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1 A nocao de campo
e suas origens

1.1 Mecanica discreta e fisica do continuo

A nogao de campo originou-se e evoluiu durante o século XIX, paralelamente ao
aparecimento da eletrodinamica. Alguns eventos importantes para o desenvolvi-
mento da teoria dos campos, a partir de 1780, estao registrados na seguinte tabela.

Tab. 1.1: Eventos importantes para o desenvolvimento da teoria dos campos

1780 | Descoberta de Galvani
1785 | Lei de Coulomb
1799 | Pilha de Volta
~ 1800 | Experiéncias eletroquimicas de J.W. Ritter
1820 | Lei de Qersted
1822 | Interpretagao de Ampere do magnetismo
como eletricidade e movimento
1826 | Lei de Ohm
1831 | Lei da indugdo de Faraday
1856 | Experiéncia de W. Weber e R. Kohlrausch
1862 | Equagdes de Maxwell:
integragao da 6tica ao eletromagnetismo
1870 | Confirmagao da relagio n = /¢ por L. Boltzmann
1888 | Exibigdo de ondas eletromagnéticas por H. Hertz
1890 | Formulagao moderna das equagoes de Maxwell
por H. Hertz
1905 Relatividade restrita
1915 | Relatividade geral
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O estado do conhecimento na fisica em torno do ano 1800 pode, grosso modo, ser
caracterizado pela seguinte dicotomia:

Tab. 1.2: Conceitos basicos da fisica em torno do ano 1800

MECANICA DOS PONTOS MATERIAIS FisICA DO CONTINUO
{Atomismo) (Dinamismo)

Hidrostdtica e Hidrodinamica

Mecanica dos melos
rigidos e eldsticos
e dos gases (acustica)

Lei da gravitagao universal

Termodinamica
de Newton

Lei de Coulomb Otica

Eletricidade
Magnetismo
Galvanismo

Vida
Agao 2 longa distancia Agdo a curta distancia
instantanea retardada

Nesta época, a mecanica Newtoniana constituia o malior triunfo nao somente
da fisica mas de toda a ciéncia, descrevendo corretamente tanto as trajetorias
dos corpos celestes como o movimento de uma pedra langada na terra. O calculo
diferencial e integral, em conjunto com a mecanica, se tornara uma ferramenta
afiada e de miltiplo uso. Os sucessores de Newton completaram, de forma convin-
cente, a extensao da mecanica dos pontos materiais & mecanica dos corpos rigidos
e eldsticos, dos gases e dos liquidos (hidrostdtica e hidrodinamica), iniciada pelo
proprio Newton. Finalmente, em 1788, foi publicada a “Mécanique Analytique” de
Joseph-Louis Lagrange (1736-1813) - uma apresentagao fechada da mecanica que
inclui a mecanica dos meios continuos, baseada em alguns poucos principios, e que
continua vdlida até hoje.

Além de seu préprio dominic de aplicagio, a mecanica serviu como modelo
de disciplina cientifica, sendo que outros ramos da ciéncia tentaram imitar sua
abordagem e seus métodos. Em particular, a lei da gravitagao universal de Newton,
F = —ym;myz/|z|?, havia se tornado o exemplo padrio de uma lei de for¢a
simples com um amplo espectro de aplicagdes. O que nos tempos de Newton causara
estranheza e até um certo mal-estar por parte do préprio Newton, a saber, o fato
de que, segundo esta lei, a forga gravitacional atua instantaneamente e a longa
distancia, acabou sendo visto como completamente natural e — depois de mais
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de um sécule de sedimentagao ~ até como uma caracteristica de uma formulagao
verdadeiramente cientifica. Em contrapartida, especulagoes sobre a natureza da
gravitagao foram geralmente consideradas ociosas; o que se esperava era poder
descrever outras esferas do mundo fisico por leis semelhantes.

A descoberta da lei de Coulomb descrevendo a forga entre duas cargas foi ampla-
mente comemorada como um passo importante nesta direcao. Ademais, a mecanica
dos pontos materiais de Newton combinava perfeitamente com a idéia de que toda
a matéria seria composta de particulas microscopicas e indivisiveis, os dtomos.

Fora do dominio firmemente estabelecido da mecanica, havia uma série de outras
dreas da fisica, na sua maioria conhecidas de longa data, que ainda estavam longe de
alcangar o mesmo nivel de desenvolvimento. Entre elas estavam a termodinamica,
a Otica, a eletricidade, o magnetismo e o que na época se chamava galvanismo.
No entanto, nao faltaram esforgos para incorporar estas disciplinas & mecanica ou
pelo menos formula-las segundo o mesmo modelo.

Na termodinamica, estes esforgos foram finalmente coroados de sucesso, através
da formulagao da teoria cinética dos gases e da mecénica estatistica.

Na dtica, a teoria corpuscular dos fenémenos 6ticos vingou até que as expe-
riéncias de interferéncia de Augustin Jean Fresnel (1788-1827) evidenciaram, além
de qualquer divida, a natureza ondulatéria da luz. No entanto, a teoria corpuscular
da luz foi reanimada em 1905 por Albert Einstein (1879-1955), no contexto de sua
interpretagao do efeito foto-elétrico, e o chamado dualismo onda-particula assim
criado forneceu o impeto para o desenvolvimento da teoria quantica que, de forma
sitil e sofisticada, esclarece e supera o confronto entre estas duas interpretagoes
aparentemente tao incompativeis.

Na eletricidade, o progresso tedrico estava vinculado ao progresso tecnolégico
que permitiu, passo a passo, produzir e exibir cargas e correntes cada vez maiores
e com uma precisao cada vez melhor. Neste contexto, merecem destaque o des-
envolvimento do eletroscépio, do capacitor (garrafa de Kleist ou de Leiden), da
madquina eletrizadora (bastante popular e presente em iniimeros gabinetes de fisica)
e, acima de tudo, em 1799, da pilha de Alessandro Volta (1743-1827), que consti-
tuiu a primeira fonte estdvel de voltagens e correntes estaciondrias e sem a qual a
subsequente evolugao da eletrodinamica teria sido impossivel.

No magnetismo, devido a maior acessibilidade experimental e utilidade prética
dos fenémenos magnéticos (bussola), os fatos basicos eram conhecidos hd mais tem-
po do que no caso da eletricidade. Ademais, ja no século XVIII, a drea despertava
um interesse filoséfico especial - no minimo depois de Franz Mesmer (1734-1815)
ter causado sensagdo com suas curas magnéticas e apresentagoes de hipnose, pro-
videnciando argumentos para um parentesco especial entre fenomenos magnéticos
e fendmenos vitais e espirituais.

E perante este cenario que deve ser entendida a grande excitagio causada pela
descoberta de Luigi Galvani (1737-1798), feita em 1780: Uma coxa de ra isolada,
quando colocada em contato com dois metais diferentes ligados através de um ele-
trélito, apresentou uma convulsao. Durante algum tempo, acreditava-se que estava
aberto um caminho para o entendimento da vida e da relagio entre a matéria
animada e a matéria inanimada. Apenas em 1792, Volta argumentou que a coxa
de ra serve somente para exibir uma voltagem gerada por uma simples bateria,
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formada por dois metais diferentes e um eletrélito, e em 1799, ele conseguiu multi-
plicar o efeito na pilha por ele inventada, formada por discos alternativos de metais
diferentes separados por camadas intermedidrias de papelaoc molhado.

1.2 “Dinamismo” e a idéia de campo

Além das tentativas de reduzir novos fenéomenos a mecanica Newtoniana, existiu
um movimento contrario.

Durante séculos houveram esforgos no sentido de entender, por exemplo, a
mecanica celestial utilizando idéias provindo da hidrodinamica. De fato, a lei de
Coulomb e a lei da gravitagao universal de Newton correspondem ao campo de
velocidades de um fluido incompressivel escoando de uma fonte pontual. A mesma
dependéncia da distancia r a fonte, do tipo 1/r?, é encontrada para a luminosidade
aparente de uma fonte pontual de luz. Houve ainda outros motivos para tentar
explicar fenomenos caldricos, dticos, elétricos, magnéticos e galvanicos através da
hipdtese de que existam certos “fluidos”, quantidades caracteristicas que emanam
de corpos quentes, luminosos, carregados, megnetizados ou galvanicos e, atraves-
sando o espago, influenciam outros corpos. Uma agao a curta distancia deste tipo,
por intermediario de fluidos em escoamento, pareceu intuitivamente evidente.

Tais argumentos também fazem parte de um complexo de pensamentos e idéias
denominado “dinamismo”, desde aquela época. Em particular, a assim chamada
filosofia romantica da natureza, do idealismo alemao, estava amplamente baseada
em conceitos dinamisticos. O seu expoente filoséfico foi Friedrich Schelling (1775-
1854). Em contraposi¢ao deliberada & visao do mundo oferecida pelo atomismo e
pela mecanica - que foi rejeitada exatamente por ser mecanica, 1.e., grosseiramente
materialistica e anti-espiritual - o mundo foi imaginado como arena de uma multi-
dao de “forgas”, agindo uma com ou contra a outra. Existiu uma forga caldrica,
uma forga ética, uma forga quimica, uma forga elétrica, uma forga magnética e
uma forga galvanica, além de outras forgas no ambito das esferas da vida e do
espirito. Todas estas forgas eram apenas diferentes manifestagoes de uma 1inica
forga universal, sendo que a transi¢io de uma manifestagao para outra, ou seja, a
transformagao entre diferentes forgas, era a expressao e a0 mesmo tempo o motor
de todos os fenémenos fisicos.

A nogao de forga jd estava amplamente divulgada na fisica e na filosofia, mas
ainda nao havia sido completamente esclarecida, exceto na mecanica Newtoniana.
O conceito dinamistico de forga assemelhava-se mais com o que hoje chamamos de
energia. Impos-se a especulagio de que a forga universal nao possa aumentar nem
diminuir mas apenas mudar a forma de sua manifestagao. De fato, o principio da
conservagao da energia originou-se de idéias dinamisticas. Uma experiéncia chave
para Robert Mayer (1814-1878), que em 1841 formulou seu principio da “conser-
vagao da forga”, foi uma observagido feita como médico de bordo nos trépicos: o
sangue venoso durante a sangria era mais claro do que nas latitudes moderadas.
Como nos trépicos 2 manutengio do calor fisico e das fungoes vitais requer menos
energia, também se retira menos forga quimica do sangue. No entanto, para encon-
trar uma escala para medir a for¢a universal, era necessirio determinar os fatores
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de conversao entre as diversas forcas. Através de um argumento puramente tedrico,
a sabe:, pela comparacdo dos calores especificos de um gds com volume fixo e com
temperaiura fixa, Mayer conseguiu chegar a um valor aproximadamente correto
para o equivalente mecanico do calor.

Um outro fruto das idéias dinamisticas é, como veremos a seguir, o conceito de
campo.

A contribuigido propria de Schelling a fisica n2o é muito significativa. Con-
tudo, nos seus arredores em Jena atuou Johann Wilhelm Ritter (1776-1810), que
desempenharia um papel chave na realizagao das idéias dinamisticas. Ritter foi
uma personagem empolgante e um cxperimentador imaginativo. Ele descobriu,
por exemplo, que a geragao de uma corrente num elemento galvanico formado de
metais e um eletrdlito é sempre acompanhada por uma reagdo quimica. Houve
portanto uma transformacao de forga quimica para forga galvanica. Continuando
este racocinio, Ritter se tornou um dos fundadores da eletroquimica. [Depois, em
Munique, ele também fez esforgos para entender a “forga rhabdomantica” (forga
da varinha magica).]

Hans Christian QOersted (1777-1851) deve ser considerado um aluno direto de
Ritter. Ele passou o ano de 1802 em contato direto com Ritter em Jena e eles
permaneceram em correspondéncia ativa e regular até a morte de Ritter. Em 1820,
QOersted fez sua descoberta famosa que imediatamente causou enorme sensagao em
toda a Europa: Uma agulha magnetizada (bussola) na proximidade de uma corrente
elétrica percorrendo um fio condutor reto sofre um desvio transversal ao fio.

O que também é instrutivo € a argumentagio de Qersted. Ele interpretou o calor
num condutor gerado por uma corrente elétrica que o percorre como decorrendo
de um “conflito elétrico”, devido a colisdo entre cargas positivas e negativas, e
durante o qual forga elétrica seria transformada para forga caldrica. Convencido
da liberdade de transformacgio entre forgas diferentes, ele investigou se também
sobrasse um pouco de forga magnética. O tamanho do efeito o surprendeu.

Apds a descoberta revolucionaria de Qersted, passou pouco tempo até que, em
1822, André Marie Ampére (1775-1836) chegou a interpretar, de forma completa-
mente geral, o magnetismo como efeito de cargas em movimento e, em particular,
a suspeitar a existéncia de correntes circulares permanentes dentro do ferro para
explicar o ferromagnetismo.

Sem diivida o maior pesquisador da diregao dinamistica foi Michael Faraday
(1791-1867). A descoberta de sua lei de indugao em 1831 foi motivada pela busca
do efeito inverso & observagao de Qersted, que transformaria forga magnética em
forga elétrica. Ademais, foi Faraday que, através do seu conceito de campo, ini-
ciou a formulagio conceitual e quantitativamente correta das idéias dinamisticas.
Concretamente, ele imaginou o espago impregnado por campos constituidos de
linhas de forga elétrica e magnética que, dentro da visdo hidrodinamica acima
descrita, corresponderiam as linhas de fluxo dos fluidos correspondentes. Faraday
ndo foi capaz de dar uma descricdo matemadtica das linhas de forga, mas ele des-
envolveu idéias claras sobre seu decurso e suas interagdes, o que lhe permitiu chegar
a um entendimento intuitivo e semi-quantitativo dos fenémenos eletromagnéticos.
Posteriormente, e adiante do seu tempo por muitas décadas, ele dedicou seu tra-
balho a tentativa de estabelecer uma nogdo unificada de campo que incluiria a
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gravitacio. Por exemplo, ele procurou com afinco efeitos de indugdo gravitacional
e permaneceu convicto que esta busca nao teve éxito apenas por motivos quanti-
tativos.

O mérito fundamental de Faraday consiste na introdugao do conceito de campo,
uma nogiao completamente nova e alheia & mecanica Newtoniana. O espago, ao
invés de ser simplesmente transposto por uma agao a distancia, adquiriu um papel
ativo como sendo o substrato para linhas de forga e campos. Desta forma, Faraday
possibilitou a formulacao exata de um conceito até entao considerado misticamente
confuso e anti-cientifico, apontando o caminho para uma nova maneira de pensar
cuja fertilidade seria colocada em evidéncia logo em seguida.

1.3 A descoberta das equagoes de Maxwell

Ap6s trabalhos preparatérios realizados em 1845 por William Thomson (1824

1907), que posteriormente se tornaria o Lord Kelvin, o passo final foi1 dado por
James Clerk Maxwell (1831-1879): foi ele quem - como ele mesmo enfatizou -
colocou as idéias de Faraday na sua formulagao matematica definitiva. No entanto,
Maxwell ultrapassou Faraday num ponto decisivo: a introdugio do seu termo adicio-
nal, também chamado a corrente de deslocamento. E justamente por causa deste
termo adicional que as equagdes do campo eletromagnético por ele formuladas,
publicadas em 1862 e hoje conhecidas como as equagdes de Maxwell, além de re-
unir as forgas elétricas e magnéticas dentro de uma teoria unificada do eletro-
magnetismo, permitem solugbes ondulatérias, com uma velocidade de propagagao
que, como Maxwell percebeu, coincide com a velocidade da luz. Portanto, era
de se suspeitar que a O6tica também poderia ser vista como uma sub-area do
eletromagnetismo. Alids, um sinal claro (e acolhido por Maxwell) de que existe
um parentesco entre eletromagnetismo e dtica ja havia sido fornecido em 1856
pela experiéncia de Wilhelm Weber (1804-1891) e Rudolf Kohlrausch (1809-1858):
a comparagao entre forgas eletrostaticas e magnctostaticas resultou num fator de
proporcionalidade que é numericamente igual ao quadrado da velocidade da luz.

Desde a sua introdugao, as equagdes de Maxwell se estabeleceramn como pro-
videnciando a teoria completa de todos os fenomenos eletromagnéticos e dticos
cldssicos (i.e., ndo quanticos). Constituem uma teoria de campos — um tipo de teo-
ria fisica que na época era absolutamente novo e inédito - e do ponto de vista de sua
importancia para a fisica sé se comparam com a mecanica Newtoniana, inclusive a
lei da gravitacio universal.

Durante asdécadas a seguir, as equagoes de Maxwell foram testadas e comprova-
das iniimeras vezes. Neste contexto, merecem destaque a confirmagao experimental
da relagdo prevista n = /¢ entre o indice de refragao e a constante dielétrica
por Ludwig Boltzmann (1844-1906) em 1870 e - talvez como pedra final - a ge-
ragao e demonstragio de ondas eletromagnéticas no laboratdrio por Heinrich Hertz
(1837-1894) em 1888.

Qual era a dimensdo do progresso representado pelas equagdes de Maxwell e
como elas se chocavam com os limites dos métodos matemdticos disponiveis na
época também se evidencia através das dificuldades de sua recepgdo pelos fisicos.
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Apesar de serem quase imediatamente convencidos da grande importancia da nova
teoria, quase todos eles tiveram durante muito tempo problemas enormes com
sua compreensio. Anedoticamente, isso pode ser tlustrado pelo caso de Johann
Wilhelm Hittorf (1824-1914), professor titular de fisica na Universidade de Miinster
e altamente respeitado pelas suas contribuigdes a fisica das descargas elétricas em
gases (até hoje, o espago escuro diante do cdtodo leva seu nome): em 1889, apds
longos esforgos frustrados de entender a teoria de Maxwell, ele devolveu sua hvre-
docencia declarando que nio se sentia mais a altura das exigéncias de sua profissao.
Neste sentido, devem ser valorizados os méritos de Ludwig Boltzmann e de Heinrich
Hertz referentes a uma formulagao mais simples das equagdes de Maxwell: em 1890,
Hertz lhes deu a forma elegante utilizada até hoje.

1.4 Consideragoes sobre a nogao de campo

Todos os fenomenos eletromagnéticos podem ser descritos através de dois campos,
o campo elétrico E e o campo magnético B. A forga eletromagnética exercida sobre
um ponto material com carga ¢ que no instante t se encontra na posigao e se
movimenta com a velocidade v é a for¢a de Lorentz?

F(t,z,v) = q(E(t,z) + vx B(t,z)) . (1.1)

A possibilidade de resumir a agao da forga eletromagnética desta forma, usan-
do apenas dols campos, constitul uma simplificagdo enorme, ja que, “a priori”, a
forga sobre uma carga poderia depender de inimeros fatores, como por exemplo do
histdrico completo do arranjo experimental e nao somente do seu estado presente.

Mesmo tendo em vista o conhecimento sobre a estrutura das forgas eletro-
magnéticas expresso pela equagao (1.1), permanece a questao da realidade dos
campos E e B, pois formalmente, sempre é possivel introduzir uma fungao F
definida tal que seu valor F(t,,v) indica a forga exercida sobre um ponto mate-
rial que no instante ¢ se encontra na posigao x e se movimenta com a velocidade v.
Por exemplo, para um ponto material com massa m e carga ¢ em repouso (sob
a influéncia de um outro ponto material com massa M e carga @ em repouso na
origem), esta fungao teria a forma

Qg = (1.2)

B(p) — — & e =z
F8&(x) yMm e F*(x) preegper

||
para a forga gravitacional e a forga eletrostdtica, conforme a lei da gravitagao
universal de Newton e a lei de Coulomb, respectivamente. Todavia, poderiamos
objetar que, por exemplo, F°(z) descreve apenas a forga que seria exercida sobre
um ponto material com carga g em repouso na posigao  se ele estivesse 1d. Logo, o
campo de forga F° = ¢E mesmo, assim como o campo elétrico E, seria uma quan-
tidade 1til mas ndo indispensdvel e sem realidade propria, ou seja, independente
da presenga ou auséncia da carga teste. Realidade prépria continuaria ser atribuida
apenas as forcas entre pontos materiais, atuando a distdncia e sem intermediario.

