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The dynamics of a bouncing ball model under the influence of dissipation is investigated by using
a two-dimensional nonlinear mapping. When high dissipation is considered, the dynamics evolves to
different attractors. The evolution of the basins of the attracting fixed points is characterized, as we vary
the control parameters. Crises between the attractors and their boundaries are observed. We found that
the multiple attractors are intertwined, and when the boundary crisis between their stable and unstable

manifolds occurs, it creates a successive mechanism of destruction for all attractors originated by the
sinks. Also, a physical impact crisis is described, an important mechanism in the reduction of the number

of attractors.
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1. Introduction

Modeling of dynamical systems is one of the most embracing
areas of interest among physicists and mathematicians in general
[1]. Very popular among these models are low-dimensional sys-
tems [2,3], whose complex dynamics leading to a rich variety of
nonlinear phenomena [3-6], including bifurcations in non-smooth
dynamical systems [7].

Here we study the problem of a bouncing ball model, where
a free particle is suffering collisions with a vibrating wall under
the presence of a constant gravitational field. Holmes [8,9] and
Pustylnikov [10,11] were among the first to study the bouncing
ball dynamics. This model has been used in many physical and
engineering applications. For instance, it describes a similar accel-
eration phenomenon that cosmic rays experience to acquire high
energies, known as Fermi acceleration [12] (considered as the first
attempt of prototype for the bouncing ball dynamics); the dynamic
stability in human performance, where a human tries to stabilize a
ball on a vibrating tennis racket [13]; and the subharmonic vibra-
tion waves in a nanometer-sized mechanical contact system [14].
One can also find studies in granular materials [15-18], experi-
mental devices concerning normal coefficient of restitution [19,
20], mechanical vibrations [21-23], anomalous transport and diffu-
sion [24,25], thermodynamics [26], chaos control [27-29], besides
the well known connection with the standard mapping [2], which
leads to other several applications.
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Although the bouncing ball problem has been studied for many
years [8-11,30,31], concerning different aspects and applications,
the implications of the nonlinear perturbation requires an exten-
sive and complex analysis where some chaotic properties are not
yet fully understood. In this paper we consider a high dissipative
bouncing ball model where a coefficient of restitution plays the
role of dissipation, and the perturbation parameter is physically in-
terpreted as a ratio between the moving plate acceleration and the
gravitational field. For some combinations of parameters, plenty of
attractors can coexist [32-34|. We found that these attractors in
the phase space are intertwined, and varying the value of the con-
trol parameter of perturbation, we characterize a boundary crisis
[6,35-37] between the stable and unstable manifold of the same
saddle point. Such a crisis leads to successive destruction of these
intertwined attractors and is a mechanism that allows the lowest
energy attractor, which is related to the vibrating wall, to continue
to exist, giving it the status of a robust attractor. In addition, we
describe a physical impact crisis, between the real vibrating plate
and the border of an attractor. This crisis, as yet unclassified, re-
duces the number of attractors dramatically at a single parameter
value.

The organization of the paper is given as follows. In Section 2
we describe the dynamical system under study and its chaotic
properties. Section 3.1 is devoted to the numerical analysis of the
average velocity, in Section 3.2 we study the basin of attraction of
the fixed points and set up the impact physical crisis, and in Sec-
tion 3.3 we discuss the relation between the manifolds boundary
crisis and the attractors; finally in Section 4 we draw some final
remarks and conclusions.
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2. The model, the mapping and chaetic properties

In this section we describe the model under study, the bounc-
ing model, which consists of a particle, under the influence of a
constant gravitational field, that suffers inelastic collisions with a
heavy oscillating wall. Dissipation is introduced via a restitution
coefficient y € [0, 1], where y =1 recovers the conservative case,
where Fermi Acceleration (FA) is inherent [25,38]. The introduction
of dissipation can be considered as a suppression mechanism for
this unlimited energy growth [39,40]. The system is oriented along
the vertical axis, where the upward direction is said to be positive,
the wall equilibrium position is set at y =0, and the dynamics is
basically described by a non-linear mapping for the variables ve-
locity of the particle v and time t immediately after a nth collision
of the particle with the vibrating wall.

