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This paper is devoted to studying the global and finite conver-
gence of the semi-smooth Newton method for solving a piece-
wise linear system that arises in cone-constrained quadratic 
programming problems and absolute value equations. We first 
provide a negative answer via a counterexample to a con-
jecture on the global and finite convergence of the Newton 
iteration for symmetric and positive definite matrices. Ad-
ditionally, we discuss some surprising features of the semi-
smooth Newton iteration in low dimensions and its behavior in 
higher dimensions. Secondly, we present two iterative schemes 
inspired by the classical Jacobi and Gauss-Seidel methods for 
linear systems of equations for finding a solution to the prob-
lem. We study sufficient conditions for the convergence of both 
proposed procedures, which are also sufficient for the exis-
tence and uniqueness of solutions to the problem. Lastly, we 
perform some computational experiments designed to illus-
trate the behavior (in terms of CPU time) of the proposed 
iterations versus the semi-smooth Newton method for dense 
and sparse large-scale problems. Moreover, we included the 
numerical solution of a discretization of the Boussinesq PDE 
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modeling a two-dimensional flow in a homogeneous phreatic 
aquifer.

© 2023 Published by Elsevier Inc.

1. Introduction

We consider the following piecewise linear system:

x+ + Tx = b, (1)

where, denoting by Rn×n the set of n × n matrices with real entries, the data consists 
of a vector b ∈ Rn ≡ Rn×1 and a nonsingular matrix T ∈ Rn×n. The variable x =
(x1, x2, . . . , xn)T is a vector in Rn and x+ is the projection of x onto Rn

+, which has 
the i-th component equal to x+

i = max{xi, 0}, i = 1, . . . , n. Some works dealing with 
problem (1) and its generalizations include [1–7]. Solutions of equation (1) are closely 
related to at least two important classes of well-known problems, such as the quadratic 
cone-constrained programming:

minimize 1
2x

TQx + qTx,
subject to x ∈ Rn

+,
(2)

and the absolute value equation [5,8]:

T̂ x− |x| = b̂. (3)

Namely, the projection onto Rn
+ of a solution of problem (1) with T = (Q − Id)−1 and 

b = Tq satisfies the linear complementarity problem given by the first order optimality 
conditions of (2) (see [9] for details), while, on the other hand, for T̂ = −2T − Id, and 
b̂ = −2b, noting that x+ = x+|x|

2 one can see that problems (1) and (3) are equivalent. 
Here Q is a symmetric matrix and Id denotes the identity matrix. These relations attest 
to the importance of finding novel and efficient iterative procedures for solving equation 
(1).

In this paper, we first focus our attention on the semi-smooth Newton method for 
solving problem (1), which consists of specifying a particular generalized Jacobian of F
at x in the problem of finding the zeroes of

F (x) := x+ + Tx− b, x ∈ Rn. (4)

Namely, starting at the point x0 ∈ Rn, the semi-smooth Newton iteration is defined by 
the following linear equation:
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(
P (xk) + T

)
xk+1 = b, k ∈ N, (5)

where

P (x) := diag(sgn(x+)), x ∈ Rn. (6)

The above iteration was proposed in [10], which was shown to be globally convergent to 
a solution of problem (1) under suitable assumptions. It has been extensively studied 
in the literature for solving generalizations of equation (1); see, for instance, [2,5,6,11]. 
We emphasize that the global and linear convergence of iteration (5) has been proved 
only under restricted assumptions related to the norm of the matrices (T + P (x))−1 for 
all x ∈ Rn, which come from the study of (5) as a contraction fixed point iteration. A 
promising and novel approach for establishing finite convergence of (5) was proposed in 
Theorem 3 of [9] under the assumption that the rows of the matrices (T +P (x))−1 for all 
x ∈ Rn have a definite sign, that is, in every row the entries have the same sign. It is worth 
noting that the number of matrices P (x) with x ∈ Rn in (6) is finite (2n to be precise). 
Hence, if the semi-smooth Newton method (5) converges, this convergence will occur 
after finitely many steps. In the pursuit of weaker and verifiable sufficient conditions 
ensuring convergence of the sequence generated by (5), it was conjectured in [2] that 
iteration (5) converges after finitely many steps if T is symmetric and positive definite. 
In this paper, we show that this conjecture is false with a counterexample. However, 
interestingly, we show that this assumption is enough to guarantee the existence and 
uniqueness of solutions to problem (1). Moreover, the inverse of P (x) +T for all x ∈ Rn

always exists, and thus the semi-smooth Newton method (5) is well-defined. We will 
also show that although this method may cycle under this assumption, it can never 
cycle between only two points. In the second part of this paper, we propose two novel 
iterative processes inspired by the well-known Jacobi and Gauss-Seidel iterative methods 
for solving linear systems of equations. The main idea is to consider the Newtonian system 
(5) and apply a Jacobi or a Gauss-Seidel step at each iteration k. The main advantage 
of doing so is that the iteration is computed by solving a diagonal or a triangular linear 
system of equations, which is considerably simpler than solving the linear system in (5)
to find xk+1. Also, we are able to present new sufficient conditions for the convergence 
of these two proposed methods, which are related to the classical diagonal dominance 
and Sassenfeld’s criterion. The existence and uniqueness of the solution for equation (1)
are also proved under both conditions. We then show with an example that the standard 
diagonal dominance is insufficient to ensure the existence of solutions to problem (1). 
Finally, numerical results show that the proposed methods are competitive in terms 
of CPU time if compared with the semi-smooth Newton method (5). The numerical 
illustration suggests that the proposed iterative methods become more efficient when 
the dimension is high, and the matrix is sparse. We finish the paper with an applied 
experiment with real data, where we solve and discuss the results of solving a piecewise 
linear equation raising from a discretization of the Boussinesq PDE [12] modeling a 
two-dimensional flow in a homogeneous phreatic aquifer.
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1.1. Notation and preliminaries

Next, we quickly present some notation and facts used throughout the paper. We 
write N for the nonnegative integers {0, 1, 2, . . .}. The canonical inner product in Rn

will be denoted by 〈·, ·〉 and the induced norm is ‖ · ‖. For x ∈ Rn, sgn(x) will denote 
a vector with components equal to 1, 0 or −1 depending on whether the corresponding 
component of the vector x is positive, zero or negative, respectively. If a ∈ R and x ∈ Rn, 
then denote a+ := max{a, 0}, a− := max{−a, 0} and x+ and x− the vectors with i-th 
component equal to x+

i and x−
i , respectively, i = 1, . . . , n. Note that x+ and x− are the 

projections of x onto the cones Rn
+ and Rn

−, respectively. The matrix Id ∈ Rn×n denotes 
the identity matrix. If x ∈ Rn then diag(x) ∈ Rn×n will denote a diagonal matrix with 
(i, i)-th entry equal to xi, i = 1, . . . , n. Denote ‖M‖ := max{‖Mx‖ : x ∈ Rn, ‖x‖ = 1}
for any M ∈ Rn×n. The following result is well-known and will be needed in the sequel:

Theorem 1.1 (Contraction mapping principle [13], Thm. 8.2.2, page 153). Let Φ : Rn →
Rn. Suppose that there exists λ ∈ [0, 1) such that ‖Φ(y) − Φ(x)‖ ≤ λ‖y − x‖, for all 
x, y ∈ Rn. Then, there exists a unique x̄ ∈ Rn such that Φ(x̄) = x̄.