!Neste capitulo introdutdrio, trabalhamos em unidades SI; veja o Capitulo 3.2.
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Existem dois argumentos que podem ser invocados contra a corretude desta
interpretagio, ou pelo menos contra sua utilidade.

a) Segundo as equagbes de Maxwell, a forga F exercida por um ponto material
com carga ¢; na posigdo x; com velocidade v, e sob aceleragao a; sobre um
ponto material comn carga g2 na posigdo x, com velocidade v; e sob aceleragao

a, vale 019
F = :I—;r—f%(E;“-*—vz % Bler) 4 (1.3)
onde
- 1 7o x ((ro—w1/c) x a,/c)

V(] = o2/ ro—v/c b3 - 14
E o= Ul o S Y o rimmo mfer 0
e

B' = TOXE, (15)
com
P =gxg—zy , T = ||, o = T/r. (1.6)

O indice “ret” significa que todas as quantidades cinemdticas do ponto ma-
terial (posigdo, velocidade, aceleragao) devem ser calculadas nao no instante
t mas no chamado instante retardado

et = 1 — T‘/C' (17)

ou seja, adiantado pelo tempo requerido para a propagagio de um sinal de
luz entre os dols pontos materiais.

Com certeza, esta lei mecanica é tao complicada que nao lhe pode ser atri-
buido um cardter fundamental. Ademais, a necessidade do retardamento mo-
stra que a agao de forgas eletromagnéticas ndo ¢ instantanea, mas propaga
com velocidade finita, que coincide com a velocidade da luz.

b) As equagdes de Maxwell possuemn solugdes ondulatérias que propagam no
vacuo, i.e., em regides onde nao ha cargas ou correntes. Portanto, o campo
eletromagnético nao descreve apenas a agao de forgas entre cargas, mas pode

de certo modo adquirir uma vida independente, por exemplo na forma de
ondas.

Uma vez convencidos que o campo eletromagnético pode ser considerado tao real
quanto, por exemplo, uma particula, enfrentamos imediatamente a questdo de qual
seria o meio material subjacente, uma vez que os campos cldssicos bem conhecidos
sao todos vinculados a algum meio material. Por exemplo, o campo de velocidades
de um fluido em escoamento é vinculado ao fluido e campos de ondas aciisticas
sao vinculados ao material (sélido, liquido ou gds) no qual as ondas propagam.
O meio material hipotético para o campo eletromagnético, chamado o éter, deveria
possibilitar a propaga¢io de ondas eletromagnéticas e portanto ser uma espécie de
meio eldstico, porém de um tipo muito especial: muito mais fino do que qualquer
gas porque sua presenga nao impede de forma alguma o movimento dos corpos e
porque eventuais correntes no éter nio apresentam nenhum efeito mecanico.
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Na dedug&o de suas equagoes, Maxwell utilizou um modelo mecanico que hoje,
devido a sua grande complexidade, nos parece até absurdo, mas que mostra como
naquela cgoca, pareceu imprescindivel dispor de um meio material como portador
de qualquer campo. De certo modo, o fato de Maxwell ter se sentido na obrigacao
de empregar um modelo mecénico do éter significava um recuo conceitual relativo
ao nivel de abstragdo jd alcangado por Faraday. Posteriormente, e parcialmente até
hoje, a histdria da relatividade restrita demonstra a resisténcia do preconceito que
nortela a idéia do éter.

O modelo mecanico do éter de Maxwell pode ser descrito da seguinte forma
(veja Fig. 1.1). O espago € repleto de vortices elementares, que na Fig. 1.1 sdo
representados por hexdgonos. A velocidade angular da rotagao dos vértices deter-
mina o valor absoluto e a diregao do campo magnético em cada ponto. Entre os
vOrtices encontram-se particulas carregadas, arranjadas como as esferas dentro de
um rolamento, cujo movimento corresponde a uma corrente elétrica.

Fig. 1.1: O modelo mecanico do éter de Maxwell

E possivel analisar, através deste modelo, como uma corrente de particulas carre-
gadas em formade fio causa uma rotagao dos vértices elementares que corresponde
exatamente a lei de Oersted. Na diregido oposta, uma diferenca de velocidade de
rotagdo entre vértices elementares adjacentes causa uma corrente, conforme a lei
de indugao.

Veremos mais adiante como, no final do século XIX, a idéia do éter entrou
em crise, devido a impossibilidade de detectar qualquer movimento relativo ao
éter (experiéncia de Michelson-Morley), até ser abolida na teoria da relatividade
restrita (1905) de Einstein. Finalmente, na teoria da relatividade geral (1913), o
campo gravitacional adquiriu uma posigao semelhante & do campo eletromagnético.
De fato, a teoria de Einstein foi mais longe, pois nela o campo gravitacional nio
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é dado sobre um espago (ou mais exatamente, espago-tempo) fixo, mas retroage
dinamicamente sobre sua geometria e até topologia.

1.5 A nocgao de campo na fisica contemporanea

E uma caracteristica da fisica moderna que o conceito de campo ocupa uma posigao
central, ao contrario da nogao do ponto material que, através da teoria quantica
dos campos, sofreu uma regressio ac estado de uma aproximagao: o dualismo onda-
particula identifica ambas - a onda e a particula - como aspectos diferentes de um
conceito mais geral e mais abrangente, o de campo.

Além das forgas eletromagnéticas e das forgas gravitacionais, conhecemos hoje
outras duas interagdes fundamentais, a saber a interagdo forte e a interagdo fraca
que, entre outras coisas, sao responsavelis pela coesio dos nucleos e pelo fenomeno
da radioatividade, respectivamente, sendo que a \ltima permite certos decaimen-
tos de particulas que sem ela seriam proibidos.? Em conjunto, a interagao forte
e a interagao fraca também regulam a liberagao de energia por fusao nuclear nas
estrelas, particulamente no sol.

Na seguinte tabela, estao listadas as quatro interagdes fundamentais, em conjun-
to com dados aproximativos sobre suas intensidades relativas nas zonas de distancia
em torno de 107! m e de energia em torno de 1 GeV que sdo tipicas para a fisica
nuclear e a fisica de altas energias, assim como sobre seu alcance.

Tab. 1.3: As quatro interagoes fundamentais

INTERAGAO INTENSIDADE RELATIVA | ALCANCE |
Forte 1 10~ m
Eletromagnética 10-2 oS
Fraca 10~ 10718 m
Gravitagio 10-10 oo

Cada uma destas interagdes é descrita por uma teoria de campos. Contudo, a forga
eletromagnética e a forga gravitacional sio as \inicas que, sendo de longo alcance, se
fazem notar a distdncias macroscdpicas e, neste dominio, podem ser descritas por
uma teoria cldssica de campos. A forga forte e a forga fraca so restritas a distancias
tao pequenas (tipicamente o diametro de um nicleo de um dtomo) que previsoes
fisicamente relevantes sé podemn ser obtidas através de uma teoria qudntica de
campos.

Também deve ser observado que a forca eletromagnética é imensamente mais
forte do que a forga gravitacional. Por exemplo, o quociente entre repulsio ele-
trostdtica e atragio gravitacional vale aproximadamente 103 para dois prétons e

2Evitamos a expressio “particula elementar” pois a maioria das particulas assim chamadas
acabaram ser identificadas como sendo compostas.
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4. 10%? para dois elétrons. Um outro exemplo numérico que serve para elucidar
este ponto é o seguinte. Imaginamos dois corpos de 1 mol de substancia cada um,
por exemplo duas bolas de ferro com uma massa de 56 g cada uma, e conferimos
a cada um dos dois corpos uma carga positiva, privando-o de um em cada mil dos
seus elétrons. Neste caso, e se a distancia entre os dois corpos for de um metro,
a repulsao eletrostatica entre eles seria de aproximadamente 10!* Newton, o que
corresponde ao peso de um cubo de ferro com arestas de 1 km.

O fato de que as forgas elétricas, apesar de sua intensidade e seu longo alcance,
pouco se fazem notar e portanto, do ponto de vista historico, foram descobertas
tarde, deve-se a existéncia de cargas de ambos os sinais e ao fato de que cargas do
mesmo sinal se repelem enquanto que cargas de sinais opostos se atraem. Portanto,
a nivel macroscopico, toda a matéria é constituida por uma mistura fina e essen-
cialmente homogénea de cargas positivas e negativas, cujas forgas eletrostdticas se
neutralizam quase completamente. Em contrapartida, massas sdo sempre positivas
e forgas gravitacionais sdo sempre atrativas, nao podendo ser compensadas. Assim
se explica por que no nosso ambiente as forgas gravitacionais, apesar de serem tao
enormemente mais fracas, podem sob condigdes normais predominar sobre as forgas
elétricas.

As teorias de campos para as interagGes eletromagnéticas, fracas e fortes apre-
sentam uma forte semelhanga estrutural: todos sdao exemplos de uma teoria de
calibre. Ademails, a relatividade geral também apresenta tragos de uma teoria de
calibre. Tais analogias norteliam a busca por uma unidade fundamental de todas as
interagdes fundamentais.

Nesta diregao, houve um progresso consideravel durante as iltimas décadas,
assinalado pelo aparecimento de uma teoria de calibre que unifica as interagoes
eletromagnéticas com as interagées fracas e para a qual Sheldon Glashow, Abdus
Salam e Steven Weinberg receberam o Prémio Nobel de Fisica do ano 1979. Esta
teoria das interagées eletrofracas encaixa-se perfeitamente na tradigdo de Maxwell
que, na sua época, unificara forgas elétricas com for¢as magnéticas e, ainda, com a
6tica, dentro de uma teoria universal do eletromagnetismo. Contudo, o parentesco
entre interagoes eletromagnéticas e interagoes fracas se evidencia apenas no regime
de altas energias. (Constata-se que no regime de baixas energias, a simetria entre
os dois tipos de interagao é quebrada.) Por outro lado, a unificagao de todas as
interagoes, inclusive a gravitagao, que ja fora imaginada e procurada por Faraday,
permanece até hoje um problema em aberto e uma das metas principais da fisica.

Do ponto de vista da teoria quantica dos campos, o conceito de particula é
subordinado ao do campo. Geralmente, cada particula € associada a algum campo
quantico, da mesma forma como o féton é associado ao campo eletromagnético,
e vice versa. Como na teoria quantica existermn ndo apenas particulas no sentido
tradicional, estdveis como o préton e o elétron, mas também particulas mais fugazes
como o féton, que pode ser visto como o mediador da interagao eletromagnética
entre cargas, a teoria quantica dos campos acaba abolindo a diferen¢a fundamental
entre particulas e forgas, na medida que ambas sao descritas por campos.

Finalmente, deve ser enfatizado que a importancia da teoria dos campos nao
se reduz aos campos fundamentais acima mencionados, ou seja, a fisica de altas
energias. Muito pelo contrario, no ambiente do mundo macroscépico ao nosso redor,
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a teoria classica dos campos constitui a ferramenta para a descrigao de sistemas
continuos. O escoamento de liquidos e gases, o transporte do calor, a 6tica, os
diversos fenémenos associados com processos de mistura e reagdes quimicas entre
diferentes substancias, o comportamento de plasmas, e assim por diante, ou seja,
todo o espectro de fenomenos macroscopicos, de experiéncias no laboratdrio até
a metereologia e a astrofisica, tornam-se acessiveis apenas através dos conceitos ¢
meétodos da teoria dos campos.

1.6 Formulacao matematica da nogao
de campo: consideragoes preliminares

Como ji fol mencionado vidrias vezes, a nogdo de campo reflete a idéia de que
cada ponto do espago se torna portador de qualidades e quantidades adicionais,
tais como: densidade de massa, temperatura, pressao, velocidade de escoamento,
campo gravitacional, campo elétrico, campo magnético etc..
Matematicamente, um campo, ou mais exatamente uma configuracdo de campo,
é simplesmente uma aplicagao do espaco - ou mais geralmente no caso de campos
que dependem do tempo e particularmente no ambito da teoria da relatividade, do
espago-tempo — para um conjunto F que descreve os valores possiveis do campo.
A estrutura deste codominio F nio ¢ fixada “a priori”, mas depende da natureza
do campo. Por exemplo, no caso de um campo de densidade, de temperatura ou
de pressao, F é o conjunto Bt dos nimeros reais nao-negativos, enquanto que no
caso de um campo de velocidades descrevendo o escoamento de um fluido, F é um
espago vetorial tri-dimensional. A teoria dos campos, geralmente falando, trata do
problema de determinar as configuragdes fisicamente possiveis e de calcular sua
evolugao temporal. Depreende-se que campos - ao contrdrio de sistemas de pontos
materiais - sao sistemas dinamicos com um numero infinito de graus de hiberdade,
uma vez que o estado de um sistema formado por campos serd determinado apenas
quando fixarmos os valores de todos os campos presentes em cada ponto do espago.
Queremos formular estas idéias de uma maneira um pouco ais concreta,
restringindo-nos inicialmente ao ambito da fisica cldssica, 1.e., sem levar em conta a
teoria da relatividade (restrita ou geral). Neste caso, o espago fisico pode ser descri-
to matematicamente como um espago afim tri-dimensional E®, modelado sobre um
espago vetorial Euclideano tri-dimensional que denotaremos por V3. Um campo A
é entdo uma aplicagao
A:E*—F, (1.8)

onde
zeE3— A(z)e F . (1.9)

Obviamente, campos podem depender explicitamente do tempo. Uma possibilidade
de incorporar tal dependéncia é permitir que a aplicagao A dependa do tempo .
Uma outra possibilidade, obviamente equivalente a primeira, consiste em considerar
campos nao como aplicagdes do espago mas de um continuo formado pelo espago em
conjunto com o eixo temporal para o codominio F. Um campo A com dependéncia
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do tempo é entao uma aplicagao
A:RxE*— F, (1.10)

onde
(t,z)eR x E3—3 A(t,z)e F . (1.11)

Esta interpretagio é particularmente conveniente na teoria da relatividade (restrita
ou geral), onde espago e tempo sao unificados dentro de um tnico continuo.

Campos de densidade, de temperatura ou de pressio sido exemplos de cam-
pos escalares cujo codominio €, por definigao, o corpo dos niumeros reais R ou um
subconjunto adequado de R, enquanto que campos de velocidades descrevendo o
escoamento de um fluido e campos gravitacionais, elétricos ou magnéticos sao ex-
emplos de campos vetoriais cujo codominio é, por definigdo, um espago vetorial real
V 3 Mais exatamente, V' é aqui o espaco vetorial Eulideano V? associado com o
espago afim £2) sendo que a diregio do campo em cada ponto do seu dominio é
uma dire¢ao no espago fisico. Isso pode ser verificado pelo comportamento destes
campos sob rotagoes: Se girarmos um sistema contendo campos, por exemplo um
capacitor carregado (inclusive o campo elétrico que ele gera) ou uma bobina per-
corrida por uma corrente (inclusive o campo magnético que ela gera), efetuando
uma rotagio R no espaco, a aplica¢io A serd transformada em uma nova aplicagao
A" caracterizada pela propriedade de associar ao ponto rotacionado no espaco E3
o vetor rotacionado no espago V3. Matematicamente, isto significa que

AR(Rz) = RA(z),
ou substituindo = no lugar de Rx
AR(:I:) = RA(R '2). (1.12)
Em outras palavras, a aplicagio A™ ¢ obtida da aplicagio A conforme
A" = RoAoR™}, (1.13)

ou seja, A éa composigio de A com R~! pela direita e com R pela esquerda.
E esta a lei de transformagio padrdo para aplicagdes quando as transformagdes
agem tanto no dominio como no codominio, uma lei que também pode ser expres-
sa — como ¢ bastante comum na matematica moderna - através de um diagrama

comutativo:
A

ES ) V3
R IR
AR
EB ) V3
O comportamento de campos vetoriais sob translagées € diferente: Quando deslo-
carmos o capacitor ou a bobina por um vetor a, o campo transformado associard
ao ponto deslocado no espago E? o vetor original no espago V3, ie.,

AT@ (2 4a) = A(z), (1.14)

3Em muitas areas da fisica, principalmente na teoria quantica, também aparecem campos onde
o corpo dos niimeros reais é substituido pelo corpo dos nimeros complexos.
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ou substituindo z no lugarde z 4+ a

AT@(z) = A(z—a). (1.15)
Em outras palavras, a aplicagio AT(®) ¢ obtida da aplicagio A conforme

AT@ = AoT(a)™! . (1.16)

As translacdes agem nao-trivialmente no dominio E® mas agem trivialmente no
codominio F = V3. E que o codominio F' para campos vetoriais ndo € o espago
afim E3 e sim o espago vetorial associado V3, sendo que no cilculo de velocidades
ou forgas, a origem do sistema de coordenadas € irrelevante.

Também teremos oportunidade de utilizar campos tensoriais cujo codominio
F ¢é, por definigdo, alguma poténcia tensorial de V3, talvez adequadamente sime-
trizada ou antisimetrizada.

Na teoria da relatividade, como ja foi indicado, o espago e o tempo deixam de
ser independentes e sem nenhuma interrelagido. Pelo contrério, sio fundidos para
formar um continuo quadri-dimensional chamado o espago-tempo. Na relatividade
restrita, o espago-tempo fisico pode ser descrito matematicamente como um espago
afim quadri-dimensional £, modelado sobre um espago vetorial pseudo-Euclideano
quadri-dimensional que denotaremos por V4; ambos sao hoje conhecidos como o
espago de Minkowski. Nesta situagao, as consideragdes anteriores sobre a natureza
de campos em geral e sobre campos escalares, vetorials e tensorials em particu-
lar permanecem essencialmente inalteradas, desde que substituirmos E% e R x E?
por E* ¢ V3 por V4. Na relatividade geral, porém, a estrutura do espaco-tempo ¢é
muito mais flexivel, e nés encontraremos um tipo ainda mais geral de campo onde,
essencialmente, o codominio para o campo em cada ponto do espago-tempo é um
espago vetorial diferente; no entanto, estes espagos vetoriais dependem diferencia-
velmente dos pontos do espago-tempo aos quais estio associados. (A formulagao
técnica desta idéia leva a definigao do conceito de um fibrado vetorial.) Como ex-
emplo provisdrio mas intuitivo, podemos pensar num campo vetorial tangencial v
na esfera bi-dimensional 5% que pode representar, por exemplo, um campo de velo-
cidades para o vento sobre a superficie da terra (quando negligenciarmos correntes
verticais): a cada ponto « da esfera estd associado um vetor v(z) pertencendo ao
espago tangente a esfera no ponto z. Obviamente, este espago tangente depende
nao-trivialmente e, falando intuitivamente, diferenciavelmente do seu ponto base.

Finalmente, podemos considerar campos cujo codominio F é um espaco veto-
rial (ou uma colegdo de espagos vetoriais no sentido do pardgrafo anterior) cujas
diregdes nao tém nada a ver com diregdes no espago fisico, ou seja, sobre o qual
as rotagoes no espago fisico agem trivialmente. Apesar de nao haver exemplos nao-
artificiais de tais campos na fisica cldssica, eles desempenham um papel importante
na teoria quantica, com aplicagdes na teoria da supercondutividade e na fisica de
altas energias. Neste caso, as diregoes no codominio correspondem a certos fato-
res de fase ou diregdes num espago interno ou “iso-espago”, no qual podem agir
transformagdes internas ou simetrias internas que nao tém nada a ver com trans-

formagGes no espago-tempo: sio estas as simetrias nas quais se baseiam as teorias
de calibre.
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Neste capitulo, queremos apresentar algumas nogoes fundamentais da teoria dos
fluidos. Na fisica, a nogao geral de “fluido” engloba liquidos e gases. Trata-se de uma
teoria de campos particularmente simples e concreta, na qual o campo fundamental
€ o campo de velocidades v cujo valor v(t, ) no instante ¢ e no ponto z indica a
velocidade de fluxo do fluido neste instante e neste ponto. Linhas de fluro sao curvas
cujo vetor tangente, em cada um dos seus pontos, coincide com o valor do campo
de velocidades neste ponto, num determinado instante ¢{. Em termos matematicos,
sao curvas T — x(7) que satisfazem a equagao diferencial ordindria

%) = wita(r) (2.1)
Para um campo de velocidades independente do tempo as linhas de fluxo sao
idénticas as trajetorias percorridas pelas particulas que constituem o fluido.

Para outros campos vetoriais, linhas de fluxo podem ser definidas de forma com-
pletamente andloga e, normalmente, sio chamadas linhas de campo. Geralmente,
os conceitos da dinamica dos fluidos, particularmente as equagdes de balango a
serem discutidas a seguir, sio de importancia fundamental para todas as teorias de
campos.

