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Abstract

Unresolved pressure fluctuations at the subgrid scale (SGS) level of Large Eddy Simulation
(LES) or Reynolds-averaged Navier-Stokes (RANS) computations affect cavitation inception
predictions, as SGS low pressures are simply ignored. We present a framework to take the
unresolved SGS flow into account. Representing the SGS flow as canonical turbulence, in this
paper homogeneous isotropic turbulence (HIT), the pressure fluctuations, transport and cavitating
behavior of nuclei in such turbulence can be evaluated from direct numerical simulations (DNS)
and used to create a model of cavitation inception that accounts for SGS fluctuations. To
accomplish this, nuclei of different sizes were transported in DNS of HIT, using their pressure
history to drive the Rayleigh-Plesset equation that simulates bubble dynamics. In this way,
expected average cavitation frequencies were tabulated for a range of SGS Taylor scale Reynolds
numbers (Re,), nuclei size, TKE dissipation rate, and mean pressure. The model uses this table to
estimate the cavitation event rate in each cell of a computational fluid dynamics (CFD) solution.
Inception can then be predicted by comparing the total cavitation rate with the detection criterion.
The model is first assessed on two cases of HIT (at Re;=240 and 324) by comparing the pressure
statistics it predicts in LES runs using the SGS cavitation model against the statistics of DNS.
Then, a high Re; (1660-1880) HIT flow is simulated using LES and cavitation events are compared
against experimental data. The inception model successfully predicts the inception pressure and
the cavitation rates in the flow.
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1. Introduction

Cavitation in liquids occurs when pressure in the flow falls below vapor pressure and
results in fluid evaporation. Cavitation creates vapor bubbles that grow and then collapse as the
pressure recovers above vapor pressure, sometimes causing intense shock waves. While most
common in turbomachinery (pumps, turbines, marine propellers), it also occurs in pipes and
valves, control surfaces in high-speed marine craft, concrete and rocks in high-speed streams and
spillways, and a variety of other natural and man-made systems. Some undesired effects of
cavitation are noise, erosion and loss of performance in turbomachinery. Cavitation must be
prevented for many applications, and thus prediction of conditions for cavitation inception is
critical. Besides experiments, computational fluid dynamics (CFD) can be used to analyze
cavitation inception problems.

Pressure fluctuations are key to the phenomenon of cavitation inception in turbulent liquid
flows, where microscopic bubbles (or nuclei) present in the liquid grow to produce detectable
vapor bubbles (Brennen 1995, Mgrch 2015). The evolution of isolated nuclei undergoing a
pressure history can be simulated using the Rayleigh-Plesset equation (Brennen 1999 and
references therein), but proper prediction of cavitation inception in practical flows remains a
challenge (Arndt 2002, Li 2015, Li et al. 2015), mostly due to the inability of predicting the
pressure histories experienced by nuclei in the fluid, as the relevant low-pressure structures
responsible for cavitation inception are very small and might not be resolved when using standard
CFD approaches with current computer resources.

Direct numerical simulation (DNS) of the liquid/gas coupled flow, including appropriate
physical modeling of the flow and thermodynamics of nuclei and cavitating vapor bubbles, see for
instance Okabayashi and Kajishima (2011), would be capable of solving the problem as no
turbulence model is involved and all scale and physical processes would be resolved. This
approach is severely limited by the spatial and temporal resolution necessary to handle the small
sizes and fast transients occurring during cavitation, typically considerably more demanding than
the requirements to resolve turbulence, making it impractical except for the simplest geometries
and a few bubbles.

Less demanding than full DNS, but still beyond current computational capabilities, is a
one-way coupled approach in which the liquid flow is computed with DNS ignoring the presence
of nuclei and incipient vapor bubbles. This methodology requires a model to predict the inception
of cavitation by solving the dynamics of the nuclei as they grow and cavitate in presence of low
pressures, for instance solving the Rayleigh-Plesset equation (Brennen 1995) along the bubbles'
trajectories. A one-way coupling approach is appropriate if the gas volume fraction is low enough
and thus does not influence the liquid flow. As a reference example, the void fraction produced by
a relatively high concentration of 10 nuclei/cm® of 50 micron diameter nuclei is 6.5 X 10~7. In
practice the nuclei concentration is typically limited to the range 0.1~10 nuclei/cm3. Since before
inception the void fraction caused by the nuclei and incipient cavitation is very low, it is safe to
assume that the bubble dynamics will not significantly affect the liquid pressure and velocity
distribution.



AlP

Publishing

Cavitation inception is determined experimentally using either visual or acoustic detection
methods. In visual methods, the inception of cavitation is determined by observing the flow for
initiation of vapor cavities (Hsiao et al. 2003, Straka et al. 2010). This method has uncertainties
caused by the need for illumination, sensitivity to the viewer, and the size of the cavities. Acoustic
methods analyze the acoustic signal of the cavitation noise looking for pops and later chirps as the
reference pressure is decreased (Song 2017); acoustic methods are sensitive to background noise
and detection threshold. It should be noted that there are no absolute visual/acoustic detection
criteria (size or noise and frequency levels) which adds uncertainty to the prediction of cavitation
inception.

In case of numerical simulations, three types of inception criteria and techniques are most
common. The simplest is to perform a liquid flow simulation and use the minimum pressure to
determine the cavitation inception index. Wimshurst et al (2018) used the minimum resolved
pressure criteria to detect cavitation inception on flow around turbine blades at different tip-speed
ratio and submersion depth. Asnaghi et al. (2018) proposed an alternative method based on the
energy of low pressure region where they estimate the diffused vapor volume due to pressure going
below the vapor pressure to identify the inception points. A second approach is to simulate both
liquid and vapor phases in an Eulerian fashion. Cavitation inception is determined when vapor
cavites reach a volume of detectable size (Asnaghi et al. 2018, Brandao and Mahesh 2022).
Brandao and Mahesh (2022) simulated cavitation in a shear layer behind a backward facing step
using a one-way coupling approach, and counted the frequency of cavitation events to determine
the onset of cavitation. The one-way coupling allows solving the vapor transport equation as in a
homogeneous mixture model, enabling variation of the cavitation number without the need to
recompute the liquid flow. The low void fractions involved justify the one-way approach, as done
in this paper.

