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The dynamics of a bouncing ball model under the influence of dissipation is investigated by using 
a two-dimensional nonlinear mapping. When high dissipation is considered, the dynamics evolves to 
different attractors. The evolution of the basins of the attracting fixed points is characterized, as we vary 
the control parameters. Crises between the attractors and their boundaries are observed. We found that 
the multiple attractors are intertwined, and when the boundary crisis between their stable and unstable 
manifolds occurs, it creates a successive mechanism of destruction for all attractors originated by the 
sinks. Also, a physical impact crisis is described, an important mechanism in the reduction of the number 
of attractors.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Modeling of dynamical systems is one of the most embracing 
areas of interest among physicists and mathematicians in general 
[1]. Very popular among these models are low-dimensional sys-
tems [2,3], whose complex dynamics leading to a rich variety of 
nonlinear phenomena [3–6], including bifurcations in non-smooth 
dynamical systems [7].

Here we study the problem of a bouncing ball model, where 
a free particle is suffering collisions with a vibrating wall under 
the presence of a constant gravitational field. Holmes [8,9] and 
Pustylnikov [10,11] were among the first to study the bouncing 
ball dynamics. This model has been used in many physical and 
engineering applications. For instance, it describes a similar accel-
eration phenomenon that cosmic rays experience to acquire high 
energies, known as Fermi acceleration [12] (considered as the first 
attempt of prototype for the bouncing ball dynamics); the dynamic 
stability in human performance, where a human tries to stabilize a 
ball on a vibrating tennis racket [13]; and the subharmonic vibra-
tion waves in a nanometer-sized mechanical contact system [14]. 
One can also find studies in granular materials [15–18], experi-
mental devices concerning normal coefficient of restitution [19,
20], mechanical vibrations [21–23], anomalous transport and diffu-
sion [24,25], thermodynamics [26], chaos control [27–29], besides 
the well known connection with the standard mapping [2], which 
leads to other several applications.
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Although the bouncing ball problem has been studied for many 
years [8–11,30,31], concerning different aspects and applications, 
the implications of the nonlinear perturbation requires an exten-
sive and complex analysis where some chaotic properties are not 
yet fully understood. In this paper we consider a high dissipative 
bouncing ball model where a coefficient of restitution plays the 
role of dissipation, and the perturbation parameter is physically in-
terpreted as a ratio between the moving plate acceleration and the 
gravitational field. For some combinations of parameters, plenty of 
attractors can coexist [32–34]. We found that these attractors in 
the phase space are intertwined, and varying the value of the con-
trol parameter of perturbation, we characterize a boundary crisis 
[6,35–37] between the stable and unstable manifold of the same 
saddle point. Such a crisis leads to successive destruction of these 
intertwined attractors and is a mechanism that allows the lowest 
energy attractor, which is related to the vibrating wall, to continue 
to exist, giving it the status of a robust attractor. In addition, we 
describe a physical impact crisis, between the real vibrating plate 
and the border of an attractor. This crisis, as yet unclassified, re-
duces the number of attractors dramatically at a single parameter 
value.

The organization of the paper is given as follows. In Section 2
we describe the dynamical system under study and its chaotic 
properties. Section 3.1 is devoted to the numerical analysis of the 
average velocity, in Section 3.2 we study the basin of attraction of 
the fixed points and set up the impact physical crisis, and in Sec-
tion 3.3 we discuss the relation between the manifolds boundary 
crisis and the attractors; finally in Section 4 we draw some final 
remarks and conclusions.
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2. The model, the mapping and chaotic properties

In this section we describe the model under study, the bounc-
ing model, which consists of a particle, under the influence of a 
constant gravitational field, that suffers inelastic collisions with a 
heavy oscillating wall. Dissipation is introduced via a restitution 
coefficient γ ∈ [0, 1], where γ = 1 recovers the conservative case, 
where Fermi Acceleration (FA) is inherent [25,38]. The introduction 
of dissipation can be considered as a suppression mechanism for 
this unlimited energy growth [39,40]. The system is oriented along 
the vertical axis, where the upward direction is said to be positive, 
the wall equilibrium position is set at y = 0, and the dynamics is 
basically described by a non-linear mapping for the variables ve-
locity of the particle v and time t immediately after a nth collision 
of the particle with the vibrating wall.