2.1 Equagoes de Balancgo

Num fluido em escoamento, seja p(t, ) a densidade de massa e j(t,z) a densidade
de fluzo de massa no instante { e no ponto x; portanto, p é um campo escalar e
J é um campo vetorial descrevendo o fluxo de massa através de superficies, por
unidade de tempo e por unidade de superficie. Mais exatamente, se introduzirmos
a tara de fluzo de massa no instante ¢ através de uma superficie S, ps(t), podemos
representar a massa total atravessando a superficie S entre o instante ¢, e o instante
t; como a integral

ms (2, 1) = ft: dt ps(t) , (2.2)
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enquanto que a funcio us(t) é dada pela integral de superficie

well) = fda'-j(t,m). (2.3)
s
A densidade de massa e a densidade de fluxo de massa sao relacionadas por
i=pv. (2.4)

Consideremos agora um volume fixo ¥V com bordo V. A massa total contida
em V no instante t é

my(t) = /;d%: p(t,z)

Se no interior de V nao ha fontes ou sumidouros que criem ou aniquilem massa,
entio a massa contida em V s6 pode ser alterada por escoamento de massa através
do bordo 8V de V. Portanto, com orientagao da normal de V" para fora, vem

4 0 dm ]
[’d":r 6—?(!,:1:) = -Eii(t) = —pav(t) = _./ax do - j(t, x)

= - [ d% (V-j)(t,=),
‘I
onde no iltimo passo foi utilizado o teorema de Gauss. Como este argumento vale
para volumes V' quaisquer, obtemos assim a equagdo de balango ou equagdo de

continuidade para a massa,

op :

— +V.3=0 2.5
5 TV ) (2.3)

que é a expressao matematica da lei da conservagdo da massa

Equagdes de balan¢o podem ser formuladas ndo apenas para a massa mas
também para outras quantidades extensivas com distribui¢ao continua no espago e
dependéncia do tempo. Uma quantidade associada a um sistema fisico é chamada
ezlensiva se seu valor duplica, triplica, ... quando duplicamos. triplicamos, ... o
sistema. Exemplos sdo a massa, o nimero de particulas, a carga elétrica, a energia,
o momento linear, 0 momento angular, a entropia, a energia livre, etc.; contra-
exemplos sao a temperatura ou a pressao. No entanto, quando formularmos uma
equacao de balango para uma quantidade extensiva qualquer a. temos que levar em
conta a possibilidade da existéncia de fontes ou sumidouros, que também podem
apresentar uma distribuigao continua no espago, assim como uma dependéncia do
tempo. Portanto, a forma geral da equagdo de balango ou equagdo de continuidade
para uma quantidade extensiva a é

dp°

ot
onde p° é a densidade, 7° é a densidade de fluzo e q° é a densidade de produgdo da
quantidade a; a 1ltima descreve entio a taxa de criagdo por fontes (¢° >0) ou de
aniquilagdo por sumidouros (q% < 0) da quantidade a, por unidade de tempo e de
volume. Em termos de formas diferenciais, a equagao (2.6) assume a forma

+V.§% = g%, (2.6)

g 1

BP i &
a = g 2.7
=+ i, (2.7)

com as 3-formas p% = xp?® e §9 = *¢® assim como a 2-forma j® = *j°.
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2.1 Equagées de Balango

A existéncia de fontes e sumidouros (¢ # () indica, em geral, que a quantidade

a nao é conservada ou, ainda, que o sistema fisico considerado ndo é fechado.

De fato, uma quantidade extensiva a é chamada uma quantidade conservada e

a equagdo de balango correspondente é chamada uma lei de conservagdo se, em

sistemas fisicos fechados, a correspondente densidade de produgao ¢° se anula, ou
seja, se vale

dp°

ot

Sistemas fechados sao os sisternas {isicos que nao estao trocando quantidades ex-
tensivas com outros sistemas fisicos. Para um entendimento correto deste conceito,
é necessario observar que troca de uma quantidade extensiva a entre dois sistemas
fisicos 1 e 2 pode contribuir, em ambos os sistemas, tanto a densidade de fluxo 3
e j5 como i densidade de produgdo ¢} e g§. O primeiro caso ocorre quando os
dois sistemas estao localizados em regides separadas mas adjacentes no espago e
a troca esta sendo efetuada por fluxo através da interface entre os dois, enquanto
que o segundo caso ocorre quando os dois sistemas se sobrepoem no espago, parcial
ou totalmente. Portanto, num sistema aberto, mesmo uma quantidade conservada
a pode ter uma densidade de produgdo ¢® # 0. mas neste caso as fontes e os sumi-
douros que existemn podem ser explicitamente identificados e atribuidos a um outro
sistema aberto que esta em interagao com o primeiro.

+ V. =0. (2.8)

Como exemplo tipico, consideremos a troca de energia e momento entre um
conjunto de cargas elétricas (sistema 1) e o campo eletromagnético (sistema 2)
ao qual estdo sujeitos e que geram: energia ¢ momento sé do sistema de
particulas carregadas, assim como energia ou momento s6 do campo eletro-
magnético, ndo sao conservadas - uma vez que, por exemplo, a troca de
momento entre os dois ¢ expressao da forca de Lorentz que o campo eletro-
magnético exerce sobre as cargas. Mas ambos os sistemas, 1 e 2, que se sobre-
poem totalmente no espago, sdo subsistemas abertos de um sistema total
1 + 2 que ¢ fechado, e portanto a soma das respectivas quantidades (energia
das particulas + energia do campo e momento das particulas + momento
do campo), esta sim, é conservada.

A titulo de exemplo de uma quantidade extensiva nao conservada, podemos men-
cionar a entropia S. No entanto, esta ocupa uma posi¢ao hibrida entre quantidades
conservadas e ndo conservadas, pois o segundo teorema fundamental da termo-
dinamica afirma exatamente que, em sistemas fechados, vale a desigualdade g5 > 0,
ou seja, entropia pode ser criada mas nao pode ser aniquilada.

Ao contrdrio do que acontece no caso da massa, a relagao entre o campo de
velocidades, a densidade e a densidade de fluxo de uma quantidade extensiva geral
a em fluidos pode ser complicada, pois o transporte da quantidade a pode se efetuar
por dois processos distintos.

a) Por convecgdo (transporte com o fluxo):
Isto gera a parte convectiva jg ., da densidade de fluro, definida por

Jéonw = PV . (2.9)
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b) Por condugdo:
Isto gera a parte condutiva jg,,q da densidade de fluro que pode estar pre-
sente mesmo quando v = 0 ou p® = 0 - por exemplo no caso da condugao
térmica ou da condugao elétrica ao longo de um fio eletricamente neutro.

Portanto, a densidade de fluxo total é dada pela soma

jﬂ = jgom’ + jgond = pav + jgond ) (210)
e a equacao (2.4) pode ser vista como a afirmagio de que, no caso da massa, nao
hd transporte por condugao.

2.2 Balanco de momento linear
e de momento angular

Formular a equagao de balango para o momento linear constitui um caso particular-
mente interessante e importante. Como o momento linear é uma quantidade de
natureza vetorial, teremos que estabelecer, separadamente, trés equagdes de ba-
lango: uma para cada componente. Escrevemos pP para a densidade do i-ésimo
componente do momento e jf. para o k-ésimo componente da densidade de fluxo
do i-ésimo componente do momento. Portanto, neste caso, a densidade ja é um
campo vetorial e a densidade de fluxo é um campo tensorial de grau 2.

Fontes do momento s@o forgas externas que agem sobre o sistema, ou seja, a
densidade de produgao de momento é a densidade de for¢a que denotaremos por f.
Com estas convengoes, a equagao de balango para o momento torna-se

ool
ot

A presenga de um campo gravitacional externo g, por exemplo, requer introduzir
uma densidade de forga f = pg.

+ 0,k = £ (2.11)

A densidade de fluxo de momento possui uma outra interpretagao que é muito
importante, pois o momento atravessando uma superficie por unidade de tempo
pode ser visto como forga de pressao exercida sobre esta superficie. Mais exata-
mente, jf descreve o i-ésimo componente da forca de pressio exercida sobre um

elemento de superficie com normal na k-ésima diregao e, portanto, a integral de
superficie

B = /dok ik (2.12)
S

descreve o i-ésimo componente da forga de pressio exercida sobre uma superficie S
pelo fluxo de momento considerado. Se, em particular, S for o bordo 8V de um
volume V, a equagao (2.12) pode ser reescrita na forma

F = ] do, jE = fd% il | (2.13)
Vv v

representando o i-ésimo componente da forga de pressdo que o volume V' exerce
sobre sua vizinhanga.
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2.2 Balanco de momento linear e de momento angular

Em fluidos, temos
P.P = Py (2.14)

ih = pvivg + oy (2.15)

onde p ¢ a densidade dec massa e ¢ ¢ a parte condutiva da densidade de fluxo
de momento, sobre a qual nao hd nenhuma informagao adicional dada “a priori”.
Segundo a interpretagao descrita acima, ¢ representa as forgas de pressao que nao
sao geradas pelo escoamento das particulas do fluido, o que justifica chamar ¢ o
tensor de pressao.

De forma completamente andloga a equagao de balango para o momento linear,
podemos formular a equacio de balanco para o momento angular. Seja pf a densi-
dade do i-ésimo componente do momento angular e j5 o k-ésimo componente da
densidade de fluxo do i-ésimo componente do momento angular.

Fontes do momento angular sao torques externos que agem sobre o sistema, ou
seja, a densidade de produgao de momento angular é a densidade de torque que
denotaremos por t. Com estas convengdes, a equagao de balango para o momento

angular torna-se
apk
ot

Para o escoamento de fluidos normais, podemos justificar as seguintes hipoteses:

+ 8k = ti . (2.18)

a) Nao hd momento angular “interno”, ou seja, existe apenas momento angular
orbital. Isto significa que, para volumes suficientemente pequenos, o momento
angular ja ¢ determinado pelo momento linear, segundo a formula L = z x p.
Portanto, a densidade e a densidade de fluxo de momento angular podem ser
expressas em termos da densidade e da densidade de fluxo de momento linear,
respectivamente, como segue:

L P
Pi = GuTiP (2.17)
of, P
Jik = Tk - (2.18)
b) Nao hd torque “interno”, ou seja, existe apenas torque orbital. Isto significa
que, para volumes suficientemente pequenos, o torque ja ¢ determinado pela

forca, segundo a férmula T = z x F. Portanto, a densidade de torque pode
ser expressa em termos da densidade de forga, como segue:

i = €5 ijl 3 (2.19)
Em particular, temos t = 0 quando f = 0.

Na sua grande maioria, os sistemas encontrados na hidrodinamica e na mecanica
dos meios continuos satisfazem as hipdteses a) e b). Um contraexemplo seria um
sistema de particulas com spin e portanto com momento magnético, tal como um
gas de elétrons, dentro de um campo magnético externo.
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Sob as hipéteses a) e b), a equagao de balango (2.16) para o momento angular
implica .

dp ’
6T _61—!_ + Bk (et T; ) = &uzifi,

8plp a - P 7
T\ B + Ok | + G dik = Gz fi -
Usando a equagao de balango (2.11) para o momento linear, concluimos que

.P o
Gerdie = 0,

i = .9k s (2.20)

afirmando que a densidade de fluxo de momento linear deve ser um campo tensorial
simétrico.

2.3 As equacoes de Navier-Stokes
Em fluidos, temos, de acordo com as equacoes (2.15) e (2.20)
i o= pvive + oy

com um tensor de pressao simétrico ¢. Uma parte deste tensor pode ser facilmente
identificada: a pressdo escalar p providencia uma contribuigao isotrépica pd;x a ok,
ou seja, temos

T = Pl + 0fy (2.21)

A parte restante ¢' do tensor de pressio ¢ descreve fricgdo interna no fluido.
Voltaremos a discutir este termo mais adiante.

Com as expressoes obtidas até agora, a equagao de continuidade (2.11) para o
momento linear no fluido torna-se

a I
E(PU:) + O (pvive + poi + i) = S,

ou
a a 1 !
'a_fvi + Pa_vt + v; B (pug) + pux Ok v; + Oip + G0y = ;-
Usando a equagao de continuidade
%‘19 + V-(pv) = 0 (2.22)

para a massa (veja as equagdes (2.4) e (2.5)) podemos simplificar:

p(5 + wdho) + i + ol = £ (2.23)
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Um fluido ideal é, por definigdo, um fluido no qual nao ha fricgao interna e,
portanto, vale ¢’ = 0. Neste caso, a equagdo (2.23) se reduz a equagdo de Euler
para o escoamento de fluidos ideais:

p(%? + (v-V)v) + Vp = f. (2.24)

Os diferentes termos nesta equagao tém uma interpretagao simples. Primeiro, defi-
nimos para qualquer campo A um novo campo DA/ Dt por

%?(!,m) = (%—? -+ (v»V)A) (t,x)

~ At + Atz + v(t, z)Al) — A(L, z)
= arSe At '

(2.25)

DA/Dt é chamado a derivada substantiva de A; ela descreve a variagdo temporal
de A que observamos quando nos movimentamos junto com o fluido - ao contrario
da derivada parcial 8A/81 de A, que descreve a variagao temporal de A num ponto
fixo do espago. Em particular, Dv /Dt descreve a variagao temporal de v, ou seja,
a aceleracao a qual estd sujeito um elemento de massa do fluido na sua trajetéria.
Ademais, —Vp é a forga de press@o agindo sobre um elemento de massa do fluido,
direcionada da regiao de pressio mais alta para a regido de pressdo mais baixa.
Assim, reconhecemos a equagdo de Euler, escrita na forma

p o = F-Vp, (2.26)

como sendo a equagao de movimento de Newton para um fluido ideal. Usando a
identidade

vx (Vxv) = V(@) - (vV)v (2.27)
a equagdo de Euler também pode ser escrita na forma

p(%—?ﬁ-%V(v?)-—vx(va))Jer:f. (2.28)

Faremos agora algumas hipdteses adicionais:
a) O fluido é incompressivel:
p(t,z) = pp = const. . (2.29)

(Obviamente, isto ¢ uma aproximagao util apenas no caso de liquidos, ndo
no de gases.)

b) O escoamento é estaciondrio:

ov
e =0 (2.30)
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c) O escoamento é irrotacional:

Vxv=0. (2.31)

d) A forca externa deriva de um potencial:

f=-V¢. (2.32)
EntZo a equagao (2.28) torna-se
V(%p01;2+p+¢) = 0, (2.33)
Le.
%povz+p—i—é = const. (2.34)

Esta é a bem conhecida lei de Bernoulli, expressando a lei da conservagao da cnergia
para fluidos ideais incompressiveis. (Se omitirmos a condigao (2.31), a expressao
no lado esquerdo da equagdo (2.34) serd constante apenas ao longo de cada linha
de fluxo.) O caso mais simples é o da hidrostdlica:

v=0. (2.35)
A equagao de Euler se reduz entdo a condigio de equilibrio hidrostdtico
Vp = f. (2.36)

No campo gravitacional homogéneo, temos f = pg e, para fluidos incompressivels
(veja a equagdo (2.29))
Vip-pg-z) =0, (2.37)
com a solugao
p(x) = pog -z, (2.38)
que € o bem conhecido aumento linear da pressao com a profundidade. Finalmente,

segundo a equagao (2.13), o i-ésimo componente F; da forga de pressiao exercida
pelo fluido sobre um corpo nele inserido é

Fi=—[ dfjh = —/ d*z Bjf - (2.39)
av v

Naturalmente, a distribuicido da pressao no interior de um corpo inserido no fluido
¢ diferente da que encontrariamos na auséncia do corpo. A iltima equagao mostra,
porém, que o resultado s6 depende dos valores da densidade de fluxo de momento
na superficie dV da regido do espago ocupada pelo corpo. Portanto, para calcular
a integral nesta equagao, podemos empregar uma campo tensorial qualquer, desde
que tenha os valores corretos na superficie V' de V. No presente caso, podemos
usar jﬁ = pé;r ¢ obtemos

akji"i: = 0p = P09;



E— a—y—

——

7

2.3 As equagbes de Navier-Stokes

com o resultado
F=—plVlg, (2.40)

onde |V| é o volume da regiao V: isto é a bem conhecida le: do empuzo de Arqui-
medes.

Finalmente, queremos levar em conta os efeitos da fricgao, que se manifestam
no tensor de fricgdo o', a parte do tensor de pressao o introduzida na equagao
(2.21) Fricgao é uma conseqiiéncia do movimento relativo entre as particulas do
fluido e portanto sé pode existir quando Giux # 0.

A hipdtese mais simples é a de uma dependéncia linear entre o tensor de fricgao
oir e o gradiente do campo de velocidades 6;ux. O campo tensorial simétrico de
grau 2 mais geral que depende de forma linear e rotacionalmente covariante de d;vx
é

ok = =1 (00 + dv; - gd:karvr) ~ §d v, , (2.41)

onde )& separamos a parte J,v, responsavel pelas deformagoes do fluido que al-
teram o volume. A quantidade 75 se chama viscosidade e a quantidade ¢ viscosidade
de volume. Fluidos que satisfazam a simples lei (2.41) sao chamados fluidos Newto-
nianos. Para fluidos nao-Newtonianos (tais como sangue, mel, areia himida etc.),
no entanto, a relagao entre o, e d;vx pode ser muito mais complicado.
Substituindo a equagdo (2.41) na equagao de continuidade (2.23) para o mo-
mento e supondo que 7 e { sdao constantes, obtemos as equagées de Navier-Stokes:

dv
p(a + (U-V)v)+ Vp—9Av - (in+()V(V-v) = f. (2.42)
Em conjunto com a equagao de continuidade (2.22) para a massa, sao quatro
equagbes para cinco fungoes a serem determinadas: v, p, p. Portanto, o sistema
ainda € subdeterminado, até que seja exibida uma quinta equagio, por exemplo na
forma de uma equagao de material

p=p(Tp, (2.43)

onde T é a temperatura. Mesmo assim, o sisterna permanece subdeterminado -
exceto quando mudangas de temperatura podem ser negligenciadas. Caso contrario,
devemos levar em conta também os efeitos da condugao do calor.

As equagdes de Navier-Stokes s3o as equagoes fundamentais da hidrodinamica.
Devido ao fato de serem nao-lineares, sua solugao é extremamente dificil e, em
situagdes gerais, impossivel. Atualmente, o entendimento de fendmenos especiais,
principalmente o da turbuléncia, é tema da pesquisa. Uma discussao de questoes
desta natureza ultrapassaria os limites de um texto introdutério e deve ser reservada
para a literatura mais avangada.
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3.1 Introducgao as equagoes de Maxwell

A experiéncia, acumulada durante quase dois séculos, demonstra que todos os
fenomenos eletromagnéticos estdo ligados a existéncia de uma nova quantidade
extensiva denominada carga elétrica ou simplesmente carga. Ela é uma quantidade
conservada e estd sujeita a uma equagao de balango do tipo descrito no capitulo
anterior. No que segue, denotaremos a densidade de carga por p e a densidade de
fluxo de carga, ou densidade de corrente, por j, o que permite escrever a lei de
conservagio da carga na forma
QE+V-]' =0. (3.1)

ot
Outro fato de carater experimental é que todos os fenémenos eletromagnéticos
podem ser entendidos em termos de dois campos vetoriais: o campo elétrico E e
o campo magnético B; frequentemente, B também é chamado indugdo magnética.
Mais exatamente, temos a seguinte afirmacao.

A forga cletromagnética exercida sobre uma carga pontual ¢ que no instante ¢
se encontra na posigio = e se move com velocidade v é a for¢a de Lorentz

F(t,z,v) = ¢E(t,z) + kqu x B(t,z) .
Abreviando, podemos escrever esta equagao - como é de costume - na forma
F = gE + kqu x B . (3.2)

A constante x sera determinada apenas quando fixarmos as unidades de medida
para a carga, o campo elétrico e o campo magnético; este assunto serd abordado
mais adiante.

A lei de forga (3.2) permite uma defini¢ao operacional dos campos E e B - pelo
menos na medida em que a retroagédo da carga g sobre os campos E e B pode ser
negligenciada. Isto é o caso para cargas teste, ou seja, no limite de cargas pequenas,
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de modo que E e B podem ser determinados, pelo menos em principio, através da
passagem ao limite

lim —

q—=+0 q
e subsequente separagdo em uma parte que nao depende da velocidade e uma parte
que depende (linearmente) da velocidade.

Quando consideramos, ao invés de uma carga pontual g, uma distribuigao geral
de cargas e correntes, caracterizada por uma densidade de carga p e uma densidade
de corrente j, temos que substituir a forga de Lorentz pela densidade de for¢a de
Lorentz, dada por

f =pE+kjxB. (3.3)

As leis de forga (3.2) e (3.3) determinam a influéncia que um dado campo
eletromagnético exerce sobre cargas e correntes, mas nao dizem nada a respeito da
dinamica do préprio campo eletromagnético, ou seja, a respeito das leis que regem
sua geragao e propagagao. Estas leis sdo as equagoes de Maxwell. Trata-se de um
sistema de equagoes diferencials parciais que expressam a divergéncia e o rotacional
de E e de B em termos de uma dada densidade de carga p e uma dada densidade

de corrente j, além das primeiras derivadas parciais de E e de B em relagiao ao
tempo, conforme segue:

V.E = kyp, (3.4-a)
0B

VxE = —;\.2"5{' y (34-b)

V.B =0, (3.4-c)

VxB = k3j+k4%—f:, (3.4-d)

com constantes ki, k2, k3 e k4 ainda a serem especificadas. Este sistema de equagdes
determina E e B unicamente, pois sob condigdes de fronteira apropriadas (como,
por exemplo, decaimento suficientemente rapido ac infinito), um campo vetorial
A ¢ unicamente determinado por sua divergéncia D = V- A e seu rotacional
R =V x A (sendo que este deve satisfazer & condigdo suplementar V- R = 0).