A third type of analysis is an Eulerian-Lagrangian approach where a resolved pressure field
is used to compute the bubble dynamics. Several early attempts to compute cavitation inception
have combined RANS and LES approaches with the solution of the dynamics of transported nuclei
(Kodama et al. 1981, Meyer et al. 1992, Hsiao and Pauley 1999, Hsiao and Chahine 2004), using
the resolved pressure to solve a Rayleigh-Plesset equation. Usually a spatially limited grid of
higher resolution is used to capture the small scale fluctuations where cavitation is expected (Hsiao
and Chahine 2004). One advantage of this technique is that it can more easily account for the
effects of water quality. The influence of water quality on cavitation inception prediction was
investigated by Chen et al. (2019) in the context of tip vortex cavitation. They used several nuclei
concentrations and size distributions while they released the from different distances from the core
of the vortex. With the resulting bubble dynamics, they formulated an analytical relation for
capture time. Their analysis show that the inception index can change up to 10% based on the
nuclei distribution. The effect of non-condensable gases (NCG) for tip vortex cavitation has
recently been studied by Cheng et al. (2021). They proposed a new model accounting for the NCG
using a Euler-Lagrangian cavitation model and showed the important role of the gas content in
sustaining cavitation.
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In any CFD methodology other than DNS, a SGS turbulence model is used to obtain proper
solutions of the resolved flow. The SGS flow is filtered out and thus pressure fluctuations at the
SGS level are not part of the resolved flow. Consequently, low pressures occurring at the SGS
level are ignored in any model attempting to predict cavitation inception directly from Large Eddy
Simulation (LES) or Reynolds-averaged Navier-Stokes (RANS) pressure solutions. While still
expensive, large eddy simulation (LES) can be used to tackle a wide variety of engineering
problems and is attractive because many important characteristics of the flow are retained by
resolving the largest turbulence scales. RANS is a mature modeling approach that can today be
considered of low cost, while hybrid RANS/LES approaches like DES (Spalart 2009) are
somewhere between RANS and LES in terms of cost and ability to resolve flow transients.

The need to account for unresolved pressure fluctuations in cavitation models has been
recognized by Singhal et al. (2002), who added a simple correction to the resolved pressure based
on the modeled turbulent kinetic energy (TKE) k as P, = P4, + 0.195pk, where B, 4, is the vapor
pressure under local conditions and P, is the corrected vapor pressure, which by virtue of being
higher than the local vapor pressure results in earlier cavitation inception. Anton (1993) analyzed
the effects of turbulent stresses on inception, proposing a correction related to the Reynolds
stresses. Joseph (1998) proposed a cavitation inception criterion of maximum tension trying to
unify the theory of cavitation, the theory of maximum tensile strength of liquid filaments, and the
theory of fracture of amorphous solids. This criterion has been used successfully with a Lattice
Boltzmann CFD approach to compute inception (Ezzatneshan 2017), showing the potential to
obtain higher cavitation inception numbers than using the pressure alone to drive cavitation, but
has not been explored in this paper.

In this paper we present a cavitation inception modeling approach that accounts for
unresolved SGS pressure fluctuations, building on previous work from the authors studying
pressure statistics in turbulent flow in the context of cavitation inception (Bappy et al. 2019a,
2019b, 1020a, 2020b). The work on SGS cavitation inception is scarce, and most studies still use
the resolved pressure to predict cavitation inception or to activate evaporation or condensation in
cavitation models. With RANS, LES and hybrid RANS/LES approaches in mind, it is of interest
to develop an SGS model for cavitation inception that can account for the unresolved pressure
fluctuations. Okabayishi and Kajishima (2011) employed a probability density function (pdf)
based SGS model to improve cavitation inception prediction with LES. Their model assumed a
gaussian pressure distribution in the SGS and did not have any Lagrangian bubble dynamics
component. Our model at this time uses statistics built from DNS simulations of HIT flow to
compute SGS cavitation rates, though the model can easily be extended to more complex but
appropriate canonical SGS turbulent flows, like homogeneous shear turbulence (HST), as
discussed later. Details of the DNS simulations, Lagrangian nuclei transport for each size,
cavitation rate computation from the Rayleigh-Plesset equation, final implementation of the model,
and application to cavitation inception in HIT at high Reynolds numbers are discussed in the next
sections.
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2. Methodology
2.1 Sub-grid scale flow

In LES, pressure fluctuations at the SGS flow are not resolved. To incorporate the effects
of those lost pressure fluctuations on the cavitation inception process, we use statistical
information obtained by transporting millions of finite nuclei in DNS fields of homogeneous
isotropic turbulence. Using HIT is convenient, as it is the simplest form of turbulent flow. If the
LES simulations can resolve small enough scales, the SGS flow will be independent of the large
scale flow and its scale statistics should be universal as postulated by Kolmogorov (1962) and later
discussed in the context of homogeneous isotropic turbulence (Van Atta 1991) and homogeneous
shear turbulence (Pumir 1996). Notice that HIT flows depend on a single parameter, the Reynolds
number based on the Taylor microscale 4

’

Rey =2 1)

where u' is the RMS of the unresolved SGS turbulent velocity fluctuations and A = u'\/15v/e
with € and v being the TKE dissipation and kinematic viscosity, respectively. In a LES field, the
sub-grid velocity fluctuations u’, and the sub-grid dissipation &, and thus Re; varies from grid point
to grid point. The sub-grid pressure fluctuations at each grid point are modeled as those
experienced by nuclei immersed in a HIT flow corresponding to the local Re,. To compute
quantitative estimates of cavitation rates from this model assumption, a database is built containing
pressure histories of nuclei of different sizes tracked along DNS fields of several Re,: 22, 35, 55,
90, 150 and 240. The DNS solver, the tracking algorithm, and the treatment of the pressure
histories to arrive at a sub-grid cavitation rate are detailed in the next sections.

