
Academic Editor: José Manoel

Balthazar

Received: 17 May 2025

Revised: 10 June 2025

Accepted: 14 June 2025

Published: 20 June 2025

Citation: Felipe, G.A.; Valentim, C.A.;

David, S.A. A Combined Separation of

Variables and Fractional Power Series

Approach for Selected Boundary Value

Problems. Dynamics 2025, 5, 24.

https://doi.org/10.3390/

dynamics5030024

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Combined Separation of Variables and Fractional Power Series
Approach for Selected Boundary Value Problems
Gabriel Antonio Felipe, Carlos Alberto Valentim and Sergio Adriani David *

Department of Biosystems Engineering, University of São Paulo, Pirassununga, São Paulo 13635-900, Brazil;
gabrielantoniofelipe0704@usp.br (G.A.F.); carlos.valentim@usp.br (C.A.V.)
* Correspondence: sergiodavid@usp.br

Abstract

Fractional modeling has emerged as an important resource for describing complex
phenomena and systems exhibiting non-local behavior or memory effects, finding
increasing application in several areas in physics and engineering. This study presents the
analytical derivation of equations pertinent to the modeling of different systems, with a
focus on heat conduction. Two specific boundary value problems are addressed:
a Helmholtz equation modified with a fractional derivative term, and a fractional
formulation of the Laplace equation applied to steady-state heat conduction in circular
geometry. The methodology combines the separation of variables technique with fractional
power series expansions, primarily utilizing the Caputo fractional derivative. An important
aspect of this paper is its instructional emphasis, wherein the mathematical derivations
are presented with detail and clarity. This didactic approach is intended to make the
analytical methodology transparent and more understandable, thereby facilitating greater
comprehension of the application of these established methods to non-integer-order
systems. The final goal is not only to provide a different approach of solving these physical
models analytically, but to provide a clear, guided pathway for those engaging in the
treatment of fractional differential equations.

Keywords: fractional calculus; analytical methods; Helmholtz equation; Laplace equation;
didactic approaches

1. Introduction
The mathematical modeling of several real-world problems in science and engineering

often leads to formulations expressed through differential equations, which describe the
evolution of quantities as functions of time and/or space. Such equations are fundamental
tools for the advancement of many areas of scientific and technological knowledge, with
solutions achievable by either analytical or numerical methods [1,2]. There is a myriad
of phenomena that have been successfully modeled by means of ordinary differential
equations (ODE) or partial differential equations (PDE).

A fundamental phenomenon in engineering and physics modeled by PDE is heat
conduction, which plays a crucial role in numerous applications ranging from industrial
processes to environmental systems. The accurate modeling of heat transfer is important for
optimizing thermal management strategies, enhancing energy efficiency, and developing
advanced materials with tailored thermal properties. Analytical and numerical methods
are also used to study new problems related to this subject [3]. An efficient numerical
model has been proposed to address steady-state heat conduction problems with local
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uncertainty [4]. In addition, analytical heat conduction models have been proposed to
create temperature profiles that help predict high-power laser beam shapes helpful for
specific materials processing [5].

Heat conduction problems have been well explored using classical integer-order
differential equations based on Fourier’s law. However, as the understanding of complex
systems has evolved, it has become increasingly apparent that these conventional models
may not always capture the intricacies of heat transfer in heterogeneous or anomalous
diffusion media, particularly in porous media [6].

Fractional calculus (FC) has emerged as a powerful mathematical tool for modeling
complex physical processes that exhibit memory effects or non-local behavior [7]. As
an extension of classical calculus, FC introduces the concept of non-integer order deriva-
tives and integrals, allowing for more flexible and accurate representations of various
phenomena [7,8]. Due to these capabilities, fractional modeling has been applied to solve
problems in several different fields including Mathematics, Physics, Engineering, Biology,
Finance, and Economics, among others [9–11].

Podlubny’s seminal work contributed to the comprehensive growth of FC, presenting
several analytical solutions for fractional differential equations and specifically introducing
the concept of short memory [12]. Applications in engineering and applied sciences can be
directly related to FC concepts, particularly to special functions, such as the Mittag-Leffler
function and the Wright function, as they serve as fractional approaches, or generalizations,
of exponential and trigonometric functions, respectively [13].

In this context, the works of Ortigueira and Machado and Valério et al. aim to
elucidate and unify the numerous definitions and operators associated with fractional
derivatives highlighted in the literature by using two parameters (order and asymmetry).
Additionally, their contributions emphasize the need for a clear classification of fractional
derivatives, underscoring and analyzing the validity of the definitions currently found
in the literature [14,15]. In turn, Podlubny’s research introduced innovative geometric
interpretations related to fractional operators. His work includes the Riemann–Liouville
and Stieltjes integrals and derivatives, promoting a deeper understanding of these operators
and, consequently, expanding the theoretical scope of FC [16].