There are two distinct versions of the dynamics description: (i) 
complete one, which consists in considering the complete move-
ment of the time-dependent wall, and (ii) simplified, where the 
wall is assumed to be fixed, but exchanges momentum and en-
ergy with the particle upon collision. Both approaches produce a 
very similar dynamic considering conservative [25] and dissipa-
tive cases [26,39–41]. In the complete version, the vibrating wall 
obeys the equation yw(tn) = ε cos wtn , where ε and w are re-
spectively, the amplitude and the frequency of oscillation of the 
vibrating wall. In the simplified version, the vibrating wall is said 
to be fixed at y = 0, but when the particle collides with it, they ex-
change momentum and energy as if the wall were vibrating. Thus, 
the simplified approach keeps the nonlinearity of the model and 
significantly speeds up the numerical simulations, as well allows 
easier analytical calculations. In this paper and from this point be-
yond, we only deal with the complete version of the mapping.

Considering the flight time, which is the time that the particle 
spends to go up, stop with zero velocity, starts falling and collides 
again with the vibrating wall, we define some dimensionless and 
more convenient variables as: Vn = vn w/g , ε = εw2/g , where Vn

is the “new dimensionless velocity”, g is the gravitational field and 
ε can be understood as a ratio between accelerations of the vi-
brating wall and the gravitational field. For instance, one can set 
some real values for the dimensional variables, as g = 10 m/s2, 
ε = 0.001 m, w = 2π f , where f = 100 Hz, and obtain the dimen-
sionless variable ε ≈ 0.1591. Some real devices concerning impact 
experiments with granular material can be found in Refs. [19,20]. 
Also, measuring the time in terms of the number of oscillations of 
the vibrating wall φn = wtn , we obtain the mapping

T :
{

Vn+1 = −γ (V ∗
n − φc) − (1 + γ )ε sin(φn+1),

φn+1 = [φn + �Tn] mod (2π),
(1)

where the expressions for V ∗
n and �Tn depend on the kind of the 

considered collision. For the case of multiple collisions inside the 
collision zone [−ε, +ε], the expressions are V ∗

n = Vn and �Tn =
φc where φc is obtained from the condition that matches the same 
position for the particle and the vibrating wall, expressed as

G(φc) = ε cos(φn + φc) − ε cos(φn) − Vnφc + 1

2
φ2

c , (2)

where this transcendental equation must be solved numerically for 
G(φc) = 0, with φc ∈ (0, 2π ].

If the particle leaves the collision zone case after a colli-
sion, goes up, reach null velocity, and falls for an another col-
lision, we have indirect collisions and the expressions are V ∗

n =
−

√
V 2

n + 2ε(cos(φn) − 1) and �Tn = φu + φd + φc with φu = Vn

denoting the time spent by the particle in the upward direction 
up to reaching the null velocity, φd =

√
V 2

n + 2ε(cos(φn) − 1) cor-
responds to the time that the particle spends from the place where 
it had zero velocity up to the entrance of the collision zone at ε . 
Fig. 1. Comparison between phase space for conservative and dissipative dynamics. 
In (a) ε = 0.6 and γ = 1.0, and in (b) ε = 0.6 and γ = 0.9. In (b) the thick black 
regions are the sinks and the bottom attractor. Also, all the spread dots are the 
transient.

Finally the term φc has to be obtained numerically from the equa-
tion

F (φc) = ε cos(φn + φu + φd + φc) − ε − V ∗
n φc + 1

2
φ2

c , (3)

where F (φc) represents a transcendental equation that must be 
solved numerically in order to find the exact “time” of collision, as 
F (φc) = 0, with φc ∈ [0, 2π ].

The obtainment of the numerical root φc is done considering 
at first G(φc) = 0. If we did not find any root for G(φc), we start 
to evaluate F (φc) = 0. The root seeking process is made by solving 
the transcendental equations via bisection method, with a preci-
sion of 10−14.

Taking the determinant of the Jacobian matrix of both kinds of 
collisions (see Ref. [40] for details), and after a straightforward al-
gebra, it is easy to show that the mapping (1) shrinks the phase 
space measure since the determinant of the Jacobian matrix is 
given by

Det J = γ 2
[

Vn + ε sin(φn)

Vn+1 + ε sin(φn+1)

]
. (4)

Here, if γ = 1 we recover the non-dissipative version of the map-
ping, in fact, as velocity and phase are not canonical pairs in 
the complete version, the determinant of J is not the unity, but 
rather it leads to the following measure to be preserved, dμ =
(V +ε sin φ)dV dφ. Indeed, the extended phase space for the whole 
version of the model considers four variables namely: (1) yw de-
noting the position of the vibrating wall; (2) V p corresponding to 
the velocity of the particle; (3) E p which is the mechanical en-
ergy (kinetic+gravitational) of the particle and (4) the time t . The 
canonical pairs however are: position and velocity (yw , V p) and 
energy and time (E p, t).