2. The semi-smooth Newton method

In this section, we present and analyze the convergence of the semi-smooth Newton 
method given by iteration (5) for solving problem (1). In [9,10], it was shown that the 
condition sgn((xk)+) = sgn((xk+1)+) is sufficient to declare that xk+1 is a solution of 
equation (1). We now show, in fact, that a component-wise version of this stopping 
criterion holds:

Proposition 2.1 (Component-wise stopping criterion). Assume that the sequence (xk)k∈N
generated by method (5) is well defined. If sgn((xk+1

i )+) = sgn((xk
i )+) for some i ∈

{1, . . . , n} and some k, then Fi(xk+1) = 0, where F is defined in (4).

Proof. By the definition of F and xk+1, we have

F (xk+1) =(xk+1)+ + Txk+1 − b

=(P (xk+1) + T )xk+1 − b

=(P (xk+1) + T )xk+1 − (P (xk) + T )xk+1

=(P (xk+1) − P (xk))xk+1.

Hence,

Fi(xk+1) =
(
sgn((xk+1

i )+) − sgn((xk
i )+)

)
xk+1
i , (7)

for any i ∈ {1, . . . , n}, which implies the desired result. �
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In our study, a crucial role will be played by diagonal dominance. Let us start by 
showing that in the most extreme case of diagonal dominance, namely when the matrix 
is diagonal, one can list all solutions of the equation, and iteration (5) finds a solution 
in at most two steps.

Proposition 2.2 (Finite convergence for the diagonal case). Let b ∈ Rn and T ∈ Rn×n

be a diagonal matrix with entries T = (tii), i = 1, . . . , n such that tii /∈ {0, −1} for all 
i. Equation (1) has no solutions if, and only if, tii ∈ (−1, 0) and bi < 0 for some i. If a 
solution of (1) exists, then (5) converges in at most two iterations to one of the solutions. 
In this case, the number of solutions of problem (1) is given by 2r, where r is the number 
of indexes i such that bi > 0 and tii ∈ (−1, 0).

Proof. Let x0 ∈ Rn be any starting point. By definition, we have

x1 = (P (x0) + T )−1b.

Since T is a diagonal matrix, we have the following component-wise expression for x1:

x1
i = ((P (x0) + T )−1b)i =

{
bi
tii

, x0
i ≤ 0,

bi
1+tii

, x0
i > 0,

(8)

for i = 1, . . . , n.
For a fixed i, if tii > 0, we get by (8) that sgn((x1

i )+) = sgn(b+i ) and since b is 
fixed we deduce that sgn((x2

i )+) = sgn((x1
i )+). Similarly, if tii < −1, we conclude that 

sgn((x1
i )+) = 1 − sgn(b+i ). Hence, sgn((x2

i )+) = sgn((x1
i )+). Thus, when there is no i

such that tii ∈ (−1, 0), by Proposition 2.1 we deduce that (5) converges in two steps. 
In particular one can check that in this case the solution is unique with i-th component 
equals to

{
bi
tii

, bi ≤ 0,
bi

1+tii
, bi > 0,

when tii > 0, and

{
bi

1+tii
, bi ≤ 0,

bi
tii

, bi > 0,

when tii < −1.
Now, it directly follows from equation (1) that there is no solution if bi < 0 for 

some i such that tii ∈ (−1, 0). If, however, bi ≥ 0 for such i, the solutions for each 
component-wise equation are given by bi

tii
and bi

1+tii
, amounting to the desired formula 

for the number of solutions. Therefore, assuming that the problem has a solution, we 
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conclude that bi ≥ 0 for all i such that tii ∈ (−1, 0). By (8), it is easy to see that in this 
case, we have sgn((x1

i )+) = sgn((x0
i )+). Using Proposition 2.1 and a similar computation 

done previously, we conclude that the method converges to a solution in at most two 
steps. �

An auxiliary result in our analysis follows next.

Proposition 2.3. Let x, y ∈ Rn. Then

i) (yi − xi)(sgn(y+
i )xi − sgn(x+

i )yi) ≤ 0, ∀i = 1, . . . , n;
ii) (yi − xi)(sgn(x+

i )xi − sgn(y+
i )yi) ≤ 0, ∀i = 1, . . . , n.

In particular we have that (y−x)T (P (y)x −P (x)y) ≤ 0 and (y−x)T (P (x)x −P (y)y) ≤ 0.

Proof. We only have three different cases to be analyzed:

1) if sgn(y+
i ) = sgn(x+

i ) = s, then (yi−xi)(sgn(y+
i )xi− sgn(x+

i )yi) = −s(yi−xi)2 ≤ 0;
2) if sgn(y+

i ) = 1 and sgn(x+
i ) = 0, then (yi−xi)(sgn(y+

i )xi−sgn(x+
i )yi) = xi(yi−xi) ≤

0;
3) if sgn(y+

i ) = 0 and sgn(x+
i ) = 1, then (yi − xi)(sgn(y+

i )xi − sgn(x+
i )yi) = −yi(yi −

xi) ≤ 0.

Therefore, as a consequence we obtain that

(y − x)T (P (x)y − P (y)x) =
n∑

i=1
(yi − xi)(sgn(y+

i )xi − sgn(x+
i )yi) ≤ 0.

The second statement follows by a similar computation. �
Until the end of this section, we assume that the matrix T is symmetric and positive 

definite. This assumption has been considered before in [2] where the authors conjectured 
the global and finite convergence of the method under this assumption. To fully address 
this conjecture, we begin with a result about the existence and uniqueness of the solution 
of equation (1) under this assumption.

Proposition 2.4 (Existence and uniqueness of solutions). If T is a symmetric and positive 
definite n × n matrix and b ∈ Rn, then problem (1) has one and only one solution.

