el f(l) (k1) | k=l Sk | J(K)
Lo|1... w1) = Y, | S5 = ’
Jtole|..|ar-1) #=o {Pb(k) +Pb(-k-1):l K= _Pb(k'1)+Pb('k)J

Observando-se que
fx) = E*** j(0) ,
temos ainda

E’n v 1)- E
J(ao|ai] . . .|ae-1) = LP—(O) + Zl‘ |:P (—k)

ooy) = L[ Ertk-1 ) ok | - B
fadas] .oz L; | Pb(k_1)+Pb(_k)H fo) = Bio)

f( -0) = 4 ()

Introduzindo nas expressbes entre colchetes os valores de Ps e
Py obtemos

] E-1)2

A"\? (-1)°CPE'+ ?‘(— FHECT BRI B J-( 1_2_')’ ’
1 i - (B
B=rga 2{@ 1AL Brtket y (I k” )

donde para as expressdes desejadas o aspeto

A® j(—p)
(2
A1 ()

2v-1

f(ao[(h] ey |a2u)

f(ao|a1[. . .|a2,,_1) =
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9. Vejamos agora, as dif'ex'engas divididas para a série
de argumentos definida por

Q-1 = U, G = U .
Temos
0 > [ J(=k) J(k)
Salmfaz) = 3 7G5+ ¥ [P.,l(—k) N Paloc)}
k=l ) | f(Hk+1)| & fR4L) | fk)
j(ao|all-..la2v— k}_o Pb ( k)+Pb (k+l) k)- Pbl(-k+l)+Pb (k)

Observando-se que

J@) = B f(-)

Jz) = E=tel f(-v+1) ,
temos ainda,

Er " L[ Evk Evtk
Pal(o) _lJ Pa (k) Pal( k)

b

Introduzindo nas expressdes entre colchetes os valores de
Py, e P, obtemos

Haolas]...[am)| =

‘f(—v) = A f(-v)

E vl Ev+k—-1
Po(~k+1)  Po (i )

f(aolas]...]az-1) = f=v+1) = Bif(-v+1)

" ﬂ o 2v - N 29 » (E—l)zu

o (-1)*’02 Bt ) l(— YrHECE, Bk 4 (1) CE E+’~] -y
__1 [ L § (B-1)%1
1= 1201 _51, (-1)rk+1C T BT (-1)RC L Ert k|| = ol

Destas expresstes concluimos

A f(-v)
Jladay|. . .|aw) = 2 !

A% f(—p+1)
j(aa]a1| 06 .](121)—1) = T



CAPITULO IV

FORMULAS DE EXPANSAO

1. Generalidades.
2. Operadores.






CAPITULO QUARTO

FORMULAS DE EXPANSAO

1. Seja f(z) um polinémio de griu =, qualquer e
Pyx), Pix), ..., Pu(x)

uma sequéncia de (n41) polindmios dados, cujos grdus sdo
denotados pelos seus indices.

Dispondo de (n+1) constantes arbitrdrias, podemos escrever
identicamente

(1) J@) = coPotaPr+ ... + caPr = Y, cPu(z) .

=0

Seja © um operador que, atuando sobre um polinémio de
grdu k,k>0, o reduz a um outro polinémio de griu (k-1) e,
que, aplicado a uma constante, dé como resultado zero.

Terfamos

OPk(z) = Qu-1(z) k>0,
OPy(z) =0 .
Aplicando-se este operador © sucessivamente a f(z), terfamos
Of(z) = c1Q'o(z) + c2Q'1(2) + . .. +caQ'n-1(2)
(2) O%F(@) = c2Q"o(z) + ¢sQ"1(2) + . . . +¢aQ" n1(2)

07f(x) = ca™ (z)
onde os apodstrofes ndo denotam derivagdes.

Fazendo-se z = 0 podemos exprimir cj,cy,. . .,cn em fungio
dos valores de Of(0), ©%*(0),..., ©%f(0). Por outro lado, da
equagao
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n

®) @) = X o Py0)
podemos obter ¢, em fungdo de Of(0),...,0"(0).

Daqui resulta para f(z) a expressio seguinte em fungdo do
operador ©

v=n

f@) = };()av@”f(O),

onde os a, sdo fungdes de z, obtidas, introduzindo-se os valores
de ¢o, ¢1,Ca,. . .,¢n em(l) e ordenando esta expressdo em relagdo
is poténcias do operador ©.
2. Operadores ©.

As equagdes

OPL(z) = Qr-1{2) k>0
OP,(z) = 0

definem um operador @ gozando da propriedade de transformar,
para k>0, o polindmio Pz em um outro Qx-; e dar um resultado
nulo, guando aplicado a uma constante.

Tais sejam as formas de Pr e Qx-1, poders resultar para ©
uma expressdo puramente formal, dada apenas pela sua definigéo.

Entretanto, h4 formas particulares de Px(z), para as quais
o operador © se reduz a operadores j4 conhecidos. Entre esses
operadores, apresentam particular interesse aqueles para os
quais temos

Qi-1(z) = k Py (2) ,
donde para © a expressio
OPiz) = k Pr-1 (2) .
Poderiamos dar a este problema um outro aspeto. Supor ©
um dos operadores de abaixamento de grau, D,A,v, 3 e verificar

qual seria a forma de Py(x) correspondente.
Assim para © = D, teriamos

D Pi(z) = k Pr-(z) .
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Ora, o polindmio que goza desta propriedade é da forma
Pr(z) = =¥ .

Para © = A, deveriamos ter
APi(z) = k Pr-y(x) .

E’ facil ver que o polinémio
Pi(z) = z(z-1) (z-2).. .(z—(k-1) )

goza dessa propriedade, quando o intervalo de diferengacéo finita
é igual 4 unidade.
Com efeito

APi(z) = Pi(z+1)-Pi(x) = (3+1)(@)...(z-(k-2))-x(z-1)...(-(k-1)) =
=a(z-1)...(2-(k-2)) [+ 1-(2-(k-1)) ] = ea(z-1)...(2-(k-2)) = kPr-1(2).
Para® = ¢ teremos
vV Pi(z) = k Pry (2) .
Esta propriedade é verificada para o polinémio :
Pux) = z(z+1) ... (z+(k-1)),
sendo o intervalo da diferengacdo igual & unidade.
Temos com efeito : 5
V Pi(2) = Pi(2) - Pi(e-1) =2(z+1)... {2+ (k-1)) - (2-1) (@) (@+1)...(z +
+ (k-2) = 2@+ ... (o+(*k-2) [z + (-1) - (=-1)] =
= k@) (z+1)...(z+ (k-2)

ou seja VPi(z) = k Pir (x) .
1 1
Para © = 5 = (E2 —E ?), deverfamos ter

8 Pi(x) = k Pr-1(z) .
O polinémio
Pi(x) = x(z+§—1) (z + 5—2).. Az +Ek—(k—1) )

goza desta propriedade, como podemos ver
1 1

3Pk(x) = (E2 -E 2 ) Pi(2)



Mas
E_IE Pr(@)=(z +%) (x+§—%) (x +———) - (z +%_3’02;3)
FTPG) - - -3 (o+ 5~ %)( +§—g)..(z+-’;—-%),

Por diferenga, obtemos, pondo em evidéncia os fatores
comuns, a expressfo seguinte :

3Pi(z) = (:c+ )(+ g) (x+§—2k2——3)x
xlerPe+E-D-e-ple+ri-ZE]

Desenvolvendo-se os produtos entre chaves, achamos

(x+%)(x+§——%)—(x——21—) (z +%—2%—1)J—

1 k[ 1 1k 1.\
=0 G on W Sk T (O S L _ By _
=z 4+2@+2)@ i 2@ Q) e

donde

st < wafe+ 2o 23] for 220

Observando-se que

3

272"
+£_£_x+i0"_1_2
TT 39T

k 2k-3 k-1
+ 5= +T—((k 1) —1)
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vemos que
/ L 3\ L 5 ; k 2k-3
x(.x+§—3)(x+§—?)...(x+3———2——) = Py (2) ,

de que concluimos a proposi¢do enunciada :
8Pr(x) = k Pi-1(2)

Para distinguirmos esses diferentes polindmios, vamos
adotar uma notagfo evocativa de suas propriedades, assim

Di(z) = z*
Au@) = 2{z+1).. (z+(k-1) )
Vi(z) = :c(x—l). ' .(x—(lc—l) )

3(z) = x(:x-l—(%— 1)) R (x + (—g—— (k—l))) .

Se fizermos sucessivamente

j@) = X p Do)

@) =Y ¢ A2

7=0

@ = ?;On Vo(z)

@) =Y s )

om0
onde py,go,rv,80 desempenham o papel das constantes ¢;, achamos
D" fo) = |k e
A* flo) = [k qx
vifo) = |k
¥ flo) = |k s,
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donde para f(z) as expressdes

@ = % Dfif(") Dy

-0

<

@ = 32

i@ =3 &v@ v4(a)

V=G

Al(x)

i@ = 3 T a

= 2

Estas férmulas recebem o nome de férmulas de expansdo
de um polindmio f(z) segundo as poténcias dos operadores
DAY e 3.
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CAPITULO PRIMEIRO

Generalidades.
1. Soma dos n primeiros termos de uma série.

2. Soma dos termos de uma série de ordem 1, k, 2k,.. ., nk.

3. Somagio [n].






CALCULO SOMATORIO

GENERALIDADES

O célculo somatério tem por objeto efetuar a soma dos termos de
uma série dada segundo uma ordem determinada, caracteristica
desta soma §. Como um termo qualquer da série a ser somada

Xy, Xo, . .., X,

pode ser expresso em func¢do de um termo dado X, por meio
de poténcias do operador F de deslocamento, a soma dos termos
da série dada serd o resultado da operagdo sobre X, de um ope-
rador, polindmio em E.

Este polindmio em E, seja ¢ (E), operando sobre X, produz
uma grandeza

Yo = S.
Entre Xy e Yy teremos as relagtes
Yo = ¢(E) Xq
Xo = ¢ (E) Yo

As séries (1) e (2) do § 1 reduzem-se neste caso a Xy e Y,
respetivamente. A soma S serd pois caracterizada pela forma
do operador o(E).