Another useful property for the dynamics evolution, as func-
tion of the control parameters, is the analysis of the fixed points 
and their stability. For the bouncing ball model the period-1 fixed 
points can be obtained by doing Vn+1 = Vn = V ∗ and φn+1 = φn =
φ∗ + 2mπ in Eq. (1). For both kinds of collisions, successive and 
indirect, the fixed points are

V ∗ = mπ ;m = 1,2, . . . , φ∗ = arcsin

(
V ∗(γ − 1)

)
. (5)
(1 + γ )ε
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Fig. 2. (Color online.) Behavior of the average velocity curves for an extensive range of ε and γ . In (a) and (c), we have a high dissipation and low ε , and the dynamics are 
basically controlled by the attracting fixed points. In (b) and (d), we have small dissipation and high ε . Here the dynamics is ruled by the attractor localized in the bottom, 
embedded with the vibrating wall. Also, in (d) a rearrange in the horizontal axis is made, in order to make all the curves start to grow together. This rearrange is convenient, 
when we make use of the scaling techniques.
Their stability are given by Det( J − λI) = 0, evaluated over the 
fixed points, where λ are the eigenvalues of the Jacobian matrix 
and I is the identity matrix. The eigenvalues can be found solving 
the expression λ1,2=Tr J±√

Tr J 2−4 Det J
2 [2].

Fig. 1 shows a comparison between the phase space for the 
conservative and dissipative versions. As the dynamics evolves, the 
introduction of dissipation destroys the invariant curves in the sta-
bility islands, and the stable fixed points become sinks [1,2,6]. 
Depending of the control parameter, there may have a plenty of 
these attractors, where the orbits converge to they. In Fig. 1 one 
can see that after the dissipation was introduced the first three 
stability islands, denoted by white regions among the chaotic sea 
in Fig. 1(a), became attracting fixed points. Also, there is the pres-
ence of an attractor on the bottom of Fig. 1(b), near where the 
vibrating wall is located. For a better understanding and visualiza-
tion, we are going to use in all figures the phase representation 
between −π and +π .

3. Results and discussions

In this section, we describe the results obtained by the numer-
ical simulations. First we draw some average velocity curves for 
a combination of the two control parameters, ε and γ . Then, the 
basins of attraction of some attracting fixed points are obtained. 
We investigate how these basins of attraction behave, as we range 
the control parameters. We constructed some bifurcation diagrams 
for the fixed points and analyzed how their stability vary. By draw-
ing the unstable and stable manifolds we notice that the attractors 
are intertwined in the phase space, and there is a boundary crises, 
a crossing of their manifolds, which creates a successive mecha-
nism of destruction for all attractors originated by the sinks. Also, 
we made a study over the bifurcation process and the chaotic 
properties of it.
3.1. Average velocities

Let us set the equation for the average velocity, which depends 
on both ε and γ . The statistics was made considering two steps, an 
average taken along the orbit, evolved until a finite high number 
of collisions n and an average taken along the ensemble of initial 
conditions. So, we may define

V i(n, ε,γ ) = 1

n

n∑
j=1

V j , (6)

and hence

V = 1

M

M∑
i=1

V i(n, ε,γ ) , (7)

where M represents an ensemble of initial conditions. The index j
and i represent respectively the collision number, and the number 
of initial conditions.

Fig. 2 shows the evolution of the average velocity for an exten-
sive range of the control parameters ε and γ as function of the 
number of collisions. Here, we consider two regimes: (i) high dis-
sipation and small ε , and (ii) small dissipation and high ε . One 
can identify very distinct behavior between both regimes. Consid-
ering regime (i), as shown in Figs. 2(a, c), we see that the V curves 
start with high initial velocity near V 0, given as an initial condi-
tion, and experience an exponential decay, [41]. After a transient 
they bend towards different regimes of saturation in low energy 
levels. Basically, the orbits are attracted by the several fixed points 
that coexist in the phase space, when the perturbation parame-
ter ε is still small enough, therefore marking their convergence to 
different plateaus.