Tarasov emphasized the importance of power series within the scope of FC, exploring
the concept of a fractional derivative as a non-integer power of the differential operator,
using both the Taylor and the Fourier series [17]. Nonlinear fractional differential equations
have been employed in the investigation of boundary value problems involving lower-
order fractional derivatives [18]. Recent advances have also explored the use of alternative
formulations of fractional derivatives, such as the modified Atangana–Baleanu derivative,
to handle systems of fractional differential equations [19]. Furthermore, applications
involving power fractional differential equations (PFDEs) have been studied, including the
non-autonomous PFDEs in both the Riemann–Liouville and Caputo senses [20].

The use of fractional PID controllers in the areas of process control and automation has
shown good results in mitigating vibrations and achieving specific desirable outputs [21].
Moreover, FC applied to artificial neural networks has gained attention for its potential
in system stabilization and synchronization, as well as parameter training, in areas such
as signal processing, robotics, medicine, and cryptography, among others [22]. The com-
bination of FC with fuzzy logic and nonlocal conditions has been studied through fuzzy
fractional differential equations and optimal control [23].

Regarding computational modeling, the applications of a fractional order have been
emphasized in the unfolding dynamics of contagious diseases. Multiscale models con-
cerning fractional-order tumor growth have been studied, including the study of chaotic
behavior in a tumor growth model based on fractional-order differential equations, con-
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sidering both commensurate and incommensurate cases [24]. A COVID-19 model was
examined with a particular focus on nonlinear dynamic behavior using commensurate and
incommensurate fractional-order derivatives via the Caputo operator [25]. Additionally,
in finance and economics, the fractional dynamic behavior in an ethanol price series has
been analyzed.

Several studies have focused on the resolution and application of the Laplace dif-
ferential equation, as it describes various phenomena related to the fields of physics and
mathematics, such as field theory, electrostatics, thermodynamics, and others, including
steady-state heat conduction [26–28]. Furthermore, studies on boundary conditions, such
as the study on the stability of the Laplace equation in the absence of Dirichlet conditions,
are also noted [29]. It is also worth mentioning the use of FC in correlation with the Laplace
equation in some investigations, as the determination of coefficients in the p-Laplace
fractional equation from external measurements is currently being explored [30,31].

In this paper, we propose a didactic approach that combines the mathematical rigor
of FC with the practical need for accurate modeling by exploring two cases of interest in
engineering applications: 1D Helmholtz equation (Case 1) and steady-state heat conduction
in a 2D circular plate (Case 2). Our framework integrates two methods to obtain analytical
solutions: separation of variables and fractional power series. These formulations offer
greater flexibility and deeper analysis.

We adopt the Caputo fractional derivative rather than other formulations described in
the literature primarily because of its practicality and effectiveness in modeling physical
phenomena, particularly in problems involving fractional differential equations.

While there are other strategies to solve PFDEs, including numerical algorithms such
as Diethelm’s variation of the Adams–Bashforth method [32], we have prioritized an
analytical approach. This decision stems from the significant advantages of analytical
methods: they yield exact solutions, provide precise insights, and offer a more direct and
intuitive pathway to understanding the problem’s structure.

We emphasize that this work offers a twofold contribution: First, it presents a novel
combination of two methods—separation of variables and power series—both applied
within the framework of FC. To the best of our knowledge, this combination has not yet
been explored in the context of the problems addressed here. Second, we have made a
deliberate effort to present the solutions in a clear and pedagogical manner, with the aim of
providing readers with a comprehensive and accessible understanding.

Furthermore, by examining behavioral and accuracy differences among different frac-
tional approaches, we seek deeper insights into the dynamics of systems under fractional-
order structures. This didactic and analytical approach not only highlights the advantages
of FC in modeling complex systems but emphasizes the physical implications of using FC
as a modelling approach.

The remainder of this paper is structured as follows: Section 2 presents the preliminary
concepts related to FC. In Section 3, the two cases addressed are introduced, and the
respective mathematical developments are presented. Section 4 outlines some final remarks
obtained through analytical developments and the validation of using power series within
the fractional framework as an effective tool for obtaining interesting solutions.

2. Preliminaries
This section recalls fundamental concepts, definitions, and propositions, while in-

troducing some notations that are relevant to the subsequent mathematical procedures
developed in the paper.
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Definition 1. The Caputo derivative [7] is defined as follows:

Dα
∗ f (t) =

1
Γ(m − α)

t∫
0

f (m)(τ)

(t − τ)α+1−m dτ, m − 1 < α < m, (1)

where m is considered the smallest integer greater than α, which allows the Caputo’s fractional
derivative of order α > 0 to be defined.