Passaremos em revista alguns tipos principais de somago.

SOMA DOS » PRIMEIROS TERMOS DE UMA SERIE.

Seja a série

Uy, Us, ..., Un.

Queremos obter a soma S» dos n primeiros termos desta série.
Esta soma € por definigio _
{mn

8o = Ur+ Ust . +Un= 3, Us

1e]



— 70 —

Observando-se que U; = E*! U,, podemos escrever
Se=[1+E+E+ .. +E|Ui=¢ (B) Ui .
O operador ¢ £ tem neste caso para expresséo

Er-1

A operagio inversa serd definida por

E-1

¢! (B) = 323

Para o céleulo da relagdo inversa é cdmodo introduzir o ope-
rador ¥ definido por
1+ % =E"
‘Nestas condigdes ¢! (E) toma a expressdo ® (9) em fungdo de 9
1+9-1
S @) = o (3 = L

Quando os termos U; sio da forma
U = AV: ,

a somatéria S, toma um aspeto particular.
Com efeito: das relagdes

V: = E7V,
U:= AV; = AE’HVl = Ei_lAV1
temos

Sn = E,—:_lUl = (En—l) V]_

O operador (E"-1), operando sobre a primitiva de U1, nos di S».

A inversdo deste operador pode apresentar algum interesse.
Teremos por ela

1

Vi= g

Sn = —(1-E" S’ = (1 +E"+E*+..) 8
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SOMA DOS TERMOS DE UMA SERIE DE ORDEM
1, k, 2k,..., nk.

Teremos

k- 2%-1 -1 Ent-1
S, = (Q+E-1+ E¥ L 4+ EWY) U, =

E‘_k___lUl-

Se tivermos

Uy = (B¥-1) Vy,

resultars

S, = (B™-1) V) .
SOMACAO [n].

Esta somagdo tem por definigio o operador

n
2

XK

E’-F

1
2

E

[n] = ¢ (E) =

| =

-E
Ela corresponde ao desenvolvimento da fragdo imprépria, que
a define. Para obtermos este desenvolvimento, fagamos

il
E'=u
il
E’=v.
Virad por substituigdo
il
2 2
l—?’}_= u;:z"= w4+ w2y FodwrR o L+
E*-E°®

+ uk vn-k—l + ... + uvn—2 + vn—l
ou, entdo, voltando s expressdes primitivas,
n-1 n;3 n-(2k+1) —n+(2k+1)
oEB=E +E>+..+E ° +..+E * +..+

-n+3 -n+1

+E * +E °*
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Para n impar e igual a 2p+1, esta soma teria por expressio
(1) [2p+1]l=Er+Er 4+ . +E° +...+ E?H14 Ep-

Para n par e igual 2p, vird para seu aspeto

3 1 1 1

"3, s 5 0 7 . PR
+E 2+.. . +E24+E?+E +E :

@ [(2p]=E

Os termos que entram na expressio de (1) acham-se todos na
tabela de valores U, sobre o qual estamos operando; ao passo
que, para (2), teremos necessidade de calcular expressdes de tipo

L L
Ez ¢ £ 2,

Estas expressdes sio facilmente obtidas, atendo-se 3 relagdo
E=1+A, o que nos dd
S

)Ak.

1 1
EZ = (1+A)7 =

|18

= |

1 1wy
ET = (1+A) 3:2(

L



CAPITULO SEGUNDO

Métodos particulares de Somagio
1. Generalidades
2. Somagfo sucessiva.

3. Somagio repetida.






METODOS PARTICULARES DE SOMACAO

No capitulo anterior, vimos que a somacio de n termos
consecutivos de uma série, seja
‘ E~-1
S, =®E) U, =

-1

toma uma forma particularmente simples, quando conhecemos
umsa fungdo V. tal que
AV: = U: .

A fungdo Vi resulta determinada, a menos de uma grandeza

6pero-nula, pela relacio
Ve = A1 U; .

Para resolvermos este problema da determinagdo da pri-
mitiva de Us, vamos utilizar as relagdes existentes entre os sim-
bolos A e D.

Com efeito, da relagio conhecida

A=¢?P 1,
tiramos
1 1
A'l = =
el phie2 00, Dy
{ ) 6 ntl
ou, ainda,

D D? D -1
Al pli 22 =
A D-[+2+6+”'+n+1+"'\
O desenvolvimento do parénteses pode ser obtido pelo
método dos coeficientes indeterminados, escrevendo-o sob a

forma
1
1+2+ +£
2 7 n+1

= A-1+ AsD + A;D? +...+ A; DIl +
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ou, ainda, sob a forma equivalente

ol ok el
) 1=(2 d] X (:#““‘ A)

Para efetuarmos de maneira cdmoda éste produto, vamos
substituir cada um désses polinémios por uma operagio simbélica.
— Esta operagfo consiste em substituir um desenvolvimento
em série de poténcias de z pela expressio

I = +oz 40222+ F 0" 2" +. ..,

onde as poténcias sucessivas de v assumem valores prefixados.
Assim, para o 1.° fator da expressdo (1)

[oe] Dn

)‘1
< [n+1

= [»D ,

pomos por definigio
1

= —
T

Para o 2.° fator, escrevemos
(o0} [ee] ©
i+1 — N 4. | = i Di
Y ADH =Y 4, DI =3 7D
-1 ] [
com a convengio
o= A,
% HAi-1

O produto desejado ndo é mais do que o desenvolvimento
de L@+7D2 onde as poténcias sucessivas de (¢ 4+ v) se caleulam
pela expressio

(tH0)P = <P + P lp4 .. 4+ Pl 4P,

exatamente como no bindmio, sem seus coeficientes fatoriais.
Para p = 0, escrevemos

(;)+'r)° = 120 .
Temos, entdo, pela operacdo acima, a identidade

1=LCFD = [A; + (v+7) D +.. .+ (v+0)? D? +...]



Daqui conecluimos

4, =

| @+7) = 0
+2)t= 0
(v+7)? = 0

Para calcularmos as diferentes poténcias de t e v, formamos
a tabela

v° p! p? »3 ] vt o5 46
-1 Ao A1 As As A, As
-0 1 A—], Ao Al A2 A3 A4 A5
1 1 1 1 1 1 1 1
! @ @A—l EAo @fh EAz @As @z’h @As
1 | 1 1 1 1 1 1 |1
2 E EA—] EAD EAl §A2. §A3 EA.; EAE
1 1 1 1 1 1 ‘1 1
3 = | SA] S A4, | = = = = _
CLERTENEY R RN e e
! = !
1 1 1 1 1 1 1
ot E EA-l EAO EAI -EAzl EA;; EA4 _—
R ERENEE
1ad @ @A—l @ Ao E A1 |EA2 @ A3 _ S
1 1 1 1 1
‘C° 7 77'A—1 —7Aa Tl_Al, 77'A2 _— e _
. |

Déste quadro tiramos o desenvolvimento de (t+1)?, que
se acha na diagonal p — p.

De acordo com a visivel lel de formagio, temos

A-l Ao Ap—l

(v+1)?=@+E+...+L




donde as equagdes, para p = 1
A =1
e para p > 1,
Ay | A,
EX T
_‘E é é_ =0
ENERET
A— Ao .4.1 + Ap— — 0
pr1 T [p Tt T
Pondo essas equagdes sob a forma de matriz, temos o aspeto
|
A-l Ao Al Ag .43 A4 A5 I 2.0 membro
1 . ——
B 1
111
T °
111 .
3|2 |1
N I .
4 BB
11 1|t .
bt B2 |R
0
i Y 0
=N
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Destas equagbes tiramos sucessivamente os diferentes coe-
ficientes das poténcias de D :

1 1
A,=0 .40—"5 Al"'l_z
A.=0 A L o4,-0
2 = 3 720 4
1 1
5= 30240 2= 0 41=~1509.600

Estes valores, levados na expressio
A-L U;
dio a primitiva Vi . -
SOMACAO SUCESSIVA

Aplicando-se a férmula de somacgio do capitulo anterior
para o caso de ser U; o produto de dois fatores V: e Wi, temos
Er-1
E-1

S=4¢ (E) U, = d)(E) (Vl Wl) = (V1 Wl) .

Suponhamos agora que conhegamos a primitiva de Wi,

seja Ti.
Da relagio
A(V:Ti) = Vi AT: + Tugq AV,
tiramos
ViAT; = A(Vi Ti) - Tigr AV
ou

Vi Wi = A(V: To) - Tigr AV

Levando este valor na espressio de S, obtemos
| En-1
S=®EYU,= -E—_I—[A(VlTI)—TzAVﬂ =(Er-1)}V T)-P(E)TAV))

Esta relagdo é conhecida pelo nome de somagio por partes.
Se aplicarmos esta férmula para

O(E) (T.AVY ,
obtemos, pondo AZ; = T,,
P(E) (TAVY) = (Er-1) (ZAV)- ®E) (Z:A2 V)
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donde
S = (E*1) [ViT, - Z,AV,] + ®(E) (Zs AV5).

A reiteragio desta féormula nos conduzird 3 férmula de
somagio sucessiva, que é vantajosa quando conhecemos as pri-
mitivas sucessivas de W: e quando a diferenga finita de Vi se
anula identicamente a partir duma certa ordem.

SOMACAO REPETIDA

Dada a série
U1, Uz, 5o .,Un,

para a qual calculamos uma certa somagio § = P(E) Ui, que
nos d4 os valores

OE) Uy, ®E) U, ..., PE) Un,
podemos aplicar novamente a esta série a mesma operagio de
somagao.

Teremos, denotando esta 2.* operagdo por S = ®¥E) Uj,
formado uma nova série

AU, PHE)U,,..., PUEYU,,
a qual poderemos novamente aplicar 0 mesmo Processo Opera-

tério, e assim sucessivamente.
Obteriamos para a somagdo repetida de ordem k o aspeto

S = d¥E) U: .

O conjunto das operagdes necessirias para obter esta soma-
¢hio repetida de ordem %k é dado pela poténcia de ordem k de
d(E).