There are two distinct versions of the dynamics description: (i)
complete one, which consists in considering the complete move-
ment of the time-dependent wall, and (ii) simplified, where the
wall is assumed to be fixed, but exchanges momentum and en-
ergy with the particle upon collision. Both approaches produce a
very similar dynamic considering conservative [25] and dissipa-
tive cases [26,39-41]. In the complete version, the vibrating wall
obeys the equation y.(t;) = &€coswt,, where & and w are re-
spectively, the amplitude and the frequency of oscillation of the
vibrating wall. In the simplified version, the vibrating wall is said
to be fixed at y = 0, but when the particle collides with it, they ex-
change momentum and energy as if the wall were vibrating. Thus,
the simplified approach keeps the nonlinearity of the model and
significantly speeds up the numerical simulations, as well allows
easier analytical calculations. In this paper and from this point be-
yond, we only deal with the complete version of the mapping.

Considering the flight time, which is the time that the particle
spends to go up, stop with zero velocity, starts falling and collides
again with the vibrating wall, we define some dimensionless and
more convenient variables as: V, = v,w/g, € =ew?/g, where V,
is the “new dimensionless velocity”, g is the gravitational field and
€ can be understood as a ratio between accelerations of the vi-
brating wall and the gravitational field. For instance, one can set
some real values for the dimensional variables, as g = 10 m/s?,
£=0.001 m, w=2x f, where f =100 Hz, and obtain the dimen-
sionless variable € ~ 0.1591. Some real devices concerning impact
experiments with granular material can be found in Refs. [19,20].
Also, measuring the time in terms of the number of oscillations of
the vibrating wall ¢, = wt,, we obtain the mapping

T- Vi1 ==y (Vi — o) — (1 + y)esin(@nr1),
“| én+1 =I[¢n + ATy] mod 27),

where the expressions for V' and AT, depend on the kind of the
considered collision. For the case of multiple collisions inside the
collision zone [—¢, +€], the expressions are Vi =V, and AT, =
¢c where ¢, is obtained from the condition that matches the same
position for the particle and the vibrating wall, expressed as

(1)

G(¢pc) = € cos(¢pn + ¢c) — € cos(pn) — Ve + %qb?, (2)

where this transcendental equation must be solved numerically for
G(¢¢) =0, with ¢ € (0, 27].

If the particle leaves the collision zone case after a colli-
sion, goes up, reach null velocity, and falls for an another col-
lision, we have indirect collisions and the expressions are V' =
—V/VZ +2¢(cos(¢n) — 1) and ATy = ¢y + ¢ + ¢ With ¢y =V,
denoting the time spent by the particle in the upward direction
up to reaching the null velocity, ¢4 = \/V,% + 2€(cos(¢n) — 1) cor-
responds to the time that the particle spends from the place where
it had zero velocity up to the entrance of the collision zone at €.

Fig. 1. Comparison between phase space for conservative and dissipative dynamics.
In (a) e =0.6 and ¥ = 1.0, and in (b) € =0.6 and y = 0.9. In (b) the thick black
regions are the sinks and the bottom attractor. Also, all the spread dots are the
transient.

Finally the term ¢, has to be obtained numerically from the equa-
tion

1
F(¢c)=ecos(¢n+¢u+¢d+¢c)—e—v:¢c+5¢3, 3)

where F(¢.) represents a transcendental equation that must be
solved numerically in order to find the exact “time” of collision, as
F(¢c) =0, with ¢. € [0, 27 ].

The obtainment of the numerical root ¢. is done considering
at first G(¢¢) = 0. If we did not find any root for G(¢:), we start
to evaluate F(¢.) = 0. The root seeking process is made by solving
the transcendental equations via bisection method, with a preci-
sion of 10714,

Taking the determinant of the Jacobian matrix of both kinds of
collisions (see Ref. [40] for details), and after a straightforward al-
gebra, it is easy to show that the mapping (1) shrinks the phase
space measure since the determinant of the Jacobian matrix is
given by

- . (4)
na1 + €sin(@ni1)

Here, if y =1 we recover the non-dissipative version of the map-
ping, in fact, as velocity and phase are not canonical pairs in
the complete version, the determinant of J is not the unity, but
rather it leads to the following measure to be preserved, du =
(V +e€sing)dVde. Indeed, the extended phase space for the whole
version of the model considers four variables namely: (1) y, de-
noting the position of the vibrating wall; (2) V, corresponding to
the velocity of the particle; (3) E, which is the mechanical en-
ergy (kinetic+gravitational) of the particle and (4) the time t. The
canonical pairs however are: position and velocity (yw,Vp) and
energy and time (Ep, t).