2.1.1 Homogeneous isotropic turbulence solver

We performed simulations of a forced homogeneous and isotropic turbulent flow contained
in a triply periodic cubic box, of size N in each direction. The flow is described by the Navier-
Stokes equations,

Oeu; + u;0;u; = —0;p + 0,755 + q, 2)

oiu; =0, 3)

where u; is the velocity vector, p is the density of the fluid, and p is the pressure that ensures the

incompressibility of the flow, d;u; = 0, g; is a body force that sustains turbulence. 7;; represents
the viscous stresses and is given by

Ty = 2vS;j, 4

where S;; = 1/2(0;u; + d;u;) is the rate of strain tensor and v is the kinematic viscosity. The

evolution equations are projected on a Fourier basis with N/2 modes in each direction and the

non-linear terms are calculated using a pseudo-spectral method (Cardesa et al. 2017). The time-

integration is performed using a third-order semi-implicit Runge-Kutta. The forcing term injects a

5



AlP

Publishing

fixed amount of energy per unit time and is applied only to modes with k < 2, where k is the
wavenumber magnitude in Fourier space.

Note that v is adjusted to maintain a fixed numerical resolution r = k4, 1. Here, 7 is the
Kolmogorov length scale and kg, = V2ZN/3 is the maximum wavenumber magnitude. The
Kolmogorov length scale is computed as

n= /el )
For a fixed resolution, and imposing a dimensionless dissipation level of € = 1, the kinematic
viscosity is

V= (r/kmax)4/3- (6)

2.1.2 Eulerian and Lagrangian pressure statistics in HIT for finite nuclei

Eulerian pressure statistics in HIT have been studied by several authors (Pumir 1994, Cao
et al. 1999, Gotoh and Rogallo 1999, Bappy et al. 2019b, 2020b). Time histories of the minimum
pressure in the computational domain show that as Re; increases the absolute value of the
minimum pressure and the amplitude of the pressure fluctuations increase, see Fig. 1.

.

Rey =22 —
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240 —
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Figure 1: Normalized history of minimum pressure for Re, = 22,90 and 240. The Kolmogorov
timescale is 0.2582 for all Reynolds numbers and the integral timescales are respectively 1.4,
2.7, and 6.4 for Re; = 22,90 and 240. The grid size N for DNS are 128, 256, and 512 with

corresponding numerical resolution r = 7.6, 3, and 1.5 respectively for Re; = 22,90 and 240.

The pdf of pressure is negatively skewed with an exponential tail at very low pressures, as
shown by Cao et al. (1999) for Re; up to 148 and by Bappy et al. (2019b) for Re; = 150 and 418.
Figure 2 shows the pdf of pressure for the range of Re, used in this paper for statistically stationary
HIT. In these pdfs two clear trends of interest are observed: 1) as seen in Fig. 1, lower pressure
can be achieved as Re; increases, and 2) the probability of reaching a given low pressure increases
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as Re, increases. It appears that this trend saturates beyond Re; = 150, though this trend cannot
be confirmed as only one higher Re, is available.

In the context of cavitation inception, the relevance of Lagrangian pressure statistics
instead of Eulerian statistics has been discussed by several authors (Arndt and George 1979, La
Porta et al. 2000, Bappy et al. 2019b). While small nuclei behave as tracers and thus experience
pressures with Eulerian pdfs as the fluid particles do, larger nuclei are attracted to low pressure
vortex cores and their Lagrangian pressure histories are pertinent (Bappy et al. 2019b, 2020b).
Higher concentration of nuclei in low pressure regions result in higher probability of inception.
We use nuclei of different sizes to obtain their appropriate cavitation inception statistics in the
turbulent flow field, thus accounting for the nuclei size distribution in the water.

In our computation, the trajectories of the nuclei in the turbulence field are determined by
integrating the transport equation coupled with a modified Maxey-Riley equation, namely

T2 =v© %)

dv 1
dt Tpart

(u—v)+3a.
3

Here, x(t) and v(t) are the position and velocity of a nucleus at time t, respectively, and d/dt
represents the time derivative along the particle trajectory. u and a are the fluid velocity and
acceleration at the particle position and at time t. The non-dimensional inertial time of the nucleus
is Tpare and is derived from Stokes’ law. It relates to the turbulence intensity and nucleus size by

Rej %2
Tpart = —5~ Ry,

©))
where the dimensionless radius for a nucleus of equilibrium radius R, at the local pressure is
defined as
*—Ro
Ry =~ (10)

The pressure history is saved following all the nuclei along their trajectories and statistics are
computed afterwards. The numerical algorithm for nuclei tracking is explained in more detail in
Bappy et al. (2020b).

Probability density functions of the pressure experienced by nuclei with R," = 0.1 are
shown in Fig. 3. Comparing to Fig. 2, the probability of experiencing low pressures increases by
up to two orders of magnitude, with stronger effect at lower pressures and higher Re,. Previous
studies of light particles in turbulent flow show that the size of the particle has a considerable effect
on its response to pressure fluctuations (Toschi and Bodenschatz 2009, Balachandar and Eaton
2010). The study of the effects of nuclei size and gravity on similar pressure statistics confirms
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that larger nuclei experience more frequent pressure fluctuations and spend longer time in low
pressure regions of the flow. Physically, larger nuclei experience more attraction towards low
pressure vortex cores as both pressure gradient and drag forces increase with the cross sectional
area, but the drag coefficient decreases with increasing size. Once the nuclei are positioned inside
the core, they get trapped until the vortex dissipates. As the strength of the vortices increases for
higher Re, so does the effect on pressure statistics. The response of the nuclei, as seen from the
pressure pdfs, is significantly more favorable for cavitation. Such response as a function of nuclei
size is documented by Wang (1999) and Bappy et al. (2020a, 2020b). Note that the limiting
behavior observed for Eulerian statistics is no longer present at low pressure values and the
probability of a nuclei experiencing a given low pressure continues to increase with Re;.
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Figure 2: Probability density functions of Eulerian pressure at different Re;.