De fato, sejam A, e A, dois campos vetorais taisque V. A, =D =V . A,
e Vx A =R =V x A,. Entio sua diferenca A = A, — A, satisfaz as
condigdes V-A =0 e V x A =0; portanto, podemos escrever A = —V¢,
onde A¢g =V .V¢=0. Como sera mostrado no Capitulo 4, a tinica solugao
limitada da equagao de Laplace A¢ = 0 que nao apresente nenhum tipo de
singularidade é a solugdo constante ¢ = ¢o, o que implica A=0¢ A, = As.

Deve-se ressaltar que — ao contrério da situagdo que prevalece nas leis de forga - a
distribuicao de cargas e correntes nas equagdes de Maxwell deve ser interpretada
como a fonte do campo elétrico e magnético e ndo como o objeto de agdo das forgas
exercidas por estes campos.
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No que segue, queremos primeiro reescrever estas equagoes diferenciais em forma
integral e, ao mesmo tempo, esclarecer seu significado fisico. Como veremos, a
consisténcia deste sistema de equagdes com as leis de forga de Lorentz (3.2) e (3.3)
e com a lei de conservagdo da carga (3.1) impde as seguintes relagOes entre as varias

constantes:
k3

ki
Além disso, costuma-se expressar as constantes k; e k3 em termos de duas con-
stantes denotadas por €g € jip, COMO Segue:

kg:}( [ kq:

Assim, as equagoes de Marwell assumem a forma

P

V-E = — | (3.5-a)
€0
oB
VXE-—"P\,E, (35‘[))
vV-B =10, (3.5-¢)
V x B = &g (_7 + € %—If) : (3.5-d)

Fixando ¢y determina as unidades de medida para E e p, assim como para j,
enquanto que fixando ug ou & determina a unidade de medida para B; esta questao
sera discutida na proxima secao

3.1.1 Leide Gauss

O conteido fisico da primeira equagio de Maxwell (3.5-a) é o teorema do fluro para
o campo elétrico:

O fluxo do campo elétrico através de uma superficie fechada é proporcional a carga
total contida no seu interior, i.e., para um volume V qualquer com bordo 8V vale

X, (3.6)

5y = df-E:—l—de:cp
€0 Jv €0

av
De fato, o teorema de Gauss permite concluir que a equagao (3.6) € equivalente a
condigao

1
fd3:r:V-E=-— d3z p,
v €0 Jy

e como esta vale para volumes V quaisquer, a equagdo (3.5-a). Intuitivamente, o
teorema do fluxo afirma que as fontes e sumidouros do campo elétrico sao exata-
mente as cargas elétricas: é nelas que comegam e terminam as linhas do campo
elétrico.
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Para campos estdticos, o teorema do fluxo segue diretamente da lei de Coulomb,
segundo a qual o campo eletrostdtico de uma carga pontual ¢ localizada no ponto
zp é dado por

g T—To
dmeo |z — zof*
Apbds integragio explicita sobre a superficie B de uma bola B em torno do ponto
zo e de raio r, vem

Ec(z) = (3.7)

do‘-Ec = i,
aB €0

independentemente de r. De fato, 0 mesmo resultado vale para a integral sobre a
superficie 3V de um volume V qualquer em torno do ponto zg

/ do-Ec = i,
av )

pois se B é uma bola em torno do ponto g e de raio suficientemente pequeno para
que BcV ese W =V\B, entao V- Ec = 0 sobre W e portanto

f do - Ec — do-Ec = dq-Ec:[d%v-Ec:U.
av aB aw w

(Veja Fig. 3.1))

Fig. 3.1: Independéncia do fluxo elétrico de uma carga pontual da forma especifica
da superficie

Passando de uma unica carga pontual a um sistema de cargas pontuais e, mais
geralmente, a uma distribuigado qualquer de cargas, obtemos o teorema do fluxo da
eletrostdtica.

Reciprocamente, para campos estaticos, a lei de Coulomb é uma consegiiéncia
do teorema do fluxo, em conjunto com o fato de que, de acordo com a equagao de
Maxwell (3.5-b), campos eletrostaticos sao irrotacionais. Sem querer entrar em de-
talhes, podemos apresentar a idéia do argumento da seguinte forma. Inicialmente,
a propriedade de que campos eletrostdticos sao irrotacionais garante que o campo
elétrico gerado por uma carga pontual localizada no ponto xg ¢ o gradiente de um
campo escalar que, devido a invariancia das equagoes sob rotagdes no espago em
torno do ponto g, depende apenas da variavel radial r = |z — zg|. O teorema do
fluxo garante entao que este potencial deve ser proporcional a 1/r.
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Concluindo, observamos que a equagao de Maxwell (3.5-a) exige a validade do
teorema do fluxo também para campos elétricos que dependem do tempo; ela e o
teorema do fluxo sao frequentemente chamados a lei de Gauss.*

3.1.2 Auséncia de cargas magnéticas

O conteido fisico da terceira equagao de Maxwell (3.5-c) é o teorema do fluzo para
o campo magnético:

O fluxo do campo magnético através de uma superficie fechada se anula, i.e., para
um volume V qualquer com bordo 3V vale

v = f do-B = 0. (3.8)
av

De fato, o teorema de Gauss permite concluir que a equagao (3.8) é equivalente a
condigido

/daxV~B:0,
v

e como esta vale para volumes V' quaisquer, a equagao (3.5-c). Intuitivamente, o
teorema do fluxo afirma que o campo magnético ndo possul fontes ou sumidouros,
ou seja, ndo existemn cargas magnéticas: as linhas do campo magnético sao sempre
fechadas.

3.1.3 Lei de indugao de Faraday

O significado fisico da segunda equagdo de Maxwell (3.5-b) é a lei de indugdo de
Faraday:

A circulagdo do campo elétrico ao longo de uma curva fechada é proporcional &
derivada total, em relagdo ao tempo, do fluxo magnético que a atravessa, I.e., para
uma superficie S qualquer com bordo 84S vale

d/ d
de - FE = —x— | do- B = —x —®7 . 3.9
/;5 dt Js di B3

Observe que nao apenas o lado esquerdo mas também o lado direito desta equagao
depende apenas de 8S e nao de S mesmo; isto vale até para o préprio fluxo
magnético F: De fato, se S; e 53 sdo duas superficies cujo bordo € a mesma
curva v, entao juntas elas formam a superficie 8V de um volume V, e usando o
teorema de Gauss em conjunto com a equagdo de Maxwell (3.5-c), vem

? -7 = da-B:/d:‘rV»B:O.
oV v

‘E importante distinguir claramente entre a lei de Gauss e o teorema de Gauss, sendo que
o iltimo é usado para demonstrar a equivaléncia entre as duas formulagdes da primeira - a
formulagao diferencial (3.5-a) e a formulagao integral (3.6).
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(O sinal negativo no primeiro termo deve-se ao fato de que o campo normal sobre
8V, orientado para fora, é necessariamente antiparalelo ao campo normal de uma
das duas superficies (digamos, Sz2) se for escolhido a ser paralelo ao campo normal
da outra (digamos, S)), pois temos que exigir que ambas as superficies sejam
orientadas da mesma forma, segundo a regra usual da mao direita, relativamente
ao seu bordo comum 7.)

A denominagao “lel de indugde” decorre do fato de que, segundo a equagao de
Maxwell (3.9), a variagao temporal do fluxo magnético através de uma superficie
S cujo bordo é formado por um fio condutor fechado v induz uma voltagem

Upnd = —x "(i' q,rFr‘\ (3]0)
dt
ao longo do condutor. O sinal negativo nas equagoes (3.5-b), (3.9) e (3.10) indica
que a corrente no condutor gerada por esta voltagem, em conjunto com o campo
magnético por ela criado, tenta se opor a variagio original do fluxo -~ um aspecto
do fenémeno de indugao conhecido como a regra de Len:z.

A equagao de Maxwell (3.5-b) é a formulagao diferencial de um caso particular
da lei de indugdo - o caso onde a superficie S permanece constante no decorrer
do tempo. De fato, nesta situagao, o teorema de Stokes permite concluir que a
equagao (3.9) € equivalente a condigao

d dB
/sdo'-(VxE) = —ha[sda-B B —K./Sdcr»ﬁ—.

e como esta vale para superficies S quaisquer, a equagao (3.5-b).

No entanto, uma variagao do fluxo magnético ®F através de uma superficie S
pode resultar tanto de uma mudanga do préprio campo magnético como de um
movimento da superficie S e do seu bordo dS. Como veremos a seguir, a lei de
indugdo de Faraday, na forma da equagao (3.10), cobre ambos os casos. desde que -
como ja foi afirmado anteriormente e antecipado pela notagao utilizada na equagao
de Maxwell (3.5-b) - a constante k» na equagdo de Maxwell (3.4-b) e a constante
Kk nas leis de forca de Lorentz (3.2) e (3.3) sejam idénticas.

Para demonstrar esta afirmagao, consideremos um fio condutor fechado, movi-
mentado (e até deformado) de maneira arbitraria, dentro de um campo magnético
B. No instante ¢, calculamos o fluxo magnético ¢?(!) através de uma superficie
S(t) cujo bordo é uma curva fechada () que descreve a localizagao do referido fio
condutor neste instante. Ademais, suponhamos que no decorrer do tempo, por ex-
emplo entre dois instantes ¢, e ¢, as curvas «(t) percorrem uma superficie M (¢,, t3)
e as superficies S(t) percorrem um volume V/({;,%;) - tipicamente o manto e o in-
terior de um cilindro deformado, respectivamente. As curvas y(t) e as superficies
S(t) serdo parametrizadas em termos de um parametro 7 e de dois parametros o, T,
respectivamente, sendo que a escolha destes parametros ndo deve depender de i,
o que garante que a superficie M (t;,2) e o volume V (t,2) serdc parametriza-
dos por 7,t e por o,7,t, respectivamente, com t; < t < 1p. (Veja Fig. 3.2.)



-225-

3.1 Introdugao as equagdes de Maxwell

Fig. 3.2: Um fio condutor fechado movimentado que, em cada instante ¢, forma
uma curva y(t¢) fechada que é o bordo de uma superficie S(f) e que, entre dois
Instantes ¢, e ty, percorre uma superficie M (t;,%3) que inclui o volume V' (;,15).

Entdo para qualquer campo vetorial A, vale

/smdcr-A = [dadr (g—j(t,a,r) X g—;(z,a,r)) CAt z(t, o, 7))

Oz dx )
do- A = did (1, 7) x =—(t, 7)) Alt,z(t, 7)) .
/m.,.,) 7 / T(ar( ) x g7 ) - Altz(t,7))

Diferenciando a segunda destas trés equagoes em relagao a t e usando a regra da
cadeia, vemnos que a derivada total do fluxo de A através de uma superficie S em
relagao ao tempo pode ser escrita como a soma de duas contribuigoes - uma que
reflete a dependéncia explicita de A e uma que reflete a dependéncia de S, em
relagao ao tempo:

d 0A d'
Ll CA = i — [ do-A. 11
dt_/sdo A ﬁda 5 + dt_/_; c-A (3.11)

No cdlculo da segunda contribuigio, podemos fingir que A nao apresente nenhuma
dependéncia explicita do tempo, pois temos, por definigao,

d’ d
d—tfsd"'“‘l.ﬂ., = afsd""“o

onde A;, ¢é definido por “congelamento” do argumento temporal de A no valor tg:

, (3.12)

t=to

A;D(E,I) = A(‘o,z) . (313)

Isso posto, podemos concluir da equagao (3.5-c), em conjunto com o teorema de
Gauss, que para uma campo magnético B estatico, i.e., sem dependéncia explicita
do tempo, vale
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f do-B - do - B =/ dsxV-B—/ do B
5(ta) S5(ny) V(ty,ta) M(ty.t2)
= —/ do - B
M(ty,ta)

=z dz
_/“S!S” dtdr ('a—T(f T) X E(t r)) - B(z(t, 7))

- [ ar (Gt x Ftn)) - Blatta,)
—-/dr g—f(to,,-) (?,;(to, ) B(:c(io,r))) .

Para uma campo magnético arbitrdrio B, podemos aplicar este argumento ao
campo magnético estdtico B, para concluir que

d’ 0
¢ 48], /df (to, '(3—::(1017)XBU0,3?(10,")))~

ou mais brevemente (usando que tg era arbitrario),
d/

e portanto

ifda-Bl
dt 5 t=tp

Il

do-B = /dm-(va).
v

Ademais, aplicando o teorema de Stokes a equagao (3.4-b), obtemos

ukgfda-a—B = /da:‘E.
s ot i

Portanto, a equagao (3.11) fornece para o lado direito da lei de indugdo a expressao
d
—k2-/do'»B = -/dIZS‘(E-{-kg"UXB) .
dt Js +

Por outro lado, em cada instante ¢ fixo, a voltagem induzida entre dois pontos no fio
condutor € igual ao trabalho virtual necessdrio para transportar uma carga pontual
¢ que se encontra no fio de um ponto para o outro, dividido por g. Explicitamente,
tendo em vista a lei de forga (3.2), isto significa que a voltagem circular induzida
ao longo do fio condutor, que corresponde ao trabalho virtual necessédrio para dar
uma volta completa, dividido pelo valor da carga, vale

Upd = fdmv(E+xva).
N

Isto conclui a demonstragio da afirmagao: A equagio (3.10) é vilida geralmente,
para campos magnéticos arbitrarios e fios condutores fechados movimentados de
maneira arbitrdria, se e somente se ky = .
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3.1.4 Lei de Ampere

O significado fisico da quarta equagdao de Maxwell (3.5-d) é a lei de Ampére,
inclusive o termo adicional de Mazwell:

A circulagao do campo magnético ao longo de uma curva fechada é composta de
a) um termo proporcional a corrente total que a atravessa e b) um termo propor-
cionai a derivada total, em relagdo ao tempo, do fluxo elétrico que a atravessa, i.e.,
para uma superficie S qualquer com bordo 45 vale

d
dez - B = rcpo(‘/‘dalj-'r(g—‘/da-E)
s s dt Js
d
= Kip (fs + foB—tfbg) 4 (3.14)

Novamente, observe que nao apenas o lado esquerdo mas também o lado direito
desta equacdo depende apenas de S e nao de S mesmo: De fato, se S; e S»
sao duas superficies cujo bordo é a mesma curva v, entdo juntas elas formam a
superficie dV de um volume V, e usando o teorema de Gauss em conjunto com a
equagao de Maxwell (3.5-a) e a lei de conservacao da carga (3.1), vem

d . d
(151 +(Qa 51) == (1’5?+(0a7 %2)
6F
da'v<'+c —)
/av & N
JdF
d*z V. (j =) =0.
./V el (J"f‘fo a!) 0

A equagao de Maxwell (3.5-d) é a formulagao diferencial de um caso particular
da lei de Ampeére - o caso onde a superficie S permanece constante no decorrer
do tempo. De fato, nesta situagdo, o teorema de Stokes permite concluir que a
equagio (3.14) é equivalente a condigao

xuo(/da'-j+(0%/da’-E)
S s

K /do' '+caE

Ho s J D@t )

e como esta vale para superficies S quaisquer, & equagao (3.5-d).

il

1l

/sdcr-(VxB)

As equagoes (3.5-d) e (3.14) contém, entre outros, o efeito magnético de cor-
rentes elétricas observado pela primeira vez por Qersted. Quantitativamente, este
fendmeno é expresso pela lei de fluro de Ampére, segundo a qual a circulagao do
campo magnético ao longo de uma curva fechada contornando uma corrente é pro-
porcional a esta mesma corrente:

dz-B = Kpg/da-j = kpols . (3.15)
as S
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Em formulagao diferencial, esta lei pode, usando o teorema de Stokes, ser escrita
na forma

VxB = xupj . (3.16)
No entanto, esta lel vale apenas para correntes estacionarias, pols para campos que

dependem do tempo, ela é inconsistente com a lei de conservagao da carga (3.1).
De fato, aplicando a divergéncia a equagao (3.16), obtemos

dp
ot
o que pode ser interpretado como a definigao do termo “correntes estacionarias”.

No caso geral, a lei de fluxo de Ampeére deve ser corrigida pela adi¢do de um termo
que venha a garantir a compatibilidade com a lei de conservagao da carga:

=0=¥.3, (3.17)

; ; e}
VxB = kg + C com V-C:—xro‘]:r;;zog[f.

Devido a equagao de Maxwell (3.5-a), uma escolha possivel e natural é a seguinte:

oE
C = K€g g W .
Este é o termo adicional originalmente proposto por Maxwell que, subsequente-
mente, foi confirmado por todas as experiéncias.

Com esta modificagdo, a lei de conservagdo da carga (3.1) torna-se uma con-
seqliéncia das equagoes de Maxwell, desde que - como ja foi afirmado anterior-
mente e antecipado pela notagao utilizada na equagao de Maxwell (3.5-d) - as con-
stantes ki, k3 e k4 nas equagoes de Maxwell (3.4-a) e (3.4-d) satisfagam a condigao
kg = k3/ky. Note que sem o termo adicional de Maxwell, nao haveria campos
elétricos ou magnéticos nao-triviais em regides onde p =0 ¢ 7 = 0; em particular,
nao haveria ondas eletromagnéticas propagando no vacuo. Defato, p=0¢e¢ 3 =0
implicaria V-B=0e V x B =0, assimcomo V-E=0¢e¢ V x E =0, levando
a conclusao de que B = 0, assim como E = (.

Finalmente, queremos apresentar a formulagao das equagdes de Maxwell em
termos de formas diferenciais. Como regra geral, podemos afirmar que campos cuja
interpretagao fisica envolve quantidades obtidas por integragio sobre subvariedades
de dimensao p devem ser representados por p-formas. Assim, a densidade de carga p
corresponde a uma 3-forma e a densidade de corrente j a uma 2-forma. Ademais,
invariancia das leis de forga de Lorentz (3.2) e (3.3) sob as transformagdes de
paridade P e de reversdo temporal 7" exige que o campo elétrico E e o campo
magnético B satisfagam a seguinte lei de transformagao:

E(t,z) - —E(t,—xz)

P
B(t,z) - + B(t,-z)

(Paridade) (3.18)
E(t,z) = + E(~t,z)

R ao temporal 3.19
A R R I el ) (3.19)
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Isto significa que E é um campo vetorial polar enquanto que B € um campo vetorial
azial. Usando o chamado operador estrela, podemos nos convencer que um campo
vetorial polar corresponde a uma l-forma enquanto que um campo vetorial axial
resulta da aplica¢do do operador estrela a uma 2-forma. Portanto, introduzimos as
seguintes formas diferenciais:

p = perneanes € E?, (3.20)
= Yaumik ernem € Q}E?), (3.21)
E = E; e ¢ QUEY), (3.22)

B = }eumBrernem € Q*(E%) . (3.23)

Entado as equagdes de Maxwell assumem a seguinte forma:

d+E = —"—;— (3.24-a)
€0
dB
= = .24-b
dE B s (3.24-b)
dB = 0, (3.24-c)
d*B = Kug (j + ¢o agtE) : (3.24-d)

Observe que o operador estrela aparece apenas nas equagdes de Maxwell ndo ho-
mogeneas (3.24-a) e (3.24-d), enquanto que as equagdes de Maxwell homogeéneas
(3.24-b) ¢ (3.24-c) podem ser escritas sem referéncia a métrica ou a orientagao do
espaco Euclideano.