Proposition 1. Let D ⊂ R be a bounded domain that defines the functional space below [33]:

C(D) = {u : D → R : u is continuous},
C
(
D
)
=

{
u : D → R : u is uni f ormly continuous

}
,

Cm(D) = {u : D → R : u is m − times continuously di f f erentiable},
Cm(D)

=
{

u ∈ Cm(D) : DΓ u is uni f ormly continuous f or all
∣∣Γ∣∣≤ m

}
,

with ∂D ∈ C1,β and Cm,β(D)
[
Cm,β(D)]

being a subspace of Cm(D)
[
Cm(D)]

, consisting of
functions whose partial derivatives of order m are uniformly continuous.

One assumes that α ∈ (0, 1) and D∞ = (0, ∞)× D. Consequently, the following holds:

H∆(D∞) =
{

u : D∞ → R : ∂u
∂t , ∂αu

∂tα , ∆u ∈ C(D∞),∣∣∣ ∂u(x,y)
∂t

∣∣∣ ≤ g(x, t)tα−1, g ∈ C(D), t > 0
}

.

The solution to the previous equation and the corresponding boundary conditions are as follows:

Dα
t u(x, t) = ∆u(x, t), x ∈ D; t ≥ 0,

u(x, t) = 0, x ∈ ∂D; t ≥ 0,
u(x, 0) = f (x), x ∈ D;

(2)

is equivalent to the following equation:

u(x, t) =
∞

∑
n=1

f (n)Eα

(
−A2

ntα
)

ϕn(x),

whose detailed derivation for the function u(x, t) is available in Appendix A.
Firstly, assuming that the function u(x, t) is a solution to Equation (2), and subsequently

applying Green’s second identity [34], it can be shown that ϕn(x)is an eigenfunction corresponding
to the eigenvalue A2. Since u(x, t) is uniformly continuous, which implies that it is uniformly
bounded on the domain under consideration, the dominated convergence theorem allows us to
conclude the following:

lim
t→0

∫
D

u(x, t)ϕn(x)dx = f (n).

Proposition 2. A power series expanded around x = 0 is considered. For such, one supposes a
solution in the form as follows:

u(x) =
∞

∑
n=0

Cnxnα. (3)

The next step consists in determining Dα
xu(x), where Dα

x is an operator representing a
derivative of order α regarding the independent variable.
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Let be g(z) =
∞
∑

n=0
Cnzn, for 0 ≤ z < Rα, where Rα is the convergence radius of the series and

the derivative follows the Caputo definition [35], one finds the following:

Dαg(z) = 1
Γ(m−α)

∫ z
0 (z − τ)m−α−1g(m)(τ)dτ

= 1
Γ(m−α)

∫ z
0 (z − τ)m−α−1

(
dm

dτm

∞
∑

n=0
Cnτnα

)
dτ

= 1
Γ(m−α)

∫ z
0 (z − τ)m−α−1

(
∞
∑

n=0
Cn

dm

dτm τnα

)
dτ

=
∞
∑

n=0
Cn

[
1

Γ(m−α)

∫ z
0 (z − τ)m−α−1

(
dm

dτm τnα
)

dτ
]

= ∑∞
n=0(Dαzn).

(4)

Considering then the definition with 0 ≤ τ < z and 0 ≤ z < Rα as follows:

Dαzn =
1

Γ(m − α)

∫ z

0
(z − τ)m−α−1 dm

dτm τndτ, (5)

plugging z = xα, x ≥ 0 into Equation (5) one obtains the following equation:

Dαu(x) = Dαg(xα) = Dα
∞
∑

n=0
Cn(xα)n

= Dα
∞
∑

n=0
Cnxnα =

∞
∑

n=0
CnDα(xα)n, 0 < xα < Rα.

Following Equation (5), if one admits that y = xm, then

dαy
dxα

= Dα
xy =

Γ(m + 1)
Γ(m − α + 1)

xm−α.

Analogously, if y = xnα, then

dαy
dxnα

= Dα
xy =

Γ(nα + 1)
Γ(nα − α + 1)

xnα−α =
Γ(nα + 1)

Γ[(n − 1)α + 1]
x(n−1)α.

Therefore,

Dαu(x) =
∞
∑

n=1
Cn

Γ(nα+1)
Γ[(n−1)α+1] x

(n−1)α,

Dαu(x) =
∞
∑

n=0
Cn+1

Γ[(n+1)α+1]
Γ[nα+1] xnα.

(6)

By considering n − 1 = m, one can adjust the series index as follows:

Dαu(x) =
∞
∑

n=1
Cn

Γ(nα+1)
Γ[(n−1)α+1] x

(n−1)α

=
∞
∑

m=0
Cm+1

Γ[(m+1)α+1]
Γ[mα+1] xmα

=
∞
∑

n=0
Cn+1

Γ[(n+1)α+1]
Γ[nα+1] xnα.
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Similarly, the operator D2α can be written as follows:

D2αu(x) =
∞
∑

n=2
Cn

Γ(nα+1)
Γ[(n−2)α+1] x

(n−2)α

=
∞
∑

n=0
Cn+2

Γ[(n+2)α+1]
Γ[nα+1] xnα.