On the other hand, in regime (ii), as present in Fig. 2(b, d), the 
V curves start with low initial velocity, near V 0 given as an initial 
condition, and they experience a growth for short time according 
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Fig. 3. (Color online.) Basins of attraction for the fixed points considering ε = 1.0
and γ = 0.95. The colors represent the fixed points were the initial conditions are 
being attracted to. Black → π , red → 2π , green, → 3π , blue → 4π , yellow → 5π
and brown → 6π , and the white regions denotes initial conditions that converged 
to the bottom attractor.

to a power law with exponent β ≈ 0.5, until they bend towards 
a saturation regime, in high energy levels. For this case, the sat-
uration plateaus of high energy are connected with the chaotic 
attractor, and there are no attracting fixed points for such high 
energy regime. Also, if we rescale the horizontal axis by nε2 all V
curves, start to grow together. Fig. 2(b, d) contain previously re-
sults observed in [40], for regime (ii). We recommend for a more 
complete investigation on the regime (ii), concerning the chaotic 
attractor behavior and a fully scaling analysis on the V curves, in 
Refs. [39,40] for a numerical point of view; and in Refs. [26,41] for 
an analytical interpretation. Also, one could check Refs. [42–44] for 
formal and analytical points of view for statistical properties for 
similar dynamical systems.

However, in this paper, we are interested in the range of high 
dissipation and small ε (regime (i)), shown in Figs. 2(a, c), where 
the attracting fixed points still exist and play an important role in 
the dynamics. Indeed, this high dissipation analysis can be very 
useful in a further experimental analysis of the bouncing ball 
model, once they are easily obtained, instead of the tiny dissi-
pations as used in Refs. [26,39–41], that would be impossible to 
obtain in a laboratory. Also, one could think about experience with 
granular materials interacting with vibrating plates [16–20], as a 
direct application of the bouncing ball model and its phenomena.

3.2. Basins of attraction and bifurcations

Depending on the combination of the control parameters ε and 
γ , several attracting fixed points can coexist in the phase space, 
where some of them can be more influential to the dynamics than 
other. In order to understand how these attracting fixed points be-
have as related to initial conditions, Fig. 3 shows the basins for 
the periodic attractors for ε = 1.0 and γ = 0.95, where a grid of 
1000 × 1000 initial conditions were equally split and set in the 
axis of velocity V ∈ [−ε, 7π ] and phase φ ∈ [−π, +π ]. The differ-
ent colors represent the basins of attraction for each attractor of 
period-1 located in V ∗ = mπ , according the fixed points obtained 
in Eq. (5). Here, each initial condition were evaluated up to a tran-
sient of 105 collisions, and then we evaluate another more 105

collisions, and marked its final velocity in the phase space.
Since, we have a positive restitution coefficient, one may think 

that the particle would “glue” on the vibrating wall for long times. 
This indeed can happen, if it lands deep enough in the absorbing 
region of the phase space, the particle will perform a large num-
ber of smaller and smaller bounces, that could follow progressive 
geometric conversions [31]. Such peculiar behavior is known as 
locking [31]. The white regions in Fig. 3 denotes the initial condi-
tions that converged to the locking region attractor, i.e. the bottom 
attractor embedded with the vibrating wall. However, if the par-
ticle has a positive relative velocity, it will not be glued to the 
wall. And, depending of the control parameters ε and γ , this ve-
locity can acquire multiplicity as function of π , as set by Eq. (5), in 
different regions of the phase space, giving birth to period-1 attrac-
tors for higher velocities. In Fig. 3, each color denotes a different 
period-1 fixed point basin of attraction. As m is increased, it seems 
that the basins are getting smaller, which could be a possible indi-
cation of less influence in the dynamics. Also, for the higher values 
of m, the boundaries of the basins, that are limited by the unstable 
manifolds of each fixed point [1,6,9], behave in a very complicated 
stretching and mixing way, folding themselves embedded like a 
horseshoe [1,6,9].

The beautiful mazy behavior of the basins of attraction shown 
in Fig. 3, can drastically change, when ε is increased. As one can 
see in Fig. 4, where the evolution of the basin of attractions for 
γ = 0.8 and some values of ε is shown, and a very dynamic 
scenario between the attractors are set. Each item of Fig. 4 was 
constructed considering a grid of initial conditions of 500 × 500
equally distributed along the velocity V ∈ [−ε, 3π ] and phase 
φ ∈ [−π, +π ]. The color scale represents the final velocity of each 
initial condition after a transient of 105 iterations. The color scale 
was kept fixed as the final velocity ranges. For low velocities and 
orbits that were attracted to the bottom attractor, we have the 
darker colors as black, dark blue (black). The orbits that were at-
tracted by the first two sinks, V ∗ = π and V ∗ = 2π , the color scale 
ranges from blue (dark gray) to yellow (light gray), and for the high 
velocity attracting orbits (said above V ∗ = 2π ), we have the color 
range scale between yellow (light gray) and red (dark gray).