Another useful property for the dynamics evolution, as func-
tion of the control parameters, is the analysis of the fixed points
and their stability. For the bouncing ball model the period-1 fixed
points can be obtained by doing V11 =V, =V* and ¢p41 = ¢ =
¢* + 2mm in Eq. (1). For both kinds of collisions, successive and
indirect, the fixed points are

Detj:yz[ Vi + € sin(¢n) }

(5)

Vi=mmr;m=1,2,..., ¢*=arcsin<

V*(V—1)>
(1+y)e J-°
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Fig. 2. (Color online.) Behavior of the average velocity curves for an extensive range of € and y. In (a) and (c), we have a high dissipation and low €, and the dynamics are
basically controlled by the attracting fixed points. In (b) and (d), we have small dissipation and high €. Here the dynamics is ruled by the attractor localized in the bottom,
embedded with the vibrating wall. Also, in (d) a rearrange in the horizontal axis is made, in order to make all the curves start to grow together. This rearrange is convenient,

when we make use of the scaling techniques.

Their stability are given by Det(J — AI) = 0, evaluated over the
fixed points, where A are the eigenvalues of the Jacobian matrix
and [ is the identity matrix. The eigenvalues can be found solving
the expression M'FTULZT”LAIDe” [2].

Fig. 1 shows a comparison between the phase space for the
conservative and dissipative versions. As the dynamics evolves, the
introduction of dissipation destroys the invariant curves in the sta-
bility islands, and the stable fixed points become sinks [1,2,6].
Depending of the control parameter, there may have a plenty of
these attractors, where the orbits converge to they. In Fig. 1 one
can see that after the dissipation was introduced the first three
stability islands, denoted by white regions among the chaotic sea
in Fig. 1(a), became attracting fixed points. Also, there is the pres-
ence of an attractor on the bottom of Fig. 1(b), near where the
vibrating wall is located. For a better understanding and visualiza-
tion, we are going to use in all figures the phase representation
between —m and +.

3. Results and discussions

In this section, we describe the results obtained by the numer-
ical simulations. First we draw some average velocity curves for
a combination of the two control parameters, € and y. Then, the
basins of attraction of some attracting fixed points are obtained.
We investigate how these basins of attraction behave, as we range
the control parameters. We constructed some bifurcation diagrams
for the fixed points and analyzed how their stability vary. By draw-
ing the unstable and stable manifolds we notice that the attractors
are intertwined in the phase space, and there is a boundary crises,
a crossing of their manifolds, which creates a successive mecha-
nism of destruction for all attractors originated by the sinks. Also,
we made a study over the bifurcation process and the chaotic
properties of it.

3.1. Average velocities

Let us set the equation for the average velocity, which depends
on both € and y. The statistics was made considering two steps, an
average taken along the orbit, evolved until a finite high number
of collisions n and an average taken along the ensemble of initial
conditions. So, we may define

_l n
Vi€, y) = EZVJ-, (6)
j=1
and hence
1 M
V=M2vi<n,e,y>, (7)
i=

where M represents an ensemble of initial conditions. The index j
and i represent respectively the collision number, and the number
of initial conditions.

Fig. 2 shows the evolution of the average velocity for an exten-
sive range of the control parameters € and y as function of the
number of collisions. Here, we consider two regimes: (i) high dis-
sipation and small €, and (ii) small dissipation and high €. One
can identify very distinct behavior between both regimes. Consid-
ering regime (i), as shown in Figs. 2(a, c), we see that the V curves
start with high initial velocity near Vg, given as an initial condi-
tion, and experience an exponential decay, [41]. After a transient
they bend towards different regimes of saturation in low energy
levels. Basically, the orbits are attracted by the several fixed points
that coexist in the phase space, when the perturbation parame-
ter € is still small enough, therefore marking their convergence to
different plateaus.