Proof. Note first that the matrix T + Id is also symmetric and positive definite. Hence, 
(T + Id)−1 exists. For any symmetric matrix M we denote λ1(M) ≤ · · · ≤ λn(M) the 
ordered eigenvalues of M . The matrix T + Id also satisfies λi(T + Id) = 1 + λi(T ), 
i = 1, . . . , n. Since λ1(T ) > 0, we deduce that
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‖(T + Id)−1‖2 = λn((T + Id)−1)

= 1
λ1(T + Id)

= 1
λ1(T ) + 1

< 1.

Defining the function Φ(x) := (T + Id)−1(b − x−) and using the decomposition x =
x+ − x− we can easily show that the solutions of problem (1) coincide with the fixed 
points of Φ. Moreover, Φ is a contraction and then has a unique fixed point. Indeed,

‖Φ(x) − Φ(y)‖2 = ‖(T + Id)−1(y− − x−)‖2

≤ ‖(T + Id)−1‖2‖(y− − x−)‖2

≤ ‖(T + Id)−1‖2‖x− y‖2

= 1
λ1(T ) + 1‖x− y‖2,

using that x− and y−, the projections of x and y onto Rn
− (a closed and convex set), are 

non-expansive in the last inequality. Thus, the result follows from Theorem 1.1. �
Remark 1 (Another proof of the uniqueness of solutions). The uniqueness of the solution 
of equation (1) when T is positive definite showed in Theorem 2.4 can also be deduced 
using the fact

(y − x)T (P (x)x− P (y)y) ≤ 0, (9)

as seen in Proposition 2.3. Indeed, if there exist two solutions x and y of problem (1), 
we have by definition x+ + Tx = b, y+ + Ty = b. Subtracting those equations and 
multiplying the resulting equation by (y − x)T , we get that

(y − x)TT (y − x) = (y − x)T (x+ − y+) ≤ 0,

where the inequality follows from (9) noting that P (x)x = x+ and P (y)y = y+. Thus, 
when T is positive definite it must hold that x = y.

Due to the nature of iteration (5), we have that the sequence (xk)k∈N has only a finite 
number of different elements. This happens since the set S := {(P (x) +T )−1b ; x ∈ Rn}
has at most 2n different elements and (xk)k∈N ⊆ S. The conclusion of this observation 
is that we have only two possible outcomes: the method converges in a finite number of 
steps, or it cycles. Note also that when x̄ solves equation (1), we have x̄ = (P (x̄) +T )−1b. 
Hence, by (5), xk+1 = x̄ holds whenever P (xk) = P (x̄). Thus, the problem amounts to 
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finding a point in the same orthant as a solution. Let us first show that the method can 
only cycle among three or more points.

Theorem 2.1 (Newton does not cycle between two points). Let T ∈ Rn×n be a symmetric 
and positive definite matrix and b ∈ Rn, then the sequence generated by the semi-smooth 
Newton method (5) does not cycle between two points.

Proof. If the sequence generated by iteration (5) cycles between two points x and y, 
then

(P (x) + T )y = b,

(P (y) + T )x = b.

So, we have that T (y − x) = P (y)x − P (x)y. Multiplying by (y − x)T , we obtain from 
Proposition 2.3 that

(y − x)TT (y − x) = (y − x)T (P (y)x− P (x)y) ≤ 0,

which implies x = y. �
When n ≤ 2, let us show that the sequence generated by method (5) in fact does not 

cycle.

Theorem 2.2 (Finite convergence for low dimensions). Let b ∈ Rn and T ∈ Rn×n be a 
symmetric and positive definite matrix. Then, iteration (5) has global and finite conver-
gence for n = 1, 2.

Proof. The case n = 1 is a direct consequence of Proposition 2.2. When n = 2, note that 
the sequence of Newton iterates has at most four different elements, however, no cycle 
of size four is possible, as these points are necessarily in four different quadrants of R2, 
coinciding in sign with the solution (which necessarily exists due to Proposition 2.4), 
which implies convergence.

Now, suppose that there is a cycle among three different points x, y, z, different from 
x̄, the unique solution. Clearly, these four points must lie in different quadrants of R2. 
Without loss of generality, let us assume that x and y lie in opposite quadrants, in the 
sense that P (x) + P (y) = Id, and that the points satisfy the following equations:

(P (x) + T )y = b,

(P (y) + T )z = b,

(P (z) + T )x = b.

We have that T (y − x) = P (z)x − P (x)y, and therefore, multiplying by (y − x)T , we 
obtain
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Table 1
Percentage of positive definite problems solved at each 
amount of iterations (iter.) for different dimensions (n).

n/% 1 iter. 2 iter. 3 iter. 4 iter. 5 iter.
4 7.2 49.1 35.9 7 0.8
8 0.6 37.7 48.8 11.4 1.5
16 0 16.6 63.1 19.5 0.8
32 0 6 69 24.1 0.9
64 0 1.6 68.5 29.4 0.5
128 0 0.3 60.1 39.1 0.5
256 0 0 57.3 41.9 0.8
512 0 0 50.9 48.8 0.3
1024 0 0 43 56.9 0.1
2048 0 0 36.6 63.2 0.2
4096 0 0 30.6 69.2 0.2

(y − x)TT (y − x) = (y − x)T (P (z)x− P (x)y)

= (y1 − x1)(sgn(z+
1 )x1 − sgn(x+

1 )y1)

+ (y2 − x2)(sgn(z+
2 )x2 − sgn(x+

2 )y2).

Since z is not in the opposite quadrant of x we only have two options, sgn(z+
1 ) = sgn(x+

1 )
and sgn(z+

2 ) �= sgn(x+
2 ), or sgn(z+

1 ) �= sgn(x+
1 ) and sgn(z+

2 ) = sgn(x+
2 ). In both cases it 

can be checked that (y − x)TT (y − x) ≤ 0, which leads to a contradiction. The result 
now follows from Theorem 2.1. �

We ran extensive numerical experiments in our pursuit of understanding the finite 
convergence of the semi-smooth Newton method (5). For symmetric and positive def-
inite matrices T ∈ Rn×n (1000 randomly generated problems for each dimension n), 
we recorded the number of iterations that (5) needed to converge at each dimension. 
The results are shown in Table 1, where the percentage of problems solved for several 
different problem dimensions and the corresponding iterations are presented.

We observe that the higher the dimension, the more iterations are needed. Surprisingly, 
the method performs exceptionally well as the required number of iterations grows very 
slowly (always capped by 5) with respect to the growth of the dimension n. Indeed, for 
any n ≤ 4096, no problem needed more than five iterations of (5) to be solved.