Of critical importance for cavitation are the frequency and duration of the low-pressure
events experienced by the nuclei. The frequency of such events along with their duration
determines the frequency of cavitation events in the flow, as discussed by several authors (Arndt
and George 1979, La Porta et al. 2000). In the context of HIT, their dependence on pressure levels
and Reynolds number has been explored by Bappy et al. (2019b, 2020b). The average low pressure
event frequency ({) is defined as the number of low pressure excursions with pressure dropping
below a certain level and recovering above the same level per unit time per particle. The average
time required for each excursion is the average duration (d) of the low pressure event. The
frequency of low-pressure events of any duration exponentially decreases as the pressure
decreases, and similarly follows an exponential reduction for any level of pressure as the duration
increases. The size of the nuclei affects the frequency significantly; a five-fold increase in size can
result in an increase of several orders of magnitude in frequency of low-pressure events. This
increase in frequency is more intense at lower pressures and thus can impact the cavitation more



significantly. Higher levels of turbulence in the flow are associated with more intense vortical
structures, resulting in more frequent low-pressure events as Re, increases. This has been verified
in this study for 22 < Re; < 240. Figure 4 shows the frequency distribution of nuclei of sizes
R," = 0.05 and 0.10 at Re, = 35,90, and 240. It is evident that larger nuclei experience more
frequent low-pressure events at all Re, and higher Re, exhibits higher frequency at low pressure
levels.
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Figure 3: Probability density functions of pressure for nuclei of size Ry = 0.1 at several Re;. The
limited number of events at very low pressure causes the rough tails.
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Figure 4: Low pressure event frequency distribution ¢ for R," = 0.05 and 0.10 for Re; = 35
(dotted), 90 (dashed), and 240 (solid).
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While larger nuclei have a higher probability of experiencing and staying longer at extreme
low pressures (Bappy et al. 2020b), the average duration as a function of nuclei size shows non-
monotonic behavior. Figure 5 shows that all the curves behave similarly, initially increasing the
average low pressure event duration with nuclei size and then gradually decreasing for Ry* > 0.05.
In general, higher Re, results in an increase of the average duration of the low-pressure events,
though for larger nuclei and lower pressures differences become negligible. The combined effect
of Re; and R," on the cavitation rate is discussed in §2.1.3.
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Figure 5: Average duration d of low-pressure events for

for three Re,. There is no curve for p,z
pu
do not reach such low pressure, see Fig. 2. Average duration increases with nuclei size up to

R," > 0.05, then gradually decreases.

2.1.3 Cavitation rate on HIT

In turbulent flows, intense fluctuations of pressure below the cavitation pressure can cause
gas nuclei to undergo exponential growth and a subsequent collapse when the pressure rises again
above cavitation pressure. The dynamics of spherical bubbles in a pressure field can be estimated
by the Rayleigh-Plesset (RP) equation (Brennen 1995). To model the equivalent cavitation rate at
the subgrid scale in LES, the time histories of pressure obtained from transport of nuclei in DNS
solutions are used to solve the evolution of the nuclei radius. For a nucleus exposed to a pressure
history P(t) the evolution of the radius R(t) is obtained from

oL (%Rz + RR) + % = Pyap T (patm + % - pvap) (Ra%)?'y - ZRTS —P(®) (1)

10
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. . 2
InEq. (11),R = i—}:, R = %, p., and y are the liquid density and viscosity, respectively, pyqp is

the vapor pressure of the liquid, S is the surface tension, and y is the polytropic exponent of the
non-condensable gas. R, is the radius of the nucleus in equilibrium at rest at a uniform
temperature Ty, and pressure pgen. Effects of temperature on all physical properties are
neglected. If the pressure fluctuations are P'(t), a nucleus will go through a time varying pressure
field given by

P(t) = Py + P'(¢). (12)

This pressure history is obtained for Lagrangian nuclei transported in the HIT field as previously
described, with R taken as the equilibrium radius at pressure P,. Of course, the value of Ry = R,
must coincide with the one used in the computation of the pressure history P’(t). The summation
of the right-hand side terms of Eq. (11), except P(t), denoted as Fyy (R), takes a minimum value
for any R(t) > 0. The radius R, where Fyy(R) is minimum is the Blake critical radius and
Fyn(R,) = min (Fyy) can be defined as the cavitation pressure or Blake’s critical pressure, p.gy-

Pcav = min(FNN(R))R>0 = Fyy(R,)

_ 3y-1 (28)3%Y 1/(3y-1)
= Pvap — 3y L3 ( 25 =3 ] . (13)
Y\Patm Ratm Pvap |)Rgtm

IfP(t) < peay and P(t) = constant, the initially small sized bubble rapidly grows and cavitates
reaching a detectable size. For any temporally evolving functions P(t) that plummet below p.q,,
for a limited time, it is not obvious whether the bubble will grow to detectable sizes or not,
therefore it is necessary to solve the RP equation along the nuclei trajectory and establish a
detection criterion for cavitation.

The criterion for cavitation inception can be based on either visual or acoustic detection
limit. For visual cavitation, when a bubble grows beyond a limiting detectable value is considered
a cavitation event (Hsiao et al. 2003, Straka et al. 2010). For acoustic detection, when the acoustic
pressure emitted by a growing/collapsing bubble exceeds a limiting threshold then a cavitation
event is counted (Ran & Katz 1994, Song 2017). This criterion is very important and will change
the cavitation event rates directly. With a smaller observable (e.g., 500 microns, probably the
smallest bubbles observable with the bare eye, though video can these days observe much smaller
cavities), we will have a higher cavitation event frequency and with a larger criterion (e.g., 1000
microns), we will have a lower frequency. In this study, we used a nuclei cavitation criterion of
R = 500 microns based on the ability to visually detect the growing bubbles.

The average cavitation rate f,, [events/particle/s] was computed as

— Ncay
Jeav = M@T/ury a5

where N_,, is the number of cavitation events tallied from the bubble dynamics simulation, M is
the total number of particles seeded in HIT domain, and T is the total nondimensional time of the

11
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DNS HIT simulation. Cavitation event rates are computed for a cavitation event criterion of R =
500 pm as previously discussed. The method of computing the cavitation event rates from the RP
solutions is the same as discussed in Bappy et al. (2020b), however, in that paper two cavitation
inception criteria were used based on the size of the bubble: R = 250 microns, and R = 10R,,.