On the other hand, in regime (ii), as present in Fig. 2(b, d), the
V curves start with low initial velocity, near V¢ given as an initial
condition, and they experience a growth for short time according
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Fig. 3. (Color online.) Basins of attraction for the fixed points considering € = 1.0
and y = 0.95. The colors represent the fixed points were the initial conditions are
being attracted to. Black — 7w, red — 27, green, — 3, blue — 4, yellow — 57
and brown — 67, and the white regions denotes initial conditions that converged
to the bottom attractor.

to a power law with exponent g ~ 0.5, until they bend towards
a saturation regime, in high energy levels. For this case, the sat-
uration plateaus of high energy are connected with the chaotic
attractor, and there are no attracting fixed points for such high
energy regime. Also, if we rescale the horizontal axis by ne? all V
curves, start to grow together. Fig. 2(b, d) contain previously re-
sults observed in [40], for regime (ii). We recommend for a more
complete investigation on the regime (ii), concerning the chaotic
attractor behavior and a fully scaling analysis on the V curves, in
Refs. [39,40] for a numerical point of view; and in Refs. [26,41] for
an analytical interpretation. Also, one could check Refs. [42-44] for
formal and analytical points of view for statistical properties for
similar dynamical systems.

However, in this paper, we are interested in the range of high
dissipation and small € (regime (i)), shown in Figs. 2(a, c), where
the attracting fixed points still exist and play an important role in
the dynamics. Indeed, this high dissipation analysis can be very
useful in a further experimental analysis of the bouncing ball
model, once they are easily obtained, instead of the tiny dissi-
pations as used in Refs. [26,39-41], that would be impossible to
obtain in a laboratory. Also, one could think about experience with
granular materials interacting with vibrating plates [16-20], as a
direct application of the bouncing ball model and its phenomena.

3.2. Basins of attraction and bifurcations

Depending on the combination of the control parameters € and
y, several attracting fixed points can coexist in the phase space,
where some of them can be more influential to the dynamics than
other. In order to understand how these attracting fixed points be-
have as related to initial conditions, Fig. 3 shows the basins for
the periodic attractors for € = 1.0 and y = 0.95, where a grid of
1000 x 1000 initial conditions were equally split and set in the
axis of velocity V € [—€, 7] and phase ¢ € [—m, +7]. The differ-

ent colors represent the basins of attraction for each attractor of
period-1 located in V* = mu, according the fixed points obtained
in Eq. (5). Here, each initial condition were evaluated up to a tran-
sient of 10° collisions, and then we evaluate another more 10°
collisions, and marked its final velocity in the phase space.

Since, we have a positive restitution coefficient, one may think
that the particle would “glue” on the vibrating wall for long times.
This indeed can happen, if it lands deep enough in the absorbing
region of the phase space, the particle will perform a large num-
ber of smaller and smaller bounces, that could follow progressive
geometric conversions [31]. Such peculiar behavior is known as
locking [31]. The white regions in Fig. 3 denotes the initial condi-
tions that converged to the locking region attractor, i.e. the bottom
attractor embedded with the vibrating wall. However, if the par-
ticle has a positive relative velocity, it will not be glued to the
wall. And, depending of the control parameters € and y, this ve-
locity can acquire multiplicity as function of 7, as set by Eq. (5), in
different regions of the phase space, giving birth to period-1 attrac-
tors for higher velocities. In Fig. 3, each color denotes a different
period-1 fixed point basin of attraction. As m is increased, it seems
that the basins are getting smaller, which could be a possible indi-
cation of less influence in the dynamics. Also, for the higher values
of m, the boundaries of the basins, that are limited by the unstable
manifolds of each fixed point [1,6,9], behave in a very complicated
stretching and mixing way, folding themselves embedded like a
horseshoe [1,6,9].

The beautiful mazy behavior of the basins of attraction shown
in Fig. 3, can drastically change, when € is increased. As one can
see in Fig. 4, where the evolution of the basin of attractions for
y = 0.8 and some values of € is shown, and a very dynamic
scenario between the attractors are set. Each item of Fig. 4 was
constructed considering a grid of initial conditions of 500 x 500
equally distributed along the velocity V € [—€,3m] and phase
¢ € [—m, +m]. The color scale represents the final velocity of each
initial condition after a transient of 10° iterations. The color scale
was kept fixed as the final velocity ranges. For low velocities and
orbits that were attracted to the bottom attractor, we have the
darker colors as black, dark blue (black). The orbits that were at-
tracted by the first two sinks, V* =7 and V* = 27, the color scale
ranges from blue (dark gray) to yellow (light gray), and for the high
velocity attracting orbits (said above V* =27), we have the color
range scale between yellow (light gray) and red (dark gray).