In Fig. 4, as ε is increased, the boundaries of the basins of 
attraction start to grow following the stretching and mixing be-
havior, just like the Smale horseshoes, [1,6,9], as Figs. 4(a, b, c) dis-
plays, where in particular for Fig. 4(a), the sink located in V ∗ = π
did not exist yet, the same applies for Fig. 4(b), where the sink 
located in V ∗ = π also did not exist. One can check that by the 
period-1 one fixed points expressions, specially for φ∗ , given in 
Eq. (5). As we increase ε , the sinks located in V ∗ = mπ start to 
notice the consequences of being lied intertwined with the bottom 
attractor. Considering the first sink V ∗ = π , it suffers a tangent 
bifurcation in εt ≈ 0.964 (this bifurcation will be explained in the 
manifolds section), which creates three new attracting zones inside 
its own basin of attraction, as shows Fig. 4(d). Raising the value of 
ε a little bit, the sink in V ∗ = π , bifurcates, creating, together with 
the other sinks, a plenty of attracting regions in the phase space, as 
shown in Fig. 4(e). The crisis happens near εc ≈ 1.22635, shown in 
Fig. 4(f). After a tangent bifurcation in εt , three branches evolves as 
ε increases. The two upper branches collide with each other, gen-
erating a boundary crisis that destroys both branches. At the same 
parameter εc , the lower branch, suffers a physical collision with 
the vibrating boundary. This is a different crisis, once the attractor 
is colliding with a physical structure, instead of a another attractor 
or manifold. This non-categorized crisis can be better visualized in 
Fig. 5. Finally, in Figs. 4(g, h), the basin of attraction of the fixed 
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Fig. 4. (Color online.) Characterization of the dynamic scenario between the attractors, by the evolution of the basins of attraction for γ = 0.8 for a grid of 500 × 500
initial conditions. The perturbation parameter follows as: (a) ε = 0.32005, (b) ε = 0.60095, (c) ε = 0.88715, (d) ε ≈ εt = 0.964, (e) ε = 1.08590, (f) ε ≈ εc = 1.22635, 
(g) ε ≈ εd = 1.25815 and (h) ε = 1.50195. The color scale denotes the final velocity of each pair of initial condition after a transient of 105 iterations. One can see that the 
basins of attraction suffer huge transformations, as successively bifurcation process as ε is increased, until they are destroyed when ε acquires critical values.
Fig. 5. (Color online.) Bifurcation diagram as function of ε for γ = 0.8. It is shown a 
scenario of the evolution of the attracting fixed points, where attractors originated 
by the sinks V ∗ = mπ , coexist with period-3 orbits originated by tangent bifurca-
tions, the bottom attractor (given by the dashed line) and others attractors. This 
figure illustrates the plenty of attractors and the high active dynamic structure that 
orbits may experience. Also, three critical values of ε are set concerning each char-
acterized crisis.

point V ∗ = π (said together with the branches of the tangent bi-
furcation) is totally destroyed, and the other basins of attraction 
for the other upper sinks started their successive destruction pro-
cess. In the end, when we have a large enough value of ε , only the 
bottom attractor remains in the system.

For a better understanding and visualization of the crises, sinks 
bifurcations and the evolution of the basins of attraction, we con-
structed a bifurcation diagram for some fixed points, as shown in 
Fig. 5, for a fixed dissipation γ = 0.8. The diagram illustrates the 
plenty of attractors and the high active dynamic structure that or-
bits may experience during the time evolution. This diagram was 
constructed in two different ways: (i) we have an initial condition 
very near the sinks, and let it follows the attractor, as ε increases; 
and (ii) we kept the same initial condition for every value of ε . In 
both cases, the range of ε was split in 5000 equal parts. Consider-
ing the evolution in (i), the dynamics follows a regular bifurcation 
diagram, where the period-1 sinks located in V ∗ = mπ , stay sta-
ble until they suffer successive bifurcations as ε increases, until it 
finally disappear. In the same manner, tangent bifurcations hap-
pen for V ∗ = π , V ∗ = 2π and so on. These new branches for each 
tangent bifurcation, have the same fate of the attractors originated 
by the sinks. These fixed points of the tangent bifurcation were 
obtained considering case (ii), where the evolution of the same 
initial condition, gives rise to different attractors in the bifurcation 
diagram, for example, the one located near V ∗ ∼= 1.7, basically suf-
fers the same bifurcation process as the main ones and then it is 
destroyed.

