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ABSTRACT 
Phototherapies have been increasingly used in several applications such as the control of pain and inflammatory 
processes, photodynamic therapy, and even aesthetics uses.  After many decades, the dosimetry for those techniques 
remains challenging. One of the key issues is the lack of homogeneity obtained for tissue illumination, which may limit 
adequate treatment. Especially concerning lesions, the surface tissue is usually irregular, and the light does not couple to 
the tissue efficiently to promote an effective treatment. A series of experiments have been performed using optical 
phantoms, in which coupling was improved by introducing a gel with a low concentration of scattering agents between 
the fiber and the phantom as an attempt to improve the homogeneity of light distribution within the phantoms. The 
effects promoted by roughness on phantom tissue surfaces are considerably attenuated when the coupling gel was 
introduced, resulting in a more uniform illumination pattern that may be used to promote better phototherapy treatments 
outcome. 
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I. INTRODUCTION
Biological tissues are considered turbid media, in which light scattering effect is much stronger than absorption. Studies
on light propagation and distribution in biological media are essential for the improvement of dosimetry of several
applications, be it therapy or diagnosis, and several papers can be found in literature exploring mathematical modeling
and empirical measurements in order to better understand how light propagates in biological media.1–6 However, most of
them do not discuss and explore surface features of biological tissue. Most part of diagnosis and therapeutic applications
of light have the skin as target tissue and, we know that skin features (color, texture, topography, hydration, etc.) greatly
vary from site to site and from patient to patient, influencing the results.

For phototherapy, photodynamic therapy (PDT) and photodiagnosis applications, the conventional procedure is 
based on the direct application of a light beam on the skin, an illumination procedure that works well for several 
applications, however, it can be a limitation in others.7,8 For PDT of planar lesions with smooth surface, for instance, 
conventional irradiation is appropriate, 9,10 however, for bulky tumors with irregular surface (irregular topography and 
irregular pigmentation) different illumination strategies should be implemented. 

Most part of the studies on light propagation in biological tissues (or turbid media) does not consider the surface 
features of it. Surface irregularities may lead to a non-uniform light distribution pattern, with shadow effects that may 
compromise the establishment of a correct dosimetry. For PDT, these irregularities may result in recurrence, since it is 
crucial to delivery enough light (higher than the threshold dose) to promote death of the whole lesion.11–13 For LLLT the 
expected effect (pain control, inflammation control, cell proliferation) is obtained only when minimum amounts of light 
are delivered.14,15 For this reason, it is important to seek for the improvement of light delivery techniques that allow to 
create a more controlled dosimetry. A relatively straightforward way to improve the light delivery is using a coupling 
agent at the tissue interface. It may promote a better refractive index matching, which will result in less reflection.16,17 
The use of hidrogel, for example, as coupling agent is common for applications like photo-epilation18, ultrasound therapy 
and imaging19, and others. 
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only	(	ߤ௚ = −0.33 ± 0.01). That shows how the presence of a coupling agent positively interferes with the light 
propagation within the phantom. 
To evaluate the uniformity of spatial distribution of light, isodose curves data for a distance of 2 mm from the irradiation 
spot were compared to the fitting by parables, and the light intensity values for the specific points on these parables were 
evaluated. This comparison aims to show how the heterogeneities may interfere with phototherapies in general, and how 
the use of the gel as a coupling tool may contribute to reducing this effect. Thus, when comparing the values of the actual 
intensity values and those obtained for the fitted parable, a smaller difference between them means more uniformity. The 
observation on the fluctuation around an average value of intensity was considered to assess the delivery of a specific 
amount of energy at a given depth. We have considered the curves for an energy dose of 40 J/cm², because this is the 
minimum amount of energy to be delivered to the skin for the elimination of carcinoma by PDT using a porphyrin as a 
photosensitizer and a 630 nm light source as treatment light29. This light dose for PDT was chosen to represent that 
because this is one of the treatment situations in which not achieving the proper treatment may result in the severe 
complication of the clinical condition of the patient, by allowing a recurrence to happen. The referred doses are presented 
in Figure 9. 
 