In Fig. 4, as € is increased, the boundaries of the basins of
attraction start to grow following the stretching and mixing be-
havior, just like the Smale horseshoes, [1,6,9], as Figs. 4(a, b, c) dis-
plays, where in particular for Fig. 4(a), the sink located in V* =
did not exist yet, the same applies for Fig. 4(b), where the sink
located in V* = also did not exist. One can check that by the
period-1 one fixed points expressions, specially for ¢*, given in
Eq. (5). As we increase €, the sinks located in V* =msm start to
notice the consequences of being lied intertwined with the bottom
attractor. Considering the first sink V* = 7, it suffers a tangent
bifurcation in €; &~ 0.964 (this bifurcation will be explained in the
manifolds section), which creates three new attracting zones inside
its own basin of attraction, as shows Fig. 4(d). Raising the value of
€ a little bit, the sink in V* = m, bifurcates, creating, together with
the other sinks, a plenty of attracting regions in the phase space, as
shown in Fig. 4(e). The crisis happens near €. &~ 1.22635, shown in
Fig. 4(f). After a tangent bifurcation in ¢, three branches evolves as
€ increases. The two upper branches collide with each other, gen-
erating a boundary crisis that destroys both branches. At the same
parameter €., the lower branch, suffers a physical collision with
the vibrating boundary. This is a different crisis, once the attractor
is colliding with a physical structure, instead of a another attractor
or manifold. This non-categorized crisis can be better visualized in
Fig. 5. Finally, in Figs. 4(g, h), the basin of attraction of the fixed
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Fig. 4. (Color online.) Characterization of the dynamic scenario between the attractors, by the evolution of the basins of attraction for y = 0.8 for a grid of 500 x 500
initial conditions. The perturbation parameter follows as: (a) € = 0.32005, (b) € = 0.60095, (c) € = 0.88715, (d) € ~ € = 0.964, (e) € = 1.08590, (f) € ~ €. = 1.22635,
(g) € ~ €4 =1.25815 and (h) € = 1.50195. The color scale denotes the final velocity of each pair of initial condition after a transient of 10° iterations. One can see that the

basins of attraction suffer huge transformations, as successively bifurcation process as € is increased, until they are destroyed when € acquires critical values.
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Fig. 5. (Color online.) Bifurcation diagram as function of € for y =0.8. It is shown a
scenario of the evolution of the attracting fixed points, where attractors originated
by the sinks V* =mu, coexist with period-3 orbits originated by tangent bifurca-
tions, the bottom attractor (given by the dashed line) and others attractors. This
figure illustrates the plenty of attractors and the high active dynamic structure that
orbits may experience. Also, three critical values of € are set concerning each char-
acterized crisis.

point V* = (said together with the branches of the tangent bi-
furcation) is totally destroyed, and the other basins of attraction
for the other upper sinks started their successive destruction pro-
cess. In the end, when we have a large enough value of ¢, only the
bottom attractor remains in the system.

For a better understanding and visualization of the crises, sinks
bifurcations and the evolution of the basins of attraction, we con-
structed a bifurcation diagram for some fixed points, as shown in
Fig. 5, for a fixed dissipation y = 0.8. The diagram illustrates the
plenty of attractors and the high active dynamic structure that or-

bits may experience during the time evolution. This diagram was
constructed in two different ways: (i) we have an initial condition
very near the sinks, and let it follows the attractor, as € increases;
and (ii) we kept the same initial condition for every value of €. In
both cases, the range of € was split in 5000 equal parts. Consider-
ing the evolution in (i), the dynamics follows a regular bifurcation
diagram, where the period-1 sinks located in V* = ms, stay sta-
ble until they suffer successive bifurcations as € increases, until it
finally disappear. In the same manner, tangent bifurcations hap-
pen for V* =, V* =27 and so on. These new branches for each
tangent bifurcation, have the same fate of the attractors originated
by the sinks. These fixed points of the tangent bifurcation were
obtained considering case (ii), where the evolution of the same
initial condition, gives rise to different attractors in the bifurcation
diagram, for example, the one located near V* = 1.7, basically suf-
fers the same bifurcation process as the main ones and then it is
destroyed.