One can notice in Fig. 5, that there are three critical values: 
(i) εt ≈ 0.964, which is the value of ε where the tangent bifur-
cation occurs for the first sink V ∗ = π ; (ii) εc ≈ 1.22635, which 
is the critical parameter where the crisis occurs for the three 
branches originated in the tangent bifurcation. One can see in 
Fig. 5, that in ε = εc , there are two simultaneous crises. The up-
per two branches collide, and destroy each other, while the lower 
branch physically collides with the vibrating wall, denoted here by 
the dashed line, characterizing an yet unclassified physical crisis, 
between the real structure (vibrating wall), and the border of an 
attractor. Finally, (iii) εd , is the value where the attractor origi-
nated by the sink V ∗ = π is destroyed. Beyond εd , a successive 
destruction mechanism takes place in the dynamics, destroying all 
the other attractors, except by the bottom one, that starts to rule 
the dynamics. The values of these critical ε parameters may vary 
as we range the dissipation.

Let us now address to the chaotic attractor born from the bi-
furcation process of the fixed point V ∗ = π . As one can see from 
Fig. 5, when the bifurcation process occurs, we have the creation 
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Fig. 6. In (a) we show an amplification of the successive bifurcation process that the first sink suffers as ε is increased, in (b) we made a bigger zoom yet in this process. In 
(c), (d), (e) and (f), we display the shape of the local chaotic attractors in the phase space, for the lower branch of the first sink. The values of ε used were: in (c) ε = 1.2520, 
(d) ε = 1.253631, (e) ε = 1.253632, and in (f) ε = 1.2550. One can see that the attractors pass through a bifurcation process, and after a collision between the branches, they 
merged into a bigger chaotic attractor. In all items we considered γ = 0.8.

Fig. 7. Successive zoom-in windows of the chaotic attractor for ε = 1.2549. It seems that the chaotic attractor has a fractal-like shape very similar to one found in the 
Henon–Heiles map [31].
of two main symmetric branches. According to Fig. 5, each branch, 
will begin its own bifurcation process, which further will collide 
with itself in a boundary crisis, generating its own local chaotic at-
tractor. Fig. 6 shows how these processes occur for the first sink, 
presenting the shape of the attractors in the phase space, also we 
compare it with amplifications of the bifurcation diagram. Once, 
both branches are symmetric, let us do this analysis considering 
just one of them. One can see in Figs. 6(a, b) the behavior of 
bifurcation process of the branches as ε is increased. Comparing 
them with Fig. 6(c), for ε = 1.2520, we can see that the attractor 
is under a period-8 bifurcation. Increasing ε , and after a compar-
ison between Figs. 6(a, b) and Figs. 6(d, e); the two branches of 
the attractor merge together into one local chaotic attractor. Here 
we can characterize another crisis between the attractors, where 
two attractors become one, known as fusion crisis [1,6]. Finally, in 
Fig. 6(f) we have the behavior of the local chaotic attractor in its 
final stage for ε = εd ≈ 1.2550, where it seems to take the shape 
of the old basin of attraction, originated by the tangent bifurcation, 
and then it vanishes. Here, another crisis can be characterized. The 
attractor (darker region), collides with the transient basin of the 
old attractor already destroyed (originated by the tangent bifurca-
tion). This ghost behavior of the transient basin [6], allows to the 
attractor to interact with the region that suffered the physical colli-
sion with the vibrating wall. This interaction, destroys the attractor 
in the same manner that destroy the previous one in ε ≈ εc .

One can ask about the nature of this local chaotic attractor. 
Indeed, it seems to have fractal shape, as one can see in the suc-
cessive amplification of Figs. 7(a, b, c, d). The shape of the chaotic 
attractor is basically the same, no matter how much further in the 
zoom windows. It is interesting, the fact that the kind of crises we 
are seeing here, are basically the same one found in the Henon–
Heiles attractor [6,45,46], for which chaotic attractor collides with 
the stable manifold and is destroyed. Also, the same fractal-like 
shape of the chaotic attractor is found. It would be interesting to 
investigate later, if any other chaotic common property related to 
both attractors can be found.
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Fig. 8. (Color online.) Boundary crises and the embedded behavior of the stable and 
unstable manifolds for γ = 0.8. For the V ∗ = π saddle point, unstable manifold is 
drawn in black, and stable in red (dark gray); and for the V ∗ = 2π saddle, unstable 
manifold is drawn in green (light gray), and stable in blue (gray). In (a) ε = 1.0 and 
in (b) ε = 1.07. One can see that in (a) there is no crossing between the manifolds 
of either saddle fixed points, and in (b) the boundary crisis occurred for both saddle 
points.