The numerical procedure adopted to integrate the RP equation along the nuclei trajectory
is a fourth order embedded Runge—Kutta method with an adaptive time step applied to a scaled
version of the equation to reduce round-off errors. The initial conditions to start the integration are
R(0) = 0 and R(0) such that Fyy(R(0)) = P(0). Note that P(0) varies from bubble to bubble
and, in general, is different from the average pressure P, of the liquid. The dimensionless
fluctuating pressure history P’y;r(t) of a Lagrangian particle from HIT is transformed to a
dimensional history by

P'(t) = Py (%) x pru’. (15)

The subscript HIT denotes trajectories from Lagrangian particles seeded in the HIT flow
and tu;’ is the nondimensional time of HIT flow. Both R, and P, are varied to simulate bubbles
of different sizes in HIT with different mean pressures. The material parameters were given fixed
values representative of water under ambient conditions: p;, = 1000 kg/m3, u = 1073 Pas, S =
0.07 Pa m, y = 1.4, and p,qp = 2340 Pa. In addition, nuclei are treated separately and
independently. It is conceivable that a cavitating bubble may locally alter the pressure field to
influence the inception in a nearby nucleus, and either induce or inhibit inception. This coupling
between nuclei has also been neglected, as nuclei are separated in average by about 100 times the
nuclei diameter for the void fraction discussed above.

The cavitation event rates depend not only on R, and P, but also on the SGS Taylor
scale Reynolds number (Re,), and on the turbulent kinetic energy dissipation rate (&), as discussed
later in §2.2.1. Table 1 shows the range of parameters adopted for solving the RP equation and
build the database. Note that the total number of nuclei seeded into the HIT domain for solving
RP is 323 for Re; = 22 — 150 and 502 for Re; = 240. The total integral time used for these
simulations are approximately 376, 530, 760, 555, 820, and 571 for Re; =
22,35,55,90, 150, and 240 respectively.

Figure 6 presents the cavitation event rate f,,, as a function of Py and R for different
values of the other model inputs Re; and € due to pressure fluctuations. When applying this model
to a LES simulation, the SGS fluctuations of pressure increase the inception pressure to a certain
level depending on the SGS turbulence intensity. All panels are shown as function of R, with
different combinations of constant Re; and €. Lower Re; and € follow similar trends to those
observed here, with overall smaller maximum f,,, rates. The stability limit for unbound growth
of the nuclei is shown in the top left panel. Values to the left and above that curve, corresponding
to low pressure where massive cavitation occurs, cannot be properly simulated, and instead are
extended linearly from the valid points outside the curve. The exact shape of this extension is not

12
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critical for the estimation of cavitation inception, which will happen when the first nuclei start
cavitating. The contours shown in Fig. 6 are limited to a low threshold of 0.032 events/sec (about
two events per minute). The overall trends are of stronger dependence on reference pressure than
nuclei radius, except at very small radii, for which cavitation does not occur, and the occurrence
of cavitation at higher reference pressure for increased Re; and €. The dependence of f_,,, with P,
is exponential, with a slower decay at higher dissipation rates. Figure 7 demonstrates this
dependence for a nuclei size of Ry = 35 microns for Re; = 22 — 240. The cavitation events occur
at considerably lower pressures at lower dissipation rates. Comparing cavitation events for Re; =
240, the onset of cavitation occurs at reference pressures of approximately 5, 10, and 25 kPa
respectively for & = 10,100, and 1000 m*/s. This trend holds for cavitation events at other
Reynolds numbers and nuclei sizes. At very low dissipation rates, all the curves almost coincide
and there is no considerable sub-grid fluctuation correction in pressure for inception. This
cavitation event rate f,,, database is used to determine the SGS cavitation event rate for any local
CFD cell using multilinear interpolation in the four dimensional (Rey, R, log(¢), Py) space. Notice
that we access the database with R, and not with R,. However, knowing P, and p,,,, one can
compute Ry from R, and vice versa. Analogously, for a fixed Re,, the variable € can be replaced
by u' and vice versa.

Table 1. Conditions and range of parameters for solving Rayleigh-Plesset equation to obtain the
cavitation event rates.

Variables Values/Range
Re; 22,35, 55,90, 150, 240
R 0, 0.025, 0.05, 0.10, 0.15, 0.2
& (m%/s%) 0.001, 0.01, 0.1, 1, 10, 100,
1000
P, (kPa) 0-30

13
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Figure 6. Cavitation event rates, f_,,, against reference pressure, P, and nuclei sizes R,.

Turbulent kinetic energy dissipation rates are respectively 10,100, and 1000 m%/s for the top,
center, and bottom rows; Re; is 90,150, and 240 for left to right columns. Blake’s threshold for
unbounded growth (with p,,, = 2340 Pa, P, = 10 kPa, S =7 X 1072 Pa-m, and y = 1.4) is
shown in the top left panel as a dashed line.
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Figure 7: The variation of f,,, with P, at different Re, (colored lines) and at different turbulent
kinetic energy dissipation rates (from left to right: ¢ = 10,100, and 1000 m?/s) for nuclei of size
Ry = 35 microns (at atmospheric pressure).

2.2 Implementation for the Smagorinsky LES model

The necessary quantities to compute the local cavitation rate F,,,(Rey, u', Ry, Py) at every
grid point, Re,, u', and P, are obtained from a CFD solution, with Re; and u’ resulting from the
SGS turbulence model. The other quantity, R, is independent of the CFD model. Three important
assumptions are introduced at this point:

1) The SGS turbulence can be represented with HIT.

2) The SGS turbulence is fully developed, so statistically stationary HIT solutions can be
used at the SGS level, and

3) Nuclei present in the cell are subject to the SGS turbulence long enough to enable use
of cavitation bubble growth statistics obtained in §2.1.

These assumptions must be considered in a Lagrangian sense, since both nuclei and
turbulent structures are transported with the flow, and thus the residence time of nuclei in a patch
with certain turbulence properties depends mostly on the formation, evolution, and decay time of
the resolved turbulent structures. A high turbulence patch may be passing through a given cell at
a particular time step, but that same patch followed an upstream trajectory and will continue in a
downstream trajectory changing turbulence properties within several time steps, since a proper
LES computation resolves the slower larger scales and models the fast-changing smaller scale.