One can notice in Fig. 5, that there are three critical values:
(i) € ~ 0.964, which is the value of € where the tangent bifur-
cation occurs for the first sink V* =m; (ii) €, ~ 1.22635, which
is the critical parameter where the crisis occurs for the three
branches originated in the tangent bifurcation. One can see in
Fig. 5, that in € = €., there are two simultaneous crises. The up-
per two branches collide, and destroy each other, while the lower
branch physically collides with the vibrating wall, denoted here by
the dashed line, characterizing an yet unclassified physical crisis,
between the real structure (vibrating wall), and the border of an
attractor. Finally, (iii) €4, is the value where the attractor origi-
nated by the sink V* = is destroyed. Beyond €4, a successive
destruction mechanism takes place in the dynamics, destroying all
the other attractors, except by the bottom one, that starts to rule
the dynamics. The values of these critical € parameters may vary
as we range the dissipation.

Let us now address to the chaotic attractor born from the bi-
furcation process of the fixed point V* = 7. As one can see from
Fig. 5, when the bifurcation process occurs, we have the creation
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Fig. 7. Successive zoom-in windows of the chaotic attractor for € = 1.2549. It seems that the chaotic attractor has a fractal-like shape very similar to one found in the

Henon-Heiles map [31].

of two main symmetric branches. According to Fig. 5, each branch,
will begin its own bifurcation process, which further will collide
with itself in a boundary crisis, generating its own local chaotic at-
tractor. Fig. 6 shows how these processes occur for the first sink,
presenting the shape of the attractors in the phase space, also we
compare it with amplifications of the bifurcation diagram. Once,
both branches are symmetric, let us do this analysis considering
just one of them. One can see in Figs. 6(a, b) the behavior of
bifurcation process of the branches as € is increased. Comparing
them with Fig. 6(c), for € = 1.2520, we can see that the attractor
is under a period-8 bifurcation. Increasing €, and after a compar-
ison between Figs. 6(a, b) and Figs. 6(d, e); the two branches of
the attractor merge together into one local chaotic attractor. Here
we can characterize another crisis between the attractors, where
two attractors become one, known as fusion crisis [1,6]. Finally, in
Fig. 6(f) we have the behavior of the local chaotic attractor in its
final stage for € = €4 ~ 1.2550, where it seems to take the shape
of the old basin of attraction, originated by the tangent bifurcation,

and then it vanishes. Here, another crisis can be characterized. The
attractor (darker region), collides with the transient basin of the
old attractor already destroyed (originated by the tangent bifurca-
tion). This ghost behavior of the transient basin [6], allows to the
attractor to interact with the region that suffered the physical colli-
sion with the vibrating wall. This interaction, destroys the attractor
in the same manner that destroy the previous one in € ~ €.

One can ask about the nature of this local chaotic attractor.
Indeed, it seems to have fractal shape, as one can see in the suc-
cessive amplification of Figs. 7(a, b, ¢, d). The shape of the chaotic
attractor is basically the same, no matter how much further in the
zoom windows. It is interesting, the fact that the kind of crises we
are seeing here, are basically the same one found in the Henon-
Heiles attractor [6,45,46], for which chaotic attractor collides with
the stable manifold and is destroyed. Also, the same fractal-like
shape of the chaotic attractor is found. It would be interesting to
investigate later, if any other chaotic common property related to
both attractors can be found.
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Fig. 8. (Color online.) Boundary crises and the embedded behavior of the stable and
unstable manifolds for y = 0.8. For the V* = saddle point, unstable manifold is
drawn in black, and stable in red (dark gray); and for the V* =27 saddle, unstable
manifold is drawn in green (light gray), and stable in blue (gray). In (a) € =1.0 and
in (b) € =1.07. One can see that in (a) there is no crossing between the manifolds
of either saddle fixed points, and in (b) the boundary crisis occurred for both saddle
points.