A demonstragio desta proposi¢io ndo oferece dificuldade,
. atendendo-se que ®(E) é um desenvolvimento em série de po-
téncias de E, que pomos sob a forma '

(o8]
®(E) = Va, B
-
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Terfamos

o o
PE)YU, = Y ar ExU, = Eak Ukt
s s

© © i
BBV = YadE U = Ya
- o

o :
Zaj Uk4j+1
m -

It
8“8
8

[oe] o]
ak)—‘ajEk Uj+1 = Z ax EkZajEf U
os} oo}

i
[0¢
ou, ainda,

®(E) U, = (: akEk) ( Za;E’)Ul _(. ZakE')

Para generalizarmos esta demonstragio, vamos por indugdo

admitir a expressio
o

o0}
&k (B) U, = ( ZajEf) U,

-

como verdadeira e demonstrar que o é ainda para k+1.

Temos

® () @* (B) Uy = iajEf<<b’°(E) U1)=

o] _ /™ K ] [es] \k+1
= ZajE'J (ZaiE") U, =(ZajEJ) Uy .
-® \- o / -

Esta propriedade subsiste para as expressoes de ®(E) em
fung@o de outros operadores, desde que sejam tinicas as expres-
stes de £ em fungfo désses operadores e vice-versa.







CAPITULO TERCEIRO

Somacdo imediata






SOMACAO IMEDIATA

Seja uma série de termos
Uo, Uiy U2y. .., Un ,

onde o termo geral u, vem expresso por uma férmula de expansio
em fun¢do de um operador ©:
k

0)) Uy = ¥, Po(2) ©7 u, .

a

Os coeficientes desta expnsfo sdo polindmios de grdu v em z
e os valores de 6", , constantes dadas.

Suponhamos que, relativamente a uma certa operagdo de
somagiio ®(E), verifiquem esses coeficientes a relagfio

@) ® (E) Py(zs).= Pos(z) , 20 = 0
A somacio dada por ®(E) u, seria expressa por
O(E)uo = B O(E) u, .

Aplicando-se esta somagio 4 relagdo (1), temos
k
d (B)u, = E ©? uo $(E) P.(z)
Levando-se em conta a expressdo
P(E)Py(z) = D(E) E=Py(z,) = E=Poi () ,
obtemos

k
SE) vy, = E”ZP,,H (z) 6" uo,
donde afinal,

BE) ue = Y s (@) 0o
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A somagio, como se vé, foi obtida pela simples substitui¢do
do findice de Py(z) de v por v+1. A este tipo de somagéo, chama-
se somagdo imediata.

A equagdo (2) nos permite obter, para uma dada so-
magdo, a pesquiza das expansdes somaveis imediatamente por
®(E), e, para uma determinada férmula de expansio, qual a
~ somagiio imediata $(E) .

Vamos resolver o primeiro caso para a somagio

E*-1

OE) = T -

A relagdo (2) toma o aspeto

E=-1 1-E-=
Pv+1 (x) = ‘—Pv(xa) = E-1 Pn(ZL') .

E*-1_ . _
-1 E E Pv(l?) =

-1

Para resolvermos esta equagéo, fagamos

E-1= 4,
donde

1-E+  1-(1+A)® Qi
E-1 A =—;(k)Akl-

Fazendo-se o desenvolvimento, obtemos

_z(z+ DA z(z+1)(z+2)A? o

Pewil@) =275 123 T
z(x+1). .. (z+Ek)A®
12, (kD) T P:(@)
Pondo-se
Po(x) =1,
obtemos sucessivamente Pi(z), Pa(),..., Pu(z) pela aplicagio
dessa férmula.
Para Pi(z), vird
Pix) =| = - x(xl-i-;)A + ... |Polx) = =

visto que APo(x),A2P(x),. . .,AkP(z), sio nulos.



Para Pi(z), resulta, desprezando as diferengas nulas,

P.(@) =[x—%l)—ﬂp,(x) .
Mas APi(x) = 1

) D] -1
donde Pi(z) = x—x(f;) =x(f'2)

Para P;(z) adviria

z(z+ 1A s z(z+1) (z+2)A?

Py =773 1.2.3

Pz(il?) .

Calculando-se as diferengas de Pi(x) obtemos

_ (x+Dz N z(z-1)
1.2 1.2

AP2($)

Il
—t

A% Py(x)
Daqui resultaria

zz-1) 2*(c+1) + z(z+1) (4+2)  z(z-1) (z-2)

Py@) = =3 1.2 123 123

e, procedendo-se sucessivamente, obteriamos para a expresso
geral

Py(x) =

z(z-1) ... (@&v+1)
- 1.2...0 )

Esta expressfio pode ser provada verdadeira para v+ 1, obser-
vando-se a relagéo

x(z-1) ... (x-v)

A 1.2...(04+1)

Com efeito, levando-se este valor de P.(z) na relagio

1-E=
Pv-{-l(x) = 'ﬂ Pv(x)

obtemos
1 [1-E-=

Pv+1(x) = E(E_—l) A [x(x—l) Ca (.’IJ—'U)]
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Cancelando o fator comun A, vem-nos afinal

z(z-1)...(z—)

Pyyy (x) = Il)+1

)

0 que generaliza a regra.

Com uma aplicagfio do 2.° caso, consideremos a férmula de
expansio.

k
Ur = EPv(x) @” Uo

onde
' z(z-1)...(z—v+1)
1.2....v

P,(x) =

Estes polindmios gozam propriedade

APoyy () = Pola)
donde
Pt (z) = A1P,@) + P*

sendo P* uma grandeza épero-nula em relagio a A .
Nestas condigdes a relagdo
O(E) E* Po(z) = Pyt (2)
transforma-se em
AP, (z) + P* = & (E) E-=Py(2) ,
donde a equivaléncia entre as operagdes .

Al Py(x) + P* e E* ®(E) Py(z)
€, portanto,
S(E)Poz) = EL_I Pu@) + E* P* .
Resta-nos determinar P*. Ora, como devemos ter, para
z =0, ®(E)P:,(0) = 0, resulta

AIP0) + P* = 0.
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Desta expressio concluimos para P* o valor

P* = - AT P(0)
e em consequencia

E=P*P,(0) = A1 Py(x) .
Daqui advem para @ (E) a forma

E=-1
OB =%






CAPITULO QUARTO

1. Expressio de uma integral definida entre limites finitos,
por meio de diferencas finitas.

2. Transformagio da férmula de integragio.






EXPRESSAQO DE UMA INTEGRAL DEFINIDA
ENTRE LIMITES FINITOS, POR MEIO DE
DIFERENCAS FINITAS

Sendo (a,b) um intervalo finito, podemos definir a integral
definida de j(z), entre os limites x = a e = = b, pela expressio

b
1) [ 1@dr= tim |JE Az @A GO, (< iSzien.
a n—+C0

onde z, = a, 11,%s,...,Zn+1 = b, representam pontos de divisdo
do intervalo total.
A relagdo (1) subsiste se supuzermos os intervalos equidis-
tantes ; neste caso teremos
b-a

2 = }
@ L5 n+1

Por outro lado, aplicando a férmula dos pequenos acréscimos,
podemos escrever
F&) = flmi+ ) = fx) + nwf (i + 0n) .

Estas expressoes para os f(&), levadas em (1), nos dio

b
(3) f f@)dz=lim [§(x) Azo+f (@) Az1+ ...+ (@n) A |+

n—>C0

+lim 2 il (i 0i7)

n—x o

Introduzindo-se equidistdncia dos intervalos, temos

@) + ) + ... +F(on)]
n+1

b
[ 1@dz = (b-0) lim +,

n— ®
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pondo-se

X e (e + 05 w)
= lim 2 -
i N ek b-a .

Mas o limite de v, pelas condi¢des de integrabilidade, é
zero, donde a expressio

J@o) + f@y) + ... 4 F(xn)
n+1

b
[i@dz = ®-a) tim

Vejamos agora a transformagio da expressio

J(@o) + @) +. .- + f(zn)
n+1

Introduzindo-se o operador E, podemos escrever

Erti]
@f @) +f(@)+ ...+ (fzn) = I+ E+ B+ ..+ EV)f (we) = =57~ F(@0) .

Como
1+ A=E,
concluimos
Er+t1-1  (14A)"+-1 n nin-1) .,
= —(n+1)’1+ T AtT oAt
nn-1)...(n-k+1) l
+ T+ 1 Ak 4 .
donde
f(xa)+f(x1)+...+f($n) _ [ n n(n—l) 2
) nt 1 =|[1t1gd+t1ag -t
-1)...(n-k+DAR+
2l gk 15

Introduzamos a opera¢do auxiliar 9, definida por -

Er=1+ % ‘



Para exprimirmos A em fungfio de 9, temos a relagdo

A+A=1+1%
donde

1
= (14+9) "-1=

{ k
= lt)+—1(——1 %——1 ——k +1) L

daqui terfamos
nA = 9- (1——)E+ +(1)’“(1-—)(2-—1) (k1%)ﬁ—|£ ool |

Por outro lado o termo geral de (5) pode ser escrito

n(n-1)...(n-k+1)A* 1 2 k—1)\ (nA)*
T+ 1 =(1‘Z)(1'Z,)"'(1‘ n )[k+1 '

Vejamos, portanto, que podemos exprimir todos os termos
de (5) em fungdo de nA e de suas poténcias.

Passando ao limite, temos

32 3
im (nA)=9¥-5+ ... +(=-Dr—+ ... =log(1+9)
b de] k
. n(n-1)...(n-k+ l)A"’ ( X ) Ic 1 (’nA)’c
l 1-—J1-=
- BT e ez =
_ log*(1+%)
k+1

donde para a integral definida a expressdo
100'"(1 + 9)

f J(@)dz = (b-a) 20 5@ .