2.2.1 Sub-grid scale turbulence in LES

The two natural independent parameters to obtain the pressure history of HIT are the Taylor
Reynolds number, which controls the intensity of the SGS turbulence, and the SGS velocity
fluctuations u’, used to dimensionalize the dimensionless pressure obtained in HIT. The SGS
velocity fluctuations are obtained from the SGS TKE kg, while the SGS TKE dissipation rate is

. , 15 . .
related to Re; and u’ since Re; = u'? T We choose kg and &g as the main parameters since they
S
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are more intuitive than other possible pairs of independent parameters, like the strain rate
magnitude S or the Taylor Reynolds number.

The simplest zero-equation LES SGS model is the Smagorinsky model (Smagorinsky
1963), where the proposed length scale is a fraction of the grid cell size A = (A,A,A,)*/3

I = Csh (16)

and the velocity scale is computed from the absolute filtered strainrate S = |2S; j§i ; and the length
scale to yield a turbulent viscosity based on Prandtl (1925) mixing length hypothesis
ve = (CsB)*S a7

1.0%;
Gy
Cs = 0.16 (Lilly 1967), though in general, the optimum value is flow-dependent. The SGS TKE
dissipation rate is computed as

. . . = ou;j . .
The strain rate of the filtered flow is S;; = + a—::) and for HIT the Smagorinsky constant is
L

g = v,5% = (CsA)?S® (18)

Other zero-equation SGS models, for instance the dynamic Smagorinsky model of
Germano et al. (1991) and modification of Lilly (1992) or the gradient model of Clark et al. (1979),
produce different eddy viscosities that can be combined with Eq. (18) to obtain the TKE dissipation
rate. While in CFD it is appropriate to maintain consistency in the turbulence model used with the
methodology to compute the TKE dissipation, Egs. (17) and (18) provide a formulation to obtain
estimates for any LES computation and have been used even in experimental velocity fields (Sheng
et al. 2000, Bertents et al. 2015).

Of critical importance is an appropriate estimation of the intermittency, as pressure
fluctuations trigger inception. Cerutti and Meneveau (1998) showed that the Smagorinsky and the
volume-averaged dynamic Smagorinsky models predict realistic levels of intermittency in HIT,
while the local dynamic Smagorinsky model produces much more intermittency than the true SGS
dissipation field.

The TKE at the SGS level can be estimated assuming a Kolmogorov spectrum as
— [® e2/3,-5/3 4, — 3 (EB\2/3
kg = fn/ZCe 13k=53dxk =2C() / (19)

Equation (19) is consistent with the expression used in the SGS TKE equation to estimate the
dissipation rate (Kim and Menon 1997)

ks

dks | — Oks _ - oW
axi

a
—_ Uu: = —T;;— — & — (v
ac T Ui ax; Yox; S +6xi( t

(20)

where the SGS TKE dissipation is modeled as & = Cskg/z/ﬁ, and the constant is C, = 1.0
(Chumakov 2007). An equivalent expression is obtained if in Eq. (19) we use the Kolmogorov

constant C = 1.5, resulting in
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kg = ——=C(eA)?/? = 1.05(A)?/? (21

2 2/3

Notice that Eq. (20) uses the SGS TKE dissipation rate g and Eq. (21) the total TKE dissipation
rate &. We use the additional assumption that the LES resolution is such that the resolved TKE
dissipation rate is negligible, such that ¢ = €. Notice also that if a zero-equation model is used
then the SGS turbulence quantities in Eqs. (18) and (21) are derived from the resolved shear rate
S only. Ultimately this means that the SGS Re; and v’ depend on one CFD parameter and the grid
size. One-equation LES approaches solving an equation for the SGS TKE like Eq. (20) result in
ks independent of the local shear rate, but the TKE dissipation is still linked to kg through Eq.
(21), as local equilibrium is assumed. While for Smagorinsky and other zero-equation models only
one parameter controls the SGS turbulence, more advanced SGS models can provide the two
independent parameters needed to characterize the SGS cavitation rate and inception.

The Taylor Reynolds number (Eq. (1)) is based on the SGS velocity fluctuations, computed
from Eq. (21) as
, 2

Combining Egs. (1), (18), and (21) and using A = u'/15v/¢ yields

Re; = Z—/SCAZ/3 / = 2.71A%73 / (23)

If a Smagorinsky model is used, plugging Eq. (18) into Eq. (23) results in a final expression for

Re;L
/3
Re, rif; f — 147A f (24)

Similarly, using Eqs. (1), (18) and (21) the SGS velocity fluctuations are

c1/2¢2/3

u = AS = 0.247AS (25)

l/3

From any CFD solution providing S, u’ and Re; are computed from Egs. (24) and (25)
using the Smagorinsky model. If a different SGS model is used then & can be computed directly
from the SGS v, using Eq. (18), then use Egs. (1), (22) and (23) to compute u’ and Re;.

2.3 Finding the cavitation number at inception and inception location

Once SGS turbulence quantities Rey, u', and the local absolute pressure pg;,s are obtained
for every grid point in the CFD computation, the cavitation rate at every grid point for each nuclei
size Ry can be computed from the database fiq,, (Rey, U, Ro, Paps + Dref), that is, accessing the
database with Py = pgps + Dres, Where prf is a floating reference pressure used to define the
cavitation number ¢ = (Dref — Pyap)/ (0.5pU2) and pgys is the absolute pressure for the solution
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at ey = 0. The cavitation rate density at p,¢s in events/m’s is also an instantaneous field variable
computed at every grid point and time step

Fcav(xv t, p'ref) = f0°° N(Ro)fcav(Re}u u,' ROr Pabs + pref)dRO (26)

where the nuclei size distribution N(R,) is a property of the fluid. Implementation of Eq. (26)
requires efficient numerical integration of the discretized nuclei size distribution and a fast lookup
table for the local cavitation rate since it is computed for every grid point at every time step for
each reference pressure. This is better done as a post-processing step since several reference
pressures need to be evaluated to find the cavitation inception pressure.