In the tests illustrated in Table 2, the matrix T is symmetric, positive definite, and 
“almost” diagonal, i.e., the elements of the diagonal are much greater compared with 
the off-diagonal entries. The diagonal entries are of the order of thousands, while the 
off-diagonal elements are smaller than one. Here, as suggested by Proposition 2.2, no 
problem required more than three iterations to reach the solution.

Although the numerical tests based on random data suggest that the semi-smooth 
Newton method does not cycle, we were able to find a particular example of problem (1)
that shows that the Newton iteration (5) may cycle among three points in R3 even when 
T is symmetric and positive definite. This gives us a counterexample to the conjecture 
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Table 2
Numerical experiments for “almost” 
diagonal positive definite matrices.

n/% 1 iter. 2 iter. 3 iter.
4 0 98.9 1.1
8 0 100 0
16 0 100 0
32 0 100 0
64 0 100 0
128 0 99.9 0.01
256 0 98.9 1.1
512 0 95 5
1024 0 86.6 13.4
2048 0 74.8 25.2
4096 0 54.9 45.1

raised in [2] on the global and finite convergence of the Newton iteration (5) under this 
assumption.

Example 1 (Counterexample on the finite convergence). The semi-smooth Newton 
method (5) fails to converge in the case n = 3 with the following symmetric and positive 
definite matrix

T = 1
100

( 32 −26 21
−26 33 −23
21 −23 17

)
and b = 1

100

( 18
−48
30

)
. (10)

It can be easily checked that the following points x, y and z conform a cycle of the 
method.

x =

⎛
⎜⎜⎜⎝

319
1435

−1849
6379

190
1191

⎞
⎟⎟⎟⎠ , y =

⎛
⎜⎜⎜⎝
− 527

2978

−1490
923

− 81
2777

⎞
⎟⎟⎟⎠ , z =

⎛
⎜⎜⎜⎝
−306

95

18
95

6

⎞
⎟⎟⎟⎠ .

Indeed, those points satisfy the cycle equations

(P (x) + T )y = b,

(P (y) + T )z = b,

(P (z) + T )x = b,

which proves the statement.

3. Jacobi-Newton and Gauss-Seidel-Newton methods

Based on the well-known Jacobi and Gauss-Seidel methods for solving linear systems, 
we define and analyze two novel methods, which we call Jacobi-Newton and Gauss-
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Seidel-Newton methods, for solving problem (1). We start with two definitions related 
to classical diagonal dominance and Sassenfeld’s criterion.

Definition 3.1 (Strong diagonal dominance). Let T = (tij) ∈ Rn×n. We say that T is 
strongly diagonal dominant if

1
|tii|

⎛
⎜⎜⎝1 +

n∑
j=1
j �=i

|tij |

⎞
⎟⎟⎠ < 1, ∀i = 1, . . . , n.

Note that if T is strongly diagonal dominant, then T is diagonal dominant. However, 
we need this stronger condition to ensure the global convergence of the Jacobi-Newton 
method, which will be presented later in (13).

We now introduce a weaker condition for T , which is a variation of the classical 
Sassenfeld’s condition.

Definition 3.2 (Strong Sassenfeld’s condition). Let T = (tij) ∈ Rn×n. Define βi and β as 
follows

β1 := 1
|t11|

⎛
⎝1 +

n∑
j=2

|t1j |

⎞
⎠ , (11)

βi := 1
|tii|

⎛
⎝i−1∑

j=1
|tij |βj +

n∑
j=i+1

|tij | + 1

⎞
⎠ , ∀i = 2, . . . , n, (12)

and

β := max
i=1,...,n.

βi.

We say that T satisfies the strong Sassenfeld’s condition if β < 1.

It is easy to see that if T is strongly diagonal dominant, then T satisfies the strong 
Sassenfeld’s condition. However, the converse implication is not true in general. Now 
we prove the existence and uniqueness of solutions for problem (1) under the strong 
Sassenfeld’s condition. This criterion will also be used later to prove the convergence of 
the Gauss-Seidel-Newton method, which we will introduce.

Theorem 3.1 (Existence and uniqueness of solutions under strong Sassenfeld’s condition). 
Let b ∈ Rn and T ∈ Rn×n. If T satisfies the strong Sassenfeld’s condition, then equation 
(1) has one and only one solution.
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Proof. To prove the existence and uniqueness of the solution, we will use the contraction 
mapping principle (Theorem 1.1). Let us first decompose the matrix T as a sum of 
L + D + U where D is the diagonal of T and L and U are the strictly lower and upper 
parts of T , respectively. We first define the mapping ψ : Rn → Rn such that

ψ(x) := (D + L)−1(−Ux + b− x+), ∀x ∈ Rn.

Then, we prove that the fixed points of ψ are solutions of problem (1) and also that it is 
a contraction. Indeed, note that x = ψ(x) is equivalent to (D +L)x = −Ux + b − x+, or 
(D +L +U)x + x+ = b. Hence, x is solution of equation (1) given that T = D +L +U .

On the other hand, to prove the contraction property of ψ consider any x, y ∈ Rn and 
define u := ψ(x) and w := ψ(y). Note that

u− w = ψ(x) − ψ(y) = (D + L)−1(−U(x− y) + y+ − x+),

which is equivalent to

(D + L)(u− w) = −U(x− y) + y+ − x+.

Hence,

u1 − w1 = 1
t11

⎛
⎝−

n∑
j=2

t1j(xj − yj) + y+
1 − x+

1

⎞
⎠ ,

and after taking the absolute value in both sides and using its triangular inequality 
property, we have

|u1 − w1| ≤
1

|t11|

⎛
⎝ n∑

j=2
|t1j ||xj − yj | + |x+

1 − y+
1 |

⎞
⎠

≤ 1
|t11|

⎛
⎝ n∑

j=2
|t1j ||xj − yj | + |x1 − y1|

⎞
⎠

≤ 1
|t11|

⎛
⎝ n∑

j=2
|t1j | + 1

⎞
⎠ ‖x− y‖∞

= β1‖x− y‖∞.