Para o céleulo dos 9, temos a relagdo
= Fr-1,
de que concluimos

@) = o+ G-a)

1) ~fa) .
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Passando a0 limite para n- o, vem

@) = f(b) - f(a).
Para 9%, teremos

¥ = (En_l)lc = Erk [ Erie- 1) 4 %_21). EnGe-2) o

seja
k
9% = E (-1)% C; Bt

=0

De um modo geral, temos

Er-@® f(g) = j[a+(k—:x) ” _?:_ 1 (b—a)]

Para n-»w, resulta

lim E™&® f(a) = f —a + (ko) (b—a)_

n—>-00

Daqui concluimos para n-o

@) = ¥ 120t [ o+ (b0 (b-0)

A=0 |

Transformando esta expressdo, podemos escrever
9%f(a) = [ 402 -1]" (@) .

De acordo com esta relag¢do e com os valores de f(z) tabulados
para o0s argumentos
r = a, a+(b-a), a+2(b-a),..., a+k(b-a),

podemos calcular as diferengas 9§ e obter a integral desejada.



TRANSFORMACAO DA FORMULA
DE INTEGRAGAO

Obtivemos no capitulo anterior para o cileculo de uma
integral definida entre limites finitos a expressdo

p S logk (1 + §
8 [ ey o= -0 ¥ P

Vamos transformar esta expressio para torna-la extensivel
a intervalos (4,B), cujas distdncias sejam multiplos dados m
de b-a.

Para isso, vamos dividir ¢ intervalo total (4,B) em m inter-
valos parciais contiguos, o que nos dar4 os m intervalos

(a,a+ k), (a+h, a+25),.. .,(a +(m—-Dh, a+ mh))
onde puzemos
4d=a, h =b-a, B = a+mh .

Pela férmula de decomposi¢do do intervalo de uma integral
definida, temos '

a+mh a+h a+2h a+mh
f Jx)dx = f Jjx)dz + f J@ydz + ... +f Jx)dzx .
a a at+h a+{(m-1h

Aplicando-se a férmula (1) a cada um desses intervalos,
podemos escrever

S X logh (1 + 9)

(2) fj(x)dx=hk_0 1 1 [f(a)-l—f(a-l—h)-f—...+f<a+(m—1)h):'.

Por outro lado, introduzindo-se o operador de expansio A

4mh_1

=T B E

fla)+fla+h)+ ... +f(a + (m—l)h.)=
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Levando-se esta expressio em (2) e invertendo a ordem
das operagdes, temos

Fhmh A=l 9 logR(L+ 9
o [ i@E=rTy 3 e

Desenvolvendo-sc a somatéria que af figura em série de
poténcias de 9 , resulta a expresséio :

(4) - y\ A ﬂk’
=0 k+1 k_-:O g

onde os A sio coeficientes determinados pela identificagio de
ambos os membros de (4) em relagio as poténcias de § .
Substituindo-se (4) em (3), temos

a-+mh

[ sz =n A 3 Aw 810

k=0

a
Atendendo-se A relacio que define 8§, a saber
AP =14+19,
damos & expressdo supra o aspeto
a+-mh

[ Tors = 40 AV 0y 4 b ¥ (amt) 05500

Mas

a-t+mh

(A™-1) 3% j(a) = | 9% f(=) |2

de que decorre o aspeto

a+mh z=a-+mh
ff(x)dx =h {A e A )$a) +2Ak }
=g
As expressdes que af se encontram acham-se todas na tabela
das diferengas 9 de f(z) e, com excegdo da primeira parcela do
2.9 membro, as mais restantes sdo oscilagdes de diferengas
finitas 9% .

¥+ f(x)




EXEMPLOS DE SOMAGAO
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EXEMPLOS

ACHAR A SOMA DOS TERMOS DE ORDEM
mk, m=0,12,...,n DA SERIE DE TERMOS

1, 8 27, 64, 125

Esta série é a dos cubos dos ndmeros naturais ; as suas
diferengas finitas acham-se calculadas na tabela seguinte :

U AU AU AU AU
—1 7 12 6 0
8 19 18 6
27 37 24
64 61
125

A soma pedida S tem por expressio
S=[1+Ec4+ E?* 4. 4+ E*]U,,
designando por Us. o termo inicial da série ; donde

E(n+1)k -1

— k nk —
¢(E) = 1+E*+...+E B5 ]
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Fazendo-se 1+3% = E¥, temos
2
B+ = (14+ 91 = 1+ (n+1) ¥+ —(nt 1)2@ +

m+Dnar-D¥  ©+Dnr-1) n-2)4"
1.2.3 T 1.2.3.4 °

donde para ¢ (E) em fungdo de 9§ a expressdo

n+Dnd  m+Dnn-1)9°

9B =+ )+ 55— +—7 33 T

n+Dnm-1)(n-2)9°
1.2.3.4

TP ona

Podemos obter & em fungio de A de

E(k-1)A% Kk(-1)(k-2)A°

= ke — =
%= (A+A¥-1=kA + 1 2 + I 2.3 +...

Por elevacio ao quadrado e a0 cubo, obtemos #2 e 83 :
92 = K2A?+ k2 (k-1) A® +...
¥ = LA,
Para &k = 5, n=10, U, = 1, temos
Al = 7, A?l = 12, A%3 = 6
31 = 125 X 6 = 750,
#1 =25 X 12 4+ 100 X 6 = 900,
1 =5XT7+10X 12410 X 6 = 215.
S tem por valor
S = ¢(E)1 = 11 X1+55X215+165X900+330X750 = 407.836.

Fazendo-se U, descrever a série dada, S descrevers a série
correspondente ao operador ¢(E). Podemos obter esta 2.* série,
calculando-se as diferengas finitas sucessivas de S.
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Operando por A sobre a expresséo ¢(E), obtemos

(n+DnAd (n+Dn(n-1)A9
1.2 t  1.2.3

Ag(E) =(n+1)A+

+ (n+Dnn-1)(n-2)A

1.2.3.4
Da expressio de 9, 3%, ¥, obtemos
k(k-1)A®
—_ 2
AdY = kKA* + 1 3
A= kA3
A8 =0
donde
(n+1)n ,  k(-DA%  (n+)n(n-1) ,,
AUE)=(n+ DA+ kA =T |+ 5 3 k2A® .
Operando por A? e A% temos
Ato(E) = (n+1)A? + (”TJ’_IQﬁkAa,
Atg(E) = (n+1)A°.
Paran = 10, k = 5, U, = 1 resulta
. 11X10 5.4, 11X10X9 -
AE)Nl=11X7T+—F— 12 [5)(12 T 26]+ 123 25X 6 = 31.427
Ag(E)l = 11X12+55X30 = 1.782
A%(E)L = 11 X 6 = 66
Com estes valores construimos a tabela
| AS A28 A3S - A*S
407836 31427 . 1782 66 0
439263 33209 1848 66 0
472472 35057 1914 66 | 0
507529 36971 1980 66 I 0
544500 38951 2046 66 | 0
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Para a inversio do operador ¢(E), temos de calcular a ex-

pressédo
} Ek-1
ol (E) 8 = E/c(n+1)_1s
Fagamos, sendo ¥ um operador diferente do anteriormente

designado,
ErtntD = 1 4

temos

1

—= 19 n ¥ n2n+1) 9

Et-1=(14+9)t1-1 = = el e =
Gl n+l @+’ |2 @+’ [3
_ n(2n+1) 3n+2) 9

(1) 4

S m 98 n@nt+l) 8

ntl it [2 0 @rn® [ 3

n(2n+1)(3n+2) ¥°S

t+n* | 4

Para obtermos 88, 828, 935, operamos sobre a expressdo
Exn+D = 1 4+ § | donde tiramos

donde
(E) S =

k(n+1) [k(n+1)-1] A?

1.2 Al

§ = (1+APO+D -1 = k(n+1)A +

E(n+1) [k(n+1)-1] [k(n+1)-2] A%
+ 123 +...,

92 = kYn+1)% A2+ kE¥n+ 1) [k(n+1)-1]A3+. ..
9 = K3(n+1)? A?
Para n = 10, k = 1, 8 = 507.529, temos
¥ 507529 = 55X36971+1485x1980+26.235X66 = 6.705.215
32 507529 = 30251980+ 163.350 X 66 16.770.600
9% 507529 = 166375X66 10.980.750
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donde
507520 10 _ 6705215 210 _ 16770600
11 12t 2 ‘il e

¢t (E) 507.529 =

_ 6720 % 10980750
14641 24

o1 (E) 507.529 = 46139 — 277075 + 441.000 - 210.000 = 64

a+2
TABELADAFUNQAO Y, = Y Xi=(E*+ E+ 1) Xy = 9X,

i=Z

E CALCULO DA FUNCAO INVERSA ¢!V, = X, .

Xy | Yy [AY,|A2Y, APY,| YV, | 3Y, | 32V, | 3%V,
36| 63| 54| 18 36 | 369 | 810 | 486
8| 99| 118| 72| 18
27 | 216|189 | 90| 18
64 | 405|279 | 108 | 18 | 405 | 1179 | 1286 | 486
125 | 684 | 387 | 126 | 18
216 | 1071 | 513 | 144 18
343 | 1584 | 657 | 162 | 18 | 1584 | 2475 | 1782 | 486
512 | 2241 | 819 | 180
729 | 3060 | 999

1000 | 4059 4059 | 4257 | 2268
1331
1728
2197 8316 | 6525
2744
3375
L 14841

8 =E*-1=(14+A¥-1=3A4+3A24 A8
2= QA% 4 18A% . ..



qo‘l(E)—gsj=(1+3§3"1=%a—%s+85—152—2%33
A216= 3X189+ 3X90+18 = 855
A2216 = 9 X 90+ 18 X 18 — 1134
A?216 = 27 X 18 | — 486
A4216 = 0
o1(E) 216 =—31—><216—-;->< 855+§I><1134—§171% X 486 = 27



EXEMPLO DE SOMAGAO ,

Dada a tabela da fungio U = X?

X U AU AW AU
480 230400 961 -2 0
481 231361 963 2
482 232324 965
483 233289

calecular a soma
S = [(480,871)% + (481,871)% + ...+ (490,871)?] .
Temos

8 = [E0,871 + E1.871 +...+ EIO,STI](480)2 i

Pondo-se E%87! em evidéncia e transformando o paréntesis,

obtemos

E-1
oB) = B9 [14E +.. .+ EY] = ——— E08"

Introduzindo a relagdo
E=1+4,
resultam os desenvolvimentos
EY-1 = 11A + 55A% + 165A% +. ..