 
Figure 9: Light dose distribution around the estimated threshold value. When no gel is used to improve light coupling (left), the 

irregularities are much larger, and light delivery is much above or much below the threshold value, which does not happen for the SG 
condition (right). 

 
The effects of phototherapies depend on the amount of fluence that is delivered to a tissue bulk to be effective. 

Delivering a minimum amount of light to start or inhibit physical-chemical processes or reaction pathways is a 
requirement of any treatment based on a photoreaction or an excited-state reaction. This is particularly important for 
PDT, which is why the examples here shown are mostly based on it. In its case, achieving necrosis demands a threshold 
dose, which is the minimum one necessary to produce enough reactive species that will ensure the cells death30. 
Obviously, if this amount is not reached, cells may survive, which could provoke a recurrent lesion later. On the case of 
other phototherapies, not reaching the minimum amount of light will not promote enough stimulation of organelles 
and/or cell membrane structures to start desired or stop undesired metabolic events in the treated cells, also jeopardizing 
the treatment. 

In Figure 9, both 9a and 9b, the solid line represents the threshold dose of 40 J/cm² that should supposedly be 
achieved at any point of the treated tissue, which is why this is represented by a horizontal line. The dashed line 
represents the measured dose obtained from data for both NG and SG situations. Of course, there is a natural fluctuation 
on the intensities that is detected at a specific distance from the irradiating source. This fluctuation range is very variable 
concerning neighbor points, and very dependent on the assessed position. However, the fluctuations observed for the NG 
situation range from 32-60 J/cm², whereas the SG situation shows fluctuation ranging from 41-55 J/cm². 
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Even more importantly, for SG situation, at any assessed point, all the values are above 40 J/cm², in contrast to 
those for NG, in which the presence of irregularities imply that only a few regions satisfy the criterion mentioned above 
while others are below that. The regions for which the dose is below threshold line are a real concern, because they mean 
that there are points where the tissue receives much larger-than-necessary light doses, which may eventually carry out 
undesired effects such as thermal ones, and despite it, there are points for which the minimum to promote proper 
treatment is not delivered, with deleterious consequences such as those discussed above, like leaving behind viable tumor 
cells.  If tumor cells are present in those regions, the recurrence will occur. In fact, in previous experiments performed by 
our group31, islands of growing cells within the PDT treated region were observed. Then, those regions where associated 
with illumination irregularities induced by the presence of blood vessels in the tissue. As one can see in Figure 9(a), the 
regions below the threshold might be an example of the cause of those groups of surviving cells. That is quite important 
for approaches such as PDT skin cancer. 
In the case of phototherapies in general, the most suitable way to ensure adequate treatment is by establishing proper 
dosimetry. Managing dosimetry for tissue irradiation is much more straightforward and, hence, feasible, in cases that 
light delivery is possible to predict and control, which is easier when light distribution in tissue is more isotropic. 
Therefore, the results here shown represent a significant stimulus to the use of this approach to improve light delivery for 
phototherapies.  
 
IV. CONCLUSIONS 
We have presented in this study a possible application to improve PDT outcome for surface tumors and to ensure proper 
protocol implementation for phototherapies. The use of Carbopol gel with addition of lipidic emulsion provides an 
effective improvement in the illumination uniformity, removing effects caused by the roughness of the tissue surface. 
Light propagation was less disturbed by the surface roughness since there was a decrease in the difference between the 
refractive indexes of the phantom and the medium light was coming from. Since the refractive index of the phantom was 
around 1.333 and for the coupling gel is 1.338, the interface transmission was more efficient. The increased scattering in 
the light source medium also contributed to the increased homogeneity by allowing photons to be delivered from several 
angles, thus contributing to better light/phantom coupling. 
The depth reached by light was also larger when SG was used, when compared to the gel alone, which may be explained 
by the return of reflected photons to the interface due to scattering within the gel at SG. 
As a final remark, using a gel to improve irradiation effectiveness is quite easy considering most protocols, which makes 
this approach a real option for the improvement of clinical treatment using optical techniques. Further studies shall 
produce in vivo evidence of such improvements and will be presented soon. 
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