The second inequality follows from the nonexpansiveness of the projections and the 
last equality by the definition of β1 given in (11). By induction let us assume that 
|ui−wi| ≤ βi‖x −y‖∞ for all i = 1, . . . , p −1, and we will show that |up−wp| ≤ βp‖x −y‖∞. 
Analogously,
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up − wp = 1
tpp

⎛
⎝−

p−1∑
j=1

tpj(uj − wj) −
n∑

j=p+1
tpj(xj − yj) + y+

p − x+
p

⎞
⎠ ,

which implies that

|up − wp| ≤
1

|tpp|

⎛
⎝p−1∑

j=1
|tpj |βj + 1 +

n∑
j=p+1

|tpj |

⎞
⎠ ‖x− y‖∞

= βp‖x− y‖∞,

where we used the induction assumption and the nonexpansiveness of the projection, 
together with the definition of βp given in (12) in the last equality. Now, we are ready 
to prove the contraction property of ψ by observing that for all x, y ∈ Rn, we have

‖ψ(x) − ψ(y)‖∞ = ‖u− w‖∞
= max

i=1,...,n.
|ui − wi|

≤ β‖x− y‖∞.

Thus, since β < 1, we have that ψ is a contraction mapping and therefore has a unique 
fixed point. �

Clearly, if T is strongly diagonal dominant, the result above is also true, i.e., problem 
(1) has one and only one solution. A natural question that arises here is if this assumption 
can be relaxed to the classical diagonal dominance and if the existence and uniqueness 
of solutions would still hold for equation (1). Unfortunately, that is not true in general, 
as is shown in the following example.

Example 2 (Diagonal dominance is not sufficient for existence of solutions). Let b ∈ Rn

and T a diagonal dominant matrix. Then, problem (1) may fail to have solutions. Indeed, 
let us consider the following data

T = 1
100

(
−26 16
23 −33

)
, b = 1

100

(
−12
12

)
.

Note that T is diagonal dominant and the points x, y and z, w conform to two different 
cycles for the Newton iteration (5) where

x = 1
2295

(
−498
582

)
, y = 1

1055

(
498
18

)
,

and
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z = 1
245

(
102
−18

)
, w = − 1

1405

(
102
582

)
.

Namely, the cycle equations are satisfied: (P (x) +T )y = b, (P (y) +T )x = b and (P (z) +
T )w = b, (P (w) + T )z = b. Thus, the method has two cycles of order two and since 
the points are in different quadrants we have that the equation has no solution (see the 
discussion before Theorem 2.1).

To define the Jacobi-Newton iteration for solving problem (1), let us recall the de-
composition of the matrix T as a sum of L +D+U where D is the diagonal of T and L
and U are the strictly lower and upper parts of T , respectively. The iteration is defined 
as follows: Given x0 ∈ Rn,

xk+1 := −(P (xk) + D)−1(L + U)xk + (P (xk) + D)−1b, k ∈ N, (13)

or equivalently, xk+1 is the solution of the diagonal system

(P (xk) + D)xk+1 = −(L + U)xk + b. (14)

First, we prove that if the sequence generated by the Jacobi-Newton iteration (13)
converges to x̄ ∈ Rn, then x̄ is a solution of problem (1).

Proposition 3.1 (Limit points of the Jacobi-Newton iteration are solutions). If the se-
quence (xk)k∈N generated by (13) converges to x̄, then x̄ solves problem (1).

Proof. First, we know that F (x) = x+ + Tx − b is continuous since x+ is a continuous 
piecewise linear function and Tx −b is linear and therefore continuous. Rewriting F (xk+1)
and using (14), we have

F (xk+1) = (P (xk+1) + T )xk+1 − b,

= (P (xk+1) + T )xk+1 − (P (xk) + D)xk+1 − (L + U)xk,

= (P (xk+1) + D + L + U)xk+1 − (P (xk) + D)xk+1 − (L + U)xk,

= (P (xk+1) − P (xk))xk+1 + (L + U)(xk+1 − xk),

using (14) in the last equality. Now, the above equality implies that

‖F (xk+1)‖ ≤ ‖(P (xk+1) − P (xk))xk+1‖ + ‖L + U‖‖xk+1 − xk‖.

Hence,

lim
k→∞

‖F (xk+1)‖ ≤ lim
k→∞

‖(P (xk+1) − P (xk))xk+1‖ + lim
k→∞

‖L + U‖‖xk+1 − xk‖

= lim
k→∞

‖(P (xk+1) − P (xk))xk+1‖.
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If x̄ does not have any component equal to 0, then the result is trivial since the sign 
becomes constant for a certain index of the sequence. On the other hand, if x̄i = 0 for 
some i, we have by the continuity of F that

|Fi(x̄)| = lim
k→∞

|Fi(xk+1)| ≤ lim
k→∞

|(sgn((xk+1
i )+) − sgn((xk

i )+))xk+1
i | = 0,

where the last equality follows from the fact that the i-th component of xk+1 goes to 
zero and sgn((xk+1

i )+) −sgn((xk
i )+) ∈ {−1, 0, 1}. Thus, all component of F (x̄) are zeroes, 

which implies the result. �
Next, we show that T being strongly diagonal dominant is a sufficient condition for 

the convergence of iteration (13).

Theorem 3.2 (Global convergence of the Jacobi-Newton method). Let b ∈ Rn and T ∈
Rn×n. If T is strongly diagonal dominant, then the Jacobi-Newton method (13) globally 
converges to the unique solution of problem (1).

Proof. Let x̄ be the unique solution of problem (1). Then, (P (x̄) +D)x̄ = −(L +U)x̄+b, 
which combined with (14) implies that

(P (xk) + D)(xk+1 − x̄) = −(L + U)(xk − x̄) + P (x̄)x̄− P (xk)x̄.

Hence,

‖xk+1 − x̄‖∞
= ‖ − (P (xk) + D)−1[(L + U)(xk − x̄) + (P (x̄) − P (xk))x̄]‖∞

= max
i=1,...,n

∣∣∣∣∣∣∣∣
1

sgn((xk
i )+) + tii

⎛
⎜⎜⎝−

n∑
j=1
j �=i

tij(xk
j − x̄j) + sgn(x̄+

i )x̄i − sgn((xk
i )+)x̄i

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣

≤ max
i=1,...,n

1
| sgn((xk

i )+) + tii|

⎛
⎜⎜⎝

n∑
j=1
j �=i

|tij ||xk
j − x̄j | + | sgn(x̄+

i )x̄i − sgn((xk
i )+)x̄i|

⎞
⎟⎟⎠ .

Note that

| sgn(x̄+
i )x̄i − sgn((xk

i )+)x̄i| =
{

0, sgn(x̄+
i ) = sgn((xk

i )+),
|x̄i|, sgn(x̄+

i ) �= sgn((xk
i )+).

Observe further that | sgn(x̄+
i )x̄i − sgn((xk

i )+)x̄i| = |x̄i| ≤ |xk
i − x̄i| when sgn(x̄+

i ) �=
sgn((xk

i )+) and | sgn(x̄+
i )x̄i − sgn((xk

i )+)x̄i| = 0 ≤ |xk
i − x̄i| if sgn(x̄+

i ) = sgn((xk
i )+). 