(7)

One can now apply Equations (3), (6), and (7) to solve generalized differential equations.

3. Case Studies
To apply the methodology presented in the previous section, we now explore two

cases of interest in engineering, the first one involving an ODE and the second one, signifi-
cantly more complex, modeled by means of a PDE. In both cases, the didactic purpose of
presenting the conduction of the solution process by means of FC is highlighted.

3.1. Case 1—1D Helmholtz Equation with Constant Term k

The first case addresses the generalized 1D Helmholtz equation with an additional
derivative term, represented by the constant k. The Helmholtz equation is widely used
in modeling physical phenomena, particularly in contexts where wave-like or oscilla-
tory behavior is present (e.g., acoustics, electromagnetic theory, heat conduction, and
diffusion) [36]. The analyzed case aims to deepen and broaden the understanding of heat
conduction in an engine by using a simple 1D fin, since the modeling presented in this
work is intended to assist in determining fin efficiency and optimizing maximum heat
dissipation. It is known that heat conduction in internal combustion engine fins is strongly
dependent on several factors, among which geometry (considered one-dimensional in
this work) plays as important role. In addition, the use of numerical techniques can also
contribute to achieve the optimal fin design [37–39].

Figure 1 schematically illustrates a 1D domain [0, L], such as a long metallic rod,
where the function u(x) is discretized at distinct locations along the spatial axis by means
of five arbitrary points. This configuration serves solely as a representative physical
application, as the primary objective of this study is the analytical derivation of the proposed
fractional problem.

Figure 1. Conceptual illustration of the fractional Helmholtz model in a 1D domain, with multiple
evaluation points u(xi).

The fractional differential equation is written as follows:

D2α
x u(x) + Dα

xu(x) + k2u(x) = 0, x ≥ 0. (8)

We consider the interval 0.5 < α ≤ 1, with the boundary conditions given by Equation (9):

u(0) = C0 = µ0,
Dα

xu(0) = p0.
(9)
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Following the procedure established in the methodology, after plugging the equivalent
series for the fractional operators, one obtains the following equation:

∞

∑
n=0

Cn+2
Γ[(n + 2)α + 1]

Γ[nα + 1]
xnα +

∞

∑
n=0

Cn+1
Γ[(n + 1)α + 1]

Γ[nα + 1]
xnα +

∞

∑
n=0

k2Cnxnα = 0,

which, after grouping and simplifying yields, the recurrence equation for n = 0, 1, 2, 3, . . .
is as follows:

Cn+2 = −k2Cn
Γ(nα + 1)

Γ[(n + 2)α + 1]
− Cn+1

Γ[(n + 1)α + 1]
Γ[(n + 2)α + 1]

. (10)

Using Equation (10), one can find the following coefficients for the different values
of n :

(n = 0) → C2 = −k2C0
Γ(1)

Γ(2α+1) − C1
Γ(α+1)

Γ(2α+1)

= 1
Γ(2α+1) [−k2C0 − C1Γ(α + 1)],

(n = 1) → C3 = −k2C1
Γ(α+1)
Γ(3α+1) − C2

Γ(2α+1)
Γ(3α+1)

= 1
Γ(3α+1) [C1Γ(α + 1)(1 − k2) + k2C0],

(n = 2) → C4 = −k2C2
Γ(2α+1)
Γ(4α+1) − C3

Γ(3α+1)
Γ(4α+1)

= 1
Γ(4α+1) [k

4C0 − C1Γ(α + 1)− k2C0].

As the coefficients are calculated, the solution is written as follows:

u(x) = C0

[
1 − k2

Γ(2α+1) x2α + k2

Γ(3α+1) x3α +
(k4−k2)
Γ(4α+1) x4α + · · ·

]
+

C1

[
xα − Γ(α+1)

Γ(2α+1) x2α +
(1−k2)Γ(α+1)

Γ(3α+1) x3α +
(2k2−1)Γ(2α+1)

Γ(4α+1) x4α + · · ·
]

,

and after once again considering the boundary conditions and substituting coefficients C0

and C1, one finds the generalized solution for Equation (8) as follows:

u(x) = µ0

[
1 − k2

Γ(2α+1) x2α + k2

Γ(3α+1) x3α +
(k4−k2)
Γ(4α+1) x4α + · · ·

]
+

po

[
1

Γ(α+1) xα − 1
Γ(2α+1) x2α +

(1−k2)
Γ(3α+1) x3α − (2k2−1)

Γ(4α+1) x4α + · · ·
]

.
(11)

3.2. Case 2—Steady-State Heat Conduction in a 2D Circular Plate Using Laplace’s Equation

The second case explores a heat conduction problem involving a circular plate with
isolated faces. In this context, there are several studies in the literature that deal with
the thermal modeling of vehicle brake disc systems [40–42]. Nonetheless, none of them
has employed the combination of methods used in this paper under the FC approach.
Once again, we intend to deepen and broaden the understanding of the thermal behavior
dynamics of the braking system, represented as a simplified circular plate in this Case 2.