3.3. Manifolds

Let us address now to the crises related with the manifolds. 
From the literature, we expect that a saddle fixed point, in the 
plane V vs. t has stable and unstable manifolds [29,35–37]. The 
unstable manifolds are formed by a family of trajectories that turn 
away from the saddle fixed point. One of them evolves to the 
chaotic bottom attractor, or visit the region of the chaotic bot-
tom attractor after the event of crisis; while the other one evolves 
towards an attracting fixed point. These unstable manifolds are 
obtained from the iteration of the map T with appropriate ini-
tial conditions. Similarly, the construction of stable manifold re-
quires that the inverse of the mapping, say T −1, must be obtained. 
Here the operator follows T −1(Vn+1, φn+1) = (Vn, φn). Basically, 
one must replace every pair (Vn, φn) to (Vn+1, φn+1) and vice-
versa in Eq. (1), and rearrange the terms as function of Vn and 
φn . Also, the transcendental equations should be solved as second 
degree ordinary functions. So, after some algebra we have

T −1 :
⎧⎨
⎩

φn = φn+1 − Vn − ν,

h(Vn) = V 2
n + 2ε[cos(φn+1 − Vn − ν)

− cos(φn+1)] − ν2,

(8)

where ν = [Vn+1 + (1 +γ )ε sin(φn+1)]/γ . Here, the function h(Vn)

must be solved numerically, once it depends on both Vn and 
Vn+1. So, we made use of the Newton’s method to find the root, 
where Vn = Vn+1 −h(Vn)/h′(Vn), and h′(Vn) = 2Vn +2ε sin(φn+1 −
Vn − ν).

The procedure for obtaining the stable manifolds is the same as 
that one used for the unstable manifolds, however, instead of it-
erating the map T we must iterate its inverse T −1. We set a tiny 
circle of radius δ = 10−4, and split 104 initial conditions around 
the respective saddle point and iterate the normal and reverse dy-
namics. After that, we make a zoom-in the region of the saddle 
point, and made a linear fit in both branches of the unstable and 
stable manifolds, in order to find the eigenvectors. After that, we 
just evolve the normal and reverse dynamics again, but consid-
ering the distribution of initial conditions along the linear fit of 
the manifolds branches. Just for notice the saddles are localized in 
V ∗ = mπ and φ∗ → φ∗ − π .

For closed domain dynamical systems, such as the Fermi–Ulam 
model and other time-dependent billiards [47–50], the unstable 
manifolds generate the border of the basin of attraction of the 
chaotic attractor and the stable manifolds draw the boundaries of 
the basin of the attracting sink. A boundary crisis happens when 
the stable manifold touches the unstable manifold of the same sad-
dle fixed points due to a modification of the control parameter. In 
this case, the chaotic attractor is destroyed, and only the sink re-
mains in the system. This collision implies in a sudden destruction 
of the chaotic attractor and also of its basin of attraction [35,36]. 
This destruction can be very useful as a mechanism of controlling 
chaos in this dissipative version of the model since, after the crisis 
event, the particle is captured by an attracting fixed point (sink). 
In the literature, one can still find others examples of crises [6,35,
36], as crises between attractors, where a fusion between two or 
more attractors into a bigger one is observed, or even inner crises 
[6,35,36], where a chaotic attractor increases its size by colliding 
with a stable periodic orbit inside its own basin. However, the kind 
of crisis that happens in the unbounded bouncing ball model is a 
bit more complicated, once we have plenty of attractors, and their 
manifolds found themselves embedded.

Stable and unstable manifolds for the first two saddle points 
for a dissipation value of γ = 0.8 are displayed in Figs. 8(a, b). 
For V ∗ = π saddle point, unstable manifold is drawn in black, and 
stable in red (dark gray); and for V ∗ = 2π saddle, unstable mani-
fold is drawn in green (light gray), and stable in blue (gray). Both 
branches of the stable manifold behave as follows: the upward 
branch evolves to the attracting fixed point while the downward 
branch evolves to the chaotic attractor. In both Figs. 8(a, b), we see 
that the stable manifold for the saddle in V ∗ = 2π , are embed-
ded with the stable manifold of the saddle V ∗ = π . Both stable 
manifolds are also intertwined with the attractor in the bottom. 
We believe that this peculiar behavior happens for all the saddles 
located above in the phase space for all values of V ∗ = mπ , creat-
ing a whole chain of iteration between the attracting fixed points 
and the attractor in the bottom. Also, in both Figs. 8(a, b) the two 
branches of the unstable manifold generate the basin boundaries 
for both attracting fixed points. Here, there is no iteration between 
the unstable manifolds of different sinks. The unstable manifolds 
go up and up in the velocity axis, in a stretching and mixing way, 
drawing the limits of the attracting boundaries of each fixed point. 
One can imagine how they would behave just looking at Fig. 3, 
where the basin of attraction until V ∗ = 6π is drawn. It would 
be interesting to compare the relations between the stretching and 
mixing of the manifolds with the Smale horseshoe mapping.