3.2 Sistemas de unidades na eletrodinamica

Como veremos nos Capitulos 4 e 5, as equagoes de Maxwell e as leis de forga de
Lorentz implicam que o méduloda forga eletrostatica F© entre duas cargas pontuais
q1 e q2 separadas pela distancia r é

1
|Fe| = anis (3.25)
dmeg 12
enquanto que o médulo da forga magnetostitica F™ entre dois fios condutores
lineares, de comprimento ! (no limite [ — co), alinhados parelelamente, separados
pela distancia r e percorridos por correntes estacionarias ) e [, é

sz[) 2!]1 ]2

[P = (3.26)

4m r

A relagdo entre estas duas forgas nao tem dimensdo (i.e., ¢ uma quantidade pu-
ramente numeérica) e ndo depende das unidades de forga ou de carga escolhidas.
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O quociente entre os dois pré-fatores que aparecem nestas duas equagoes pode ser

escrito na forma y
Kleopo = = (3.27)

onde ¢ tem a dimensdo de uma velocidade. Esta velocidade é uma constante uni-
versal. independente do sistemna de unidades utilizado e caracteristica do fendmeno
do cleiromagnetismo como um todo; ela serd identificada mais adiante como a ve-
locidade de propagagao de ondas eletromagnéticas no vacuo, ou seja, a velocidade
da luz.

A partir da equagao (3.27), os sistemas de unidades amplamente utilizados
podem ser divididos em dois grupos:

3.2.1 Sistemas de unidades assimétricos

1
) Copo = = (3.28)

o= 1

A vantagem principal de sistemas de unidades deste grupo sao a forma simples das
leis de for¢a de Lorentz e da lei de indugao de Faraday, enquanto que a desvantagem
principal reside no fato de que E e B tém dimensdes diferentes. Em consideragoes
gerais de natureza tedrica, particularmente na teoria da relatividade, isso se torna
inconveniente — por exemplo devido ao fato de que, como veremos mais adiante,
E e B se misturam sob transformagoes que levam um sistermna inercial para outro.
Exemplos de sistemas de unidades assimétricos sdo:

¢ Sistema de unidades eletrostdtico:
€0 = — , o = — . (3.29)

Neste sistema, a lei de Coulomb assume uma forma particularmente simples.
A dimensao da carga é [g] = /forga - distancia.

¢ Sistema de unidades magnetostdtico:

1
42

€ = o = 4m. (3.30)
Neste sistema, a lei de Biot-Savart (veja Capitulo 5) assume uma forma par-
ticularmente simples. A dimensdo da carga é [¢] = /Torga - tempo.

¢ SI = Sistema Internacional: O SI é caracterizado pela introdugio de
uma unidade bdsica prépria para o eletromagnetismo. Atualmente, esta é
a unidade da corrente, o Ampere (A), fixado por lei (!) da seguinte forma:
“A unidade bdsica de um Ampére (1 A) é a quantidade de uma corrente
elétrica constante no tempo que, fluindo em dois fios condutores lineares, de
comprimento infinito e de secgao transversal circular com raio negligencidvel,
alinhados paralelamente no vidcuo e separados pela distancia de um metro
(1 m), gera entre eles uma forga eletrodinamicade 2-10~7 Newton por metro
de comprimento dos condutores.” A unidade da carga é entao o Coulomb (C),
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i.e., o Ampere-segundo: 1C = 1As. Esta definicao da unidade do Ampére
equivale a condigao

107 1 A? + N
- oo = L1077 — . 31
€0 a7 2 N , Ho 4im 10 A2 (33 )
Para fins praticos, o SI é o mais adequado e hoje é quase universalmente

aceito.

3.2.2 Sistemas de unidades simétricos

K = "i‘ y Cofo = 1. (332)
A vantagem principal de sistemas de unidades deste grupo reside no fato de que
E e B tém a mesma dimensao. Velocidades sao medidas em unidades de ¢, e nas
equacoes de Maxwell, a derivada em relagao ao tempo sempre aparece na com-
binagao com um fator 1/¢, sendo que o produto tem a dimensao de uma derivada
em relacdo a uma varidve| espacial. Para fins praticos, no entanto, isto se torna
inconveniente, pois a velocidade da luz € por muitas ordens de grandeza maior do
que as velocidades que aparecem nas aplicagoes tipicas. Exemplos de sistemas de
unidades simétricos sao:

e Sistema de unidades de Gauss:

1
in
Como no caso do sistema de unidades eletrostatico, a lei de Coulomb
assume uma forma particularmente simples, e a dimensio da carga ¢
[¢) = Vforca - distancia. Este sistema de unidades é amplamente utilizado na
literatura tedrica sobre eletrodinamica.

€ Ho = 4 . (3.33]

o Sistema de unidades de Heaviside:
(OZI ) [1():1. (334)

Este é o sistema de unidades mais simples e mais simétrico de todos. Ele é
amplamente utilizado na literatura sobre mecanica quantica, teoria quantica
dos campos e fisica das particulas.

No que segue, ndo adotaremos nenhum sistema de unidades especifico — apesar de
que isso acarreta a necessidade de complementar as duas constantes tradicionais
€0 € (o por uma terceira constante k, sujeita & equagdo (3.27) que estabelece sua
relagao com as outras duas e a velocidade universal c¢. Este procedimento possui a
vantagem de que todas as formulas sdo validas em qualquer sistema de unidades: ao
invés do processo penoso de conversdo de um sistema para um outro, precisamos
apenas substituir os respectivos valores das constantes especificadas acima. De
modo geral, é conveniente lembrar que

g=d no SI ; (3.35)
1  no sistema de unidades
i ¢ de Gauss ou Heaviside (3.36)
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Para a conversao de férmulas entre diferentes sistemas de unidades, a regra mais
simples ¢ 1til é o fato de que, em qualquer sistema de unidades, as quantidades

B ; J -
R L in= = (3.37)
V Ho Veo Vo

sdo idénticas as quantidades correspondentes do sistema de unidades de Heaviside

e portanto satisfazem as equagdes de Maxwell e as leis de forga de Lorentz neste
sistema.

Ey = Vo E , By = pPH =

3.3 Condigoes iniciais e de fronteira

As equagdes de Maxwell, em conjunto com a lei de forga de Lorentz, descrevem
completamente os fenomenos eletromagnéticos macroscopicos e certamente con-
stituem a malor conquista da f{isica do século 19, de abrangéncia e profundidade
comparavel apenas as equagoes de movimento de Newton. Nao foi a toa que Ludwig
Boltzmann iniciou sua apresentagao da teoria de Maxwell com a citagao de Faust:
“Foi um deus que escreveu estas linhas?” Contudo, o pleno impacto desta teoria se
evendenciou apenas no inicio do século 20, devido & sua incompatibilidade com a
mecanica Newtoniana. De fato, esta inconsisténcia foi a motivagao principal para o
desenvolvimento da teoria da relatividade, que acabou resolvendo o problema por
uma modificagao das equagdes de movimento de Newton, mantendo as equagoes
de Maxwell inalteradas.

A afirmagdo de que as equagoes de Maxwell providenciam uma descri¢ao com-
pleta dos fenomenos eletromagnéticos macroscépicos significa, em particular, que
elas devem fixar a evolugao temporal do campo eletromagnético, a partir de uma
dada configuragao inicial. Para discutir este problema inicial, ou problema de
Cauchy, consideramos primeiro o caso de fontes externas, ou seja, a situagao em
que a distribuigao de cargas e de correntes, p(t,z) e j(i,z), é previamente dada e
fixa. Fisicamente, isto significa que negligenciamos a retroacao dos campos E e B
sobre a distribuigao de cargas e correntes que os gera. Neste caso, as equagbes de
Maxwell constituem um sistema nao-homogéneo de equagdes diferenciais parciais
lineares de primeira ordem para E e B. Portanto, dado o campo elétrico E(to, z) e
o campo magnético B(tg, ) no instante ¢, os valores do campo elétrico E(t, x) e do
campo magnético B(t, z) deveriam ser determinadas para todo {. Isto realmente
€ o caso, como podemos ver usando o seguinte argumento. Devido as equagoes
(3.5-b) e (3.5-d), os valores de E ¢ B num determinado instante {o determinam os
valores das derivadas parciais E /3! e B/l neste mesmo instante tg. Diferen-
ciando as equagdes (3.5-b) e (3.5-d) n vezes em relagdo ao tempo, concluimos da
mesma forma que as n-ésimas derivadas parciais de E e B em relagdo ao tempo
no instante ¢y ja determinam as (n + 1)-ésimas derivadas parciais de E e B em
relagao ao tempo no instante {o. Por indugao sobre n, segue que os valores de E e
B num determinado instante ¢y determinam completamente os valores de todas as
derivadas parciais de E e B em relacio ao tempo neste mesmo instante {o. Por-
tanto, se os campos E e B dependem analiticamente do tempo, i.e., se podem ser
expandidos em séries de Taylor na variavel { com raio de convergéncia maior do
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que 0, entdo as equagdes (3.5-b) e (3.5-d) ja fixam a evolugdo temporal do campo
eletromagnético. (Usando teoremas matemdticos mais sofisticados da teoria de
equagoes diferenciais parciais, a hipétese de analiticidade dos campos na varidvel t
pode ser relaxada, sem afetar a conclusao de existéncia e unicidade da solugado.) Por
outro lado, as equagdes (3.5-a) e (3.5-c) ndo contém derivadas parciais em relagao
ao tempo e portanto nao sido equagdes de evolugdo mas devem ser interpretadas
como vinculos que definem quais sd3o as configuragoes de campo admissiveis, em
cada instante fixo. A existéncia de vinculos gera um problema de consisténcia, pois
torna-se necessario verificar que campos satisfazendo aos vinculos (3.5-a) e (3.5-c)
no instante tg e evoluindo segundo as equagdes (3.5-b) e (3.5-d) também satisfardo
aos vinculos (3.5-a) e (3.5-c) em qualquer outro instante t. Isso no entanto segue
da lei de conservagao da carga (3.1), pois conforme a equagao (3.5-d), temos

ﬁ(v-Efﬁ) - v.0E 1060 _ V-(J +aE)

at € TR} T
= 1 w.ivxB = 0,
K€ o
e segundo a equagao (3.5-b), temos
d 0B 1
—(V-B) = V.— = -2 V. (VxF) = ;
b ot w Y RE) = 0

Ao invés de E(to, z) e B(to, z), podemos também usar E(to, z) e (0E/dt)(to, z),
ou B(tg,x) e (0B/0t)(to, =), como condigdes iniciais, desde que sejam respeitados
os vinculos pertinentes

1 JE 1 0p
V'E(f(},:l?) = ap(fo,ﬂ:) e V--a—i(to,r) = ;—0‘5{(10,2),
ou
V-B(to,x) = 0 e V-?;(to,x) =0.

De fato, no primeiro caso, as equagdes (3.5-c) e (3.5-d) fixam V- B e V x B
no instante {y, o que sob condigdes de fronteira apropriadas (como, por exemplo,
decaimento suficientemente rapido ao infinito) também determina B no instante g.
De forma analoga, no segundo caso, as equagdes (3.5-a) e (3.5-b) fixam V- E e
V x E no instante g, o que sob condigdes de fronteira apropriadas (como, por
exemplo, decaimento suficientemente rdpido ao infinito) também determina E no
instante {g.

Quando a distribuicao de cargas e de correntes, p e j, n3o estd fixa mas estad
sujeita a retroagao do préprio campo eletromagnético, coloca-se a tarefa de resolver
as equagbes de movimento acopladas de um sistema mecanico-eletromagnético,
onde as forgas mecanicas sao dadas pela forca de Lorentz e talvez por outras forgas
de origem nao eletromagnética. Trata-se de um sistema complexo e altamente nao
linear de equagoes diferenciais para um sistema dinamico com um niimero infinito
de graus de liberdade, onde a existéncia e unicidade da solugdo do problema inicial
s6 pode ser garantida para pequenos intervalos de tempo, enquanto que a questao
da estabilidade do sistema para grandes intervalos de tempo constitui um problema
extremamente dificil.
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Ao invés ou além da condigio de decaimento suficientemente rdpido ao infinito,
os campos E e B frequentemente sao sujeitos a outras condigoes de fronteira. Como
exemplo importante, consideremos a situagao em que esta fronteira é uma superficie
S carregando uma densidade superficial de carga w ou uma densidade superficial
de corrente k. Localmente, podemos entao decompor o espago em dois dominios V;
e V5. separados por S. Supondo que os campos E e B, assim como suas derivadas
parciais em relagao ao tempo, sdo infinitamente diferenciiveis no interior de cada
uma das duas regides V) e V> e apresentam, no maximo, descontinuidades finitas
na interface S entre elas, obtemos as seguintes condigoes de contato para E e B:

iy (By - By) = :’—0 . mnx(E)-E) =0, (3.38)

Tll'_)-(Bl—Bg) =0 ¥ TIng(B;—BQ) = K,U()k. (339)

Aqui, E,, B, e E,, B, siao os valores de E e B na superficic S obtidos por
passagem ao limite a partir do interior de Vi e de 1%, respectivamente, e ny; é o
campo vetorial normal a S, direcionado de V, para V. De fato, as equacoes para
0s componentes normais

ET—E; = nlg‘(E;“Ez) e BT—B; = 7112‘(Bl~.32)

resultam das equagdes de Maxwell (3.5-a) e (3.5-c) por integragio sobre a superficie
do pequeno volume V mostrado na Fig. 3.3, onde o adjetivo “pequenc” se refere a
extensdo d do volume V em diregao da normal n;, a superficic S:

v

=

Fig. 3.3: Calculo da descontinuidade do componente normal do campo elétrico e
do campo magnético na interface entre duas regides quando esta interface carrega
uma densidade superficial de carga e uma densidade superficial de corrente dada,
através do teorema de Gauss: veja texto

/ dO"nlg-(El—Ez) = lim do - E = lxm/daz V-E
snv d—0 fi

d—0 av
1 1
= —lim [ d%p = — dow ,
€0 d=0 /i €0 Jsav

m da»B:lim/d%V-B:O.
d—0 fy

do ny, - (B; — B;) = i
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De forma andloga, as equagoes para os componentes tangenciais
E,-E, = t- (E, - E,) e B - B, = t- (B, - B,)

(onde t percorre os possivels vetores tangentes a superficie S) resultam das equagoes
de Maxwell (3.5-b) e (3.5-d) por integragdo sobre o bordo da pequena superficie S
ortogonal a t mostrada na Fig. 3.4, onde o adjetivo “pequeno” se refere a extensao
d da superficie 5 em direcio da normal n;; 4 superficie S:

ot

Fig. 3.4: Cdlculo da descontinuidade do componente tangencial do campo elétrico
e do campo magnético na interface entre duas regides quando esta interface carrega
uma densidade superficial de carga e uma densidade superficial de corrente dada,
através do teorema de Stokes: veja texto

f dr (t x ny2) - (Ey — E2) = hm dz-E = lim f do (V x E)
sn§ d=0 j&

85

:—hllrn/da——o

d—0

f dz (txmy2) - (By—-B)) = lim [ dz-B = hm/dcr (V x B)
sn§ as

d—0

JF
= o tim [do (i + 50 ) = wuo [ ds

3.4 Potenciais e transformacoes de calibre

A solugao das equagdes de Maxwell (3.5-a)-(3.5-d) pode ser drasticamente sim-
plificada pela introdugio de potenciais. Primeiro, a equagao homogénea (3.5-c) é
equivalente & existéncia de um campo vetorial A tal que

B=VxA. (3.40)

Este campo é chamado o potencial vetorial. Substituindo a equagio (3.40) na

equagao homogénea (3.5-b), vem
A
(E + & 5—;) =0, (3.41)
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o que € equivalente a existéncia de um campo escalar ¢ tal que

E:—Vé—x-—a——é. (3.42)
ot
Este campo ¢ chamado o potencial escalar.

Os potenciais A e ¢ nao sao unicamente determinados pelos campos E e B.
Pelo contririo, outros potenciais A’ e ¢’ podem levar aos mesmos campos, o que
serd o caso se e somente se eles provém dos potenciais originais A e ¢ através de
uma transformagdo de calibre

A—+A':A+VX,¢—>¢'=¢)—NE, (3.43)
onde y pode ser uma fungao arbitrdria de t e =. Esta liberdade pode ser utilizada
para submeter os potenciais a condigoes suplementares apropriadas - um procedi-
mento denominado escolha de calibre. As transformagdes de calibre que ainda sao
compativeis com uma dada condigao de calibre sao chamadas transformagdes de
calibre residuats.

As duas escolhas de calibre mais importantes sao as seguintes

e Calibre de Coulomb:
V-A=0. (3.44)

As transformagdes de calibre residuais sdo as transformagoes de calibre (3.43)
sujeitas a condigdo suplementar

Ax = 0. (3.45)
e Calibre de Lorentz:
1 08¢
V4A+EC—2—6? == 1 4 (3.46)

As transformagoes de calibre residuais sio as transformagdes de calibre (3.43)
sujeitas a condigao suplementar

1 9%y

BX = 25w

— fo =, (3.47)
No préximo passo, substituimos as equagdes (3.40) e (3.42), em conjunto com
a equagdo (3.27) e a identidade
Vx(VxA) = V(V-A) - AA,
nas equacgoes de Maxwell nao homogéneas (3.5-a) e (3.5-d), obtendo

JA p
L = 3.48
Ao+ kV 5 -t (3.48)
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No calibre de Coulomb, vem

Ap = =L (3.50)
€0
e 52
_ A . &
0A = C_z_ Et—{ - AA = Kilo 2¢ » (331)
onde 8
o =1 -V (—6_1) (3.52)

(veja a equagao (3.27)) é a parte transversal, i.e., a parte sem divergéncia, da
densidade de corrente:

3)

3.

Esta dltimarelagao pode ser demonstrada tomando a divergéncia da equagao (3.51)
e substituindo a condigao (3.44) ou, ainda, tomando a divergéncia da equagdo (3.52)
e substituindo a equagao (3.50) em conjunto comn a lei de conservagao da carga (3.1):

Ol

v-j, =0. (

]
5

V-5, = V-j—(gA(%?) = Vg+%f— =0.
A equagao (3.50) coincide com a equagio correspondente da eletrostdtica, sendo
que a varidvel tempo aparece apenas como um parametro adicional. Portanto, o
potencial escalar correspondente ¢ é chamado o potencial de Coulomb instantdneo.
O calibre de Coulomb é particularmente 1til quando p = 0, pois isto permite
escolher ¢ = 0.
No calibre de Lorentz, vem

_ 19% P
0¢ = T A¢ = = 8 (3.54)
_ 1 8%A .

Neste caso, as equagdes de Maxwell nio homogéneas assumem uma forma parti-
cularmente simétrica e simples, tornando-se um sistema de equagGes de onda nao
homogéneas e independentes.