In this scenario, the upper and lower boundaries are kept at temperatures u1 and u2,
respectively. Figure 2 provides a schematic representation of the problem.

To obtain an analytical solution of arbitrary order of the Laplace equation, one applies
the fractional derivative previously defined, thus obtaining Equation (12):

D2α
ρ u(ρ, φ) +

1
ρ

Dα
ρ u(ρ, φ) +

1
ρ2 D2α

φ u(ρ, φ) = 0. (12)
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Figure 2. Schematic of the circular plate domain in polar coordinates.

The boundary conditions for the proposed problem are defined as follows:

u(1, φ) = u1, 0 < φ < π,
u(1, φ) = u2, π < φ < 2π.

(13)

The method of separation of variables is employed to advance with the solution, that
is, u(ρ, φ) = R(ρ)Φ(φ).

Substituting the relationship into Equation (12), one obtains Equation (14):

Φ(φ)D2α
ρ R(ρ) +

Φ(φ)

ρ
Dα

ρ R(ρ) +
R(ρ)

ρ2 D2α
φ Φ(φ) = 0, (14)

and, after some further algebraic manipulations, one obtains the following equations:

Φ(φ)D2α
ρ R(ρ) +

Φ(φ)

ρ
Dα

ρ R(ρ) = −R(ρ)
ρ2 D2α

φ Φ(φ), (15)

1
R(ρ)

D2α
ρ R(ρ) +

1
ρR(ρ)

Dα
ρ R(ρ) = − 1

ρ2Φ(φ)
D2α

φ Φ(φ), (16)

ρ2

R(ρ)
D2α

ρ R(ρ) +
ρ

R(ρ)
Dα

ρ R(ρ) = − 1
Φ(φ)

D2α
φ Φ(φ), (17)

ρ2

R(ρ)
D2α

ρ R(ρ) +
ρ

R(ρ)
Dα

ρ R(ρ) = − 1
Φ(φ)

D2α
φ Φ(φ) = −A2. (18)

From Equation (18), it is possible to highlight two resulting ODE to subsequently
obtain the final solution within the fractional framework as follows:

ρ2D2α
ρ R(ρ) + ρDα

ρ R(ρ) + A2R(ρ) = 0, (19)

D2α
φ Φ(φ)− A2Φ(φ) = 0. (20)

To obtain the final solution, one solves each ODE obtained in the previous step
separately and then develops each equation with the boundary conditions. It is important
to emphasize that power series were the chosen method to approach this problem, as
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represented in Equation (21), and by applying the fractional derivative, using the function
tx as an example [43]:

R(ρ) =
∞

∑
n=0

Cnρnα. (21)

According to the definition of the derivative for function tx, Equation (22), the values
for D2α

ρ R(ρ) and Dα
ρ R(ρ) are consequently obtained for Equations (23) and (24), respectively,

as follows:

Dnxm =
Γ(m + 1)tm−n

Γ(m − n + 1)
=

m!tm−n

(m − n)!
. (22)

D2α
ρ R(ρ) = Cn

∞

∑
n=2

Γ(nα + 1)
Γ[(n − 2)α + 1]

ρ(n−2)α. (23)

Dα
ρ R(ρ) = Cn

∞

∑
n=1

Γ(nα + 1)
Γ[(n − 1)α + 1]

ρ(n−1)α. (24)

By substituting Equations (23) and (24) into the ODE given by Equation (19), the
following expression is obtained:

ρ2
∞

∑
n=2

Cn
Γ(nα + 1)

Γ[(n − 2)α + 1]
ρ(n−2)α + ρ

∞

∑
n=1

Cn
Γ(nα + 1)

Γ[(n − 1)α + 1]
ρ(n−1)α + A2

∞

∑
n=0

Cnρnα = 0. (25)

The previous equation can be rewritten as follows:

∞

∑
n=2

Cn
Γ(nα + 1)

Γ[(n − 2)α + 1]
ρ(n−2)α+2 +

∞

∑
n=1

Cn
Γ(nα + 1)

Γ[(n − 1)α + 1]
ρ(n−1)α+1 + A2

∞

∑
n=0

Cnρnα = 0. (26)

The next step consists of two variable changes, that is, n − 2 = m with m → 0 for
n → 2 and m → ∞ for n → ∞ , as well as n − 1 = t, with t → 0 for n → ∞ and t → ∞
for n → ∞ .