Therefore, | sgn(x̄+
i )x̄i − sgn((xk

i )+)x̄i| ≤ |xk
i − x̄i|.
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Then,

‖xk+1 − x̄‖∞ ≤ max
i=1,...,n

1
| sgn((xk

i )+) + tii|

⎛
⎜⎜⎝

n∑
j=1
j �=i

|tij ||xk
j − x̄j | + |xk

i − x̄i|

⎞
⎟⎟⎠

≤

⎛
⎜⎜⎝ max

i=1,...,n

1
| sgn((xk

i )+) + tii|

⎛
⎜⎜⎝

n∑
j=1
j �=i

|tij | + 1

⎞
⎟⎟⎠
⎞
⎟⎟⎠ ‖xk − x̄‖∞

≤

⎛
⎜⎜⎝ max

i=1,...,n

1
|tii|

⎛
⎜⎜⎝

n∑
j=1
j �=i

|tij | + 1

⎞
⎟⎟⎠
⎞
⎟⎟⎠ ‖xk − x̄‖∞.

The result now follows from the fact that T is strongly diagonal dominant. �
Now we define the Gauss-Seidel-Newton method as follows: Given x0 ∈ Rn,

xk+1 := −(P (xk) + D + L)−1Uxk + (P (xk) + D + L)−1b, k ∈ N, (15)

or equivalently, xk+1 is the solution of the triangular linear system

(P (xk) + D + L)xk+1 = −Uxk + b. (16)

Proposition 3.2 (Limit points of the Gauss-Seidel-Newton method are solutions). If the 
sequence (xk)k∈N generated by (15) converges to x̄, then x̄ solves problem (1).

Proof. Let F (x) = x+ + Tx − b and let us rewrite F (xk+1) and use (16) to obtain

F (xk+1) = (P (xk+1) + T )xk+1 − b,

= (P (xk+1) + T )xk+1 − (P (xk) + D + L)xk+1 − Uxk,

= (P (xk+1) + D + L + U)xk+1 − (P (xk) + D + L)xk+1 − Uxk,

= (P (xk+1) − P (xk))xk+1 + U(xk+1 − xk).

The result now follows analogously to Proposition 3.1. �
Now, let us show that the strong Sassenfeld’s condition gives, besides the existence 

and uniqueness of a solution, a sufficient condition for global convergence of the Gauss-
Seidel-Newton method to the solution.

Theorem 3.3 (Global convergence under strong Sassenfeld’s condition). Let b ∈ Rn and 
T ∈ Rn×n. If T satisfies the strong Sassenfeld’s condition, then the Gauss-Seidel-Newton 
method (15) globally converges to the unique solution of problem (1).
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Proof. Let x̄ be the unique solution of equation (1). From (16), we have

(P (xk) + D − L)(xk+1 − x̄) = U(xk − x̄) + (P (x̄) − P (xk))x̄,

which implies

xk+1
1 − x̄1 = 1

sgn((xk
1)+) + t11

⎛
⎝−

n∑
j=2

t1j(xk
j − x̄j) + (sgn(x̄+

1 ) − sgn((xk
1)+))x̄1

⎞
⎠ ,

then

|xk+1
1 − x̄1| ≤

1
| sgn((xk

1)+) + t11|

⎛
⎝ n∑

j=2
|t1j ||xk

j − x̄j | + | sgn(x̄+
1 ) − sgn((xk

1)+)||x̄1|

⎞
⎠

≤ 1
| sgn((xk

1)+) + t11|

⎛
⎝ n∑

j=2
|t1j |‖xk − x̄‖∞ + |xk

1 − x̄1|

⎞
⎠

≤ 1
| sgn((xk

1)+) + t11|

⎛
⎝1 +

n∑
j=2

|t1j |

⎞
⎠ ‖xk − x̄‖∞

≤ β1‖xk − x̄‖∞.

By induction let us assume that |xk+1
i − x̄i| ≤ βi‖xk − x̄‖∞ for i = 1, . . . , p − 1, and we 

will show that |xk+1
p − x̄p| ≤ βp‖xk − x̄‖∞. Now, similarly to the proof of Theorem 3.1, 

we have

xk+1
p − x̄p = 1

sgn((xk
p)+) + tpp

(
−

p−1∑
j=1

tpj(xk+1
j − x̄j) −

n∑
j=p+1

tpj(xk
j − x̄j)

+ (sgn(x̄+
p ) − sgn((xk

p)+))x̄p

)
.

Taking the absolute value in both sides, we get

|xk+1
p − x̄p| ≤

1
| sgn((xk

p)+) + tpp|

(
p−1∑
j=1

|tpj ||xk+1
j − x̄j | +

n∑
j=p+1

|tpj ||xk
j − x̄j |

+ | sgn(x̄+
p ) − sgn((xk

p)+)x̄p|
)
,

≤ 1
| sgn((xk

p)+) + tpp|

⎛
⎝p−1∑

j=1
|tpj ||xk+1

j − x̄j | +
n∑

j=p+1
|tpj ||xk

j − x̄j | + |xk
p − x̄p|

⎞
⎠ ,
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≤ 1
| sgn((xk

p)+) + tpp|

⎛
⎝p−1∑

j=1
|tpj |βj +

n∑
j=p+1

|tpj | + 1

⎞
⎠ ‖xk − x̄‖∞

≤ βp‖xk − x̄‖∞.

Moreover,

‖xk+1 − x̄‖∞ = max
i=1,...,n.

|xk+1
i − x̄i|

≤ max
i=1,...,n.

βi‖xk − x̄‖∞

= β‖xk − x̄‖∞,

and the result follows from the fact that β < 1. �
4. Computational results

To analyze the three methods and see their differences in practice, we run sev-
eral examples of problem (1) applying the Jacobi-Newton, Gauss-Seidel-Newton, and 
the semi-smooth Newton methods. All codes were implemented in Matlab 9.5.0.944444
(R2018b).

4.1. Numerical tests for randomly generated data

In this subsection, we work on two groups of problems for the numerical tests. In the 
first one, we used dense matrices with different dimensions n equal to 1000, 5000, and 
10000. In the second group, we considered a matrix with sparse structure and dimensions 
1000, 5000, and 10000. The experiments were run on a 2.3 GHz Intel(R) i5, 16Gb of 
RAM, and Windows 10 operating system. Next, we describe some details about the 
implementation.