3.5 Energia do campo eletromagnético

Nesta segao, queremos estabelecer a equagdo de balango para a energia do campo
eletromagnético. A filosofia geral subjacente a teoria dos campos requer que a
energia do campo eletromagnético seja distribuida continuamente no espago e possa
escoar no espago - exatamente como a energia de um fluido. Segundo o Capitulo 2,
esperamos portanto uma equagao de balango para a energia da forma

9p®

— ok 7= = a®, (3.56)
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onde pE, jE e gF sio, respectivamente, a densidade, a densidade de fluxo e a
densidade de produgao de energia. Sendo o principio da conservacdo da energia uma
das lcis mais fundamentais da fisica, consubstanciada por inimeras experiéncias,
o inico candidato para ¢€ ¢ a energia, por unidade de volume e de tempo, que
é transferida do campo eletromagnético para um outro sistema fisico, durante a
interagao entre ambos. Essa energia pode ser deduzida da lei de for¢a de Lorentz.
Por exemplo, segundo a equagdo (3.2), o trabalho exercido pelos campos E ¢ B
sobre uma carga pontual ¢ entre os instantes 1, e {3 é

ta
V(ty,12) f dtv-F = f div-E .
t

Note que o campo magnético nao exerce trabalho. Para uma distribuigao geral de
cargas e correntes, obtemnos portanto

¢¢ = -5-E, (3.57)

onde o sinal negativo expressa o fato de que a energia transferida para a referida
distribuigdo de cargas e correntes corresponde a uma diminuigao da energia do
campo eletromagnético. Utilizando as equagdes de Maxwell (3.5-d) e (3.5-b), em
conjunto com a identidade

V(ExB) = (VxE)-B-E (VxB),

obtemos
JE 1
—9.FE = Y = —— .
J ©E 7 rc,uoE (V x B)
oE 1
E 1 B 1
= coE-?—+—B-a—+—V-(ExB)

ot Ho at KUo
=9 £°E e o= B W | el B )
ot 2410 Kl
Isto é uma equagao de balango do tipo (3.56), com a densidade de energia
E 2 2
= E + —-B 3.58
p o (3.58)
e a densidade de fluxo de energia
y 1
j£ = — ExB (3.59)
Kfo
idéntico com o tal chamado vetor de Poynting, geralmente denotado por S:

s= L ExB. (3.60)
Kitg



-239-

3.5 Energia do campo eletromagnético

Conforme a equagio (3.58), a energia de campo U dentro de um volume V se
decompde na soma de uma parte elétrica e de uma parte magnética,

U=uUsyum, (3.61)
com
Ue = %E/df’r E?, (3.62)
e
Um = 5;170 4%z B? . (3.63)

No caso de campos estdticos, a energia de campo pode ser representada de forma
diferente, em termos do potencial escalar ¢ e do potencial vetorial A, onde
E=-Vgpe B=VxA. Seg¢e A apresentam decaimento suficientemente rapido
ao infinito, podemos integrar por partes e assim escrever a energia eletrostdtica na

forma

U = %/a’azE? = ~%°-/d3rE-V¢ = %O/da:s(va)gé,
ou seja,
Ue = %/daz 0d (3.64)
€ a energia magnetostatica na forma
vm™ = Lfd%Bﬁ = —L/daa:B-(VxA) o i d®z (VxB)-A,
2ug 2pp 2ug
ou seja,
U = gfd%j-A. (3.65)

Se as cargas e as correntes se decompdem em duas partes, conforme

P=P1+P2,j:j1+j2: (3.66)

entao devido a linearidade das equagdes de Maxwell, os campos por elas gerados
também se decompém em duas partes, conforme

E=E +E,, B=B,+ B,. (3.67)
O mesmo vale para os potenciais:

¢ =¢1+¢2, A=A + A,. (3.68)
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Como exemplo tipico, imaginamos que py, 7, € pz2, J, estejam localizadas em regioes
disjuntas e distantes Vj e V,, respectivamente. Neste caso, obtemos das equagoes
(3.62) € (3.63)

Us = Ug +Us + Us,, (3.69)
e
It o= P40+ U (3.70)
onde
Us = (—29/(13: E} |, Uf = %’/dﬂz EZ, (3.71)
U, = fo/d3$ E,-E;, (3.72)
e
vr = L faep, up = L [a% B2 (3.73)
; 2o Py 2p0 A2 '
1
5 =—/[d’2BB. (3.74)
Ho

No caso estdtico, podemos reescrever estas expressoes na forma

1 , L1 3
Uy = ifdsz me , Uy = 5/‘131 p2®s (3.75)
Ul = fd:‘r proy = /dar p2dy (3.76)
e
m K 3 . m K 3 . .
Ul = 5[ d%zdvAy , U = 5 [ P24y 4y, (3.77)
um = »;/43: i A, = ,;fd% Foihy o (3.78)

Assim, vemos que tanto a energia elétrica como a energia magnética sao compostas
de trés contribuigoes: das auto-energias das duas distribuigoes de cargas e correntes
e da energia de interagdo que leva em conta as forgas que cada uma delas exerce
sobre a outra; de fato, as expressoes (3.76) e (3.78) se mostram particularmente
uteis para discutir as forcas exercidas por campos eletromagnéticos. Concluimos,
portanto, que a energia elétrica e a energia magnética ndo sao aditivas, i.e., a
energia da distribuigdo total nio é igual a soma das energias das duas distribuiges
parciais, sendo que esta deve ser complementada pela energia de interagdo, como
termo de interferéncia.

Uma idéia que decorre naturalmente dessa discussao seria considerar a expressao
PE = L(p¢ + rj-A) (3.79)

como uma nova “densidade de energia”, jd que ela leva & mesma energia total que a
densidade de energia pf introduzida anteriormente. Contudo, existe uma série de
motivos para afirmar que a expressio p£ é mais adequada do que a expressio pE:
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1. Ao contririo de pF, pf fornece a energia total do campo eletromagnético
apenas no caso estatico.

2. Ao contrario de pE, ;35 nao € invariante sob transformagaes de calibre (3.43)

dos potenciais, que deixam os campos E e B invariantes.

E

3. Ao contrério de pf, 5€ nao ¢ positiva (semi-) definida.

4. Ao contrario de pf, 5% se anula quando p=0e j=0. Em outras palavras,
se p¥ fosse a expressdo correta, a energia do campo eletromagnético seria
localizada exclusivamente em regides onde hd cargas e correntes, o que certa-
mente nao ¢ compativel com a realidade que observamos. Por exemplo, todos
nés sentimos, quase diariamente e literalmente na pele, as consequéncias do
transporte de energia por radiagao eletromagnética propagando no vacuo, do
sol para a terra.

De forma geral, observa-se que a equagao de balango por st so € insuficiente para
determinar a densidade de energia e a densidade de fluxo de energia. De fato, dado
campos vetoriais C e F arbitrdrios, temos que

-E i g 0C

pF=pF+vec e ¥ =43-S+ VxF (3.80)
satisfardao a mesma equagao de balanco que p% e jE. Ademais, se C apresentar de-
caimento suficientemente rapido ao infinito, as duas densidades resultam na mesma

energia total:
[dazr o= /dsr of . (3.81)

E mesmo quando fixarmos a densidade de energia, a densidade de fluxo de energia
ainda nao sera unicamente determinada, pois o termo adicional V x F' permanece
livre. Frisa-se que esie termo adicional contribui como termo de bordo apenas
quando integrarmos sobre superficies abertas, pois a equagao (3.80), com C =0,
implica que para qualquer superficie S, vale

fda.jE_/da-j-‘-'=/da-(vXF): dz - F
5 S S as

e esta integral se anula trivialmente quando S for fechada. De fato, devido &
equacio de balango, o fluxo de energia através do bordo de um volume ja é deter-
minado por pf e ¢F, enquanto que o fluxo de energia através de uma superficie §
aberta depende explicitamente de F.

Afinal de contas, a questdo de quais sdo as expressdes corretas para a densidade
e a densidade de fluxo de energia do campo eletromagnético deve ser decidida no
laboratério, ji que pf e 77 sio quantidades mensurdveis, mesmo que os procedi-
mentos experimentais para sua determinagao sejam mais dificeis do que no caso
da densidade de carga p e de corrente 7, onde desde o principio nao ha ddvidas
quanto a corretude de sua definigao. O resultado é que as expressdes corretas para
pFe jE sao dadas pelas férmulas (3.58) e (3.59): além de serem simples e naturais,
mesmo apds generalizagio ao ambito da relatividade geral, elas passaram todos os
testes experimentais.
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3.6 Momento e momento angular
‘do campo eletromagnético

Para o momento e o momento angular do campo eletromagnético, esperamos
equagdes de balango da forma

8oF ‘
2+ Vedh = (3.82)
apk )
T+ Vedh = 4 (3.83)

onde pf'/pF e jh /% sdo, respectivamente, a densidade do i-ésimo componente
do momento/momento angular e o k-ésimo componente da densidade de fluxo
do i-ésimo componente do momento/momento angular do campo eletromagnético,
enquanto que f;/t; denota o i-ésimo componente da densidade de forga/torque.

Tratemos primeiro da equagao de balango para o momento. O lado direito da
equagao (3.82) é dado pela lei de forga de Lorentz (3.3)

f" [ _PE;' —_ K(lkljkBl . (384)

Novamente, o sinal negativo expressa o fato de que o momento transferido para
a distribuigao de cargas e correntes corresponde a uma diminuigdo do momento
do campo eletromagnético. Utilizando todas as equagdes de Maxwell e apds mani-
pulagoes semelhantes as executadas no caso do balango de energia, chegamos as
expressoes

pf = ke Ex By (3.85)

para a densidade de momento e

; 1 1 /1
ik = e (—Ezaik - EiEk) + — (—325,';\- = B,‘Bk) (3.86)
2 Ho 2
para a densidade de fluxo de momento; esta é - a menos de um sinal - idéntica ao
tensor de estresse de Marwell, geralmente denotado por T

Tk = €0 (EiEk = 1E25.‘k) + 1 (Bin = 11325.*) ; (3.87)
2 Ho 2

Obviamente, a densidade de momento do campo eletromagnético é ~ a menos de
um fator 1/c? - idéntica 3 sua densidade de fluxo de energia, ou seja, ao vetor
de Poynting (veja a equagdo (3.60)), enquanto que a densidade de fluxo de mo-
mento, conforme explicado no Capitulo 2, pode ser interpretada como um tensor de
pressdo. Portanto, o tensor de estresse de Maxwell descreve, para cada volume V/,
o momento do campo eletromagnético entrando em V, ou seja, a forga total de
pressao F' que o campo eletromagnético exerce sobre V:

F; = [ dox Tix = /dSI Vi Tik - (388)
av v
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Qualitativa e intuitivamente, as forgas exercidas pelo campo eletromagnético po-
dem ser deduzidas de desenhos de linhas de campo, atribuindo as linhas de campo
a tenuencia geral de se encurtar e de se repelir mutualmente.

Como exemplo elementar, consideremos um campo elétrico ou magnético ho-
mogéneo e estdtico, paralelo ao eixo 3, dentro de um volume V. Temos entdo
E = Fe; (e B=0) ou B = Bes (e E=0) e portanto

) -1 00 1 -1 00
T‘.k:?“z;? 0 -1 0 ou 7}k=§—B2 0 -1 0
0 01 o 0 0 1

Isto significa que ao longo do eixo 1 e do eixo 2, i.e., transversalmente as linhas
de campo, ha momento saindo do volume V, enquanto que ao longo do eixo 3,
i.e., ao longo das linhas de campo, hd momento entrando no volume V, ou seja,
observamos forgas agindo sobre o volume V' que exercem tragao ao longo das linhas
de campo e pressao transversalmente as linhas de campo. (Veja Fig. 3.5.)

<p

a4

Fig. 3.5: Forgas exercidas pelo campo eletromagnético sobre um volume: tragao
ao longo das linhas de campo, pressdo transversalmente as linhas de campo

Uma propriedade notavel da expressdo para a densidade de fluxo de momento
encontrada na equagao (3.86) é sua simetria:

Gk = 3h - (3.89)

Como foi demonstrado no Capitulo 2, esta simetria permite satisfazer a equagao
de balanco para o momento angular pondo

i = €1z fi. (3.90)
pr = Gijt T ol (3.91)
ih = Gz, (3.92)

Sao estas as expressdes esperadas em qualquer teoria onde os campos carregam
apenas momento angular orbital, sem momento angular propric. Aqui, no entanto,
o resultado surpreende, pois - falando na linguagem da teoria quantica - o féton
tem spin 1 e portante possui um momento angular préprio, com médulo A. Se, por
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outro lado, a equagao (3.83), em conjunto com as equagdes (3.90)-(3.92) (e (3.84)-
(3.86)) fosse apenas a equagao de balango para a parte orbital do momento angular
e se a equacdo de balango para o momento angular total fosse outra, teriamos para
o campo eletromagnético duas quantidades diferentes e separadamente conservadas
com a natureza de um momento angular, o que seria dificil de entender.

De qualquer modo, coloca-se a questdo se a densidade e a densidade de fluxo
de momento e de momento angular para o campo eletromagnético sdo realmente
dadas pelas equagoes (3.85), (3.84) e (3.91), (3.92), pois como ja observamos no
caso da energia, estas quantidades ndo sao determinadas unicamente pela equagio
de balango. De fato, dado campos tensoriais Cix e Fix arbitrérios, sujeitos apenas
a condigdo de antisimetria Fix + Fix = 0, temos que

) . ) IC;k
pi = pi + Vi Cix e Jik = Jik — Btk

satisfar3o & mesma equacdo de balanco que p; e jix. E mesmo quando fixarmos
a densidade, a densidade de fluxo ainda nao serd unicamente determinada, pois o
termo adicional V¥, Fjx; permanece livre. Novamente, este termo adicional contribui
como termo de bordo apenas quando integrarmos sobre superficies abertas, pois a
equagao (3.93), com Cj, =0, implica que para qualquer superficie S,

/ i g = f doy jix = f diw Vb = [ dzm Fim |
S S ) as

onde Fi, = %cmk, Fiki, e esta integral se anula trivialmente quando S for fechada.
Em particular, a pressdo exercida sobre uma superficie depende de Fix quando
esta for aberta, mas nio quando for fechada.

Como no caso da energia, a questdao de quais sao as expressoes corretas para
a densidade ¢ a densidade de fluxe de momento e de momento angular do campo

eletromagnético deve ser decidida no laboratério. As expressoes dadas acima pas-
saram este teste.

+ Vi Fi (3-93)
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Mario C. Matos
IMECC. UNICAMP, Caixa postal 6065. CEP 13081-970
Campinas. S. P.. Brasil

RESUMO

Sabemos que uma série numérica ¢ absolutamente convergente, se, e so se, ela é in-
condicionalmente convergente. Um resultado de Dvoretzky e Rogers, datado de 1950.
mostrou que. em qualquer espago de Banach de dimensdo infinita, existem séries que sdo
incondicionalmente convergentes mas nfo sio absolutamente convergentes. Tal resultado
desencadeou o desenvolvimento da chamada Teoria de Operadores Lineares Absolutamente
Somantes. e estuda aplicacoes lineares entre espagos de Banach, levando seqiiéncias in-
condicionalmente somaveis em seqiiéncias absolutamente somdveis. A teoria nao linear
teve inicio com Pictsch em 1983, que apresentou alguns resultados para aplicagoes n-
lineares e polindmios n-homogéneos definidos em espagos de Banach com valores escalares.
As aplicagdes analiticas f entrc espagos de Banach, tais que (f(x;))72, ¢ absolutamente
somdvel. sempre que (z;);2; ¢ incondicionalmente somdvel. comegaram a ser investigadas
por Matos numa sucessdo de palestras em Semindarios Brasileiros de Analise. Esses resul-
tados apareceram publicados por esse autor, cm 1996. num artigo das Atas da Academia
Brasileira de Ciéncias. No Quadragésimo Sexto Semindrio Brasileiro de Andlise, em 1997,
Matos publicou um artigo abordando aplicagdes f entre espagos de Banach, ndo necessari-
amente analiticas. tais que (f(a + ;) — f(a))32, ¢ absolutamente somavel. sempre que
(x;)52, é incondicionalmente somdvel. Nosso mini-curso. neste Qilinquagésimo Semindrio
Brasileiro de Andlise. além de apresentar os resultados conhecidos de 96 e 97, inclui novos
teoremas e apresenta uma caracterizagio interessante das aplicacdes f, entre espagos de
Banach. que sdo regularmente somantes, isto é, aquelas para as quais (f(a+z;) - f(a))2,;
¢ absolutamente somével. sempre que (x;)32, ¢ absolutamente somdvel.






APLICACOES ENTRE ESPACOS DE BANACH
QUE PRESERVAM CONVERGENCIA DE SERIES

Mirio C. Matos
IMECC, UNICAMP. Caixa postal 6065. CEP 13081-970
Campinas. S. P.. Brasil

1. INTRODUCAO

Nas disciplinas de Cidleulo ¢ Andlise aprendemos que uma série numérica é absoluta-
mente convergente, se. e somente se. ela ¢ incondicionalmente convergente. O resultado
correspondente para séries de elementos de um espago de Banach ndo é verdadeiro. Antes
de apresentar um contra-exemplo, recordemos os conceitos envolvidos. Seja £ uma espago
vetorial sobre K (R ou C), com uma norma ||.||.

+o0
1.1. Definigao - Uma série Z”’” de elementos de E ¢ denominada absolutamente

n=1

+oo
convergente (somdvel), se a séric numeérica Z llen|l ¢ convergente (somdvel).
n=1
+20
1.2. Definigao - Uma série Z a, de elementos de E é denominada incondicionalinente
n=1
+oo

convergente (somdvel). se a série E trny ¢ convergente (somdvel), para cada bijegdo w

n=1

de N sobre N.

Pelo Critério de Cauchy. se E for umna espago de Banach. podemos garantir que toda
+o0

série 5 a,. de elementos de E. que é absolutamente convergente, tem que ser conver-

n=1
+o0

gente. Portanto, pelo resultado do Calculo, temos Z lar(n)ll < +~c. para cada aplicagao

n=1
+00

bijetora 7 de N sobre N. O Critério de Cauchy implica que Z Qp(n) converge. Isto mostra

n=1

que toda série absolutamente convergente de elementos de um espa¢o de Banach é incondi-
cionalmente convergente.

1.3. Exemplo - Seja ¢y o espago vetorial das seqiiéncias de escalares (an )32, convergentes
a 0. que é um espago de Banach sob a norma
”(an)noo=1”ge = SUR lani'

neh
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Se n € N. seja €, a seqiiéncia (0.....0.1.0,...). com 1 situado na n-ésima posi¢do. De-

: o 1 1 . s

signemos por v a seqliéncia (l. 4 65 § —.... ], que pertence a ¢p. Seja m uma bijecdo de
2 n

N sobre si mesmo. Dado € > 0, existe n, natural. tal que
1
n>n =>— <E.
n

Temos 1 = w(f).2 = 7(J2),....ne = 7(Jn, ). Portanto.

J 2 max{ji,...Jjn,}

x
T 1 +
Isto mostra que z (/‘ )( =(k) converge a v. Portanto. a série E “(’) ¢ incondicionalmente
A—l

convergente. E claro que tal série nao é absolutamente convergente.

Durante algum tempo conjecturou-se que em qualquer espaco de Banach de dimensao
infinita deveria existir uma série incondicionalmente convergente. mas nao absolutamente
convergente. Em 1()'30. A. Dvoretsky e C. A. Rogers provaram que essa conjectura ¢
verdadeira (vide [4}). A. Grothendieck. num artigo publicado em Sio Paulo, cm 1956
([5]). além de ddr uma prova diferente do resultado de Dvoretsky-Rogers. introduziu os
operadores semi-integrais a direita. agora chamados absolntamente somantes. entre espagos
de Banach.

1.4. Definigao - Um operador linear T'. definido em um espago de Banach E. com valores
em outro espago de Banach F. ¢ denominado absolutamente somante. se (T(2,))72, ¢
absolutamente convergente. sempre que (,)32, ¢ incondicionalmente convergente em E.

No mesmo artigo de 1956. Grothendieck provon um teorema. reformulado magistral-
mente por JJ. Lindenstrauss e A. Pelezyriski em 1968 ([7]). mostrando que todo operador
linear continuo de !} em [ ¢ absolutamente somante. Os operadores absolutamente (p, ¢)-
somantes. para p.q €]0. +oc[, comegaram a ser estudados ¢ desenvolvidos. em meados
dos anos sessenta. por A. Pietsch ([12]), B. S. Mitjagin ¢ A. Pelezynski ([10]). Antes de
enunciar esse conceito. vamos introduzir algumas notagoes. que serao 1iteis também para
a nossa teoria posterior.

De agora em diante, F ¢ F indicarao espagos de Banach sobre K ¢ A um aberto nao
vazio em F.

1.5. Definigao - Seja p €0, +oc[. Uma seqiiéncia (z,)2
mente p-somavel. e escreve-se (2,)5%, € [,(E), quando

1
)

+o0
I(zn)eZillp = | 3 llzallP ) < +.

n=1

1 de clementos de E é absoluta-

n=

1.6. Definigao - Uma seqiiéncia (zn)%%, de elementos de E ¢ fracamente absolutamente
p-somavel ¢ escreve-se (2,)32, € [Y(E), quando (< 2'.z, >)7%, € p(K) = Iy, para cada
2’ no dual topolégico E' de E.
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Se (2n)52; € I(E). uma aplicagio do Teorema de Banach-Steinhauss garante que

1
P

+
[Ceadii sl == sup Z[ <z'.z>PP| < 4o

=<t \ 2y

1.7. Definigao - Uma seqiiéncia fracamente p-somavel (2,)3%, de elementos de E é
s muenmSunl. o o [ YX ~ 1 a1 -\ | _
incondicionalimente p-somavel. ¢ escreve-se (zn)3%2, € [5(E). se nll_{x;o I(z5)52nllw.p = 0.
Para justificar a nomenclatura acima. notemos que, no caso p = 1. tal definicio ¢
x<
equivalente a pedir que Z T=n) S€ja convergente em E. para cada bijegdo 7 de N sobre
n=1

sl mesmo.

1.8. Definigao - Scjam p. ¢ €]0, +oc|. Uma aplicagio linear T de E em F é absolutamente
(p. q)-somante. se (T(xn))3%, € [(F), sempre que (2,)3%, € ¥(E). Se p = ¢, diz-se que
T ¢ absolutamente p-somante {absolutamente somante. no caso p = 1).

A teoria de tais operadores lineares teve um desenvolvimento muito grande, apos
os resultados iniciais de Pietsch. Mitjagin ¢ Pelczynski. acima mencionados. O livro de
Diestel. Jarchow ¢ Tonge [3] ¢ nm excelente manual para consulta sobre tal teoria. Nao
devemos esquecer também o livro de Pietsch [13] e o de Defant e Floret [2].