∞

∑
n=2

Cn
Γ(nα + 1)

Γ[(n − 2)α + 1]
ρ(n−2)α+2 ≡

∞

∑
m=0

Cm+2
Γ[(m + 2)α + 1]

Γ(mα + 1)
ρmα+2. (27)

∞

∑
n=1

Cn
Γ(nα + 1)

Γ[(n − 1)α + 1]
ρ(n−1)α+1 ≡

∞

∑
t=0

Ct+1
Γ[(t + 1)α + 1]

Γ(tα + 1)
ρtα+1. (28)

For a better representation, the substitution of t and m by n is allowed. By rewriting
Equation (26) with the necessary changes, we obtain Equation (29):

∞

∑
n=0

Cn+2
Γ[(n + 2)α + 1]

Γ(nα + 1)
ρnα+2 +

∞

∑
n=0

Cn+1
Γ[(n + 1)α + 1]

Γ(nα + 1)
ρnα+1 + A2

∞

∑
n=0

Cnρnα = 0. (29)

The next step is also a variable change, as the exponents of the base ρ, nα + 2 and
nα + 1, must be converted to nα. We have m = n + 2

α , with m → 2
α for n → 0 and m → ∞

for n → ∞ .

∞

∑
n=0

Cn+2
Γ[(n + 2)α + 1]

Γ(nα + 1)
ρnα+2 ≡

∞

∑
m= 2

α

Cm− 2
α +2

Γ[(m + 2)α − 1]
Γ(mα − 1)

ρmα. (30)

We have t = s + 1
α , with t → 1

α for s → 0 and t → ∞ for s → ∞ .

∞

∑
n=0

Cn+1
Γ[(n + 1)α + 1]

Γ(nα + 1)
ρnα+1 ≡

∞

∑
t= 1

α

Ct− 1
α +1

Γ[(t + 1)α]
Γ(tα)

ρtα. (31)
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The substitution of t and m by n in Equation (29), leads to Equation (32):
∞

∑
n= 2

α

Cn− 2
α +2

Γ[(n + 2)α − 1]
Γ(nα − 1)

ρnα +
∞

∑
n= 1

α

Cn− 1
α +1

Γ[(n + 1)α]
Γ(nα)

ρnα + A2
∞

∑
n=0

Cnρnα = 0. (32)

The upper and lower limits of the summations are respectively set to ∞ and 2
α and

they are separated into infinite and finite summations, as represented by Equation (33):

∞
∑

n= 2
α

Cn− 2
α +2

Γ[(n+2)α−1]
Γ(nα−1) ρnα +

∞
∑

n= 2
α

Cn− 1
α +1

Γ[(n+1)α]
Γ(nα)

ρnα

+

2
α −1
∑

n= 1
α

Cn− 1
α +1

Γ[(n+1)α]
Γ(nα)

ρnα+A2
2
α −1
∑

n=0
Cnρnα + A2

∞
∑

n= 2
α

Cnρnα = 0.
(33)

The possible terms are highlighted, yielding Equation (34):

∞
∑

n= 2
α

{
Cn− 2

α +2
Γ[(n+2)α−1]

Γ(nα−1) + Cn− 1
α +1

Γ[(n+1)α]
Γ(nα)

+ A2Cn

}
p

nα
+A2

2
α −1
∑

n=0
Cnρnα

+

2
α −1
∑

n= 1
α

Cn− 1
α +1

Γ[(n+1)α]
Γ(nα)

ρnα = 0.

(34)

By grouping the terms in the infinite summation with the index n starting at 2
α , it is

possible to set the sum of these terms equal to 0 to obtain the recurrence formula. This
formula directly depends on the value of the summation index n and the parameter α,
while also involving the Gamma function, which generalizes the factorial.

The recurrence formula related to the ODE described by Equation (19) for obtaining
the coefficients for n ≥ 2

α is represented by Equation (35):

Cn− 2
α +2 = −

Cn− 1
α +1Γ[(n + 1)α]Γ(nα − 1)

Γ(nα)Γ[(n + 2)α − 1]
− A2Cn

Γ(nα − 1)
Γ[(n + 2)α − 1]

. (35)

It is worth noting that the choice of n values, which is a counting parameter or a
counter, is related to the values of α. The choice of α values, which are non-integers, may
lead to integer counters. The values chosen for α in this study when n = 2

α are 1
8 , 1

4 , 1
3 , 1

2 ,
and 1. Therefore, n respectively corresponds to 16, 8, 6, 4, and 2. When n = 1

α the respective
n values are 8, 4, 3, 2, and 1. This approach explores heat conduction for some non-integer
orders in the differential equation that governs this physical phenomenon.

