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Objetivos

O projeto tem como objetivo aplicar Dinamica
Molecular (DM) na simulagdo do sistema
NaTFSI:NMA, um Solvente Eutético Profundo
(DES) promissor para armazenamento de
energia [1,2]. A investigacdo concentra-se na
influéncia do tamanho da caixa de simulagao
sobre propriedades estruturais e de transporte,
buscando determinar o tamanho minimo
necessario que garanta precisdo adequada e
otimizagao do custo computacional [3].

Métodos e Procedimentos

As simulag¢des foram conduzidas por Dindmica
Molecular Classica (DM), resolvendo as
equagbes de movimento de Newton pelo
algoritmo Velocity-Verlet [4]. O software
GROMACS foi utilizado, com parametrizacao
pelo campo de forca OPLS-AA [2]. A
configuracao inicial do sistema foi construida
em uma caixa de simulagdo usando
PACKMOL[5], enquanto as topologias foram
geradas por LigParGen e DLPGEN [6,7], com
ajustes nas cargas atdbmicas baseados em
célculos de DFT do trabalho de Fiates et al., a
fim de garantir maior fidelidade ao
comportamento real do sistema.

O protocolo de simulagdo seguiu um fluxo de
trabalho em seis etapas: minimizagdo de
energia, termalizagao, recozimento,
equilibragdo em NPT, re-equilibragcdo em NVT
e produgao [8]. Durante e apds a simulagao,

foram avaliadas propriedades estruturais e de
transporte, incluindo densidade, difusividade,
viscosidade e condutividade, com o objetivo de
investigar o impacto do tamanho da caixa de
simulacdo na precisdo dos resultados e no
custo computacional.

Resultados

Apoés a etapa de producgao, as trajetorias estao
equilibradas e confiaveis para o calculo de
propriedades termodindmicas e de transporte.
A partir dos dados obtidos, foi possivel calcular
densidade, difusividade, viscosidade e
condutividade iénica [2]. Neste estudo, o foco
principal esta na condutividade i6nica e na
densidade, esta Ultima servindo como
verificagdo da consisténcia global do sistema. A
analise correlaciona essas propriedades com o
tamanho do sistema (160, 320 e 640
moléculas).

A densidade simulada apresentou excelente
concordancia com o valor experimental de
1,1167 g-mL ' a 20 °C [9], com erros relativos
inferiores a 1% em todos os sistemas. Para 160
moléculas, o valor obtido foi 1.11843 + 0.6
g-mL '. Para 320 moléculas, a densidade foi
1.11927 £ 0.14 g-mL *. Ja para 640 moléculas,
obteve-se 1.11921 + 025 gmL ' As
flutuacdes de densidade (Figura 1) foram mais
amplas no sistema de 160 moléculas e
diminuiram consideravelmente nos sistemas
maiores, indicando maior  estabilidade
estatistica.
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Figura 1: Oscilagdes da densidade nos diferentes
tamanhos de sistema.

Na condutividade ibnica, as diferencas entre
tamanhos de caixa foram mais marcantes. O
sistema de 640 moléculas apresentou o valor
mais confiavel, 9.959 + 0.006 mS:cm ', em
excelente concordancia com o experimental de
10,6 mS:cm "' a 55 °C [9]. O sistema de 160
moléculas resultou em 8.063 + 0.026 mS-cm ",
enquanto o de 320 moléculas forneceu 5.169 +
0.018 mS-cm ', subestimando
significativamente o valor experimental.

Esses resultados reforgam a importancia do
tamanho da caixa, ja que ha propriedades
fortemente afetadas por tal fator.

Conclusoes

Os resultados evidenciam o forte impacto do
tamanho do sistema: a densidade foi bem
reproduzida em todas as caixas, mas com
maior estabilidade nas maiores, enquanto a
condutividade idnica mostrou alta sensibilidade,
apresentando boa fidelidade apenas no
sistema de 640 moléculas. Assim, a escolha do
tamanho da caixa é decisiva para propriedades
de transporte em DM.

A autora declara n&do haver conflito de
interesses.
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