Also, in Fig. 8(a) shows the embedded manifolds ε = 1.0. One 
can notice here, that there is no crossings between the bound-
aries of the stable and unstable manifold of both saddle points 
yet, but we can visualize the tangent bifurcation occurring in the 
sink located in V ∗ = 2π , where three branches rise and start to 
grow from the place where the sink should be located. One can 
also compare with Fig. 5, and confirm that this is the exactly 
control parameter of the tangent bifurcation. Once we raise the 
value of the control parameter ε , the respective unstable and sta-
ble manifold from both saddle points cross each other, as show 
Fig. 8(b), for ε = 1.07. One could imagine that the crossing be-
havior of the manifolds would destroy the attractor in the bottom, 
and let only the sink in the phase space. This indeed happens, but 
once the manifolds for all saddles found themselves embedded, 
this destruction seems not to cause greater effects in the dynamics. 
Because even that for one saddle the attractor is destroyed, there 
will be the manifold from upper saddle points, embedding them-
selves with the region where the attractor was, giving an “extra 
life time” for the attractor, until the next boundary crisis from the 
upper saddles, where the same process will occur in a successive 
way. We think, that the boundary crisis between the manifolds, 
are serving as a trigger for the unbounded growth of the chaotic 
attractor in the bottom. One could imagine for higher values of ε , 



A.L.P. Livorati et al. / Physics Letters A 379 (2015) 2830–2838 2837
Fig. 9. (Color online.) Basin of attraction overlapped with the stable and unstable 
manifolds from the first sink, and the vibrating wall itself. One can notice that for 
ε ≈ εt and γ = 0.8, the basin of attraction of the first sink is tangent to the growing 
branch of the stable manifold embedded with the chaotic bottom attractor, gener-
ating a tangent bifurcation inside the attracting basin of the first sink. Yet, one can 
look at and see that from the place where the sink should be located, are rising 
three new branches, as a result from the tangent behavior between the manifolds. 
The comparison with the basin of attraction overlapped, shows better this behavior.

that the bottom chaotic can be very influential in the dynamics. 
If, we take ε = 10, the bottom chaotic attractor would occupy the 
region where the first three sinks of period-1 should be located, 
and the crossing between the manifolds that we are seeing here in 
Fig. 8 for low values of ε , would be happening for very high sad-
dle points in the phase space. We dare to call this mechanism, as 
a regenerating process, or “robust attractor”. In time, this ‘robust’ 
term is not yet fully understood in the literature and still needs 
more deeper investigations.

Still, we display the tangent bifurcation for the first sink in 
Fig. 9, where for ε ≈ εt , we overlap the basin of attraction with 
the stable and unstable manifold from the first saddle and the vi-
brating wall itself. We can see that the basin of the first sink is 
tangent the growing branch of the bottom attractor. At the same 
time, we can see three branches rising from the place where the 
sink should be located inside its basin of attraction. We also stress 
that if noise were added to the dynamics [29,51–53], the scenario 
of the crises might would change, once the perturbation would be 
different. Of course, that noise should be consider in real experi-
mental devices, so as a possible future work, we would be consider 
the introduction of noise in the system.

4. Final remarks and conclusions

The dynamics of a bouncing ball model is investigated for 
a high dissipation regime. Some chaotic properties were set up, 
and average properties of the velocity were obtained. Depend-
ing of the combination of control parameters many attractors 
can coexist, leading to a very complex dynamics in the phase 
space. Basins of attraction for some attractors and their evolution 
with the increase of the perturbation parameter were character-
ized.

Increasing the perturbation parameter leads us to characterize 
an unusual class of boundary crises, where the attractor collides 
physically with the vibrating wall. In these crises we observed a 
reduction in the number of attractors in the phase space. These 
phenomena could be extended to other vibrating and impact sys-
tems with high dissipation regimes, as in human stability perfor-
mance [13] and microscopic vibration systems [14], in order to 
reduce the number of attractors (stable vibration modes) in such 
systems.

Also, we found the attractors are in an intertwined form. This 
was confirmed by the drawn of stable and unstable manifolds. 
Here, when a crisis between manifolds occurs, it creates a suc-
cessive destruction mechanism for all the attractors originated by 
the sinks, giving an “extra life time” to the bottom chaotic attrac-
tor, turning it into a robust attractor. As a future work, it would 
be interesting to investigate shrimp-like structures in the param-
eter space [54–56]. Also, we could consider the introduction of 
noise in the dynamics, to make a link with real experimental de-
vices.
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