As a result, for different α values, distinct analytical solutions for the problem are
highlighted. In this context, by choosing a value of α, for example α = 1

2 , it is emphasized
that the solution R(ρ) is obtained based on such choice. By substituting α into Equation (35),
we obtain Equation (36):

Cn−2 = −
Cn−1Γ

[
(n+1)

2

]
Γ
( n

2 − 1
)

Γ
( n

2
)

Γ
[
(n+2)

2 − 1
] − A2Cn

Γ
( n

2 − 1
)

Γ
[
(n+2)

2 − 1
] . (36)

Considering n ≥ 2
α , as previously mentioned for obtaining the recurrence formula,

and then n ≥ 4, the coefficient values can be obtained.
For n = 4 :

C 2 = −
C3Γ

( 5
2
)

Γ(1)
Γ(2)Γ(2)

− A2C4
Γ(1)
Γ(2)

. (37)
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For n = 5 :

C 3 = −
C4Γ(3)Γ

( 3
2
)

Γ
( 5

2
)

Γ
( 5

2
) − A2C5

Γ
( 3

2
)

Γ
( 5

2
) . (38)

For n = 6 :

C 4 = −
C5Γ

( 7
2
)

Γ(2)
Γ(3)Γ(3)

− A2C6
Γ(2)
Γ(3)

. (39)

For n = 7 :

C 5 = −
C6Γ(4)Γ

( 5
2
)

Γ
( 7

2
)

Γ
( 7

2
) − A2C7

Γ
( 5

2
)

Γ
( 7

2
) . (40)

For n = 8 :

C 6 = −
C7Γ

( 9
2
)

Γ(3)
Γ(4)Γ(4)

− A2C8
Γ(3)
Γ(4)

. (41)

The analytical solution R(ρ) for α = 1
2 is given by Equation (42):

R(ρ) = −
∞

∑
t=2

Γ
( t

2
)

Γ
( t

2 + 1
)[Gt+1

Γ
( t+3

2
)

Γ
( t

2 + 1
) + A2Gt+2

]
ρ

t
2 . (42)

The second step consists of analytically solving the second ODE, Equation (20), using
FC. Once again, using the concept of power series, we have that Φ(φ) is represented as
shown in Equation (43), and by applying the derivative, we obtain the equation described
in Equation (44):

Φ(φ) =
∞

∑
n=0

Cn φnα, (43)

D2α
φ Φ(φ) = Cn

∞

∑
n=2

Γ(nα + 1)
Γ[(n − 2)α + 1]

φ(n−2)α. (44)

By applying Equations (43) and (44) to the ODE from Equation (20) one obtains
Equation (45):

∞

∑
n=2

Cn
Γ(nα + 1)

Γ[(n − 2)α + 1]
φ(n−2)α − A2

∞

∑
n=0

Cn φnα = 0. (45)

One proposes the change of variable n − 2 = m so that n → 2 yields m → 0 and
n → ∞ yields m → ∞ .

∞

∑
m=0

Cm+2
Γ[(m + 2)α + 1]

Γ(mα + 1)
φmα, (46)

∞

∑
n=0

Cn+2
Γ[(n + 2)α + 1]

Γ(nα + 1)
φnα − A2

∞

∑
n=0

Cn φnα = 0, (47)

∞

∑
n=0

[
Cn+2

Γ[(n + 2)α + 1]
Γ(nα + 1)

− A2Cn

]
φnα = 0, (48)

Cn+2
Γ[(n + 2)α + 1]

Γ(nα + 1)
− A2Cn = 0, (49)

Cn+2 =
Cn A2Γ(nα + 1)
Γ[(n + 2)α + 1]

. (50)

Different values are assigned to n. We have the following values.
For n = 0 :

C2 =
C0 A2Γ(1)
Γ(2α + 1)

=
C0 A2

Γ(2α + 1)
, (51)
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For n = 1 :

C3 =
C1 A2Γ(α + 1)

Γ(3α + 1)
, (52)

For n = 2 :
C4 = C2 A2Γ(2α+1)

Γ(4α+1)

= C0 A2

Γ(2α+1)
A2Γ(2α+1)

Γ(4α+1) = A4C0
Γ(4α+1) ,

(53)

For n = 3 :
C5 = C3 A2Γ(3α+1)

Γ(5α+1)

= C1 A2Γ(α+1)
Γ(3α+1)

A2Γ(3α+1)
Γ(5α+1) = A4C1Γ(α+1)

Γ(5α+1) ,
(54)

For n = 4 :
C6 = C4 A2Γ(4α+1)

Γ(6α+1)

= C0 A4

Γ(4α+1)
A2Γ(4α+1)

Γ(6α+1) = A6C0
Γ(6α+1) ,

(55)

For n = 5 :
C7 = C5 A2Γ(5α+1)