The cavitation inception pressure and location are obtained after defining an observable
cavitation rate for the case considered, then changing the reference pressure until the observable
rate is achieved. For example, in visual cavitation the observable rate could be one cavitation event
every 10 s in an observation volume V. In such a case, the inception pressure, Pipception, is defined
as the reference pressure p,..; that satisfies

%IOT fV Feavy(x,t, Pref)dxdt =0.1Hz 7

The corresponding inception cavitation number is 6; = (Pinception — Pvap)/ (0.5 U2) and the
inception location is obtained finding the position with the maximum time-averaged cavitation
rate,

= T
Fcav,V(x: pi) = %fo Fcav,V(xt t, pi)dt (28)

3. Model Validation in homogeneous isotropic turbulence
3.1. LES HIT Solver

For LES computation of HIT flow, the same spectral code that has been described in §2.1.1.
was used. The flow evolves following Eqs. (2) and (3), however u; and p are the coarse-grained
velocity vector and pressure in the case of LES, and the stress term 7;; now includes additional
SGS values and is written as

Tij = Z(V + Vt)Si (29)

jr

where, v, is the Smagorinsky model eddy viscosity as discussed in §2.2.1.

3.2 LES solutions and predicted pressure pdf

Homogeneous isotropic turbulence is a spatially or temporal concept, not necessarily
applicable at the subgrid scale level. While long term statistics at a point can show that the
turbulence is isotropic, short term behavior can be highly anisotropic, for instance as a result of a
large-scale vortex causing local shear. To evaluate how closely the assumption of local HIT
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conditions matches the pressure pdf, we compare the model performance for a LES computation
to the DNS prediction of the Lagrangian pressure pdf at Re; = 240 and 324. LES computations
are performed using grids with 643 grid points, much coarser than DNS.

The pressure pdf at the subgrid scale is a function of the dimensionless pressure
fluctuations p'/ pu'fgs and Re;,. In a LES computation at every grid point and time step we have a
pressure p; g respect to the average pressure. The local, instantaneous pressure pdf is then

PAf[(Pres + P'PU 2g6) /U2, X, t] = pdfsgs(Rez, D' /pu'2ys X, t) (30)

The total pdf is computed by integrating Eq. (30) in time and space for the LES
computational domain. Discretization into bins of (pgs + p’pu’igs) /pu'?) determines values of
p'/ pu’gg s for each bin, and the pdf is computed filling the bins for each spatial point at each time
step.

Instantaneous solutions colored with pressure for LES and DNS are shown in Fig. 8.
Results comparing the pressure pdf’s for LES plus the SGS model and DNS are shown in Fig. 9.
With the strain rate computed using the grid spacing h the lower pressures present in the pressure
pdf are underestimated. Computing all parameters in Eqs. (20)-(24) with wider grid spacing
increases the SGS pressure fluctuations. It was determined through tests that a spacing 24 yields
the best results, properly predicting the pressure pdf for —20 < p <5, the region where
occurrence of cavitation events is most important, since lower pressures are less likely and of
shorter duration. This level of correction is significant and leads to the speculation that using HIT
at the SGS level underestimates the pressure fluctuations, and that possibly HST is more
appropriate to develop the SGS model.

Figure 8: Instantaneous pressure solutions for Re; = 240 computed with LES (left) and DNS
(right).
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Figure 9: HIT pressure probability density functions for LES and DNS at Re; = 240 and 324,
dashed lines represent the pressure pdfs of LES without any correction. The proposed SGS
model best corrects the pressure pdfs using a grid spacing of 2A.

3.3 Comparison against experimental data

The methodology was tested against the experimental data of Laporta et al. (2000), who
studied cavitation in homogeneous isotropic turbulence produced with counter-rotating disks. The
disks produced a region in the volume of the experimental apparatus with TKE dissipation between
2.03 and 4.12 m?/s® and Re; = 1660,1772 and 1880. These conditions were simulated with
the forced HIT spectral code described in §3.1 (LES model) with grids of 2563 grid points for all
Rey, and for three grids (1923, 2563, and 3843) for Re; = 1772. The nuclei number density is
not reported in the experiments, so a generic nuclei size distribution (Li and Carrica 2021) was
used with 1 X 10° bubbles/m>.

Time histories of the minimum dimensionless pressure predicted with LES are shown in
Fig. 10 for three grids at Re; = 1772. Results show that, as expected, the minimum pressure
excursions are more violent as the grid is refined. Since the corrections for SGS pressure
fluctuations decrease as the grid is refined, the final cavitation rate (due to resolved pressure plus
SGS model) should stay constant for all grids.
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Figure 10: Time history of minimum pressure for LES of HIT at Re, = 1772 for grids with
1923, 2563, and 3842 grid points (left), and corresponding cavitation event rate including the
experimental point (right).

Figure 10 also shows the total cavitation frequency in events/s observed in a 3 cm? volume,
as used in the experiment to determine cavitation. As the pressure is reduced this cavitation
frequency quickly increases, and cavitation becomes detectable when the frequency is 0.1 Hz.
Note that the model predicts similar cavitation inception point for all grids. The classic method to
predict cavitation inception based on the minimum pressure obtained in CFD results in an
underestimation of the inception pressure, as shown in Fig. 11, though as the grid is refined the
results improve.