A teoria nao linear comegou a ser considerada por Pietsch [14], em 1983, que con-
siderou aplicacées multilineares e polinomiais sobre espagos de Banach. com valores cs-
calares. apresentando alguns resultados iniclals interessantes. Em 1996, este autor (vide
Matos [8]) apresenta os primeiros resultados envolvendo aplicagdes holomorfas absoluta-
mente (p,q)-somantes entre espagos de Banach, resultantes de uma seqiiéncia de artigos.
apresentados em anos anteriores. em diversos Semindrios Brasileiros de Analise. Em 1997.
no Quadragésimo Sexto Sernindrio Brasileiro de Andlise. cste autor apresentou novos re-
sultados envolvendo aplicagoes absolutamente p-somantes. nao necessariamente holomorfas
ou analiticas. entre cspacos de Banach.

Neste mini-curso. além de apresentar novos resultados sobre aplicagdes néo lineares ab-
solutamente (p, ¢)-somantes entre cspagos de Banach, apresentamos uma caracterizagao das
aplicagoes. por nds denominadas regularmente (p, g)-somantes, que levam seqiiéncias ab-
solutamente g-somaveis de um espago de Banach em seqiiéncias absolutamente p-somaveis
de outro espago de Banach.

2. APLICAGCOES REGULARMENTE SOMANTES

Usaremos os simbolos E e F' para designar espagos de Banach sobre K e A para indicar
um subconjunto aberto nido vazio de E.

2.1. Definigao - Sejam p,q €]0.+oc[. Uma aplicagio f de A em F é denominada
regularmente (p, g)-somante no ponto a € A se, para cada scqiiéncia (z,)5%%, € [((E), com
a+c; € A, para cada j € N. tem-se (f(a+ z;) — f(a))52, € {p(F). Se f for regulamente
(p, g)-somante em cada ponto de A, diz-se que f é regularmente (p, q)-somante sobre A.
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No caso em que p = ¢, diz-se que f é regularmente p-somante (regularmente somante. se
p = 1) sobre A.

2.2. Definigao - Seja i um nimero real estritamente positivo. Um aplicacdo f de A em
Fé chamQ.da r-regular no ponto a € A, se existem M > 0 ¢ & > 0. tais que Bs(a) C 4 ¢
if(a+2)— f(a)|l” < Mljz||, para cada x € B5(0). Diz-se que f é r-regular sobre A se [
for r-reg,ular em cada ponto de 4. No caso em que r = 1. diz-se que f 6 regular sobre A.

A demonstragdo da proposicao seguinte ¢ imediata.

2.3. Proposigao - Um aplicagdo f de 4 em F. que é r-regular num ponto a € A. ¢
regularmente (p, ¢)-somante no ponto a, sempre que p = ¢r.

2.4. Exemplos
1. Todo operador linear continuo T de £ em F' ¢ regular (portanto, regularmente p-
somante. para cada p €]0.+{) sobre E. pois

1T{a+2) = T{a)ll = [T(2)[| < IT[lz| vre L.

2. Todo polindmio n-homogéneo continuo de E em F ¢ regular (portanto. regularmente
p-somante. para cada p €]0, +x[) sobre E.

Lembremos que P @ £ — F ¢ um polinomio n-homogénco. se existe uma aplicacao n-
linear T : E™ — F. tal que P(x) = T(x.....2). para cada » € E. Neste caso costumamos
escrever que P = T. Por outro lado. dado um polinémio n-homogéneo P de F emn F.
podemos considerar

Play,....x,) = ; Z €1.. . enP(erry 4+ .. 6,20),

n!2n
c;i=+1

que define uma aplicagio n-linear simétrica de E™ em F. tal que P = P. Podemas ver que

T
Pla+ 1) - Pla) = Z (?) Pa"=*ak,
k=1
onde Pa"~*z*F = Pla.... .a.2..... z). com ¢ repetido n — & vezes e x repetido & vezes. A
correspondéncia P — P estabelece um isomorfismo entre o espaco vetorial dos polinémios
n-homogéneos e o espago vetorial das aplicagées n-lineares simétricas. Além disso. P é
continuo se, e s6 se. P é continuo. com
T
1Pl = sup [IP@) < I = sup |P(ai,....za)l| € Z]IP.
izl <1 (EA i

Neste caso, podemos escrever

IPla+z) - 1<2( ) 1PMal el < (Z(Z)nmmau"-* lal.

k=1
para todo ||z]| < 1. Isto mostra que P é regular em cada ponto a € E.

3. Toda aplicagdo analitica de A em F é regular (portanto. regularmente p-somante. para
cada p €]0. +o00{) sobre A.

Recordemos: Uma aplicagio f: A — F' é analitica no ponto a € A, se existem r > ()
e uma seqiiéncia (FPp,)3%,; de polinémios n-homogénos continuos P,, tais que B.(a) C Ae
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fla+z) - flz) Z P(z) (Vz € B.(0)).

Neste caso, gragas a uma férmula do tlpo Chauchy—Hadamard. sabemos que existem C' > (0

. 1
ec >0, tais que ||P,|| < Cc™. para todo n natural. Portanto. para [|z]| < R obtemos

Ifla 21~ flal < Y- 1Pl < ZC(””LI‘" < Ce2laf.
n=1

Isso mostra que f é regular em a.

4. Se f : A — F ¢é diferenciavel no sentido de Fréchet em cada ponto de A e sua
diferencial df : A — L(E: F) ¢ localmente limitada sobre A. entdo, f é regular (portanto.
regularmente p-somante, para cada p €]0, +2c[) sobre A. Aqui L(E; ') indica o espago
vetorial dos operadores lineares continuos de E em F' munido com a norma natural: ||T]| =
sup ||T(x)||. para cada T € L(E; F).

=<1

Para cada a € A fixado. existem M > 0 ¢ r > 0. tais que ||df(z)|| < M, para cada
r € B,(a). O Teorema da Desigualdade do Valor Médio garante que, para cada [|z]| < r,
temos

i@ +2) = @l < sup e + )l < Mial,

Isso mostra que f ¢é regular em a. )

5. Dado r > 0. a fimcio f(a) = 2}/" é r-regular (portanto. regularmente (gr, g)-somante.
para cada g €]0.+0[) sobre J0. 4+2c{. Use o Teorema do Valor Médio.

6. Todos os exemplos anteriores foram de aplicacées diferencidveis. A fungdo f(z) =
a sen (%) para @ # 0. f(0) = 0. ¢ uma fungdo regular na origem. que ndo é derivavel

nesse ponto.

2.5. Teorema - Sejami p,q €]0.+20[ Uma aplicagdo f de A em F é regularmente
(p, g)-somante no ponto a de A se. e s6 se. f é (p/q)-regular em a.

Demonstracgao - Uma implicacio é a Proposicdo 2.3, cuja demonstragao é trivial. Vamos,
entdo. supor que f é regularmente (p, q)-somante no ponto a. mas nao é (p/q)-regular nesse
ponto. Se g(x) = fla+z)—f(a), paraz € A—a = {y € E;y+a € A}, vemos que g(0) =0
g é regularmente (p, q)-somante no ponto 0 e g nao ¢ (p/q)-regular em 0. Assim, sem perda
de generalidade. podemos comecar pensando que 0 € 4. a = 0 e f(a) = 0. Seja p >p().
tal que B,(0) C A. Podemos achar. para cada j € N. um z; € E, tal que [|z;{|7 < 7 e

+00
£ (@)l > jlla; 1. Como (25)32, € Ly(E), obtemos Y _ || f(x;)[i” < +00. Portanto,

i=1

+oc +00
Sl < 3 NFE)IP < +oo.
7=1 J=1
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+0

Observagdo: se (k;)52, for uma seqiiéncia de naturais tal que Zk,; |2;{|% < +0o0, entio.
=1

+20

ZF\'JHf(.z‘J};T‘P < +23c. No 1n0sso caso. temos

1=l

— Tee 400
S il <00 = 3 bslail” | < 3 bl I | < o
Agora, ap Jcando a observagao acima. com _]L 511b<;t1tu1ndo k;. obtemos

ZJA llz;]19 < +00 = Zﬂ» 7 @) < +0.
J=1
Finalmente. podemos escrever que

+o0
Zj?'k]“l:]liq £ Z.ﬂv if(
j=1

Pl < +x,

+20

sempre (ue Z kyflsl|? < +oc. Escolhamos

1=1
— ———-l—- — 1 . & m———l
& LG%H ' 5”"{” eNom s j‘-’uw}’

para cada j natural. Como temos

f[ : }“ v < §L<
I R Lz ST

devemos ter

S Frr TS

Mas,

- 1 o [ 1 ] o1
725l = LA3l=sl9] T g2 sle
e. multiplicando por j2||z;||%,

. ; 1 2 :
L= 7l < [W] Plolt<t (s

©

Lembremos que z; foi escolhido de modo a satisfazer j2||z;[|? < %. Agora, tomando o

.

limite em (x). para j tendendo oc. obtemos

Jli—ngo [.;ZHiW] j2”‘7"JHq =1y

que contradiz (). O
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Conforme teremos oportunidade de mostrar na proxima secgdo, este resultado tem
conseqiiéncias na teoria das aplicagdes absolutamente (p. g)-somantes.

2.6. Exemplo - Ndo ¢ verdade que uma aplicacao regular f num ponto ¢ seja localmente
Lipschitziana nesse ponto. Dizemos que f, definida em A. com valores em F, é localmente
Lipschitziana em a € A. se existem M > (} e & > 0. tais que Bs(a) C A e

1f(z) = f)ll < Mllz -yl Vz.y € Bs(a).
Notemos que. se E = R. podemos escrever que. para cada x € Bg(a) fixado. vale

I£2)~ £ _ 4 o el
|z -yl :

Portanto. se supomos ainda que f é derivavel em cada 2 # a, as desigualdades acima

mostram que || f'(x)l| < M. para cada = € B%(u).m # «. A fungdo f do exemplo 2.4.6 é

regular na origem. tem derivada em cada ponto z # 0. mas nao podemos ter || f/(z)|| < M.

para cada x € B.(0).2 # 0. seja qual for o valor que escolhamos para r > 0. Logo cssa

fung¢do nao pode ser localmente Lipschtziana na origem.

3. APLICACOES ABSOLUTAMENTE SOMANTES

Vamos comegar com a nocao de aplicagdo absolutamente (p, g)-somante. que é mais
geral que aquela usada nos artigos de Pietsch [14] e de Matos [8].

3.1. Definigao - Dados p, ¢ €]0.2c[. diz-se que uma aplicagdo f de A em F € absol-
tamente (p, q)-somante no ponto a € A se (f(a + ;) — f(a))32, € ,(F). sempre que
(x,)72, € Y(E) ea+2; € A para cada j € N. Se f for absolutamente {(p, g)-somante em
cada a € A. diz-se que f é absolutamente (p, q)-somante sobre A. No caso em que p = ¢
diz-se que f ¢ absolutamente p-somante (somante, se p = 1) sobre A.

Notemos que se a € 4. 0 conjunto A —a:= {b—a:b € A} ¢abertoem Ee0€ A~a. E
facil verficar que se fu(¥) := fla+x)— f(a). para x € A—a. entdo. f é absolutamente (p, ¢)-
somante em a se. ¢ sd se. f, ¢ absolutamente (p.q)-somante na origem. Em particular,
se f for lincar. f = f,. para todo a € E. e podemos afirmar que. se f ¢ absolutamente
(p, q)-somante na origem. entdo. f é absolutamente (p. q)-somante sobre E. O préximo
exemplo mostra que ndo se pode esperar comportamento semeihante para aplicagées nao
lineares.

3.2. Exemplo - Sc E tem dimensdo infinita, 2’ € E’. 2’ # 0. consideremos um polinémio
contimio 2-homogéneo P de E em si mesmo. dado por P(z) =< x’,z > z, para todo
x € E. Para cada (2,)72, € [*(E) e cada a € E. existe M > 0. satisfazendo [la+a,l| < M.
para cada j € N. Se a estd no nicleo ker(z’) de 2’.temos

+oo +0o0 +oc
Yo hPa+z) = P@IP =Y | <2z > Plata|? <MY <2z > P < +.
1=1 j=1 =1

[sto mostra que P ¢ absolutamente p-somante em cada ponto o niicleo de 2’. Por outro
lado, sc b ¢ ker(z'). temos

Py=<z'..>b+ <2’ b>idg+ P.
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Como P and < 2”.. > b sdo absolutamente p-somantes em 0. segue que P, é absolutamente
p-somante em 0 se. e s6 se, idg ¢ absolutamente p-somante em 0. Mas. como E é de
dimensdo infinita. idg ndo pode ser absolutamente p-somante em 0. Portanto. P nao
é absolutamente p-somante em 4. Assim. podemos dizer que P nao é absolutamente p-
somante sobre qualquer subconjunto aberto ndo vazio de E. Um raciocinio andlogo mostra
que a diferencial de Fréchet dP(b) de P num ponto b ¢ ker(z') nfo pode ser absolutamente
p-somante sobre E.

Em 1989, durante uma palestra realizada num Simpdsio organizado em Campinas.
por ocasido da entrega do Titulo de Professor Honordrio da UNICAMP a Leopoldo Nach-
bin. o conceito de aplica¢do holomorfa absolutamente somante entre espagos de Banach
complexos {oi apresentado por este autor. Nessa palestra. uma aplicagdo holomorfa f de
E em F era considerada absolutamente somante se. para cada seqiiéncia (z;)52; € [¥(E).
fosse verdade que (f(;rj);?":l € [,(F). Em termos da definicao 3.1 acima, aquele conceito
significava que f(0) = 0 e f era absolutamente somante em (0 € E. E claro que eu havia
priviligiado o comportanto de f na origem de E. O exemplo 3.2. também apresentado na
época. indicava que aquela defini¢do ndo levava a possibilidade de consideragio de um tipo
de holomorfia absolutamente somante. Naquela ocasiao Richard Aron sugeriu a definicao
3.1. com p = ¢ = 1. Concordei com sua sugestiio, mas preferi. antes de examinar o caso
mais geral. explorar e entender melhor o conceito priviligiador da origem. Assim é que
os resultados aparecidos em diversos Semindrios Brasileiros de Andlise e em Matos [8].
sdo todos relativos a esse conceito mais restrito. O artigo Matos (9], publicado em 1997.
no Quadragésimo Sexto Semindrio Brasileiro de Andlise. usa o conceito mais geral. dd o
devido crédito a Richard Aron ¢ permite a consideragao do tipo absolutamente p-somante
de holomorfia.

Notemos que ||.]},,,q define uma norma. se ¢ > 1, ou uma g-norma. se 0 < g < L.
sobre I(E). Por outro lado. |||, define uma nonna, sc p > 1, ou uma p-norma, se
0 < p < 1. sobre {,,(F). Em qualquer dos casos citados obtenos um espago vetorial
topoldgico metrizavel completo. Notenios ainda que. para cada a € A,

Vo.ala) :={(x;)32, € [j(E)ia+a; € AVjeN}
é um subconjunto aberto de [§(E). Portanto. se f for uma aplicagdo de 4 em F, que
¢ absolutamente (p.q)-somante num ponto a. temos a seguinte aplicagdo naturalmente
associada a ela:
Ya,pa(f) 1 (25)521 € Vo,a(a) — Yap,o(F)(z5)521) = (fla+ ;) — f(a))52) € Lp(F).
O resultado seguinte mostra que essa aplicagio tem uma propriedade muito especial.

3.3. Teorema - Se f for uma aplicagao de A em F. que é absolutamente (p, q)-somante
num Ponto a. entdo. ¥, pq(f) ¢ regularmente (p, ¢)-somante no ponto 0 de V; a(a).

Demonstragao - Consideremos (X;)2, € l,(I¥(E)). com X; = (2;£)32, € Vj,a(e). para
cada j natural. Temos:

o0 o0
sup O <z > 1S Y (1K llwa)? < +20.
r'€Bgs jk=1 =1
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Isto mostra que a seqliéncia (2;.4)5% -, pertence a [;’(E'). Além disso, temos z;x +a € A,
para guaisquer j, A naturais. Dado ¢ > 0. existe jo € N. tal que

. ; €
> UK lwa) < 5

i>Jo
Por outro lado. como X;..... X5 € lj,‘(E). existe kg natural tal que
_ € .
s idisis ]l qg) < EY (Vj=1...., Jo)
Jo

Se J = {(j,k) € Nx N:j < jo,k < ko}, vamos obter que (||(z;4);.1)esllwg)’ < €
Portanto. (z;4)5%=, pertence a {{(E). Como f é absolutamente (p, g)-somante no ponto
@, obtemos

+0oc
Y Iapa NN = Y Ifla+z0) = f@)IP < +o0,
7=1 (7,k)ENXH

o que conclui nossa demonstrac¢ao. O

3.4. Observagao - Um cxame da demonstragio do Teorema 2.5 mostra que o mesmo
pode ser enunciado para o caso em que E ¢ r-normado completo e F' é s-normado completo.
Portanto. a tese do Teorcma 3.3 ¢ equivalente a afirmar que ¥, p.(f) ¢ p/g-regular em 0.

Os resultados anteriores nos permitem enunciar o seguinte
3.5. Teorema - Sejam f uma aplicagio de A em F e ¢ € A. Ent3o. as seguintes afirmagées
$a0 equivalentes:
(1) f ¢ absolutamente (p. q)-somante no ponto a.
(2) Uap.q(f) ¢ uma aplicacdo bem definida de V,, 4(a) em {,(F).
(3) Existern M > 0e 6 > 0, tais que Bg(0) C V. a(a) e

n

S lIfta+a;) = fa)” < M? sup Z| <2’z > |%

'€ By

J=1 1=1
para todo n natural e quaisquer x; € E, tais que [{(#;)]= lw.g <.
(4) Existem M >0 ¢ 8 > 0, tais que Bs(0) C V, a(a) e
+0G +00
Yo Ifla+ay) = fl@fP < M sup 3| <’z >,
j=1 7 EBFI j=1

para qualquer (2;)32, € [3(E), tal que ||(z;)7_[lw,q <9

(5) Yap,qe(f) ¢ uma aplicagio bem definida de Vg 1(a) em [,(F), que é regularmente (p, q)-
somante em 0.

Demonstragiao - Notemos que (2) é apenas uma reformulagio de (1). E claro que (5)
implica (2). Teorema 3.3 mostra que (1) irplica (5). A observagdo 3.4 nos diz que (4) e
(5) sdo equivalentes. A equivaléncia entre (3) e (4) é um exercicio simples.dd

O resultado anterior nos fornece uma caracterizagdo bem conhecida dos operadores
lineares absolutamente (p, q)-somantes.
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3.6. Teorema - Sejam T" uma aplicagdo linear de E em F. Entdo. as seguintes afirmagdes
sdo equivalentes:

{1) T é absolutamente (p, ¢)-somante no ponto 0.
(2) ¥0,p,¢(T) ¢ uma aplicagdo linear bem definida de Ijj (E) em 1,( 7).

(3) Existe L > 0. tal que. para todo n natural e quaisquer 2, € E. 7 =1,....n,

L L
n P q

SIT@EHIP] <L sup | > <2z >,
=1 r'€Bg =1
(4) Existe L > 0, tal que. para qualquer (z;)52, € [J'(E).

1 i
+00 B +00 1

S iIT@)P ) <L sup l<em > ")

=1 x'€B by

(3) Yo.p.q(T) é uma aplicagdo lincar bem definida continua de I (E) em [, (F).

Esse resultado usa o teorema anterior ¢ o fato de que ¥y, 4(T) é linear e, por ser
continua na origem, continua sobre 1y (E).

Por outro lado, como um polinémioc m-homogéneo continuo na origem. deve ser
continuo sobre o espago todo, Teorema 3.5 também fornece o seguinte resultado.

3.7. Teorema - Scjam P> uma aplicagio m-homogénea de £ em F. Entdo. as seguintes
afirmacoes sdo equivalentes:

(1) P é absolutamente (p, g)-somante no ponto 0.

(2) Y0,p,q(P) é uma aplicagdo m-homogénea bem definida de [ (E) em Ip(F).

(3) Existe L >0, tal que

1 m

P

n n
Z \P(z;)lIP|] <L sup Z| <z >\
=1

r'€B g =
para todo n natural ¢ quaisquer z; € E, j=1..... n.
(4) Existe L >0, tal que
L m
+00 2 +00 v
DPEHIP|] <L sup [ |<az; >
j=1 z'€B gy =1

para qualquer (z;)32, € I¥(E).