E0871 = 1 4+ 0,871A — 0,0561795A% +. ..
donde

oB) =2

E—ll EOSTL = (11 + 55A + 165A% +.. ) (1 + 0,871A —
~ 0,0561795A7 +...)
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Como as diferengas de U superiores & segunda sdo nulas,
basta conservar na expressio de o(E) as diferencas até 2. ordem :
oB) =11+ A | +11 X 0,871 + A?| + 165 X 1
+1X55 + 55 X 0,871
-11 X 0,0561795 .

Cilculos efetos, temos para o nosso caso

o(E) = 11 + 64,5812 + 212,2870255 A* .

Operando sobre 4802 temos

8 = 11 X 230400 + 64,581 X 961 + 212,2870255 X 2.

Efetuando as operagdes, como abaixo

2304000,000 000
230400,
64,581
3874,86
58122,9
424 574051

2596886,915051

concluimos para S o valor

S = 2596886,915051

Caleular a soma do exercicio anterior pela férmula :

n+1

=177,
A Umo

S=2U;=

o

Calculemos A-! X? no nosso caso. Temos

D D2 D3 -1
1+—2—+€+ﬁ+...

2 3 |
A= (1) = (D4 2 4o = D
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Desenvolvendo esses cdlculos, temos

D D2 Da 2 3
A+5+5+5+. -0t = 1—(§+2+D—

6 24 e Tt

D D* D3 , DO  D* D* .
+(?+€+ﬁ+...) —(§+F+ﬁ+“') .

1.2 1.1 3( 1,11
=1-3+D(-g++D _‘ﬂ+6_§)+“'

2

il 3
) 12+0XD +...

Observando que as derivadas de U = z? superiores 3 segunda
sfo nulas, podemos escrever

1 D
a_p1_z, Y
At =Dl-gt g
donde
x® z?
1.2 2 _ s
Atel =355

Para S vira

491,871 _ 491,871° — 480,871°

r® 2l
S=|3-3 6]480,871 ~ 3
491,871% - 480,8712 491,871 - 480,871
- +
2 6
Mas

(491,871)° = (480,871)° + 33 X (480,871)% + 363 X 480,871 + 1331
(491,871)% = (480,871)% + 22 X 480,871 + 121

Portanto :

S = 11 X (480,871)* + 110 X 480,871 + 385
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Efetuando esses cdlculos, temos

231 236,918641
2.312 360,18641
52 895,810
385,

1,915051
2.596 885,

2.596 886,915051

donde
S = 2.596 886,915051
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INTERPOLACAO

1. Dados dois conjuntos de valores (X) e (Y), ligados por rela-
¢oes do tipo -
(1) YRX e XRY,

o problema fundamental da interpolag¢io consiste em determinar
a forma da operagdo ¢, tal que, para uma série de valores

Xy, Xo, .., X,
obtida por uma raretagdo do conjunto (X), a série
Q’le QDX% reny ‘PXMJ

seja identica & série
Yy, Yo ..., Y0,

obtida pela rarefa¢do correspondente do conjunto (Y), de acordo
com as relagdes (1).

Por série fundamental de pares de valores (X, Y3) de dois
conjuntos (X) e (Y), ligados pelas relagses (1), a saber os con-
juntos :

Xy, X ..., X»
Yy, Y ..., Yo

entendemos a série minima de pares de valores (X Y:) permi-
tindo determinar a forma da operagdo g nas condig¢des acima
enunciadas.

Para efeito de notagdo, fagamos ¢X: = Y: .

2. FEsta determinagdo apresenta tres casos distintos :
1.° caso :

Asrelagoes Y R X e X R Y sio conhecidas, ou, pelo menos,
conhecemos a forma geral de ¢. Esta operagio, dependendo de
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um certo nidmero de pardmetros, a série fundamental serd
constituida pelo numero minimo de pares de valores (X;Y5),
permitindo a determinacdo desses pardmetros.

2.° caso :
As relagoes YRX e XRY sio desconhecidas.
Para uma dada rarefagdo dos conjuntos (X) e (Y)

Xy, Xs oo, Xn
Yy, Yo ..., Yu,

podemos obter uma operacio ¢ tal que, para esses pares de va-
lores, tenhamos

Y = ¢X; .

Mas, como nada sabemos a respeito das relagdes funda-
mentais entre os conjuntos (X) e (Y), nfo podemos afirmar
que a série de pares de valores dada seja fundamental e que,
portanto, para qualquer outra rarefacdo desses conjuntos,
subsista a mesma operagio o.

Nesta condigdes, o problema nio sendo determinado, varias
solugdes sdo possivels, as quais se enquadram nos tipos seguintes :

a) Para todos os pares de valores da série dada, temos

Y = Y,

¢ para outras rarefagdes do conjunto (X), pomos para ¥

Y: = Y;
b) Fazemos de um modo geral
: Yi = V;
3.° caso :

As relagdes YRX e XRY se decompdem em duas outras
YRX = YR X + YR, X .
XRY = XR\Y + XR.Y

das quais R; e R; sdo conhecidas e B, e R, desconhecidas.
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A série dada de pares de valores
Xy, Xo, ..., Xn
Yy, Y, ..., Yn,

sendo o resultado das duas relagdes R: e R», ndo se verifica de
um modo geral a relagio

Yi= ¢ X

sendo ¢; a operagdo correspondente 4 relagio conhecida B, .

Pelo contrario, devemos ter sempre
Yi= 0 Xi+ m,

sendo 7; uma corregdo a se levar em conta para compensar o
desconhecimento de R,. Neste caso, a determinag¢io dos pari-
metros de ¢; serd feita de maneira a se ter um sistema mais
provavel de valores para os u: .

Estes tres casos recebem respetivamente os nomes de

APROXIMACAO, INTERCALACAO e AJUSTAMENTO.

3. A proposito das ideias fundamentais da interpolagéo, Stef-
fensen desenvolve as seguintes considerac¢ées que, dafa venia,
transcrevemos de sua obra “SOME RECENT RESEARCHES
IN THE THEORY OF STATISTICS AND ACTUARIAL
SCIENCE”, 2nd Lecture, pg. 21 e 22.

“l. Let us assume that a table of f(z) like that shown in
the two first columns below is put before a computer with the
request to calculate the value of f(z) for z = 4° 5.



z l @ 3 2 3 LR R L
1 | 99833
98836
2 | 198669 -1985
96851 -968
3 | 295520 -2953 30
93898 -938 9
4 | 389418 -3891 39 -1
90007 ~899 8
5 | 479425 —4790 47 +3
85217 -852 11
6 | 564642 -5642 58
79575 -794
7 | 644217 -6436
73139
8 | 717356

(Note. In the table all values are multiplied by 10.%)

Not knowing anything about the function except what he
can see by the table itself, he will begin by forming the difference-
table as shown, and having satisfied himself that the differences
decrease very rapidly, it is more than likely that he will have
no hesitation in interpolating as if the fifth or sixth difference
were a constant, and stating the result as f(4'5) = '434965.
All that he knows is, however, that this result is correct, if f(z)
is a polynomial of not more than the sixth degree, an hypothesis
which can only be approximately true here, as the two values
of the sixth difference obtainable are not equal to each other.
The kind of certainty our computer possesses for the correctness
of his result is therefore, strictly speaking, of a statistical nature :
he has often interpolated under similar circumstances, and
has probably never-had reason to regret it. '

If now we inform our computer that the function tabula-
ted is
z

&) =sin5, (1)
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he will see no reason to alter his views ; but if we tell him that
it is
z

f(@) = sin 10 +sinwx, ...... (2)

in which case f(4°5) = 1434965, or that it is

f(x)=sinf%+xsinwx, N ;)] .

in which case f(4'5) = 4°934965, he will no doubt protest, and
probably say that his method of interpolation is only intended
for well-behaved functions. Yet the functions (2) and (3) are,
in their way, just as inoffensive as (1), which shows that we
cannot, without moving in a circle, define a ‘“‘well-behaved”
function as one to which our methods of interpolation apply.

The true source of the difficulty is that if we know nothing
more about the function than what is given in the table, the
function is undefined for any argument intermediate between
those stated in the table. Therefore, if we insert a perfectly
arbitrary value of f(z) as corresponding to such an intermediate
argument, no disagreement arises with the information contain-
ed in the table.

In order to obtain an approximation to the value of the
function at such a place, it is not, however, necessary to know
all about the funection. As is shown in the text-books on inter-
polation, it is sufficient to possess limits between which the
derivate of a certain order is situated.

It follows from the preceding considerations that inter-
polation may be performed with two quite different objects
in view which are, unfortunately, seldom kept sufficiently
apart by practical computers.

In the first place, the object of an interpolation may be to
find the value of a function for a certain value of the argument,
the function being tabulated for certain other arguments, and
defined, though not tabulated, for the intermediate arguments.
This is a problem of approximation. '
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Secondly, the object of an interpolation may be to fill up,
in a reasonable way, a gap in a given series of functional values,
for a value of the argument where the function is not defined.
This is a process which is much more akin to graduation than
to interpolation and ought really to be called by a different
name ; we suggest the name intercalation. If, in such a case,
the usual interpolation formulas are employed, they serve to
define the function, not to approximate to it. We are here on
hypothetical ground; we are more or less at liberty to accept or to
reject the result of the intercalation on the ground of common-
sense considerations, and there is no meaning in speaking of a
greater or lesser “‘accuracy’’ of the result ; “plausibility’”” would
be the correct word. This is the case in a great many statistical
applications of interpolation-formulas.
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TEORIA DA APROXIMAGAO

1. Consideremos dois conjuntos (X) e (Y) ligados pelas relagtes
YRX e XRY,
em virtude das quais podemos escrever
Y=09XeX=¢1Y.

A operagéio ¢ depende de um certo numero de pardmetros,
em um total de p. Esta determinagio é, de um modo geral,
possivel medante um sistema fundamental de p pares de valores
(Xi, Vo). A eliminagio destes parimetros dependers natural-
mente da forma de operagéo g.