(1) Stopping criterion: We fix the tolerance for the norm of F (xk) in (4) as 10−5. 
This means that when the 2-norm of (xk)+ + Txk − b is less than or equal to 10−5, the 
execution of the algorithm is stopped, and xk is returned as the solution. The maximum 
number of iterations was fixed at 1000, but no problem in our test reached it.

(2) Generating random problems: To construct the matrices for the first group of 
experiments, we used the Matlab routine rand to generate a random dense matrix with 
a predefined dimension with elements between −1 and 1. To achieve convergence of the 
different methods, we modified the matrices in order to ensure the validity of the strong 
diagonal dominance condition in Definition 3.1. To do so, we replaced the diagonal entry 
with 1.001 plus the sum of the off-diagonal elements in absolute value; this ensures 
the convergence of both Jacobi-Newton and Gauss-Seidel-Newton methods. Finally, for 
the second group of problems, we evoked sprand, a sparse random matrix generator 
of Matlab, to generate random sparse matrices with entries between −1 and 1 and 
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Fig. 1. Performance profiles for dense matrices in log2 scale.

density 0.3%. The matrices were also similarly modified in order to ensure strong diagonal 
dominance.

(3) Solving linear equations: Each iteration of the semi-smooth Newton method re-
quires solving the whole linear system (5). On the other hand, the Jacobi-Newton and 
Gauss-Seidel-Newton methods need to find the solution of a diagonal (14) and upper 
triangular (16) linear systems, respectively. We used the backslash command of Matlab 
for the dense case since this command uses the diagonal and triangular structures of 
the matrices generated by both methods (14) and (16). When solving Newton’s linear 
system for the sparse case, we first use the symamd command of Matlab, which makes 
permutations of rows and columns using the minimum degree algorithm (see [14,15]) 
to ensure that the LU-decomposition generates the lowest number of non-zero entries 
possible.

In order to show the results, we use performance profiles (see [16]). This technique 
measures and compares the robustness and efficiency of several methods applied to a 
set of problems using a common indicator, in our case, the CPU time. Let us start by 
presenting the set of tests with dense matrices.

4.1.1. Piecewise linear equation with dense matrices
We took dense matrices with different dimensions in the first group of problems. We 

show in Fig. 1 the results of the performance profiles in our experiments.
In Fig. 1, we compare the robustness and the efficiency of the three methods ap-

plied on a set of problems with dimensions 1000 (low), 5000 (mid), and 10000 (high), 
respectively. The number of problems was fixed at 850 for each dimension. We first 
see that for the three sets, every problem was solved by the three methods. Newton’s 
method was the most efficient in the low dimensional test, being the fastest method for 
circa 70% of the problems. When the dimension increases, Jacobi-Newton and Gauss-
Seidel-Newton are much faster. This difference is accentuated in the highest dimension 
we tested, where also the Gauss-Seidel variant is now slightly better than Jacobi. In 
particular, Newton’s method took at least four times the time the other methods took 
for almost all mid-dimensional problems. At the same time, it was at least eight times 
slower for high-dimensional problems. Thus, in our tests, the simplicity of the linear 
system solved by Gauss-Seidel-Newton and Jacobi-Newton methods (triangular and di-
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Fig. 2. Performance profiles for sparse matrices in log2 scale.

agonal, respectively) pays off in comparison with the Newton iteration for mid and high 
dimensions.

4.1.2. Piecewise linear equation with sparse matrices
Our Jacobi and Gauss-Seidel variants of the Newton iterate were devised mainly with 

large and sparse problems in mind. In Fig. 2, we can see the results of our numerical 
experiments for sparse matrices. Here we also generated 850 problems for each of the 
dimensions: 1000, 5000, and 10000.

In these tests, again all problems were solved by all methods, but here, the superiority 
of the Gauss-Seidel-Newton iterate is already apparent in the low dimensional test, while 
Jacobi-Newton and Newton behave similarly. The superiority of Gauss-Seidel-Newton is 
more evident once the dimension increases, being the fastest method for almost all mid 
and high-dimensional problems. At the same time, Newton becomes considerably slower 
than both methods. This behavior was already expected, and they attest that our Gauss-
Seidel variant of Newton’s method should be the method of choice for large and sparse 
problems.

4.2. Application on a discretization of the Boussinesq PDE

In order to test the proposed methods in solving a real model, we used them to solve 
an equation studied in [12]. The authors in [12] solve a piecewise linear equation in the 
form of problem (1) resulting from the discretization of a PDE, the Boussinesq equation, 
using the semi-smooth Newton method (see [17]), which models a two-dimensional flow 
of liquid water in a homogeneous phreatic aquifer during seven days. The Boussinesq 
equation models the water level in time, and a discretization of it results in an equation 
that can be solved by the semi-smooth Newton, the Jacobi-Newton, and the Gauss-
Seidel-Newton methods. After the discretization using a square mesh of size 2N + 1 and 
the index l representing the respective day, the piecewise linear equation resulting has 
the following form:

(hij + ηl+1
ij )+−

(
κΔt

ε

H l
i,j− 1

2

Δy2

)
ηl+1
ij−1 −

(
κΔt

ε

H l
i− 1

2 ,j

Δx2

)
ηl+1
i−1j
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+κΔt

ε

(
H l

i+ 1
2 ,j

+ H l
i− 1

2 ,j

Δx2 +
H l

i,j+ 1
2

+ H l
i,j− 1

2

Δy2

)
ηl+1
ij

−
(
κΔt

ε

H l
i+ 1

2 ,j

Δx2

)
ηl+1
i+1j −

(
κΔt

ε

H l
i,j+ 1

2

Δy2

)
ηl+1
ij+1 = H l

ij + Δt

ε
φl
ij . (17)

The parameters ε := 0.4 and κ := 1 are the porosity and the hydraulic conductivity of the 
aquifer, respectively, while Δx := L

N , Δy := L
N , Δt := 86400 s (1 day) are the stepsizes 

in the x-axis, y-axis, and the time step, respectively, where the aquifer is assumed to 
be a paraboloid of revolution with maximum radius L := 1000 meters and depth of 
10 meters. Water sinks from a pointwise source located at the bottom of the aquifer, 
which corresponds to the parameter φl