(5) %0,p,q(P) é uma aplicagdo m-homogénea bem definida contuna de I (E) em L,(F).
Se P for um polinémio n-homogéneo absolutamente (p. q)-somante na origem. pode-

mos estabelecer uma relagdo entre o valor de L do Teorema 3.7 e os valores de M e 6 do
Teorema 3.5.
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3.8. Proposigao - Seja P nm polinémio n-homogéneo de E em F. para o qual existem
M > 0.6 > 0, tais que

+20 +20
Z [P(x;)|P < M7 sup ZI <a'a; >,
=1 #€Be 75
para qualquer (z;)3<, € [7(E). tal que I(z;)7 -1 llwq < 8. Entdo.
+oc v +oc %
SIP)IP) <L sup Sl<aly >0
=1 o e’ -

para todo (y;)52, € {(E). Neste caso L = M#6% ™. Isto implica que
[Yopa(P)| < Mrei=".
Demonstracao - Notemos que a desigualdade de nossa hipdtese pode ser escrita na forma
(0.0 (PY(25)320)lp)" < M (I(2)21llwe)” < M&°,

para qualquer (x,)<, € [3(E), tal (J;J)"___l!f‘ < A. Assim. podemos escrever

I [ <o
0.0 o (P (M§1)>.
H(«'U.Lq( ) ( (1(y;) J—l”u q) E‘P

para todo (y,)f‘;1 # 0. Como ¥y p,¢(P) é n-homogeéneco. essa desigualdade pode ser escrita
na forma

n

oopa(P) ()32, < (M80F 87 (15320 )™

para todo (y;)72, € {J(E). o que termina nossa demonstragao. 0

4. EXEMPLOS DE APLICACOES ABSOLUTAMENTE SOMANTES

Os resultados desta seccio mostram que a existéncia de aplicacGes absolutamente
somantes nao ¢ um acontecimento raro.

4.1. Teorema - Seja f uma aplicagdo definida num aberto A de Iy, com valores em Iy,
tal que d?f. sua diferencial de Fréchet de ordem 2. é localmente linitada sobre A. Entao,
f ¢ absolutamente somante sobre A.

Demonstracao - Lembremos que, pelo Teorema (Desigualdade) de Taylor, podemos es-
crever

fa+2) - fla) — (@)@ < 5 sup & Fla+tallell,
te[0,1})

sempre que a + tz € A. para todo t € [0,1]. Seja & > 0. tal que Bs(a) C A e [|d*f| é
limitada por M sobre Bs(a). Se (x;)52, € {{(h) e {lz;|| <, para j € N, temos

an a+2;) - fla)] < Zudf(a (2,)ll + 5 Z Ml

Pelo Teorema de Grothendleck df (a) é absolutamcut? somante Como E tem a Pro-
priedade de Orlicz. idg ¢ absolutamente (2. 1)-somante. Logo, (z;)72, € l2(l1). Portanto.
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esses resultados e a desigualdade acima mostram que (f(a + ;) — f(@))52; € l1(l2). como
queriamos mostrar. O

4.2 Corolario - Toda aplicagio analitica sobre um aberto A de [}, com valores em l;. ¢
absolutamente somante sobre A.

4.3. Teorema - Scja f é uma aplicagao definida num aberto A de um espago de Banach
E. com a Propriedade de Orlicz. que toma valores em F e tem diferencial de ordem 2
localmente limitada sobre A. Entao. se df (a) for absolutamente somante no ponto a € A.
f ¢ absolutamente somante em a.

Demonstragao - Lembremos que. pelo Teorema (Desigualdade) de Taylor. podemos es-
crever

Fa+2) = fla) = (@)@ < 5 sup I f(a+ )] o],

te(0,1]
sempre que a + tx € A, para todo t € [U 1]. Seja & > 0. tal que Bs(a) C A e ||d3f] ¢
limitada por Af sobre Bs(a). Se (x;)32 ¥(E) ¢ ||uy]l < 6. para j € N. temos
+00
1
Zw a+1z;)— fla)] < Z,ldf a)(z;) + 5 M|ll=,; 112
1=1

Por nossas llipot('ses‘ df(a) ¢ absolutamente somante. Como £ tem a Propricdade de
Orlicz. idg ¢ absolutamente (2. 1)-somante. Logo, (2;)32, € [2(£). Portanto, esses resul-
tados e a desigualdade acima mostram que (f(a+z;) — f(a));2; € L(F), como querfamos
mostrar. [

Lembremos que os espagos £,. com p € [1.2]. tém a Propriedade de Orlicz. isto é. as
identidades sobre esses cspagos sdo absolutamente (2. 1)-somantes.

4.4. Coroldrio - Seja 4 um aberto de wn espago de Banach E. com a Propriedade de
Orlicz.

(1) Toda aplicagdo analitica f sobre 4. com valores em £ .que tem diferencial df(a) abso-
lutamente somante, é absolutamente somante no ponto a € A.

(2) Se n > 2. todo polinémio n-homogéneo continuo de F em F' ¢ absolutamente somante
na origem.

4.5. Proposigao - Se g é uma aplicagdo linear absolutamente (p, ¢)-somante definida em
E. com valores em F, e f é uma aplicagdo regularmente (s. p)-somante sobre um aberto B
de F. com valores em um espago de Banach G. entdo. fog ¢ absolutamente (s. ¢)-somante
sobre o aberto A = g~1(B).

Demonstragdo - Se ¢ € A e (z;);2, € [J(E), coma+z; € A, j € N. temos
(g(a+ ;) —g9(a))3<, € L,(F). por g ser absolutamente (p. g)-somante. Logo,
(fogla+z;) = fogla))iz, = (flgla) + (gla + z;) — gla))) € L(G),

por f ser regularmente (s,p)-somante em g{a). Isto mostra que f o g é absolutamente
(s, q)-somante no ponto a. O
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4.6. Conseqiiéncias

(1) Se f for uma aplicagdo definida num aberto A de um espago E com o Propriedade de
Orlicz, que toma valores em F', e df é localmente limitada sobre A, entao, f é absolutamente
(2,1)-somante sobre A. Portanto, aplicagoes analiticas de A em F' sdo absolutamente (2,1)-
somantes sobre A.

Isto segue de 4.5, uma vez que 2dg é absolutamente (2, 1)-somante e f é regularmente
2-somante sobre A, pelo exemplo 4 de 2.4 e por 2.5.

(2) Sejam p € [1,2] e T uma aplicagdo linear continua de ¢y em l,. Se f é uma aplicacdo
definida num aberto B de I, com valores em F, tal que df é localmente limitada sobre
B. entdo, f o T é absolutamente 2-somante sobre A = T-!(B). Em particular, se f for
analitica sobre B, f oT é absolutamente 2-somante sobre A.

Isto segue de 4.5, pois, T' é absolutamente 2-somante (Lindenstrauss-Pelczynski [7]) e
f é regularmente 2-somante por 4 de 2.4.

(8) Sejam 2 < p < r < +oc e T uma aplicagdo linear continua de ¢y em [,. Se f é uma
aplicagao definida num aberto B de {,,, com valores em F. tal que df é localmente limitada
sobre B. entdo, f o T ¢ absolutamente r-somante sobre 4 = T7}(B). Em particular, se f
for analitica sobre B, f o T ¢ absolutamente r-somante sobre A.

Isto segue de 4.5, pois, T é absolutamente r-somante (Kwapien (6] e Schwartz [15]) e
f € regularmente r-somante por 4 de 2.4.

5. APLICACOES HOLOMORFAS ABSOLUTAMENTE SOMANTES

Nesta secgiio todos os espagos de Banach serdo considerados sobre o corpo C. Além
disso, usaremos as notagoes usuais da Teoria de Holomorfia em Dimensao Infinita (vide
Nachbin [11])

Vamos descrever as fungoes generalizadas de Rademacher introduzidas por Aron e
Grobevnik [1]. Para um n € N, n > 2, fixado. tomamos as n-¢simas raizes da unidade
1 = A1, Az,....A,, consideradas na ordem crescente de seus argumentos principais. O
intervalo fechado [0, 1] é dividido em n intervalos de comprimentos iguais Iy, . . ., I, escritos
na ordem em que aparecem da esquerda para a direita. Consideramos a fun(;éo complexa

si™ | definida sobre [0,1], dada por s{™(£) = A;, para t no interior de I; e s1 ") =1, se
t for uma das extremidades de I, 7 = 1,...,n. Para k>1, conbideramos: jé definidas as

funcoes 5(1")  ws bi Me vamos construir a func;ao s,L +1 da seguinte maneira. Cada intervalo

[

J, usado na definigao de .sk , € dividido em n intervalos de comprimentos iguais Ji, ..., Ja,

escritos na ordem em que aparecem da esquerda para a dircita. Agora, consideramos 35:31

(n) (t) = A, se t estd no interior de J;, e s,ﬁ)l( t) = 1, caso t seja uma das

definido por s,

extremidades de J;.. j = 1...., ,n. Como Z AT =0, para cada m < n, temos
=1

(n) n
]0 (). s ()t = b5,
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oC
onde 85, ;. = 1.8¢j1 =...=ju, ¢8; ;. =0.nosoutros casos. Diremos que (sg-”))rl

¢ a segiiéncia das n-fungdes de Rademacher.

5.1. Teorema - Se f for uma fun¢do holomorfa sobre um aberto A de E, com valores em
C. entdo. f é absolutamente somante sobre A.

Demonstragao - Dado a € A. sabemos que o‘cisto 6 > 0. tal que

k 1
fato)- )= L@ g,

k=1 kt

uniformemente para = € B,(0), sempre que 0 < r < §. Para simplificar nossas notagdes.

d k
vamos escrever Py = f“( a) A convergéncia acima ¢ as Férmulas Integrais de Cauchy
implicam que, para cada 0 <r <6 existe M(r)= sup [f(z)| >0, tal que

|z—a|=r

| Pl = sup |1 Pe(z)]) < M(r ) 1

Izl <

S
para cada k € N. Sejam zy,....: Tm € E. tais que ||(z;)]5;[|wa < % = —. Temos
m oC m 0 f m
lefa*r - f(a) Z; ;X;xmu s?jiZPk ax ;)
1= =1 k=1 2 p=s

1
onde a,; é um nimero complexo, de modulo 1. tal que e ;Pilz;) = |Pi(z;)|. Agora.
notemos que

| m 1 m {
ZPk(ak.jxj) = j Py Zak-jsﬁ‘k)(t)xj dt
| 0 J:l

ji=i

k

Za;\]s( Wt)z;

|7= 1
Na primeira igualdade da expressdo anterior usamos a multiljn(-.aridade da aplicagao k-
linear associada a Py e as propriedades das k-fungoes de Rademacher. Como

< |\ Pxf| sup
lt]=1

k
AUD Zm‘? f)%{ S(||($J);":1Hw.1)k-

=152

podemos escrever

m +oo
_Z (a+ ;) = f(@) < 3 1Pl ()7 )

k=1
+oo too
< 3 MO (1) ) € M@ Tlon 37 (1))
k=1 k=0

b
Como ||(z;)7%1llwa < = —;—, podemos concluir que

S If(a+2;) = F(@)l < 2M(7) () Ty -
=1
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Nosso resultado esta demonstrado pelo uso de 3.5.(3). O
A demonstracdo do resultado anterior prova que também vale o seguinte Teorema.
5.2. Teorema - Se f é uma fungdo holomorfa sobre wm aberto A de E com valores

complexos, entdo. existe r > 0. tal que

+00
dolflata;) ~ fl@l <2 sup [f(2)II(25)521llwa < +oo,

|z—al=r
- r
sempre que (z;)72; € IY(E) e (z5) 721 llwa < 5

5.3. Proposigao - Se f ¢ uma aplica¢do holomorfa num aberto A de E. com valores em F'.
entdo, para cada a € E. tem-se (f(a+z;) — f(a))32, € I{(F), sempre que (z;)32, € I{'(E)
eata; €A jeN

Demonstracio - Para cada ¢ € F’, temos ¢ o f absolutamente somante sobre A, por 5.1.

Por outro lado. pelo Teorema 5.2, obtemos

+20
Ylgoflatas)—pofla) <2 sup [po f(2)ls)52illw.rs
1=1

|z—al|=r

sernpre que (1,)72, € [Y(E) e l(z;)52illwa <
cada ||¢|| < 1.

Portanto. podemos escrever que, para

[ S0 B

+00
Y ldo flatx)=dofla) <2 sup [If(z;)i 2w

|z—al=r

sempre que (7;)32, € I¥(E) e [[(z;)721]lw1 < 5. Agora. nossa tese segue facilmente dessa

rof

desigualdade. O

5.4. Teorema - Se f : A — F é holomorfa sobre A C E e g é nma aplicagdo absoluta-
mente (p, 1)-somante sobre um aberto B de F. contendo f(A), com valores num espago de
Banach G. entdo. g o f é absolutamente (p, 1)-somante sobre A.

Demonstragao - Seja a € A. Para cada (2;)32, € [{(E), comia+1; € A, j € N, temos
(fla+ x;) — fla))32, € [}(F), pelo teorema anterior. Logo, como g é absolutamente
(p, 1)-somante no ponto f(a), temos

(go fla+x;) —go fa))2, = (9(f(a) + (fla + ;) = f(a)) — 9(f(a))521 € Lp(G)
e nosso resultado estd demonstrado. O

5.5. Proposicdo - Seja f holomorfa sobre um aberto A de E, tomando valores em F. Se
f for absolutamente (p, q)-somante no ponto a € 4, entdo, para cada n € N, d" f(a) é um
polindmio n-homogéneo absolutamente (p, ¢)-somante na origem.

Demonstragio - Se Bs(a) C A, pela Férmula Integral de Cauchy, podemos escrever

7 ! Az) —
mmm=%ﬁm&%%g@m

para cada z € B;(0). Portanto. existe |\, z| = 1. tal que
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Id” f(a) ()] < nl sup || f(a+Az) = f(a)l] = nlllf(a+ Anze) = flO)]-

|Al=1
Agora. para (z;)32, € [!E). com a +2; € A, j € N, existe jo. tal que, 2; € Bs(0). se
J > Jo. Comno vimos acima. existe |A;| = 1, tal que
id" fla)@;)l < nlifa+ A2,) = fla)ll,
para cada j > jo. Portanto.

+oc

Jo
1 @)@ )ir < 3 id fl@)@)I” +nt Y 17 (a+ Az;) = f@))P < +x.
j=1 j=1 3270
pois (Ajz;);5j, € l3(E). Isto completa nossa demonstragao. O
Uma conseqiiéncia deste resultado e de 4.3 é o seguinte tcorema.

5.6 Teorema - Uma aplicagido holomorfa f de um aberto A num espago de Banach E.
com a Propriedade de Orlicz. em F ¢ absolutamente somante no ponto a € A, se, ¢ 6 se.
df{a) ¢ absolutamente somante.

5.7. Teorema - Seja f holomorfa sobre um aberto 4 de E. tomando valores em F. Se f
for absolutamente (p. g)-somante no ponto a € A. entdo. existemn 6 > 0 e M > 0, tais que

e

Demonstragao - Pelo Teorema 3.5. existem M > 0 ¢ 6 > 0. tais que Bs(0) C V, 4(a) ¢

< M#55~",

para qualquer n € N.

+oc +oc
Z}if(aﬁ» @)= fla)|” £ MY sup ZI < aymg
F=1 ' €Ryy 3=1
para H(Ij)ﬁiilq < 6. Conforme vimos na demonstragao da proposi¢do anterior. temos
+3 || 3 P +oo
d” f(a)(r)) 1
S -—n|)~ti < ST Hfla+ M) = f(a)] < 4o,
j=1 1| : i =1
para H(Ij)?‘;lHq < 4. Assim
400 | 3 P
d" f(a)(z;) , a
Zl n! ’ SM’(H(:E’)?;I“W) '
]-’-—'.

Por 3.8, obtemos nosso resultado. O

5.8. Teorema - Seja f holomorfa sobre um aberto A de E. tomando valores em F. Entdo,
f é absolutamente (p,g)-somante no ponto a € A, se. e s6 se. Y4 ,p.q(f) é holomorfa na
origem.

Demonstragio - Uma implicagao ¢ trivial. Se supomos. por cuwro lado, que f é absolu-
tamente (p, ¢)-somante no ponto a € A, 5.7 garante que a série

Z tUo.p.q (ﬂ"'@) ((Ij)?il )

n=0 %
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tem raio de convergéncia maior ou igual a § > 0. Isto significa que ela converge para cada
I(z;)32 1 lw.q < & e define uma aplicagao holomorfa na origem de I3(E). Agora, fazendo as
contas. vemos que a soma de tal série, para tais pontos. ¢ ¥apo(f)((z;)32,). O

6. TEOREMA DE DVORESTKY-ROGERS PARA POLINOMIOS

Nesta seccdo E e F sao espacos de Banach sobre K.

Se P for um polindmio n-homogéneo de £ em F, que é absolutamente p-somante sobre
E, e, além disso, K = C, entao, como vimos na sec¢ao anterior, dP(a) é absolutamente
p-somante na origem. para todo ¢ € E. O préximo lema mostra que o mesmo resultado
vale no caso em que K = R.

6.1. Lema - Seja P um polindmio n-homogéneo de E em F, que é absolutamente p-
somante sobre E. Para cada a € E, dP(a) ¢ absolutamente p-somante na origem.

Demonstracgao - Lembremos que

dP(a)(z) = nPaz" ! = o Z €] . Pleja+ (ea+ ...+ €a)x)
=x1
= ;ir;_n(z €. enPla+ (0 + ... +€y)a) — Z 59...5,,P(—a+(62—:—...+f,,)z))
) ¢i==+1 e,=%1

= n;;n ( Z €. €xla({e2+ ... +€,) Z €2.. . enPoal(e2 + .. )z))

=%l =1
Notemos que. como P ¢ absolutamente p-somante em a e em —a, temos P, e P_, absolu-
tamente p-somarntes na origem. Agora. para completar a demonstracdo, basta usar essses
fatos ¢ a identidade acima. O

6.2. Lema - Para z7,.... 2, e Elebe F.se fulz) =< zj,z > ... <1,z >b para
cada z € E, entdo. f, ¢ absolutamente p-somante sobre E.

Demonstragio - Se g,(2) =< ),z > ... < zl,z >, para cada r € E, é facil ver f, serd
absolutamente p-somante sobre E, s¢ 0 mesmo ocorrer com g,. ara isto acontecer, basta
provar que (g»)a ¢ absolutamente p-somante na origem. para cada a € £ (vide observacao
feita apos a definigdo 3.1). Mas, notemos que
(Gn+1)alz) =< Tni1:@ > (Gn)a(T)+ < Tpi1n T > (gn)a(z)+ < 23,41,7 > gnla),

para todo x € E. O resultado serd demonstrado por inducgdo em n. O caso n = 1 é trivial.
Supondo que g, é abolutamente p-somante sobre E. para n > 1, a identidade acima
mostra que (gn+1)a é absolutamente p-somante na origem, se o produto < zj,,1,. > (gn)a
for absolutamente p-somante na origem. Isto segue da Desigualdade de Hélder

1 1

°

P

o0 oc r o0
Yol a2 > gal@)P | < (S 1<z > P | X gn)alzs)I?
7=1 =1

i=1

e dos fatos de < x7,,,,. > e (ga). serem absolutamente p-somantes na origem. O



-264-

Agora. estamos em condigoes de demonstrar um teorema do tipo Dvoretsky-Rogers
para polinémios n-homogéneos.

6.3. Teorema - O espago vetorial dos polindmios n-homogéneos continuos de E em E

coincide com o espago dos polindmios n-homogéncos absolutamente p-somantes sobre E.

se, e somente se, E tem dimensao finita.

Demonstragao - Se n = 1. esse é o Teorema de Dvorestkv-Rogers. Seja, entao, n > 2.
Se E tem dimensdo infinita, tomemos 2’ € E', 2’ # 0 e a ¢ ker(z’). O polindémio

n-homogéneo continuo P, dado por P(z) = (< z’,z >)" "'z, para cada = € E, é tal que

dP(a)(z)=(r-1)(<z'\a>)"? <2, x> a+ (<2 .a>)""1z

Se P fosse absolutamente p-somante sobre E, terfamos dP(a) absolutamente p-somante,

pelo Lema 6.1. Como (n — 1)(< 2’.a >)"~? < 2/,. > a ¢ absolutamente p-somante e

< x',a ># 0, a identidade acima implicaria que idg deveria ser abolutamente p-somante.

Mas isso ndo pode ocorrer, pelo Teorema de Dvoretsky-Rogers. Portanto, P nio é absolu-
tamente p-somante sobre E.

Se E tem dimensio finita. existem bases {e;.....e,} e {e},... e}, de E ¢ E', tais

que < €},ex >=§;. Portanto. dado um polinémio n-homogéneo P de £ em E, podemos
escrever:

P(z)=P Z< ez > e])

1=1

= Z <ej.x>...<ej,x > Plej,..., Ein):

Pelo Lema 6.2, obtemos P absolutamente p-somante sobre £. 0O
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