Vamos estudar dois casos gerais, aos quais podemos reduzir
0s mais que se apresentam na teoria da interpolagfo.

1.° caso : — ¢ é representado por um polinémio algébrico
de grdo m em X. Neste caso, podemos exprimir ¢ por uma das
férmulas de expansdo que demos na parte primeira. Designando
esta formula de expansdo por

Y P(X)6,
onde os P.,(X) sfio polindmios relativos a 6, a determinagio da
operagdo ¢ exige o conhecimento das (m-+1) quantidades
X, 80X, 02X,, ..., 07X, ,

para um ponto dado do conjunto (X).

2.° caso : — o é representado por um desenvolvimento da
forma

Y = iP,,(X)G” Xo + Rm+1 (E) )

onde & representa um ponto conveniente do conjunto (X). .
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Pondo-se
Y-Rut1(8) = ¢,

obtemos a operacao

t=nX = Y PX) 00X,
o
que poderd ser tratada como no 1.° caso.

Si, num certo intervalo de variago de X, tivermos o valor
de | Rm+1] oscilando entre dois limites m e M bastante proximos
e despresiveis em face do valor de ¢, podemos por, nestas cir-
cunstancias, dentro da ordem de aproximagfio numérica dada
por Ru,11(E), para Y a igualdade aproximada :

Y=10.

Em caso contrario, o valor de Y estard compreendido entre
os valores, verificando as desigualdades

mdi| Y-U |4 M.

2. Do exposto, vemos que o problema geral no 2.° caso seria
o de determinar uma expressdo R+ (), resto da formula de
expansfio, tal que a expressio

G+ Rm+1 (E)
fosse identica em valor a Y, para um & conveniente.

Esta expressio é wufil quando podemos assignalar para
Ry 1(8) limites m e M, bastante proximos, de variac¢do e, quando
podemos determinar quantidades « e ¢, tais que

‘M—m L
| | X - X, | 4a

Nestas condi¢tes, podemos assignalar para Y o valor ¢
dentro da ordem de aproximacgio dada por R,+1(E). No capitulo
seguinte, vamos estudar a solugio deste segundo caso, mediante
o auxilio das diferencas divididas, cuja teoria foi feito na 1.
parte. Convem, entretanto, notar que poderemos adotar uma
férmula de expanséio qualquer, desde que lhe possamos adjudicar
uma expressio de Bn41(X), completando o desenvolvimento de §.
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FORMULA DAS DIFERENCAS DIVIDIDAS

1. Seja f(x) uma certa fungdo de x e
ao, al, a2, ey arn,
uma dada rarefagdo do conjunto (z).

Pela definigiio de diferengas divididas, temos as expressdes

%:J;(Tao) = §(z | a0)
fofo) = 1o 190 _ itz oo

J(@laolas]. . .lan-1) = flaolan| . . .|an)
T — an

= f(z|aoai] . . .|an) .

Destas expressdes deduzimos
J(@) = f(a0) + (x —a0) f(z[ao)
fxla) = flas|ar) + (z—a1) f(z|ao]ar)

J@laolaa]. . .|an-1) = f(aolasl. . .|an) + (x—0an) f(z|aclas|. . .|an) .
'Por substituigdes sucessivas, temos
F@ = f(ao) + (x-a0)f(as|ar) + (z-a0) (x—ay) flaolailas) + ...+
+...4 (-00) (—-0a1). . .(z—an-1) fl@o|ai]. . .|an) +
+ (z-a))(@~ay) .. .(z—an) f(z|ao|a]. . .|an) ,
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ou, seja, pondo-se
t=f(ao)+(2-a:)f(@olar) + . . .+ (2-00)(x-01) . . . (z—Cn-1)f(Co|ta] . . . |an)

n = (z—ao) (x—ay) .. .(x—an) f(z|ao|as]. . .|an),
concluimos
J@ =6+ 7.
Esta expressio nos di o valor de j(z) em fungfio das quanti-
dades

$(a), Haolay), falarlas), . . ., f(aolas| . . .|an), fxlaolas]. - -|an) -

Com excegfo da ultima, todas as mais podem ser obtidas
diretamente do sistema fundamental dos pares de valores
(Xi,Yi = f(Xi)), independentemente do conhecimento de f.

Este conhecimento é necessario apenas para a determinagio
da ultima diferenga dividida

F(z|aolaa|. . .jan) -
Si temos elementos para informar que, para um certo

intervalo de z, esta diferenga dividida oscila entre dois limites
m e M, podemos por

mlz—o|"+1 £1f(@) — L1 L M|z—ful"+t, Bo La: £8n .

Si dentro da ordem de aproximagio numerica, os valores
M.em; sido despresiveis em face de ¢, podemos por, para o cil-
culo de f(z), a expressio

j@) = ¢, com my = m(z—B)"TY, My = M(z—@a)"*".

De um modo geral, designando-se por £ um numero compre-
endido entre o mais baixo e mais alto valor dos (n+ 2) valores

T, Goy G1, ..., On,

¢ licito por, de acordo com a férmula ji estabelecida,
i)

Roq1 (1) = (x—a0) (z—a1). . .(x~an) T

A expresséo de f(x) em fungdo das diferengas divididas varia
de aspeto conforme escolhamos as rarefagoes do conjunto (z).

Vamos passar em revista no capitulo seguinte algumas
férmulas fundamentais baseadas no céleulo ji efetuado no
estudo das diferengas divididas.



EXPRESSOES PARTICULARES
DA FORMULA DE NEWTON

2. A férmula que deduzimos no capitulo anterior é conhecida
pelo nome de féormula de Newton e sua expressio, como j4
tivemos ocasido de dizer, depende da escolha dos argumentos
g, Q1,..., Qn.

A expressio geral que obtivemos é a seguinte :
J(@) = flao) + (z-ao) flaoar) + (z—a0) (z—a1) flaolaslas) +.. .+
+...+ (x—a,) (z—ay) . (z—an-1) flaolay|. . .lan) + Rn+1 ,
com By = (z-a) (x-a1). . .(x—an) f(z|aolad] . . .|an) .

Dada a simetria de f(z|as|a1].. .|an) em relagio aos seus
(n+2) argumentos
Z, G, Qi, ..., Gn,

podemos supo-los ordenados por ordem de grandeza, seja
o £81 £82 £ ... LBu41

€, nestas condigdes, teriamos
— _rri(E)
flxlaolas|. . .|an) = f(Bo|B1]. . .[Bn+1) ==

m+1’

sendo & um certo valor de intervalo de z, verificando as desi-
gualdades
' Bo ﬁ E _S 5n+1 .

Facamos na série de argumentos

Qoy G1, ..., Q2v-1, O,
as convengodes
A2-1 = =V

Aoy = 9.



— 130 —

Obtemos nestas condigdes as expréssﬁes
AZ15(-0)
Haolaslas] . . Jam-1) = =5

faolailas . . .|an) = Awé_f;”

(2-a0) (@) (T—a2)...(2—02-1) = 2(z+1)(z-1)...z—v+ D) (z+v-1)(z+0)
(z-a0) (x~a1) (Z-ag)...(z-02) = z(z+1) (z-1) ... (+0) (z-v).
" Facamos, por simplicidade de notagdo,
(22-1) (22-4) ... @*-®) = Su(®) .
Podemos escrever, entdo,
(x-ao) (x—ay) ... (z—aw-1) = z(x+v) Sn-2(2)
(z—ao) (x—ay) ... (x—an) = z Sux) .
Levando-se estes valores na férmula de NEWTON, obtemos
f(x)=f(o)+xA{(;1) + a(e+1) Agl’:(_l) + afa-1) Aﬁ”

o) @+ 212 1 a1 @), -1 ‘Aig—;{(f" )

[4
+ z(x%-1) (x*4). . .(zz— (v—l)z) (z +v) A2’f2(—1)) <+ Rty

ou, entdo,

fl@)=flo)+ =z vik Sa-2 (x)l:m + (21+U) A% Iﬁ )]+ Rok+1.

=1

Rui+1 tem por expressio
bR Y,

Rop+1 = z S (x) |2k+1

Si, pelo contrario, fizermos na série de argumentos

aOy al, ce vy a2v—1, Qgy,
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as convengoes

Qgp-1 = V
Qyy = -V ;
obtemos as expressoes
A1+ 1
Haolaa| . . .|azm1) = __21{(T)
A2 (—p)

flaolay] ... lan) = [_23

(z—a0) (z-a1) . . . (2—a2-1) = 2 (z-1) (z+1) . . . (x+v-1) (z—v+1) (z—v) =
= 2(2-0)Saw-2(x)
(z-00)(z=0ay) . .. (z—a2) = 2(2?-1) ... (22?) = 282 () .
Levando-se estes valores na expressio de NEWTON, obtemos

@) =flo) e If_@“ Y 2|f< D) Aslﬂ_ D,

raened T e e T
+ 2(-v) Sp-o() %v)_ + ..+ Ryt
ou, ainda,
i(e)= f(0)+x282,,-2(x) [‘ﬂ&ﬂ + (o) A”@ﬂo]

O resto tem por expressio

)
2k+1

Rox+: = 2 Sn (z)






EXERCICIO SOBRE A APLICACAO
DA FORMULA DE NEWTON

Como uma aplica¢ido da férmula de NEWTON, calculemos
o valor da fungéo
(1) f@) =Va,
no ponto x = 5, com dez decimais exatas.