3.3. Manifolds

Let us address now to the crises related with the manifolds.
From the literature, we expect that a saddle fixed point, in the
plane V vs. t has stable and unstable manifolds [29,35-37]. The
unstable manifolds are formed by a family of trajectories that turn
away from the saddle fixed point. One of them evolves to the
chaotic bottom attractor, or visit the region of the chaotic bot-
tom attractor after the event of crisis; while the other one evolves
towards an attracting fixed point. These unstable manifolds are
obtained from the iteration of the map T with appropriate ini-
tial conditions. Similarly, the construction of stable manifold re-
quires that the inverse of the mapping, say T~', must be obtained.
Here the operator follows T~ 1(Vyy1, dny1) = (Vn, én). Basically,
one must replace every pair (Vp,¢n) to (Viyi1, ¢ny1) and vice-
versa in Eq. (1), and rearrange the terms as function of V, and
¢n. Also, the transcendental equations should be solved as second
degree ordinary functions. So, after some algebra we have

on=¢nt1—Vyp—v,
T7': 1 h(Vy) = V2 + 2€[cos(ns1 — Va — V) (8)
— cos(Pns1)] — V2,

where v = [Vp41+ (14 y)esin(¢n+1)]/y. Here, the function h(V;)
must be solved numerically, once it depends on both V, and
Vnt1. So, we made use of the Newton’s method to find the root,
where Vy, = Vi —h(Vy) /' (Vy), and B/ (V) = 2V, +2€ sin(@py1 —
Von—v).

The procedure for obtaining the stable manifolds is the same as
that one used for the unstable manifolds, however, instead of it-
erating the map T we must iterate its inverse T~!. We set a tiny
circle of radius § = 10~4, and split 104 initial conditions around
the respective saddle point and iterate the normal and reverse dy-
namics. After that, we make a zoom-in the region of the saddle
point, and made a linear fit in both branches of the unstable and
stable manifolds, in order to find the eigenvectors. After that, we
just evolve the normal and reverse dynamics again, but consid-
ering the distribution of initial conditions along the linear fit of
the manifolds branches. Just for notice the saddles are localized in
V*=mm and ¢* — ¢* — .

For closed domain dynamical systems, such as the Fermi-Ulam
model and other time-dependent billiards [47-50], the unstable

manifolds generate the border of the basin of attraction of the
chaotic attractor and the stable manifolds draw the boundaries of
the basin of the attracting sink. A boundary crisis happens when
the stable manifold touches the unstable manifold of the same sad-
dle fixed points due to a modification of the control parameter. In
this case, the chaotic attractor is destroyed, and only the sink re-
mains in the system. This collision implies in a sudden destruction
of the chaotic attractor and also of its basin of attraction [35,36].
This destruction can be very useful as a mechanism of controlling
chaos in this dissipative version of the model since, after the crisis
event, the particle is captured by an attracting fixed point (sink).
In the literature, one can still find others examples of crises [6,35,
36/, as crises between attractors, where a fusion between two or
more attractors into a bigger one is observed, or even inner crises
[6,35,36], where a chaotic attractor increases its size by colliding
with a stable periodic orbit inside its own basin. However, the kind
of crisis that happens in the unbounded bouncing ball model is a
bit more complicated, once we have plenty of attractors, and their
manifolds found themselves embedded.

Stable and unstable manifolds for the first two saddle points
for a dissipation value of y = 0.8 are displayed in Figs. 8(a, b).
For V* = saddle point, unstable manifold is drawn in black, and
stable in red (dark gray); and for V* = 27 saddle, unstable mani-
fold is drawn in green (light gray), and stable in blue (gray). Both
branches of the stable manifold behave as follows: the upward
branch evolves to the attracting fixed point while the downward
branch evolves to the chaotic attractor. In both Figs. 8(a, b), we see
that the stable manifold for the saddle in V* = 2w, are embed-
ded with the stable manifold of the saddle V* = m. Both stable
manifolds are also intertwined with the attractor in the bottom.
We believe that this peculiar behavior happens for all the saddles
located above in the phase space for all values of V* =mu, creat-
ing a whole chain of iteration between the attracting fixed points
and the attractor in the bottom. Also, in both Figs. 8(a, b) the two
branches of the unstable manifold generate the basin boundaries
for both attracting fixed points. Here, there is no iteration between
the unstable manifolds of different sinks. The unstable manifolds
go up and up in the velocity axis, in a stretching and mixing way,
drawing the limits of the attracting boundaries of each fixed point.
One can imagine how they would behave just looking at Fig. 3,
where the basin of attraction until V* = 6m is drawn. It would
be interesting to compare the relations between the stretching and
mixing of the manifolds with the Smale horseshoe mapping.