00 := − q
ΔxΔy , for every l, where q := 10 m3/s 

is the volume of water sinking per second, with φl
ij := 0 for the remaining indexes i

and j. The variables of the system (17) are ηl+1
ij , l = 0, . . . , 6 and i, j = −N, . . . , N , 

which represents the distance from the reference level 0 to the surface of water at the 
corresponding point in space and time, while hij is the given distance from the bottom 
of the aquifer to the reference level 0 at the correspondent point in space. Finally, the 
parameter H l

ij := (hij + ηlij)+ is the total distance from the bottom of the aquifer to 
the surface level, which is obtained from the solution ηlij computed in the previous day, 
where the level of water at day zero sits at the reference level 0. The terms H l

i±1
2 ,j

and 

H l
i,j± 1

2
are defined as the averages of their nearest grid values. We refer to [12] for a 

more detailed description of this model. In order to write the system for the day l+ 1 in 
the format of (1), we considered the change of variables xij = hij + ηl+1

ij .
The resulting piecewise linear system has a symmetric, positive semidefinite and block-

tridiagonal matrix, specifically, the diagonal blocks are tridiagonal matrices, and the 
subdiagonal blocks are diagonal, so it has a pseudo pentadiagonal structure, meaning 
that we only need three vectors to save the entire matrix. This structure is exploited 
in order to compute the iterates of each method. For solving the system for each day 
l + 1 = 1, 2, . . . , 7, we used the Gauss-Seidel-Newton method since it showed better 
results for sparse large-scale matrices. Actually, Gauss-Seidel-Newton was about three 
times faster than Jacobi-Newton in an initial test with N = 50. We used a tolerance of 
10−5 for the norm of F (xk) in (4) to stop the iteration.

A significant detail in our implementation is the choice of the initial point for the 
method at each day. Having solved the system for the grid size N = 50, we used an 
interpolated version (completing the missing nodes with a mean using the nearest values) 
of that solution for smaller grid sizes, specifically N = 100. Then, we applied the same 
strategy for N = 200 (using the levels for N = 100). It is worth noting that this strategy 
helps the Gauss-Seidel-Newton method to converge faster, and it is different from the 
one used in [12] where the water level for the previous day is used as the initial point. 
Similarly, the solution for N = 50 is obtained from the solution of N = 25, where the 
initial point from [12] was used for N = 25.



312 N.F. Armijo et al. / Linear Algebra and its Applications 665 (2023) 291–314
Table 3
Results for discretizations N = 50, 100, 200 for the Gauss-Seidel-Newton method.

day\N 50 100 200
- time volume time volume time volume
1 9.06 5,419,110.3 103.64 5,419,172.7 1561.03 5,419,182.2
2 8.27 4,555,110.2 93.80 4,555,172.7 1393.78 4,555,182.2
3 7.58 3,691,110.1 82.92 3,691,172.6 1273.69 3,691,182.1
4 7.25 2,827,109.9 72.98 2,827,172.6 1155.79 2,827,182.1
5 6.24 1,963,109.8 64.82 1,963,172.5 934.44 1,963,182.1
6 5.20 1,099,109.8 55,04 1,099,172.5 834.09 1,099,182.1
7 5.71 235,109.7 57.60 235,172.4 806.94 235,182.0

In Table 3, we present the results in terms of time (in minutes) for each day, needed to 
solve each system (time), and the approximated volume of water in the phreatic aquifer 
at each day computed with the solution found for the equation. This serves as a measure 
of accuracy of the solution found as this volume can be computed from the model, that 
is, at day 0, the volume of water is equal to the volume of the aquifer times the porosity 
constant κ, which amounts to 2, 000, 000π cubic meters. Thus, considering the constant 
flow of water q, we can predict the total volume of water at day 7 to be approximately 
235, 185.3 cubic meters, which is well approximated by the solution found with N = 200. 
Note that our computed volume coincides with the one computed in [12].

An important remark is the fact that the matrix defining the problem does not satisfy 
the sufficient condition for the global convergence of Gauss-Seidel-Newton (Theorem 3.3), 
which slows down the methods considerably in comparison with the standard Newton 
iterate. In particular our Newton implementation, as described previously, was about 20
times faster on average for this problem, requiring only 3 or 4 iterations. Nevertheless, 
both our proposed methods are still able to converge, showing robustness, which is 
the point of this numerical experiment. For comparison, at the cost of one Newtonian 
iteration for N = 50, we are able to compute approximately 1000 iterations of the 
Gauss-Seidel-Newton method or approximately 3000 iterations of the Jacobi-Newton 
method. For the Jacobi-Newton iterate one can easily make use of parallel computations 
to speed up the algorithm. Finally, in Fig. 3, we draw a two-dimensional vertical cut of 
the approximated water levels found for each day with the Gauss-Seidel-Newton method 
for discretization N = 200.

5. Conclusions

In this paper, we considered iterative schemes for solving the piecewise linear equation 
x+ + Tx = b, where x+ denotes projection onto the non-negative orthant. This problem 
appears in solving absolute value equations and minimizing a quadratic function over 
the non-negative orthant. A semi-smooth Newton method has been proposed for this 
problem, where the existence and uniqueness of solutions were studied together with the 
finite convergence of the method. In [2], the authors conjecture that positive definite-
ness of T would be sufficient for finite convergence of the semi-smooth Newton method. 
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Fig. 3. Level of water at days 0, 1, . . . , 7 leaking from a pointwise sink at the bottom of a paraboloid phreatic 
aquifer.

However, we showed that this assumption is enough only to avoid cycles of size two in 
general.

To avoid solving a full linear system of equations at each Newtonian iteration, we 
proposed Newtonian methods inspired by the classical Jacobi and Gauss-Seidel meth-
ods for linear equations, where only a diagonal or triangular linear system is solved at 
each iteration. The existence and uniqueness of solutions are shown together with global 
convergence of the methods under stronger variants of the well-known sufficient con-
ditions of convergence for linear systems, namely, diagonal dominance (for the Jacobi 
iterate) and Sassenfeld’s criterion (for the Gauss-Seidel iterate). Numerical experiments 
were conducted on random problems to attest that the methods are comparable with the 
standard Newtonian approach, being considerably faster for large-scale and sparse prob-
lems. In an applied experiment concerning the discretization of the Boussinesq equation, 
we show that both methods are robust and reliable even when sufficient conditions for 
convergence are not met.

For future work, we expect to address the possibility of weakening the sufficient 
conditions we obtained for the global convergence of the Jacobi-Newton and Gauss-
Seidel-Newton iterations. For instance, extensive numerical experiments suggest that 
Gauss-Seidel-Newton converges globally when T is a symmetric and positive definite 
matrix. Another possibility would be to combine Jacobi and Gauss-Seidel iterates in 
an SOR-style, which may produce interesting theoretical and numerical results. Addi-
tionally, instead of considering projection onto the non-negative orthant, we expect to 
address the analogous equations obtained by projecting onto the second-order cone or 
the semidefinite cone. The situation is more challenging as the projection matrices in 
those cases do not have such a simple diagonal structure.
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