De uma tabela de raizes quadradas, tiramos o valor apro-
ximado
() /5 = 2,2361

Este valor nos serve de indicagéo para a rarefagdo a tomar.
Escolhendo-se valores de z tals que f(z) resulte proximo de (2),
asseguramos um pequeno valor para o resto. Adotando-se,
entdo, os valores constantes das duas primeiras colunas da
tabela abaixo, calculamos as diferengas divididas das diversas
ordens, sendo fi, fs, f as diferengas divididas de primeira, se-
gunda e terceira ordem respetivamente.

a: f(a:) h1 f2 s

4.9999196025 | 2.23605 | 0,223608095507490 | -0,011180459558330 | 0,001118099130988

4.9999643236 | 2.23608 | 0,223607095500354 | -0,011180309549790

5.0000090449 | 2.23607 | 0,223606095502163

5.0000537664 | 2.23608

A férmula de Newton toma o aspeto numérico
f(6) = 2.23605 + 0,00008 03975 X 0,22360 80955 07490 +
+ 0,00008 03975 X 0,00003 56764 X (-0,0118 04595 58330) +
+ 0,00008 03975 X 0,00003 56764 X (-0,00000 90449) X
X 0,00111 81991 30988 + R. ,
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com

R, = 0,0000 803975 X 0,00003 56764 X (-0,00000 90449) X

(4) (4)
X 0,00005 37664 X Io®) = 14 x 10—18f_\__i@

=

Para & compreendido no intervalo

499991 96025 £ £ £ 5,00005 37664,
temos FiE) ~ 0,0034

donde para o resto aproximadamente o valor
R, = 2,0 X 1022 |

Como as diferengas divididas foram calculadas com quinze
decimais, vemos que o termo complementar ndo tem influéncia
sébre o valor procurado.

Dispondo os cédleulos da seguinte forma :

0,00111 80991 30988
X —0,00000 90449

-0,00000 00100 39839 7
-0,01118 04595 58330

-0,01118 04695 98169 7
x 0,00003 56764

-0,00000 03988 78905 7
+ 0,22360 80955 07490

0,22360 76966 28584 3
X 0,00008 03975

0,00001 79774 99789 7
+ 2,23605

2,23606 79774 99789 7,




— 135 —

obtemos o resultado
V5 = 2,23605 79775 99790 .

Como o resto ngo influe sébre éste valor, podemos contar
com um érro da ordem da decima quinta casa decimal no maximo.

Quadrando éste resultado, obtemos o valor

5,00000 00000 00001,

ligeiramente excedente.






FORMULA DE STIRLING

3. Adicionando-se as duas férmulas deduzidas no parigrafo
anterior

Sl 2 UeH1(E,

&) =1(0)+53 80 A|2 S e D e B0
A% 1f(- u+1) Azj(_v) F2R1(E,)
($)=f(0)+xT82r2(x) ‘ - -,-( 1 +280 (Z) |2k+1 ;

obteremos a expressido

(=) f(0)+xV32u o() A\—vll (f<—?))+f2(—v+1)) e Apj{i—;)) .
FEH1 ()
+ szk (x) |2k—+]:

Introduzindo-se as operagdes

il LR 1
3=E *A=E?-E?
I
E? +E*
0=-=——,

podemos escrever
A2v = Eu ‘520

1
A2l — T2 g2l

Por outro lado

J0)+f(=o+1) ( 1
- Dt )
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Nestas condigdes, temos
AZf(—y) = 3%f(0)

A2 f(—'l)) +f(—l)+ 1)
2

w = [ 8 j(o)

Resultard para a férmula de Stirling o aspeto

vmb ‘szl s PREE)
f(Z) =j(o)+xﬂgls2v_2(x) @ +z @ f(O) +x5270(12) l%

Esta féormula foi deduzida na consideragio das séries de
argumentos

Q-1 = ¥

Aoy = -V
e

Aov-1 = 0

oy = v

e para uma dada fungio f(x).

Para as séries de argumentos

Gz-1 = Vh

aw = —vh
e

Ga-1 = —vh

aw = vh

e uma fun¢fio f(« + zh), com « e h constantes, subsistem ainda
as mesmas expressbes j4 obtidas e, em particular, a férmula
de Stirling, a condi¢do de efetuarmos a transformagio

Ha+zh) = F(z).



CAPITULO QUARTO

CONSTRUCAO DE TABELAS

. Generalidades.

. Férmula fundamental da sub-tabulagéo.
. Operagdes auxiliares da sub-tabulagéo.

Exercicio sdbre construgdo de tabelas.






CONSTRUGAO DE TABELAS

1. Generalidades.

A teoria da construgdo de tabelas baseia-se na sub-tabulacdo
de valores equidistantes, previamente calculados, da funcéo
f(z) a tabular. Seja h a razdo da progressio aritmética formada
pelos valores de =z :

(1) Aoy, A1, A2y ..., Gp .

Temos, para essa série, de um modo geral, a relagdo:
ar = a, + kh .

Por outro lado, seja -f; o intervalo da sub-tabulagdo, isto €,
a razio da progressdo arimética formada pelos novos termos,
equidistantes, inseridos na série (1).

O ndmero n é dito a frequéncia da sub-tabulagdo ; o nimero
de meios inseridos é n—1.

Temos para cada intervalo ai—~a.+: os seguintes pontos a
considerar :

F h
(2) ai, ai+—L, a; + 2ZL-, ey Qi+ M= = G
n n n

O problema da sub-tabula¢io consiste em determinar os
valores das diferengas finitas.

i A
®) A’f(\ai+k;), r=012....p

em funcéo de elementos numericamente deduzidos dos valores
de f(z) correspondentes & série (1).
A ordem p da diferenca finita (3) de ordem mais elevada
considerada na sub-tabulagiio constitue a ordem desta operagio.
Quando f(z) é um polindmio de griau p, a ordem da sub-
tabulagdo ndo poderd ser superior a p, pois que se anulam as
diferengas de ordem superior. Quando f(z) ndo é polindémio,
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a ordem da sub-tabulagfio é dada pela diferenga finita A? de
ordem mais elevada conservada. Neste caso, as diferengas
finitas de ordem superior nio sendo nulas, haverd um certo
erro de aproximacgio em supo-las nulas a partir de uma dada
ordem. Entretanto, dispondo de & e n é sempre possivel, de
um modo geral, obter para éste érro um limite superior de
variagdo egual ou inferior ao limite de érro resultante da ordem
de aproximagio de f(z) para a série (1) e das operagdes execu-
tadas s6bre estes valores.

2. Férmula fundamental da sub-tabulagéo.

Consideremos, relativamente & série (2), os seguintes opera-
dores :
o operador E de deslocamento
o operador A de expanséo
o operador A de diferenga finita
o operador 3 de diferenga central

Operando-se sbbre f(a), onde a é arbitrdrio, por 3, obtemos

h
3f(a) = 4 2 Af(a).

Elevando-se esta expressdo a4 poténcia k, obtemos

h
) % fa) = A 7 A*f(a)

donde tiramos
x

A*f(a) = A" 3% (a).

Introduzindo-se o operador E de deslocamento relativo &
série (2), ligado a A pela relagio
h

A® =E ,

obtemos a férmula
k

(5) . Akf(a) = E? ¥f(a). -
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Esta férmula fundamental nos permite obter as diferencas fi-

nitas
Ak f(a) ,
no ponto a em funcgdo da diferenca central 8¢ no ponto
h
a + kéz .

Ha entre dois valores uma defasagem de kz—hﬁ :

Vemos, pois, que o problema visado se reduz agora 4 deter-
minagdo das diferencas centrais 3*f(a). Vamos abordar esta
determinagdo no parigrafo seguinte. Para esta determinacio
é mais comodo introduzir a transformacdo

fla + k%) = F(k).
Neste caso, teremos
J(a) = F(o).

3. Operagdes auxiliares da sub-tabulagéo.
Consideremos a férmula de Stirling

211-
F(z) = F(o) + .’EYSzv z () LE]QB ; + x@

Flo)+ R .

Sendo m um ntmero inteiro, atribuamos a z sucessivamente
os dois valores
r = 4+ m.

Para estes valores, o desenvolvimento de Stirling é finito
e termina com k& = m, sendo nulo o resto.

Podemos portanto escrever

§20- 320 ]
F(m) = F(o) + my Sao- z(m) I 2 + Mo L_ F(o)

F(-m) = Flo) + m T Szo- z(m) ] F(o)
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Efetuando-se a semi-diferenga dessas expressdes e divi-
dindo ambos os membros por m, obtemos

Fim)-F(-m) & [3*1
T = Y Suet) [, 1 FO)

Introduzindo-se a operagio

% =E2-E ?,
podemos escrever
F(m) - F(-m) _

E2m
om 5, 1),

donae, afinal,
Esz(O) _ m D52v-1
W = }; Szv—z(’m) ’—“20_1 F(O) .

Esta expressdo permite exprimir as operagdes
[]32k-1 ¢ 32k

- 1 :
em funcgfo de om Som € Suas potencias.

Para que estas operagBes possam ser executadas com a
tabela inicial é necessario que os pontos

+m e —-m
pertengam & série (1), ou, em outras palavras, qué .os valores
F(+m) e F(-m)
correspondam a valores de

f(a + m%) e j(a - m%),

onde @ designa um valor a determinar de maneira a satisfazer
essa condigdo.
Em particular, para dois valores consecutivos da série (1)

ai, a;i+h,
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devemos ter

a+mﬁ=ai+h
n

h
o - Mm—= a
n
donde
a—a'—i—é
=ai+3
n = 2m

Conhecidos os valores de [J3%%-1, podemos obter 32+-1

pela relagéo

FHt

B =

=1
E 2y =%+

O preenchimento das colunas ¥ pode ser feito de acordo

com a férmula
1 1

E2y =9+l 4+ E 2% .

Obtidos estes valores, podemos achar as diferengas finitas
A* pela formula fundamental. Com estas, completamos a tabela.






EXERCICIO SOBRE A CONSTRUCAO
DE TABELAS

Dada a tabela de valores de um polinémio do 3.° gréu,

z J(@)

0 1

8 577
16 4353
24 14401
32 33793

com um intervalo k = 8, sub-tabula-la para uma frequéncian =4.

Temos h =28
n = 4
2m = 4 .. m = 2
3 mb 1
0,253, = ; Sza-2(2) 2l ~ Os+50%.
(0,258, = ¥
(0,253, = [O3°
(0,258)* = 0 .

. yes L1
Construidas as tres dltimas colunas com a operagéo i 84

reiterada, passamos a preencher as tres seguintes pelas operagoes
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1o 1 s
43 —I:]B-}—ZDB

1
(:; 34)2

(254)3 = [ = 3.