Also, in Fig. 8(a) shows the embedded manifolds € = 1.0. One
can notice here, that there is no crossings between the bound-
aries of the stable and unstable manifold of both saddle points
yet, but we can visualize the tangent bifurcation occurring in the
sink located in V* = 27, where three branches rise and start to
grow from the place where the sink should be located. One can
also compare with Fig. 5, and confirm that this is the exactly
control parameter of the tangent bifurcation. Once we raise the
value of the control parameter ¢, the respective unstable and sta-
ble manifold from both saddle points cross each other, as show
Fig. 8(b), for € = 1.07. One could imagine that the crossing be-
havior of the manifolds would destroy the attractor in the bottom,
and let only the sink in the phase space. This indeed happens, but
once the manifolds for all saddles found themselves embedded,
this destruction seems not to cause greater effects in the dynamics.
Because even that for one saddle the attractor is destroyed, there
will be the manifold from upper saddle points, embedding them-
selves with the region where the attractor was, giving an “extra
life time” for the attractor, until the next boundary crisis from the
upper saddles, where the same process will occur in a successive
way. We think, that the boundary crisis between the manifolds,
are serving as a trigger for the unbounded growth of the chaotic
attractor in the bottom. One could imagine for higher values of ¢,
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Fig. 9. (Color online.) Basin of attraction overlapped with the stable and unstable
manifolds from the first sink, and the vibrating wall itself. One can notice that for
€ ~ ¢ and y = 0.8, the basin of attraction of the first sink is tangent to the growing
branch of the stable manifold embedded with the chaotic bottom attractor, gener-
ating a tangent bifurcation inside the attracting basin of the first sink. Yet, one can
look at and see that from the place where the sink should be located, are rising
three new branches, as a result from the tangent behavior between the manifolds.
The comparison with the basin of attraction overlapped, shows better this behavior.

that the bottom chaotic can be very influential in the dynamics.
If, we take € = 10, the bottom chaotic attractor would occupy the
region where the first three sinks of period-1 should be located,
and the crossing between the manifolds that we are seeing here in
Fig. 8 for low values of €, would be happening for very high sad-
dle points in the phase space. We dare to call this mechanism, as
a regenerating process, or “robust attractor”. In time, this ‘robust’
term is not yet fully understood in the literature and still needs
more deeper investigations.

Still, we display the tangent bifurcation for the first sink in
Fig. 9, where for € ~ ¢, we overlap the basin of attraction with
the stable and unstable manifold from the first saddle and the vi-
brating wall itself. We can see that the basin of the first sink is
tangent the growing branch of the bottom attractor. At the same
time, we can see three branches rising from the place where the
sink should be located inside its basin of attraction. We also stress
that if noise were added to the dynamics [29,51-53], the scenario
of the crises might would change, once the perturbation would be
different. Of course, that noise should be consider in real experi-
mental devices, so as a possible future work, we would be consider
the introduction of noise in the system.

4. Final remarks and conclusions

The dynamics of a bouncing ball model is investigated for
a high dissipation regime. Some chaotic properties were set up,
and average properties of the velocity were obtained. Depend-
ing of the combination of control parameters many attractors
can coexist, leading to a very complex dynamics in the phase
space. Basins of attraction for some attractors and their evolution
with the increase of the perturbation parameter were character-
ized.

Increasing the perturbation parameter leads us to characterize
an unusual class of boundary crises, where the attractor collides
physically with the vibrating wall. In these crises we observed a
reduction in the number of attractors in the phase space. These

phenomena could be extended to other vibrating and impact sys-
tems with high dissipation regimes, as in human stability perfor-
mance [13] and microscopic vibration systems [14], in order to
reduce the number of attractors (stable vibration modes) in such
systems.

Also, we found the attractors are in an intertwined form. This
was confirmed by the drawn of stable and unstable manifolds.
Here, when a crisis between manifolds occurs, it creates a suc-
cessive destruction mechanism for all the attractors originated by
the sinks, giving an “extra life time” to the bottom chaotic attrac-
tor, turning it into a robust attractor. As a future work, it would
be interesting to investigate shrimp-like structures in the param-
eter space [54-56]|. Also, we could consider the introduction of
noise in the dynamics, to make a link with real experimental de-
vices.
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