28
+ + *
= 26
=) 94 ° o o
£ A
=22 ¢
£
9 4 4
Model +
18 LES 4
16 ) ) ) Expcri'mcm o]
150 200 250 300 350 400

N

Figure 11: Predicted cavitation inception pressure for LES of HIT at Re; = 1772 for cases with
N3 grid points, with N = 192,256 and 384.
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The cavitation inception predicted by the model at three Taylor scale Reynolds numbers
are shown in Fig. 12. The turbulence-induced pressure fluctuations increase as the Reynolds
number increases, resulting in cavitation inception at higher pressures. The predicted cavitation
frequency also quickly increases for a given pressure. As an example, at 25,000 Pa the frequency
is 1 X 1075 for Re; = 1660, increasing to 3 x 10~* at Re; = 1772 and 20 times more for Re; =
1880. The minimum pressures predicted by LES reach lower values as Re, increases, see Fig. 13.
The model tends to overpredict the cavitation inception pressure by approximately 1.5 KPa, though
this number may be lower or higher as the cavitation inception pressure in the experiments has not
been explicitly reported and was estimated based on experimental plots of event rate.
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Figure 12: Predicted cavitation inception pressure by the model for LES of HIT at Re; =
1660,1772 and 1880. Cavitation rate (left) and inception pressure (right).
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Figure 13: Minimum pressure histories predicted with LES of HIT for Re; = 1660, 1772,and 1880.
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4. Conclusions, limitations, and further discussion

We presented a sub-grid scale model of cavitation inception that accounts for unresolved
SGS pressure fluctuations assuming that the SGS turbulent flow is homogeneous and isotropic.
Cavitation rates are obtained by simulating DNS Lagrangian transport of nuclei of different sizes
in HIT at various Re, to obtain pressure histories experienced by the nuclei. Then the Rayleigh-
Plesset equation at different reference pressures is solved for all the nuclei sizes and velocity
fluctuations, recording bubble growth events that reach bubble sizes above 0.5 mm to obtain tables
for the local cavitation rate. The cavitation rate of an LES simulation is obtained by computing the
local SGS turbulence quantities and entering the cavitation rate tables with the local nuclei size
distribution and cell pressure. Lowering the reference pressure increases the cavitation rate, which
reaches inception when the cavitation events are observable at one cavitation event every 10
seconds in a problem-dependent visual volume.

The strongest assumption in the model is the hypothesis of homogeneous isotropic
turbulence at the SGS level. The use of forced HIT to compute the SGS cavitation rate results in
the unresolved turbulence to depend only on the resolved strain rate. It is reasonable to assume
that the local SGS turbulence will be a result of local production and destruction, as well as
transport. For instance, there could be considerable SGS turbulence as a result of transport from a
nearby high-turbulence spot, even with a zero local strain rate; the opposite condition of
considerable production due to high local strain rate but low SGS turbulence is also possible, and
not accounted for in our approach. More discussion on this point is provided in §4.1.

We can expect the model to provide a level of correction to the cavitation inception
predicted using the lowest pressures resolved by LES, resulting in cavitation at higher pressures.
The correction will be stronger in cases of higher turbulence and lower reference pressures, it will
also increase as the grids are coarser and the fraction of unresolved turbulence increases. The
model will provide little or no correction for flows with weak or suppressed turbulence, as
expected. Notice that a good estimate of the unresolved turbulence is necessary.

The inception of cavitation also depends on the water quality, which has a prominent effect
on the nuclei concentration, size distribution, presence of non-condensable gases and of
surfactants. Our model is sensitive to the first two factors through the nuclei size distribution
function N(R,) in Eq. (26). Although current computations are based on a uniform distribution of
nuclei in the free stream as an input, it is possible to transport the distribution function during the
CFD computation to account for increased concentration of larger nuclei in lower pressure regions.
Work to expand the cavitation inception model to account for non-condensable gases and
surfactants is currently starting.

Another critical parameter influencing the inception point is the cavitation inception
criterion, as discussed earlier. We are in the process of studying the sensitivity to different acoustic
and visual cavitation inception criteria, as video recording instead of visual observation is presently
more accurate and capable of detecting smaller bubbles. The criterion of observable 1 mm
diameter bubbles used in this paper results in a void fraction of 0.05% for a nuclei concentration

23



AlP

Publishing

of 10° nuclei/m3. This criterion can be used in a homogeneous mixture model (without any SGS
cavitation inception model).

4.1 Using HST instead of HIT

While HIT provides pressure statistics for cavitation inception modeling that can be used
to evaluate SGS pressure fluctuations (Bappy et al. 2020b), it can be argued that HST is a more
appropriate choice. In particular, passive scalar transport in turbulent flows shows a persistent
anisotropy at all scales independent of the Reynolds number (Warhaft 2000). Pumir (1996) showed
that HST exhibits small scale anisotropy in the direction of the imposed vorticity even for high
Reynolds numbers. In addition, HST exhibits high enstrophy and TKE fluctuations that can lead
to higher pressure fluctuations than those occurring in HIT, as evidenced by strong vortical
structures reminiscent of those in turbulent channels and boundary layers (Pumir 1996, Dong et
al. 2017). In this work we restrict our analysis to HIT, though the framework can be easily extended
to HST should proper statistics of pressure for transported nuclei become available. Current and
future work is focusing on improving the SGS cavitation inception model by exploring HST and
transport models to estimate the SGS turbulence. Preliminary results show that, for the same Re,,
HST produces more pressure fluctuations than HIT and reaches lower pressures more frequently.

4.2 Extension of the inception model to RANS

Unsteady RANS solutions resolve only the largest structures, if any. The SGS turbulence
is therefore all modeled. RANS grids are frequently considerably coarser than LES grids, thus the
local isotropy and homogeneity assumptions are likely violated. Yet, a correction for cavitation at
the SGS level can be developed following the same procedures as in LES accepting that the SGS
turbulence is misrepresented. The SGS velocity fluctuations and Taylor Reynolds number are

2 __ &k
u'? =2 31

_ 2.582k __ 3
Re; = =— =861 /v (32)

where k and ¢ are obtained directly from the turbulence model local quantities. Notice that, in
contrast to LES, the SGS turbulence in RANS is independent of the grid size, assuming that the
CFD solution converged in grid. In addition, because all turbulence is modeled, the SGS Re; and
u’ will be large compared to LES. Ship boundary layers with length-based Reynolds numbers in
excess of 10° can reach v,/v = 100,000, implying Re, =~ 3,000. More common conditions
excluding boundary layers exhibit % < 3,000, which results in Re; < 500. Computing HIT for

Re; = 400 requires 10243 domains (Cardesa et al. 2017), 8 times more than the 5123 used for
the maximum Re; = 240 used herein and reaching Re; = 500 will likely require a 20483
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computational domain or bigger. These computations would be expensive but are doable, this is
also part of our future focus.
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