Γ(7α+1)

= C1 A4Γ(α+1)
Γ(5α+1)

A2Γ(5α+1)
Γ(7α+1) = A6C1Γ(α+1)

Γ(7α+1) .
(56)

It is possible to generalize for terms with even and odd n, namely terms Bk and Et,
respectively, obtaining the final solution as follows:

Bk = C0

∞

∑
k=0

A2k+2

Γ[(2k + 2)α + 1]
, (57)

Et = C1Γ(α + 1)
∞

∑
t=0

A2t+2

Γ[(2t + 3)α + 1]
. (58)

We can rewrite Φ(φ) as a power series as follows:

Φ(φ) =
∞

∑
n=0

Cn φnα = C0 + C1 φα + C2 φ2α + C3 φ3α + · · ·. (59)

Considering the necessary substitutions, the following expression for the second ODE
is obtained as follows:

Φ(φ) = C0 + C1 φα +
∞

∑
k=0

A2k+2

{
C0 φ(2k+2)α

Γ[(2k + 2)α + 1]
+

C1Γ(α + 1)φ(2k+3)α

Γ[(2k + 3)α + 1]

}
. (60)

With the respective values for the solutions of the ODEs, Φ(φ) and R(ρ), the general
solution u(ρ, φ) = R(ρ)Φ(φ) for the example where α = 1

2 is given by Equation (61):

u(ρ, φ) =

{
−

∞
∑

t=2

Γ( t
2 )

Γ( t
2+1)

[
Gt+1

Γ( t+3
2 )

Γ( t
2+1)

+ A2Gt+2

]
ρ

t
2

}
×{

C0 + C1 φ
1
2 +

∞
∑

k=0
A2k+2

[
C0 φk+1

Γ(k+2) +
C1Γ( 3

2 )φ
k+ 3

2

Γ(k+ 5
2 )

]}
.

(61)

The analytical solution to the PDE represented by Equation (12) is directly influenced
by the choice of the parameter α, mainly due to the dependence of the recurrence Equation
(35) on the fractional order. Despite the fact that this study employed a specific value of α,
there are still several possible avenues to be explored, such as the derivation of new general
solutions by studying and varying the order of differentiation.
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In the same context, future papers also aim to obtain results related to this problem
through numerical simulations. This would complement the present study, which focuses
on analytical solutions, by enabling clear comparisons of the system’s behavior when using
different values of α and distinct formulations of fractional derivatives.

4. Final Remarks
In this paper, the use of power series and separation of variables was investigated

as a methodology for solving different problems involving fractional-order differential
equations. The objective of this study was to present an easily approachable, didactic
perspective for obtaining analytical solutions associated with FC, applied to two cases of
interest in engineering.

The studied cases were arranged in order of complexity. The first one involved the 1-D
Helmholtz equation with an additional derivative term, namely the constant k. The second
case addressed the application of the Laplace equation to a steady-state heat conduction
problem in a circular plate. In both demonstrations, the analytical solution was obtained,
clearly outlining the necessary steps in an instructional manner.

The application of FC to interdisciplinary problems is of great importance, especially
when considering the use of well-established methods, namely, the method of separation
of variables and the method of power series expansion of the solution, both based on FC,
along with a didactic presentation of its applicability from an instructional perspective.
It is noteworthy that future perspectives related to this line of study are essential for the
mathematical development of these problems, and for enhancing the understanding of
those interested in their investigation.
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Appendix A

Proof. Given that, by employing the separation of variables methods, u can be written as
u(x, t) = G(t)F(x), where G depends only on t and F only on x, and considering it as a
possible solution to Equation (2), one obtains the following equation upon substitution into
the PDE of interest:

F(x)Dα
t G(t) = G(t)∆F(x),

thus
Dα

t G(t)
G(t)

=
∆F(x)
F(x)

= −A2, where A = const.

Hence, two ODE are established as follows:

Dα
t G(t) = −A2G(t), t ≥ 0, (A1)

∆F(x) = −A2F(x), x ∈ D; F(x)|∂D = 0. (A2)
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As a result, the solution to Equation (A1) is as follows:

G(t) = Eα(−A2
ntα).

Before obtaining F(x), that is, the eigenvalue problem in Equation (A2), one resorts
to an infinite series of pairs (un, ϕn), n ≥ 1, where ϕn corresponds to a sequence of func-
tions that form a complete orthonormal set in the considered domain. Such a function is
represented as follows:

F(x) =
∞

∑
n=1

f (n)ϕn(x),

where f (n) was used to satisfy the initial condition of the addressed problem. □

Consequently, as u(x, t) = G(t)F(x), the analytical solution to the problem is
as follows:

u(x, t) =
∞

∑
n=1

f (n)Eα(−A2
ntα)ϕn(x).

Additional details can be found in [33,44].
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