DE a2= ‘52

Obtidas estas colunas, passamos ao cdleulo de 3, 8%, 8° pela
relagio
L 1
E<72 % =D5r _|__ §ar+1.
Para r = 3, resulta

1
E*7 3% = 13,
ou

3 F(%) — O F) .

Como estas diferengas sio constantes, podemos preencher
a coluna.

8% pode ser obtido de & 84)2 .

Para completar a sua coluna, utilizamos as relagtes

o F(éj — ¥ + ¥ F(—%) .

Para r = 2 resulta

1 1
#h(}) = P + # F(—i')
3 pode ser obtido de [J3% pela expressio
| 1) B 1,
3F(+ 5) = O8F@) + 532 F0) .

A sua coluna pode ser completada pela relagio
1

1) = wF@ + 2r(-})

3 F(
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Para passarmos das difei‘enga,s § 4s diferengas A, utilizamos
a relagdo
: k
.. . AP =F7 AR,
Para &k = 1 temos
1
A =Ez3
ou, ainda - e - Coe
L 1
AF(o) = EZ3F(0) = BF(—) .
2,
.- Reiterando as operagdes, temos

AF(0) = E¥F(o) = & F(1)
3 QY
AF(@) = BT 8F() = 3 F(3)
Com a aplicagdo do operador de deslocamento E obteremos
para um ponto p da sucessio
‘ h
a; + p;b
a expressio de A¥ F(p) pela operagio
' ’ Ak F(p) = E? A% F(0).
Nestas condigdes, temos
AF(p)

o
AF(p) = BF(p+1)
AF(p) = aw(_wg) )

Como BsF(p+%) é constante, concluimos
A’F(p) = 48 .
Para A2F(p), temos

N AF(p) = ¥F(p+ 1)
e para AF(p), vem

BF(p + %) .

Com estes elementos, preenchemos a tabela.

AF(p)
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CAPITULO QUINTO

INTERPOLACAO INVERSA

Determinagio do intervalo de convergéncia de uma raiz dada.

Exercicio sobre interpolagio inversa.






DETERMINACAO DO INTERVALO DE
CONVERGENCIA DE UMA RAIZ DADA

A teoria das fungGes implicitas estabelece que, para que
umg expressio da forma

6] d(z,2) = 0
defina uma fungéio z = f(z) da variavel z, reduzindo-se a z, para
um valor de 2 = =z, e apresentando uma esteira diferencial

continua no ponto (z.,7.), é necessario que a derivada ®.'(z,2)
seja diferente de zero no ponto (z,,2,) e conserve um sinal cons-
tante a0 menos num intervalo [z — @£« .

Em particular, para z, = 0, temos uma solugdo de (1)
desde que ®./(z,2) seja diferente de zero no ponto 2=2,,z=2,=0
¢ conserve um sinal constante. *

O problema da interpolagio inversa consiste em deter-
minar o valor z, para esta hipétese particular de z, ser nulo.

Nessas condigdes, sendo
Fiz) =0

a equagdo cujas raizes queremos determinar, consideramos a
fungio ®(z,z) dada por

blxe) =F@)-z=0.
O jacobiano desta inversio é dada por
./ (z,2) = F'i2)
Sendo F'(z,) = 0 e sg F'(zo + a) = constante, no campo
|z| £ «
|z2-2|Za

existe uma fungfio f(z) = 2z, ou, pelo menos uma de suas deter-
minagdes, convergindo para o valor 2, quando = tende para zero.
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O intervalo definido por

sg F'.(20 + @) = constante,

é dito o intervalo de convergéncia da raiz z, .

No caso de F(z) ser um polindmio em 2z, os intervalos de
convergéncia sfio dados pelos intervalos das raizes reais do poli-
némio derivado F’,(z). No caso deste s6 ter raizes imaginarias,
o intervalo em questdo é evidentemente (—w, ®).

Com aplicacgéio, consideremos as equagdes
F(z) = 22 -2z + 1,002 = 0
Fie) = 22 - 22 +2z+1 =0

A 1.» tem intervalos de convergéncia dados pelos inter-
valos das raizes reaes de

Flafe) = 322-2=0.

Estes intervalos sdo

1.9 —oo_ézé—l/
2.9) -|/34z .4|/3 .
3 3

3.0) l Eéz_éoo.
3

o] o

Para a 2.* equagdo, temos, anulando a derivada do 1.°
membro,

F'i(®) =322-2:+1=0.

As raizes desta equagdo sio imaginarias. Portanto sé ha
um intervalo de convergéncia dado por

—wfzlo,



"EXERCICIO SOBRE INTERPOLACAO
INVERSA

Dada a equagio
(1) F(zg) = 22-2:+ 1,002 = 0,
achar a raiz proxima da unidade.
Fagamos 22-224+ 1,002 =12 .
A funcfio inversa terd por expressdo genérica
2 = fHTT(@).

As raizes de (1) correspondem aos valores das diferentes
determinagdes de

fttt (z) paraz =0 .
Aplicando-se a férmula de Newton & fungfo f(z), para uma

dada rarefagéo
ao, 0,1, -y an’
temos

z = f(@) = flas) + (-00) f(@0,a1) + ...+ () (2-a0) ..". (2-an-1)
flao,a1,. . . ,@n) + Bnt1
Fazendo-se nesta expressio z = o, obtemos
2 z = f(ao) — @ f(aolar) + aoo1f(aolarlaz) +. ..+
+ (-D"asay. . .an-15(@olas] . . - [0n) + Rati. .
Escolhendo-se a rarefagio a.,as,...,an, dentro de intervalo

de convergéncia de z para a raiz particular z,, obtemos por (2)
o valor desejado.

Para o céleulo organizamos uma tabela dos valores de z
em funcdo de 2z, que é a seguinte:



z J@ 7@ F(2) *F(2)
08 0,086 0,017 0,054 0,006
0,9 0,069 0,071 0,060
1,0 0,002 0,131
1,1 0,133

Por esta tabela, vemos que a raiz procurada acha-se entre
os valores z = 0,9 e z = 1,0.

Para obtermos uma convergéneia mais rdpida com a fér-
mula de Newton, ha conveniéncia em subtabularmos éste inter-
valo. Chamando de # as novas diferengas finitas, temos para
caleula-las a seguinte relagio para n = 5:

1+98Y=1+A
donde

1
2 1=

1
R %5

25A —10A% + 6A;

Daqui tiramos

1 4
2 _ [ Al2 _ 3
ﬂ‘(5AJ 125 2

- (3]

Calculando para o valor z = 0,9, obtemos

3 F(0,9) = —121—5 X 0,006 = 0,000 048
0,60 4 X 0,006

¥ FO,9) = =2 = —o5

= 0,002208

9 F(0,9) = —1% 250, 071-10X 0, 060+6><0,006]=0,009.688
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Com estes valores construimos

a seguinte tabela :

z F(z) YF(2) W¥F(2) BF(2)
0,90 -0,69000 | 0,009688 | 0,002208 | 0,000048
0,92 -0,059312 | 0,011896 | 0,002256 | 0,000048
0,94 ~0,047416 | 0,014152 | 0,002304 | 0,000048
0,96 -0,033264 | 0,016456 | 0,002352 | 0,000048
0,98 —0,016808 | 0,018808 | 0,002400 | 0,000048
1,00 +0,002000 | 0,031208 | 0,002448
1,02 0,033208 -'

Déste quadro tiramos entdo a seguinte tabela para a fungio

inversa :

a: z J@
Qo -0,047416 0,94
a | -0,033264 | 0,96
as | —0,016808 | 0,98
as | 40,002000 | 1,00

Com estes valores passamos ao céleulo das diferengas di-
vididas que se encontram na tabela seguinte:
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. 00'T | 000200'0-

TLLES90'T | 200 xomws.or 86'0 | 80891°0-

68ELT98*F | 6FE6IST'C-| FIZIL0'0 | T39ESTET | 20°0 | 99P9T0°0- | 960 | $92880°0-

268TY'3E | £020209°T-| 9TF6F00 | Z60SHOT'S-| 2G98L61°0-| B090L0'0 | 8LBBETHT | GO0 | 2STFIO0- | $6'0 | 9TPLEO'0-
ef ¢f f (0)f D
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De acoérdo com esta tabela, temos para a férmula (2), sem
o resto, o aspeto :

z = f(o) = 0,94 + 0,047416 X 1,413228 —
- 0,047416 X 0,033264 X 6,464509 ~
4+ 0,047416 X 0,033264 X 0,016808 X 32,442332 .

Para efetuarmos os célculos, comegamos pela dltima dife-
rengs dividida de acdérdo com a seguinte desposigdp :

0,016808 x 32,442332 =  0,545291
-6,464509

-5,919218
X 0,033264

-0,196897
1,413228

+1,216331
X 0,047416

+0,057674
40,94

+0,997674

Para sabermos com quantas decimais podemos contar,
temos necessidade de estimar o resto, que podemos por sob
a forma

R, = - 0,04716 X 0,033264 X 0,016708 X 0,002000 X f4 (&)
ou, seja, efetuando o produto déstes fatores
Rs = - 0,000000053 f® (&) .
Para o cdleulo de f@® (&) vamos utilizar as seguintes relagdes :

2°=-22+1.002 =z

dz
29y 2 =
(322-2) 1
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iii2 2_ ﬁ_
Gz(dx) + (32 5% =0

6(3) + 18z (Z)Zzﬁ(az z)__o
6220 1 24 2% 2 (L2) a6 (Z2)(%) = 0

Adotando-se para (§) o valor aproximado E 1, obtemos
sucessivamente os seguintes valores :

(ﬁ) =1 (dsz‘ = 102
dz )it da? )z-l -

(dw = -6 Id%) —_2880
d$2)2-1 ¥ (dlA zm] B

donde para o termo complementar o valor aproximado

R, = 0,000000053 X 2880 = 0,00015,

quer dizer que podemos contar com 3 decimais exatas sdbre o
valor de z, seja z = 0,997.

Para uma melhor aproximagio poderiamos subtabular o
intervalo 0,98 - 1,00.

Dlhic

A3-9-4953



