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Objetivos
O projeto tem como objetivo aplicar Dinâmica 
Molecular (DM) na simulação do sistema 
NaTFSI:NMA, um Solvente Eutético Profundo 
(DES) promissor para armazenamento de 
energia [1,2]. A investigação concentra-se na 
influência do tamanho da caixa de simulação 
sobre propriedades estruturais e de transporte, 
buscando determinar o tamanho mínimo 
necessário que garanta precisão adequada e 
otimização do custo computacional [3].

Métodos e Procedimentos
As simulações foram conduzidas por Dinâmica 
Molecular Clássica (DM), resolvendo as 
equações de movimento de Newton pelo 
algoritmo Velocity-Verlet [4]. O software 
GROMACS foi utilizado, com parametrização 
pelo campo de força OPLS-AA [2]. A 
configuração inicial do sistema foi construída 
em uma caixa de simulação usando 
PACKMOL[5], enquanto as topologias foram 
geradas por LigParGen e DLPGEN [6,7], com 
ajustes nas cargas atômicas baseados em 
cálculos de DFT do trabalho de Fiates et al., a 
fim de garantir maior fidelidade ao 
comportamento real do sistema.

O protocolo de simulação seguiu um fluxo de 
trabalho em seis etapas: minimização de 
energia, termalização, recozimento, 
equilibração em NPT, re-equilibração em NVT 
e produção [8]. Durante e após a simulação, 

foram avaliadas propriedades estruturais e de 
transporte, incluindo densidade, difusividade, 
viscosidade e condutividade, com o objetivo de 
investigar o impacto do tamanho da caixa de 
simulação na precisão dos resultados e no 
custo computacional.

Resultados
Após a etapa de produção, as trajetórias estão 
equilibradas e confiáveis para o cálculo de 
propriedades termodinâmicas e de transporte. 
A partir dos dados obtidos, foi possível calcular 
densidade, difusividade, viscosidade e 
condutividade iônica [2]. Neste estudo, o foco 
principal está na condutividade iônica e na 
densidade, esta última servindo como 
verificação da consistência global do sistema. A 
análise correlaciona essas propriedades com o 
tamanho do sistema (160, 320 e 640 
moléculas).

A densidade simulada apresentou excelente 
concordância com o valor experimental de 
1,1167 g·mL ¹ a 20 °C [9], com erros relativos 
inferiores a 1% em todos os sistemas. Para 160 
moléculas, o valor obtido foi 1.11843 ± 0.6 
g·mL ¹. Para 320 moléculas, a densidade foi 
1.11927 ± 0.14 g·mL ¹. Já para 640 moléculas, 
obteve-se 1.11921 ± 0.25 g·mL ¹. As 
flutuações de densidade (Figura 1) foram mais 
amplas no sistema de 160 moléculas e 
diminuíram consideravelmente nos sistemas 
maiores, indicando maior estabilidade 
estatística.



Figura 1: Oscilações da densidade nos diferentes 
tamanhos de sistema.

Na condutividade iônica, as diferenças entre 
tamanhos de caixa foram mais marcantes. O 
sistema de 640 moléculas apresentou o valor 
mais confiável, 9.959 ± 0.006 mS·cm ¹, em 
excelente concordância com o experimental de 
10,6 mS·cm ¹ a 55 °C [9]. O sistema de 160 
moléculas resultou em 8.063 ± 0.026 mS·cm ¹, 
enquanto o de 320 moléculas forneceu 5.169 ± 
0.018 mS·cm ¹, subestimando 
significativamente o valor experimental.

Esses resultados reforçam a importância do 
tamanho da caixa, já que há propriedades 
fortemente afetadas por tal fator.

Conclusões
Os resultados evidenciam o forte impacto do 
tamanho do sistema: a densidade foi bem 
reproduzida em todas as caixas, mas com 
maior estabilidade nas maiores, enquanto a 
condutividade iônica mostrou alta sensibilidade, 
apresentando boa fidelidade apenas no 
sistema de 640 moléculas. Assim, a escolha do 
tamanho da caixa é decisiva para propriedades 
de transporte em DM.
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